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Familywise Error Rate Control With a Lasso Estimator

Patrick J.C. Tardivel∗, Rémi Servien and Didier Concordet

Toxalim, Université de Toulouse, INRA, ENVT, Toulouse, France.

Abstract

We propose a new method to control the familywise error rate (FWER) in linear Gaussian models. Our

method relies on a lasso-type estimator and can be used for all n× p full-rank design matrices. We provide

an explicit and non-asymptotic choice for the lasso tuning parameter that controls the FWER. Numerical

experiments highlight the performances of our approach compared to the state-of-the-art procedures. An

application to the detection of metabolites in metabolomics is provided.
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1 Introduction

Let us consider the linear Gaussian model

Y = Xβ∗ + ε, (1)

where X = (X1| . . . |Xp) is a n × p full-rank design matrix, ε is a centered Gaussian vector with an invertible

variance matrix Γ, and β∗ is an unknown parameter. We want to estimate the so-called active set A = {i ∈

[[1, p]] | β∗i 6= 0} of relevant variables. A natural way to recover A is to test the hypotheses Hi : β∗i = 0, with

1 ≤ i ≤ p. Several type I errors can be controlled in such multiple hypotheses tests. In this article, we focus

on the Familywise Error Rate (FWER) defined as the probability to reject wrongly at least one hypothesis Hi.

When a sparse estimator β̂ of β∗ is available, a very simple way to test the hypothesis Hi is to reject it when

β̂i 6= 0. The lasso estimator [Tibshirani, 1996] is probably the most popular sparse estimator. It defined by

β̂(λ) = argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ‖β‖1

}
. (2)

Obviously, the test’s performances depend on the estimator β̂(λ) and, by consequence, on the choice of λ.

Meinshausen and Bühlmann [2006], Zhao and Yu [2006], Zou [2006] showed that the irrepresentable condition is
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an almost necessary and sufficient condition for A(β̂(λ)) := {i ∈ [[1, p]] | β̂i(λ) 6= 0} to be a consistent estimator

of A. Geometrically, this condition means that each variable Xi with i /∈ A is almost orthogonal to the subspace

Vect{Xi, i ∈ A}. This condition has been relaxed [Zou, 2006] by considering a consistent estimator of A based

on the adaptive lasso estimator defined by

β̂adapt(λ) = argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ

n∑
i=1

1

|β̃i|
|βi|

}
, (3)

where β̃ is any consistent estimator of β∗. More precisely, Zou [2006] showed that as soon as λ = Cnγ , with

C > 0 and γ ∈]0, 1/2[, the derived estimator A(β̂adapt(λ)) is consistent. However, no explicit choice is currently

available for C and γ whereas choosing them a priori can lead to poor results [Chand, 2012].

In practice, the tuning parameter is often selected using cross-validation. This way of choosing λ can be

used for any design matrix X and is implemented in some well-known R packages, such as lars [Efron et al.,

2004] or glmnet [Friedman et al., 2010]. Unfortunately, this procedure is unsuitable for the active set estimation

[Leng et al., 2006].

Explicit choices of λ have been provided to control the False Discovery Ratio (FDR) [Bogdan et al., 2015,

Su and Candes, 2016] or to estimate the active set [Lounici, 2008]. Both works assume that the design matrix

is close to an orthogonal matrix (which implies the irrepresentable condition). In addition to this assumption,

Lounici [2008] requires that the smallest non-null parameter of β∗ is larger than a threshold (beta-min condition)

to control the probability of {A(β̂(λ)) = A} . However, no results are available for a general full rank matrix

X.

The λ choice is not an issue for the multiple testing procedures based on the lasso knots (λ̂i)1≤i≤p. The

lasso knots correspond to values of λ̂ at which the estimated active set A(β̂(λ̂)) changes. A first example of

a multiple testing procedure based on lasso knots is the covariance test [Lockhart et al., 2014] that tests for

a specific knot (λ̂k) the hypothesis A ⊂ {i ∈ [[1, p]] | β̂i(λ̂k) 6= 0}. G’Sell et al. [2015] defined a procedure to

test ordered hypotheses Hk : A ⊂ {i1, . . . , ik−1}, where the indices i1, . . . , ik−1 are such that λ̂i1 ≥ · · · ≥ λ̂ip .

This procedure controls the FDR. However, the rejection of the hypothesis Hk simply indicates that A is not

included in {i1, . . . , ik−1} but does not provide any information on the set it is included in. Consequently, the

set of rejected hypotheses does not allow to properly estimate the active set.

Other multiple testing procedures that use the lasso knots have been developed in Barber and Candès [2015],

Janson and Su [2016]. The procedure described in Barber and Candès [2015] controls the FDR while the one

given in Janson and Su [2016] controls the k−FWER, that is the probability of wrongly rejecting at least k of

the true null hypotheses. Both procedures compare knots of the original lasso (λ̂i)1≤i≤p to knockoff lasso knots

(λ̃i)1≤i≤p. One can view knots of the knockoff lasso (λ̃i)1≤i≤p as knots of the lasso when ∀i ∈ [[1, p]], β∗i = 0.

This article proposes a multiple testing procedure that uses a lasso type estimator for which the tuning

parameter λ controls the FWER via an explicit non-asymptotic choice of λ. This procedure does not require
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any condition on the design matrix X.

This article is organized as follows. In Section 2, we study the particular case in which the design matrix

X has orthogonal columns (i.e. XTX is diagonal), whereas Section 3 addresses the general case where X is

a full-rank design matrix. Section 4 is devoted to simulation experiments: we compare our multiple testing

procedure with 1) the stepdown multiple testing procedure of Holm [1979] and the generic stepdown multiple

testing procedure of Romano and Wolf [2005] and Lehmann and Romano [2005] (p. 352), 2) the active set

estimation provided by Lounici [2008], 3) the multiple testing procedure that uses knockoff knots described in

Janson and Su [2016]. Section 5 details the analysis of metabolomic data that motivated this work.

2 Orthogonal-columns case

By convenience, we write that the X matrix has orthogonal columns when XTX is diagonal. An orthogonal

matrix is thus an orthogonal columns matrix but with XTX = Idp. When the design matrix X of the Gaussian

linear model (1) has orthogonal columns, the lasso estimator has a closed form. This closed form allows to choose

the tuning parameter in order to control the FWER at a given level. As an example, when X is orthogonal, the

lasso estimator has the following expression [Tibshirani, 1996, Hastie et al., 2009, Bühlmann and van de Geer,

2011]

β̂i(λ) = sign(β̂ols
i )

(
|β̂ols
i | − λ

)
+

where β̂ols is the ordinary least squares estimator of β∗. Let Zols denotes a centered Gaussian vector with

the same covariance matrix as β̂ols, the tuning parameter giving a FWER at level α is the 1 − α quantile of

max{|Zols
1 |, . . . , |Zols

p |}. When X has orthogonal columns, the Proposition 1 provides a closed form for the lasso

estimator and an explicit tuning parameter λ0 to control the FWER.

Proposition 1 Let X be a n× p matrix such that XTX = diag(d1, . . . , dp) then

∀i ∈ [[1, p]], β̂i(λ) = sign(β̂ols
i )

(
|β̂ols
i | − λ/di

)
+
.

Let Zols := (Zols
1 , . . . , Zols

p ) be a random variable distributed according to a N
(
0, (XTX)−1XTΓX(XTX)−1

)
distribution. If λ0 is the 1− α quantile of maxi∈[[1,p]]{di × |Zols

i |} then,

P(∀i /∈ A, β̂i(λ0) = 0) ≤ 1− α. (4)

When the covariance matrix Γ is given a priori, the distribution of Zols is known and λ0 can be obtained by

numerical simulations. In the next section we are going to adapt the Proposition 1 to the more general case

where X has no longer orthogonal columns.
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3 General case

In this section, we assume that the design matrix X is a full rank matrix. Let us consider the set G of

applications that orthogonalise X. In other terms, if U ∈ G, the matrix (UX)TUX is diagonal. Without

any other assumption on X, the lasso estimator has no closed form. Consequently, it becomes challenging to

choose a tuning parameter λ0 to control the FWER. To overcome this problem, we propose to apply of a linear

transformation U ∈ G to each member of the model (1). This leads to the new linear Gaussian model

Ỹ = X̃β∗ + ε̃ with Ỹ = UY, X̃ = UX and ε̃ = Uε. (5)

Because X̃ has orthogonal columns, it is possible to use the Proposition 1 of the previous section. For all

λ ≥ 0, the lasso estimator of β∗ is β̂U (λ) =

(
sign(β̂ols

i (U))
(
|β̂ols
i (U)| − λ/di(U)

)
+

)
1≤i≤p

and the tuning

parameter λU0 giving a FWER α is the 1 − α quantile of maxi∈[[1,p]]{di(U) × |Zols
i (U)|}. In the previous

expression, β̂ols(U), Zols(U) and (di(U))1≤i≤p are respectively the ordinary least squares estimator of (5),

a centered Gaussian vector with the same covariance matrix as β̂ols(U) and the diagonal coefficients of X̃T X̃.

Since the hypothesis β∗i = 0 is rejected as soon as β̂Ui (λU0 ) 6= 0 in other terms when |β̂ols
i (U)| ≥ λU0 /di(U),

one proposes to look for a linear transformation U such that the thresholds λU0 /d1(U), . . . , λU0 /dp(U)) are as

small as possible. Such a choice should increase the “power” of our test procedure. Of course, a p-uplet can be

minimized in several ways.

We propose to choose U ∈ G so that the function φ(U) =
∏p
i=1

λU0
di(U) is minimal. Intuitively, this choice can

be understood by noticing that under the assumption that β∗ = 0,

1− α = P(∀i ∈ [[1, p]], β̂Ui (λU0 ) = 0),

= P(∀i ∈ [[1, p]], di(U)× |Zols
i (U)| ≤ λU0 ),

= P
(
Zols(U) ∈

[
− λU0
d1(U)

,
λU0
d1(U)

]
× · · · ×

[
− λU0
dp(U)

,
λU0
dp(U)

])
.

The minimization of φ thus leads to minimize the volume of the rectangular parallelepiped
[
− λU0
d1(U) ,

λU0
d1(U)

]
×

· · · ×
[
− λU0
dp(U) ,

λU0
dp(U)

]
among those that have a level 1 − α. The following theorem shows that it is possible to

pick a transformation U∗ for which φ is minimal.

Theorem 1 There exists a linear transformation U∗ ∈ G, such that

∀U ∈ G,φ(U∗) ≤ φ(U).

The previous theorem gives the existence of U∗ but does not guarantee its uniqueness. The building of an

optimal U∗ can be performed in two steps. First, because we want a small λU0 , we select a set of applications
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of G that minimize the variance of β̂ols(U). Actually, we will see that there exists a set of transformations that

allow β̂ols(U) to become an efficient estimator having thus the same distribution as the maximum likelihood

estimator of the model (1). Second, we look for an application U∗ minimizing φ(U) among the applications

selected at the first step. These two steps are described in the following two lemmas.

Lemma 1 Let δ ∈]0,+∞[p and Pδ be an invertible n× n matrix such that

PδX =

∆

0

 , with ∆ = diag(
√
δ1, . . . ,

√
δp) and 0 the null matrix.

Let M be a p× n matrix defined by

M = ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1 =

(
M1 M2

)
,

where M1 and M2 are p× p and a p× (n− p) matrices, respectively. Finally, let us consider the n× n matrix

Vδ defined by

Vδ =

Idp ∆M2

0 0

Pδ.

Then, for all δ ∈ (0,∞)p, the matrix Vδ belongs to G, and β̂ols(Vδ) has the same variance as the the maximum

likelihood estimator of (1).

As explained in the introduction, the lasso estimator requires a “nearly” orthogonal design matrix X to get

a consistent the active set estimator. Since most multiple test procedures are based on the lasso estimator,

it is always a good idea to apply a linear transformation Vδ in (5) before using it. Lemma 1 evidences Vδ

transformations that both orthogonalise the design and allow to gain efficiency instead of keeping an ordinary

least squares estimator.

A traditional transformation to get an efficient estimator in model (5) is to apply the linear transformation

Γ−1/2. However, and contrarily to the Vδ transformations, the obtained design matrix does not have orthogonal

columns.

As an example for Lemma 1, let us set Γ = Id4 and X the following matrix

X :=

1 1 −1 1

1 −1 1 −1


T

.
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A (not unique) couple of matrices P(1,1) and V(1,1) satisfying Lemma 1 is

P(1,1) :=



0.5 0.5 0 0

0.5 −0.5 0 0

0 1 1 0

0 −1 0 1


and V(1,1) :=



0.5 1/6 −1/6 1/6

0.5 −1/6 1/6 −1/6

0 0 0 0

0 0 0 0


.

Let us set X̃ = V(1,1)X. The following equality guarantees that V(1,1) ∈ G and β̂ols(V(1,1)) is efficient

X̃ =

1 0 0 0

0 1 0 0


T

and Var
(
β̂ols(V(1,1))

)
= (X̃T X̃)−1X̃TV V T X̃(X̃TX)−1 = (XTX)−1 =

1/3 1/6

1/6 1/3

 .

The following lemma shows that there exists at least a linear transformation U∗ among the linear transfor-

mations (Vδ)δ∈]0,+∞[p that optimizes φ.

Lemma 2 Set

U∗ = Vδ∗ with δ∗ = arginf
δ∈]0,+∞[p

φ(Vδ), (6)

then, for all U ∈ G, we have

φ(U∗) 6 φ(U).

As shown in the proof, there always exists at least a vector δ∗ ∈]0,+∞[p such that the infimum is reached.

Consequently, Theorem 1 holds for U∗ = Vδ∗ .

But this lemma does not explain how to get such a δ∗. We did not manage to obtain a closed form of

it. However some simple remarks could help its numerical computation. First, because for all t > 0, the

application t 7→ φ(Vtδ) is constant, one only needs to determine an optimal value δ∗ for which ‖δ∗‖∞ = 1.

Second, this problem can be translated more simply as follows. Let us set b1 = λVδ0 /δ1, . . . , bp = λVδ0 /δp (resp.

b∗1 = λ
V ∗
δ

0 /δ∗1 , . . . , b
∗
p = λ

V ∗
δ

0 /δ∗p) and consider the rectangular parallelepiped B = [−b1, b1] × . . . × [−bp, bp]

(resp. B∗ = [−b∗1, b∗1]× · · · × [−b∗p, b∗p]). Let Σ the covariance matrix of the maximum likelihood estimator, the

centered Gaussian random variable Zopt = β̂ols(Vδ)−β∗ is distributed according to N (0Rp ,Σ). The rectangular

parallelepiped B∗ has the smallest volume among rectangular parallelepiped B such that P (Zopt ∈ B) = 1−α.

This is a constraint optimization problem whose solutions are stationary points of the Lagrangian. The condition

given in the following proposition should hold for B∗.

Proposition 2 Let b∗ =
(
b∗1, . . . , b

∗
p

)
be a solution of the following optimisation problem

min

p∏
i=1

bi subject to P
(
|Zopt

1 | ≤ b1, . . . , |Zopt
p | ≤ bp

)
= 1− α. (7)
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Then, if Tb∗ denotes the random vector Tb∗ :=
(
Zopt
1 1{|Zopt

1 |≤b∗1}
, . . . , Zopt

p 1{|Zopt
p |≤b∗p}

)
, all the diagonal coeffi-

cients of Σ−1Var(Tb∗) should be equal.

Notice that if the variance matrix of Tb∗ (here denoted by Var(Tb∗)) was equal to Σ, all the diagonal coefficients

of Σ−1Var(Tb∗) would be equal, indicating that b∗ is a solution of (7). Because the diagonal terms of Var(Tb∗)

are always smaller than the diagonal terms of Σ, Var(Tb∗) cannot be equal to Σ. However, the condition given by

Proposition 2 can be intuitively interpreted. The optimal (with respect to the volume) rectangular parallelepiped

should be such that the covariance of the Gaussian variable Zopt restrained to [−b∗1, b∗1] × · · · × [−b∗p, b∗p] is as

close as possible to the non constraint covariance of the random variable Zopt. In the general case, the optimal

B∗ cannot be explicitly calculated. Nevertheless, there are some simple cases of interest where its computation

can be performed by hand. Let us give the optimal transformation Vδ∗ in the following three examples. For

convenience, we denote M(a, b) a matrix whose diagonal coefficients are equal to a and whose non-diagonal

coefficients are equal to b.

1) In the independent case : we set Σ = diag(σ2
1 , . . . , σ

2
p). From Proposition 2, the vector b∗ must satisfy

1

σ2
1

E
(

(Zopt
1 )21{−b∗1≤Z

opt
1 ≤b∗1}

)
= · · · = 1

σ2
p

E
(

(Zopt
p )21{−b∗p≤Z

opt
p ≤b∗p}

)
.

One deduces that b∗1 = σ1, . . . , b
∗
p = σp. Consequently, the only vector δ∗ = (δ∗1 , . . . , δ

∗
p) such that ‖δ∗‖∞ = 1 and

for which (1/δ∗1 , . . . , 1/δ
∗
p) is collinear to b∗ satisfies δ∗1 = σi0/σ1, . . . , δ

∗
p = σi0/σp, with σi0 = max{σ1, . . . , σp}.

2) In the equicorrelated case : we set Σ = M(1, ρ), consequently, Σ−1 = M(a, b) for some a and b. When

δ∗ = (1, . . . , 1), we have Var(Tb∗) = M(c, d) for some c and d. In this case, all the diagonal coefficients of

Σ−1Var(Tb∗) = M(a, b)M(c, d) are equal.

3) In the equicorrelated and independent case : let Σ be the block diagonal matrix diag(M(1, ρ), Idp−s)

with M(1, ρ) a s × s matrix. It follows that Σ−1 is block diagonal with Σ−1 = diag(M(a, b), Idp−s). If

we set δ∗1 = · · · = δ∗s = k1 and δ∗s+1 = · · · = δ∗p = k2, one deduces that Var(Tb∗) is block diagonal with

Var(Tb∗) = diag(M(c, d), eIdp−s) for some c, d, e. Consequently, whatever k1 and k2, the s first diagonal coeffi-

cients of Σ−1Var(Tb∗) are equal and the p− s last diagonal coefficients of Σ−1Var(Tb∗) are equal. It remains to

tune k1 and k2 such that all the diagonal coefficients of Σ−1Var(Tb∗) become equal.

When the computation of the optimal B∗ cannot be carried out explicitly, one can assume that, up to a

dilatation of the obtained b∗ by the diagonal coefficients of Σ, the diagonal coefficients of Σ are equal to 1.

Indeed, one can check that (b∗1/σ1, . . . , b
∗
p/σp) is the solution of the following problem

min

p∏
i=1

bi subject to P
(
|Zopt

1 |/σ1 ≤ b1, . . . , |Zopt
p |/σp ≤ bp

)
= 1− α.
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4 Comparison with other multiple testing procedure

We developed a multiple testing procedure that controls the FWER via the tuning parameter of the lasso

estimator. In this section, we compare its performances to the one of existing methods. Comparisons with the

Lounici’s active set estimator [Lounici, 2008] and with the multiple testing procedure via knockoffs [Janson and

Su, 2016] are perform using different criteria but also different simulations. This is because 1) contrarily to

knockoffs, the generic stepdown and the Holm’s procedures that control the FWER, Lounici’s work provides

an active set estimator and aims at controlling the probability to recover exactly the active set 2) the knockoffs

procedure requires a long computer time that precludes its performances evaluation with large values of p.

4.1 Comparison with Holm’s and generic stepdown procedure

In the Gaussian linear model, the hypothesis Hi : β∗i = 0 is associated to the p-value Pi := 2φ̄
(
|β̂mle
i |/se(β̂mle

i )
)

,

where φ̄ is the complementary cumulative distribution function of a N (0, 1) distribution. The Holm multiple

testing procedure [Holm, 1979] is a stepdown procedure for which p-values are sorted from the most significant

to the least significant, namely Ps(1) ≤ Ps(2) ≤ · · · ≤ Ps(p). The rejection of the hypotheses Hs(1), . . . ,Hs(p) is

carried-out sequentially as explain hereafter. The hypothesis Hs(1) is rejected if and only if Ps(1) ≤ α/p. The

hypothesis Hs(2) is rejected if and only if Ps(1) ≤ α/p and Ps(2) ≤ α/(p− 1) and so on. This procedure insures

a FWER control at a level α and improves the Bonferroni procedure since the cutoff α/(p − i + 1) associated

to the hypothesis Hs(i) is smaller than α/p.

The generic stepdown procedure defined by Romano and Wolf [2005], Lehmann and Romano [2005] p.

352 and Dudoit and Van Der Laan [2007] p. 126 takes into account the joint distribution of β̂mle. Because

the Holm’s multiple testing procedure only takes into account the marginal distribution of β̂mle, the generic

stepdown procedure has a higher power than the Holm’s multiple testing procedure. To describe the generic

stepdown procedure, let us denote Ti = β̂mle
i /se(β̂mle

i ) the statistical test and Z = (Z1, . . . , Zp) a centered

Gaussian vector with the same covariance matrix as T := (T1, . . . , Tp). The statistical tests are sorted from

the most significant to the least significant, namely |Tr(1)| ≥ · · · ≥ |Tr(p)|. The rejection of the hypotheses

Hr(1), . . . ,Hr(p) is done sequentially as explain hereafter. The hypothesis Hr(1) is rejected if |Tr(1)| ≥ tr(1).

The hypothesis Hr(2) is rejected if |Tr(1)| ≥ tr(1) and |Tr(2)| ≥ tr(2) and so on. In the previous expressions, the

threshold tr(s) is the 1− α quantile of max{|Zr(s)|, . . . , |Zr(p)|}.

For the numerical experiments, we performed 1000 simulations with n = 2500, p = 1000. The matrix

X and σ2 were chosen so that the covariance matrix Σ := σ2(XTX)−1 is a block diagonal matrix ; Σ =

diag(M(1, ρ), Id500) and M(1, ρ) and Id500 are both 500 × 500 matrices. We set β∗ ∈ R1000, A = [[1, 20]] and

∀i ∈ A, β∗i = c. We performed simulations for different values of ρ ∈ {0, 0.3, 0.6, 0.9}. We applied a linear

transformation Vδ∗ provided by the Lemma 1 in (5), with δ∗1 = · · · = δ∗500 = k1 and δ∗501 = · · · = δ∗1000 = k2. In

the independent case, when ρ = 0, k1 and k2 can be computed by hand and we obtained k1 = k2 = 1 while in
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the other cases, k1 and k2 had been computed numerically. When ρ = 0.3, ρ = 0.6 and ρ = 0.9, we obtained

respectively k1 = 1, k2 = 0.956, k1 = 1, k2 = 0.895 and k1 = 1, k2 = 0.690. These values of δ∗ were used to

derive λVδ∗0 giving a FWER less that α = 0.05. In figure 1, the power of each multiple testing procedure is

represented as a function of β∗i = c, for i ∈ A and for different values of ρ . The power is the average proportion

of true discoveries that can be written respectively for our procedure, Holm’s procedure and generic stepdown

procedure as

1

|A|
∑
i∈A

Ec
(
1{β̂Vδ∗i

(
λ
Vδ∗
0

)
6=0}

)
,

1

|A|
∑
s(i)∈A

Ec

 i∏
j=1

1{Ps(j)≤ α
p+1−j }

 and
1

|A|
∑
s(i)∈A

Ec

 i∏
j=1

1{tr(j)≤|Tr(j)|}

 .
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Figure 1: This figure shows the power our multiple testing procedure, the power of multiple testing procedures
generic stepdown and the power of Holm’s procedure. When ρ = 0, the three procedures have approximately the
same power. When ρ increases, the difference between the power of our procedure and the other one increases.

These numerical experiments illustrates that our procedure is more powerful than the other two procedures,

especially when the maximum likelihood estimator owns strong correlated components. Comparison of power

of different procedures makes sense only when these procedures share the same FWER. The table 1 provides

the FWER of the three compared procedures.
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ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
Holm 0.0496 0.0430 0.034 0.0286

Generic stepdown 0.0491 0.0498 0.0491 0.0505
Our procedure 0.0483 0.0487 0.0502 0.0540

Table 1: This table gives the empirical FWER estimated with 1000 simulations. The FWER level of our
procedure and the generic stepdown procedure is close to the nominal level of 5%. The FWER level of the
Holm procedure decreases when the maximum likelihood estimator has strong correlated components.

4.2 Comparison with Lounici’s estimator

Lounici [2008] used a thresholded lasso estimator β̂th to build the following estimator of A:

A(β̂th
i (λL)) := {i ∈ [[1, p]] | β̂th

i (λL) 6= 0}.

He proved that the event {A(β̂th
i (λL)) = A} has a controlled probability when the design matrix X is close to

an orthogonal matrix up to a multiplicative constant, the noise ε is Gaussian standard N (0, σ2Idp), and the

smallest non-null parameter |β∗i | is sufficiently large. For the numerical experiments, we took the same setting

as the one given in the previous subsection. However, because Lounici’s estimator requires a design matrix close

to an orthogonal one, we only focused on the particular case where ρ = 0. This implies that Σ = Id1000. In this

case, the estimator β̂th has a closed form

∀i ∈ [[1, 1000]], β̂th
i (λL) =


β̂i if β̂i ≥ 3/2λL

0 otherwise

, with β̂i = sign(β̂opt
i )(|β̂opt

i | − λL)+

The tuning parameter λL is given by λL := Aσ
√

log(p) where A has to be determined to fit the desired

level. When the smallest non-null parameter |β∗i | is large enough, P(A(β̂th
i (λL)) = A) ≥ 1 − p1−A2/8. From

this last expression, we chose A such that 1− p1−A2/8 = 0.95. Because Lounici’s work proposed to control the

probability of {A(β̂th
i (λL)) = A}, we compared the probability to recover exactly the active set with our method

and with the Lounici’s one. These probabilities are respectively Pc(A(β̂(λ0)) = A) and Pc(A(β̂th
i (λL)) = A)

are represented in figure 2.

The main explanation of the observed difference between Pc(A(β̂(λ0)) = A) and Pc((β̂th
i (λL)) = A)

relies on the choice of the tuning parameter. Indeed, the tuning parameter λ0 is the 1 − α quantile of

max{|Zopt
1 |, . . . , |Zopt

p |}, whereas Lounici’s tuning parameter λL bounds above the 1− α quantile of

2 max{|Zopt
1 |, . . . , |Zopt

p |}. With our multiple testing procedure, the probability of no false discovery is P(∀i ∈

[[21, 1000]] | β̂i(λ0) = 0) is exactly equal to 0.9510. As one can notice in figure 2, when the all the param-

eters β∗i in the active set increase, ie when c increases, the probability Pc(A(β̂(λ0)) = A) does not go to 1.

This is because, when there is at least one false discovery, we have A(β̂(λ0)) 6= A, thus, one can not have

Pc(A(β̂(λ0)) = A) ≈ 1 even if c is very large.
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Figure 2: This figure represents the probabilities to recover the active set with Lounici’s method ( Pc(ÂL(λL) =

A)) in red dotted line and with our method (Pc(A(β̂(λ0)) = A)) in black plain line. Our method recovers exactly

the active set even when the non null parameters are small (c is small). When c is very large, Pc((β̂th
i (λL)) =

A) ≈ 1 and Pc(A(β̂(λ0)) = A) ≈ 0.95.

4.3 Comparison with multiple testing procedure via knockoffs

A multiple testing procedure that controls the k-FWER had been proposed by Janson and Su [2016]. This

procedure compares the solution path λ ∈ R+ 7→ β̂(λ) of the original lasso with the solution path λ ∈ R+ 7→ β̃(λ)

the knockoff lasso. These two estimators are defined as follow

(β̂(λ), β̃(λ)) = argmin
β∈R2p

{
1

2
‖Y −XKOβ‖2 + λ‖β‖1

}
,

where the design matrix XKO = [X, X̃] is the concatenation of the original design matrix X with a knockoffs

design matrix X̃ whose building is given in Barber and Candès [2015]. We can view β̃(λ) as the lasso estimator

obtained when β∗ = 0Rp .

In this procedure, the number of false discovery is stochastically dominated by a negative binomial dis-

tribution NB(v, 0.5) in which the parameter v is set by the user. This procedure uses the random variable

λ̂j = sup{λ | β̂j(λ) 6= 0} and λ̃j = sup{λ | β̃j(λ) 6= 0} that are called knots of the lasso solution path. When,

|β∗i | >> 0, one would expect that Wj = max{λ̂j , λ̃j} is large and χj = 1λ̃j>λ̂j
is equal to 0. The random

variables W1, . . . ,Wp are sorted as follow Ws(1) ≥ Ws(2) ≥ · · · ≥ Ws(p) and the hypothesis Hs(i) is rejected if

and only if
∑i
j=1 χs(i) < v.

Because the building of the knockoff matrix needs a normalized matrix X (diagonal coefficients of XTX

must be equal to 1), we can not determine such a matrix and a standard error σ > 0 such that σ2(XTX)−1 =

diag(M(1, ρ), Id500). Indeed, diagonal coefficients of M−1(1, ρ) are not equal to 1 when ρ 6= 0. Consequently,
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whatever σ > 0, the matrix XTX = σ2diag(M−1(1, ρ), Id500) can not have diagonal coefficients equal to 1.

That is why, we only focus on the equi-correlated case.

In the numerical experiments, we set n = 250, p = 100 and σ > 0 is such that Σ = σ2(XTX)−1 = M(1, ρ).

Different values of ρ have been used ρ ∈ {0, 0.3, 0.6, 0.9}. The design matrix X has smaller dimensions than

in the previous subsection to avoid a too long computational time. Because we wanted the smallest FWER as

possible, we set v = 1. In this case, the number of false positive is stochastically dominated by a geometric

distribution NB(1, 0.5) leading to a minimal FWER equals to 0.5. If we had set v > 1, the familywise error

rate would have been P (Fv > 0) = 1 − 0.5v > 0.5, with Fv distributed according to NB(v, 0.5). We used the

R package knockoff [Barber and Candès, 2015] to build the knockoff matrix and knockoff knots. The linear

transformation Vδ∗ provided by the Lemma 1 in (5) was used with δ∗ = (1, . . . , 1). Then, the tuning parameter

λVδ∗0 was determined to obtain a FWER equal to 0.5.

The power of each multiple testing procedure is represented in the figure 3. The power is the average

proportion of true discoveries; the expression of the power for our procedure and the Janson’s procedure are

respectively equal to

1

|A|
∑
i∈A

Ec
(
1{β̂Vδ∗i (λ

Vδ∗
0 )6=0}

)
and

1

|A|
∑
s(i)∈A

Ec
(
1{
∑i
j=1 χρ(j)<v}

)
.

These numerical experiments illustrate that our procedure is better, especially when the maximum likelihood

estimator has strong correlated components. Comparison of power is meaningful when the FWER is the same

for all procedures. An average of 1000 simulations allows to estimate the FWER level of our procedure. This

level is equal to Pc(∃i /∈ A | β̂Vδ∗ (λVδ∗0 ) 6= 0) = P(|Zopt
i | > λVδ∗0 /δ∗i ). This probability does not depend from c,

we obtained 0.462, 0.477, 0.482 0.495 when the correlation ρ were respectively equal to ρ = 0, ρ = 0.3, ρ = 0.6

and ρ = 0.9. The figure 4 provides the FWER level for the knockoff procedure. Surprisingly, it seems that the

knockoff multiple testing procedure does not control the FWER at a level 0.5 for small values of c.

5 Application in metabolomics: detection of metabolites

Metabolomics is the science concerned with the detection of metabolites (small molecules) in biological mixtures

(e.g. blood and urine). The most common technique for performing such characterization is proton nuclear

magnetic resonance (NMR). Each metabolite generates a characteristic resonance signature in the NMR spectra

with an intensity proportional to its concentration in the mixture. The number of peaks generated by a

metabolite and their locations and ratio of heights are reproducible and uniquely determined: each metabolite

has its own signature in the spectra. Each signature spectrum of each metabolite can be stored in a library that

could contain hundreds of spectra. One of the major challenges in NMR analysis of metabolic profiles remains

to be automatic metabolite assignment from spectra. To identify metabolites, experts use spectra of pure
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Figure 3: In this figure, we compared the power our multiple testing procedure with the power of the knockoff
multiple testing procedure. Each point is an average of 1000 simulations. In the case where ρ = 0, components
of β̂opt are independent and two procedures have approximately the same power. In the case where β̂opt have
equi-correlated components, our procedure is more powerful.
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Figure 4: In this figure, we have computed the FWER level of the knockoff procedure for all c > 0. When
non-null parameters are small (i.e c is small), the FWER level is not well controlled. When c is large enough,
except in the independent case, the FWER level is largely smaller than its nominal value 0.5. Each point is an
average of 1000 simulations.

metabolites and manually compare these spectra to the spectrum of the biological mixture under analysis. Such

a method is time-consuming and requires domain-specific knowledge. Furthermore, complex biological mixtures

can contain hundreds or thousands of metabolites, which can result in highly overlapping peaks. Figure 5 gives

an example of an annotated spectrum of a mixture.

Recently, automatic methods have been proposed, for example, Metabohunter [Tulpan et al., 2011], BAT-

MAN [Astle et al., 2012, Hao et al., 2012], Bayesil [Ravanbakhsh et al., 2015] or the software Chenomx [Weljie

et al., 2006]. Most of these methods are based on a modelling using a Lorentzian shape and a Bayesian strategy.

Nevertheless, most are time-consuming and thus cannot be applied to a large library of metabolites, and/or

their statistical properties are not proven. Thus, establishment of a gold-standard methodology with proven

statistical properties for identification of metabolites would be very helpful for the metabolomic community.

Because the number of tests is not too much large (one can expect to analysed a mixture with about 200

metabolites), because NMR experts want to recover all metabolites present in the mixture but, did not want to

observe a false discovery, we have developed a multiple testing procedure that control the FWER.

5.1 Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact interval T. We

assume that we have a library of spectra containing all p = 36 metabolites {fi}16i6p (with
∫
T
fi(t)dt =

1) that can be found in a mixture. This family of p spectra is assumed to be linearly independent. In a

first approximation, the observed spectrum of the mixture Y can be modelled as a discretized noisy convex
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Figure 5: Example of an annotated mixture spectrum. There are overlaps between peaks of lipides and valine
and between the peaks of glutamine and lysine.

combination of the pure spectra:

Yj =

(
p∑
i=1

β∗i fi(tj)

)
+ εj with 1 6 j 6 n and t1 < · · · < tn a subdivision of T .

The random vector (ε1, . . . , εn) is a standard Gaussian N (0, σ2Idn). The variance σ2 is estimated using several

observations of a metabolite spectrum.

5.2 Real dataset

The method for the detection of metabolites was tested on a known mixture. The NMR experts supplied us

with a library of 36 spectra of pure metabolites and a mixture composed of these metabolites. The number of

used metabolites and their proportions were unknown to us. The results are presented in Table 2.

Metabolites Actual proportions Rejection for the nullity of the proportion
Choline chloride 0.545 Yes
Creatinine 0.209 Yes
Benzoic acid 0.086 Yes
L-Proline 0.069 Yes
D-Glucose 0.060 Yes
L-Phenylalanine 0.029 Yes
30 other metabolites 0 No

Table 2: This table presents the results for the 36 metabolites of the library. The actual proportions of each
metabolite are presented in the first column. For each metabolite, evidence against the nullity of the proportion
is given in the second column.
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The 6 metabolites that are present in the complex mixture are detected, including those with small propor-

tions. There is no false discovery because any hypothesis associated to the 30 other metabolites was rejected.

Because the whole procedure is quite fast, lasting only a few seconds, it could be easily applied to a library

containing several hundred metabolites. We refer the interested reader on this application to metabolomics to

Tardivel et al. [2017].

6 Conclusions

In this article, we proposed a multiple testing procedure that rejects the hypothesis β∗i = 0 when a lasso-type

estimator β̂i(λ) is not null. When the design matrix X of the Gaussian linear model (1) has orthogonal columns,

we gave a tuning parameter λ0 such that the multiple testing procedure controls the FWER at a level α. When

X has no longer orthogonal columns, the keystone of the paper is to apply a linear transformation U to each

member of the model (1) such that U orthogonalises X and for which the estimator β̂ols(U) is efficient. We

then applied the results from the orthogonal case to the non-orthogonal one. Numerical comparisons illustrate

the benefit of our procedure compare to the state-of-the-art procedures that control the FWER. In a future

work, we will explore a stepdown procedure adapted to the procedure given in this paper that could increase

the power.

7 Appendix

Proof (Proposition 1) The lasso estimator β̂(λ) is the point for which the function ψ(β) = 1
2‖Y −Xβ‖

2 +

λ‖β‖1 reaches is global minimum. Because the penalty term is a L1 norm, the function ψ is not differentiable

everywhere. However, as ψ is a convex function, it has a subdifferential. To find where the global minimum of

ψ is reached, we are going to determine β ∈ Rp for which the subdifferential ∂ψ(β) contains 0Rp [Hiriart-Urruty

and Lemaréchal, 2013]. We have ∂ψ(β) = −XTY +Dβ + λ∂‖.‖1(β) with

∂‖.‖1(β) = C1 × · · · × Cp, with Ci = [−1, 1] if βi = 0 and Ci = sign(βi) otherwise.

Indeed, the differential of β 7→ 1
2‖Y −Xβ‖

2 is −XTY +XTXβ = −XTY +Dβ and ∂‖.‖1(β) is the subdifferential

of β 7→ ‖β‖1. The function ψ reaches its global minimum at β̂(λ) consequently 0Rp ∈ ∂ψ(β̂(λ)) ; this holds if

and only if

0Rp ∈ β̂ols + β̂(λ) + λD−1∂‖.‖1(β̂(λ))⇔ β̂(λ) = sign(β̂ols
i )

(
|β̂ols
i | −

λ

di

)
+

.

The multiple testing procedure does not have any false discovery if ∀i /∈ A, β̂i(λ) = 0. We are going to see

that {∀i /∈ A, β̂i(λ) = 0} has a probability larger than 1 − α when the tuning parameter is λ0. When i /∈ A,

the Gaussian vector (β̂ols
i )i/∈A has the same distribution as (Zols

i )i/∈A because β∗i = 0. Therefore, the following
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inequalities hold

P
(
∀i /∈ A, β̂i(λ0) = 0

)
= P

(
∀i /∈ A, |β̂ols

i | −
λ0
di
6 0

)
,

= P
(
∀i /∈ A, |Zols

i | × di 6 λ0
)
,

> P
(
∀i ∈ [[1, p]], |Zols

i | × di 6 λ0
)

= 1− α.

�

Proof (Lemma 1) It is straightforward to show that VδX =

(
∆ 0

)T
. This implies that Vδ ∈ G. We are

going to show that β̂ols(Vδ) = MPδY . Indeed,

β̂ols(Vδ) = ((VδX)T (VδX))−1(VδX)TVδY,

= ∆−2
(

∆ 0

)
VδY,

=

(
∆−1 M2

)
PδY.

It remains to show that ∆−1 = M1. For the next calculus, let us introduce (e1, . . . , en) and (f1, . . . , fp) the

canonical basis of Rn and Rp.

∀i ∈ [[1, p]],M1fi = Mei,

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1ei,

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1

1√
δi
PδXfi =

1√
δi
fi.

Since β̂ols(Vδ) = MPδY , one deduces that

Var(β̂ols(Vδ)) = MPδΓP
T
δ M

T ,

= ((PδX)T (PδΓP
T
δ )−1PδX)−1,

= (XTPTδ (PTδ )−1Γ−1P−1δ PδX)−1,

= (XTΓ−1X)−1.

One can recognize the covariance matrix of the maximum likelihood estimator. �

The proof of lemma 2 relies on two main steps. In the first step, using lemmas A and B given below, we

obtain that the function

δ ∈]0,+∞[p 7→ φ(Vδ)

is minimized for at least one element δ∗. In the second step, we prove that the linear transformation Vδ∗ is such

that φ(Vδ∗) is minimal.
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In the following, we denote λVδ0 = λ0(δ), with δ ∈]0,+∞[p. It is straightforward to show that λ0 given in

the proposition 1 verifies the following two properties.

1. The function δ ∈]0,+∞[p 7→ λ0(δ) is homogeneous:

∀k > 0,∀δ ∈]0,+∞[p, λ0(kδ) = kλ0(δ).

2. The function δ ∈]0,+∞[p 7→ λ0(δ) is componentwise-increasing:

let δ, d ∈]0,+∞[p, if δ is componentwise-smaller than d, then λ0(δ) 6 λ0(d).

The following lemma provides the continuity of the function δ ∈]0,+∞[p 7→ λ0(δ).

Lemma A Let g be a function that satisfies the two previous properties; then, the function g is continuous.

Proof Let x = (x1, . . . , xp) ∈]0,+∞[p, we set u = (u1, . . . , up) the unit vector u = x/‖x‖. Let r < ‖x‖, the

function g is homogeneous, consequently,

g(x− ru) = g

(
x

(
1− r

‖x‖

))
=

(
1− r

‖x‖

)
g(x) and

g(x+ ru) =

(
1 +

r

‖x‖

)
g(x).

Let y ∈]0,+∞[p be such that the following inequality occurs componentwise: x− ru 6 y 6 x+ ru. Because g

is componentwise-increasing, we have g(x− ru) 6 g(y) 6 g(x+ ru). More precisely,

∀y ∈ [x1 − ru1, x1 + ru1]× · · · × [xp − rup, xp + rup], |g(y)− g(x)| 6 r

‖x‖
|g(x)|. (8)

Let ε > 0; one can choose r0 > 0 small enough such that r0|g(x)|/‖x‖ 6 ε. We set η = r0 min{u1, . . . , up}; thus,

the inequality (8) gives

‖y − x‖∞ 6 η ⇒ |g(y)− g(x)| 6 ε,

which proves the continuity of g on ]0,+∞[p. �

Lemma B The function f : δ ∈]0,+∞[p 7→ φ(Vδ) reaches its minimum for at least one element δ∗.

Proof Let us recall the expression of the function f

f(δ) =
λ0(δ)

δ1
× · · · × λ0(δ)

δp
.

Since λ0 is homogeneous, f satisfy the property ∀k > 0, f(kδ) = f(δ). This property implies that if the

restriction of f onto the unit sphere reaches its minimum, then f has a global minimum on ]0,+∞[p. We
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denote S∞(1) as the unit sphere of Rp for the supremum norm. Using Lemma A, we obtain that f is continuous;

moreover, the restriction of f onto the set ]0,+∞[p∩S∞(1) can be extended by continuity to [0,+∞[p∩S∞(1)

by setting

f̄ : δ ∈ [0,+∞[p∩S∞(1)


f(δ) if δ ∈]0,+∞[p∩S∞(1)

+∞ if ∃i ∈ [[1, p]] such that δi = 0.

The function f̄ is continuous on the compact set [0,+∞[p∩S∞(1); thus, f̄ reaches its minimum at δ∗. The

minimum of the function f̄ is finite, so one deduces that δ∗ ∈]0,+∞[p∩S∞(1). Finally, we obtain

∀δ ∈]0,+∞[p, φ(Vδ) > φ(Vδ∗).

The result follows. �

The following lemma is a consequence of corollary 3 of Anderson [1955].

Lemma C (Anderson) Let V = (V1, . . . , Vn) and W = (W1, . . . ,Wn) be centred Gaussian vectors with vari-

ance matrices ΓV and ΓW , respectively. Assume that the matrix ΓW − ΓV is a positive semidefinite matrix;

then,

∀x > 0,P(max{|W1|, . . . , |Wn|} > x) > P(max{|V1|, . . . , |Vn|} > x).

This inequality implies that max{|W1|, . . . , |Wn|} is stochastically greater than max{|V1|, . . . , |Vn|}.

Proof (Lemma 2) For any U ∈ G, the matrix (UX)TUX is diagonal and (UX)TUX = ∆ = diag(δ1, . . . , δp) =

diag(δ). The difference between the covariance matrices of the Gaussian vectors (δ1Z
ols
1 (U), . . . , δpZ

ols
p (U)) =

∆Zols(U) and (δ1Z
opt
1 , . . . , δpZ

opt
p ) = ∆Zols(Vδ) is semidefinite positive. Indeed, we obtain that

∀x ∈ Rp, xT (Var(∆Zols(U))−Var(∆Zopt))x = (∆x)T (Var(Zols(U))− Σ)∆x,

= (∆x)T (Var(β̂ols(U))− Σ)∆x > 0.

The last inequality is a consequence of the Gauss-Markov theorem [Rencher and Schaalje, 2008] (page

146). Because λU0 and λVδ0 are the respective 1 − α quantiles of max{δ1|Zols
1 (U)|, . . . , δp|Zols

p (U)|} and

max{δ1|Zopt
1 |, . . . , δp|Zopt

p |}, the lemma C gives λU0 > λ
Vδ
0 . This last inequality gives

φ(Vδ) =
λVδ0
δ1
× · · · × λVδ0

δp
≤ λU0

δ1
× · · · × λU0

δp
= φ(U).

Finally, using lemma B, the inequality φ(Vδ) > φ(Vδ∗) gives the result. �

Proof (Proposition 2) To simplify the computation of the gradients, we consider the following problem
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which has the same solution as the problem (7)

min f(b) =

p∑
i=1

ln(bi) subject to F (b) = P
(
|Zopt

1 |/b1 ≤ 1, . . . , |Zopt
p |/bp ≤ 1

)
= 1− α.

Because this problem reaches its minimum at b∗, ∇f(b∗) is collinear to ∇F (b∗). Let us set D the matrix

D = diag(b1, . . . ,bp), we have the following expression for F (b1, . . . , bp)

F (b1, . . . , bp) =

∫
[−1,1]p

R exp

(
−1

2
xTDΣ−1Dx

)
det(D)dx =

∫
[−1,1]p

R exp

(
−1

2
xTDΣ−1Dx+ ln(det(D))

)
dx,

with R = 1/((2π)p/2 det(Σ)). Next, the expression of the partial derivative

∂

∂bi

(
−1

2
xTDΣ−1Dx+ ln(det(D))

)
=

1

bi
−

p∑
j=1

Σ−1i,j xixjbj ,

implies that the gradient of F is equal to

∂F

∂bi
(b1, . . . , bp) =

1

bi
F (b1, . . . , bp)−R

p∑
j=1

∫
[−1,1]p

(Σ−1i,j xixjbj) exp

(
−1

2
xTDΣ−1Dx

)
det(D)dx

= (1− α)∇f(b)−R
p∑
j=1

∫
[−1,1]p

(Σ−1i,j xixjbj) exp

(
−1

2
xTDΣ−1Dx

)
det(D)dx

Thus ∇f(b∗) and ∇F (b∗) are collinear if and only if the components of the vector

 p∑
j=1

Σ−1i,j

∫
[−1,1]p

xib
∗
i xjb

∗
j exp

(
−1

2
xTDΣ−1Dx

)
det(D)dx


16i6p

(9)

are equal. To conclude, one recognizes that

∫
[−1,1]p

Rxib
∗
i xjb

∗
j exp

(
−1

2
xTDΣ−1Dx

)
det(D)dx = E

(
Zopt
i 1{|Zopt

i |≤b∗i }
Zopt
j 1{|Zopt

j |≤b∗j }

)

In the previous equality, the second term is the i, j coefficient of the matrix Var(Tb∗). Since components of (9)

are equals, one deduces that the diagonal coefficients of Σ−1Var(Tb∗) are equals. �
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Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algorithms I:

Fundamentals, volume 305. Springer Science & Business Media, 2013.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):

65–70, 1979.

Lucas Janson and Weijie Su. Familywise error rate control via knockoffs. Electronic Journal of Statistics, 10

(1):960–975, 2016.

Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics. Springer,

New York, third edition, 2005.

Chenlei Leng, Yi Lin, and Grace Wahba. A note on the lasso and related procedures in model selection.

Statistica Sinica, 16(4):1273–1284, 2006.

Richard Lockhart, Jonathan Taylor, Ryan J Tibshirani, and Robert Tibshirani. A significance test for the lasso.

The Annals of Statistics, 42(2):413–468, 2014.

Karim Lounici. Sup-norm convergence rate and sign concentration property of lasso and dantzig estimators.

Electronic Journal of Statistics, 2:90–102, 2008.
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