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Non-asymptotic active set properties of lasso-type

estimators in small-dimension

Patrick J. C. Tardivel∗, Rémi Servien and Didier Concordet

Abstract

We propose to estimate the active set associated with a standard linear Gaussian model

when the design matrix is a n × p full-rank matrix (thus, n > p). Asymptotic results are

available for lasso-type estimators when the irrepresentable condition holds. In this paper,

we give non-asymptotic results on the estimation of the active set in small dimension by

providing an explicit tuning parameter choice without this condition. Both theoretical and

numerical arguments illustrate the benefits of our approach. An application to the detection

of metabolites in metabolomic data is provided.

Keywords: Lasso, Adaptive lasso, Active set estimation, Tuning parameter.

1 Introduction

Let us consider the linear Gaussian model

Y = Xβ∗ + ε, (1)

where X = (X1| . . . |Xp) is an n × p full-rank design matrix with n > p, ε is a Gaussian vector

with an invertible variance matrix Γ, and β∗ is an unknown parameter. We want to estimate

the set A = {i ∈ [[1, p]] | β∗i 6= 0} of relevant variables, which is called the active set. A natural

∗corresponding author: patrick.tardivel@toulouse.inra.fr
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way to estimate A is to consider

A(β̂) = {i ∈ [[1, p]] | β̂i 6= 0} (2)

where β̂ is any sparse estimator of β∗. The lasso estimator (Tibshirani, 1996) is probably the

most popular sparse estimator. It defined by

β̂lasso(λ) = argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ‖β‖1

}
. (3)

The consistency of β̂lasso(λn) does not imply that of A(β̂lasso(λn)). Meinshausen and Bühlmann

(2006); Zhao and Yu (2006); Zou (2006) pointed out that the irrepresentable condition is an

almost necessary and sufficient condition to build a consistent active set estimator from the

lasso estimator. Geometrically, this condition means that each variable Xi with i /∈ A is almost

orthogonal with the subspace Vect{Xi, i ∈ A}. Because this condition is not often met in

practice, Zou (2006) relaxed it by proposing a consistent estimator of A based on the adaptive

lasso estimator defined by

β̂adapt(λ) = argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ

n∑
i=1

1

|β̃i|
|βi|

}
(4)

where β̃ is an a priori known consistent estimator of β∗. Zou (2006) showed that, as soon as

λ = Cnγ , with C > 0 and γ ∈]0, 1/2[, the derived estimator A(β̂adapt) is consistent. Some

methods have been proposed to select the tuning parameter λ appropriately based, for example,

on an extended regularized information criterion (Hui et al., 2015) or variable selection stability

(Sun et al., 2013). But, they only provide asymptotic results. For a given n, no explicit choice

is currently available for the tuning parameter whereas choosing a priori values for C and γ

can lead to poor results (Chand, 2012). In practice, the tuning parameter is often selected

using cross-validation. This method can be applied in a general setting (for any design matrix

X) and is implemented in some well-known R packages, such as lars (Efron et al., 2004) and

glmnet (Friedman et al., 2010). Unfortunately, as shown by Leng et al. (2006), this procedure is

unsuitable for the active set estimation.
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Recently, a new method referred to as covariance test (Lockhart et al., 2014) used the entire

lasso solution path to provide a set containing the active set. This method tests if the active set

A is contained in the current lasso model (i.e. A ⊂ {i ∈ [[1, p]] | β̂lasso
i (λ) 6= 0} where λ is a knot

of the lasso solution path). G’Sell et al. (2015) applied this approach to define a procedure to

test ordered hypotheses Hk : A ⊂ {i1, . . . , ik−1}, where the indices i1, . . . , ik−1 are given by the

lasso solution path. This method controls the false discovery rate of the sequential procedure.

However, the rejection of the hypothesis Hk does not give a set containing A. Consequently, the

set of rejected hypotheses does not allow to estimate the active set properly.

Finally, Lounici (2008) provided an explicit choice for the tuning parameter λ and gave non-

asymptotic results for controlling the probability of {Â = A} under the assumptions that the

design matrix is close to an orthogonal matrix (which implies the irrepresentable condition) and

the smallest non-null parameter of β∗ is larger than a threshold (beta-min condition). All of

these results were obtained in the high dimension framework. If these results can be used in a

small-dimension setting (n ≥ p), they could be improved by using weakened assumptions.

Because the irrepresentable condition is not met in practice, because no guidelines are avail-

able for the choice of λ, this article proposes an explicit non-asymptotic choice of λ that guar-

antees, whatever n ≥ p, non-asymptotic properties for a lasso-type estimator of the active set Â

without requiring any condition on X. More precisely, we propose to give an explicit value for λ

such that, up to a predetermined set E ⊂ A (the smallest possible), the events {Â(λ) ⊂ A} and

{A \ E ⊂ Â(λ)} both occur with large probabilities.

This article is organised as follows. In section 2, we study the particular case in which the

design matrix has orthogonal columns (i.e. XTX is diagonal), whereas section 3 addresses the

general case in which X is a full-rank design matrix. A naive and common method to perform

active set estimation in the small-dimension is to compute the maximum likelihood estimator to

test the nullity of each component of β∗. The set of rejected hypotheses provides an estimator

Âmle, and the event {Âmle ⊂ A} is then controlled via a Bonferroni-type procedure that can

be quite approximate. In section 4, we show that our tuning parameter selection provides an

estimator that outperforms both Lounici’s and the maximum likelihood estimators of the active

set. Section 5 is devoted to simulation experiments. In section 6, we focus on the analysis of

metabolomic data that motivated this work.
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2 Orthogonal-columns case

When the design matrix X of the Gaussian linear model (1) has orthogonal columns (i.e. XTX

is diagonal), the irrepresentable condition holds. In this setting, the probability of {Â ⊂ A}

is easy to compute. The results obtained in this section will be adapted to the general case

where XTX is no longer diagonal. Let β̂pen denotes indistinctively β̂lasso or β̂adapt (respectively

defined in equations (3) and (4)). The active set estimator A(β̂pen(λ))
∆
= Âpen(λ) (defined in

(2)) depends on a tuning parameter λ. The next proposition shows how to choose λ such that

{Âpen(λ) ⊂ A} occurs with a controlled probability.

Proposition 1 Let d1, . . . , dp be the diagonal coefficients of XTX, Zols be a random variable dis-

tributed according to a N
(
0, (XTX)−1XTΓX(XTX)−1

)
distribution, and T lasso (resp. T adapt)

be defined by

T lasso = max
i∈[[1,p]]

{di × |Zols
i |} (resp. T adapt = max

i∈[[1,p]]
{di × (Zols

i )2}).

The 1− α quantile of the T pen distribution is denoted λpen
0 (T pen indistinctly denotes T adapt or

T lasso). If λ > λpen
0 , the following inequality holds:

P(Âpen(λ) ⊂ A) > 1− α. (5)

This proposition guarantees with high probability that all elements of Âpen belong to the active

set. However, there can exist some i ∈ [[1, p]] such that β∗i 6= 0 and that do not belong to Âpen.

Intuitively, large |β∗i | are easy to detect, so the probability of the event {i ∈ Âpen} is high. The

next proposition gives a precise meaning to how large |β∗i | should be for detection.

Proposition 2 Let se(β̂ols
i ) and z1−η/p be the standard error of β̂ols

i and the 1 − η/p quantile

of a N (0, 1) distribution, respectively. We will call detection thresholds the quantities classo
i and

cadapt
i , which are respectively defined as

classo
i = λlasso

0 /di + se(β̂ols
i )z1−η/p, cadapt

i =

√
λadapt

0 /di + se(β̂ols
i )z1−η/p.

If Epen is the set Epen = {i ∈ A | |β∗i | 6 cpen
i } (cpen

i indistinctly denotes classo
i or cadapt

i ), then
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the following inequality holds:

P(A \ Epen ⊂ Âpen(λpen
0 )) > 1− η. (6)

A direct consequence of (6) is that if A
⋂
Epen = ∅, then

P(A ⊂ Âpen(λpen
0 )) > 1− η.

In other words, when all non-null |β∗i | are sufficiently large, the active set is contained in

Âpen(λpen
0 ) with a high probability. Note that the detection thresholds are deterministic num-

bers that depend only on the design matrix and Γ. Consequently, when the variance matrix

Γ is known a priori, a detection threshold can be computed for each column of X before the

data analysis. In contrast, in their book, Bühlmann and van de Geer (2011) proposed the same

detection threshold for all columns of X (beta-min condition). Using a similar idea, by setting

c = max{cpen
1 , . . . , cpen

p }, we obtain a single detection threshold that can be used for all columns

of X. Because cpen
i can be quite different from one another, this single detection threshold can

be very approximate and should be used with care.

3 General case

In this section, we no longer assume that the design matrix X has orthogonal columns. In this

general setting, the lasso or adaptive lasso estimators do not have a closed form. Consequently,

it becomes difficult to choose a tuning parameter λ and find a set Epen that ensure that the

events {Âpen(λ) ⊂ A} and {A \ Epen ⊂ Âpen} occur with a controlled probability. To overcome

this difficulty, we propose application of a linear transformation U ∈ G that orthogonalises the

matrix X (i.e. (UX)TUX is diagonal) to each member of the model (1). This leads to the new

linear Gaussian model

Ỹ = X̃β∗ + ε̃ with Ỹ = UY, X̃ = UX and ε̃ = Uε. (7)
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One can notice that the lasso estimator of the model (7)

β̂lasso
U (λ) = argmin

β∈Rp

{
1

2
‖U(Y −Xβ)‖2 + λ‖β‖1

}

is different from the lasso estimator of the model (1).

Although the active set estimator provided by β̂lasso is not consistent as soon as the irrepre-

sentable condition on the design matrix X is not verified, this condition is no longer necessary

to build a consistent active set estimator with β̂lasso
U .

For all U ∈ G, β̂ols(U) denotes the ordinary least squares estimator of β∗ once the transforma-

tion U has been applied; namely, β̂ols(U) =
[
X̃T X̃

]−1

X̃T Ỹ . Because X̃ has orthogonal columns,

it is possible to use the propositions of the previous section. More precisely, the propositions

1 and 2 provide a tuning parameter λpen
0 (U) and detection thresholds cpen

i (U) that controlled

the probabilities of the events {Âpen(λpen
0 (U)) ⊂ A} and {i ∈ Â(λpen

0 (U))}, respectively. The

set G of linear transformations that orthogonalise X is large. Among these, we will select a

transformation for which the detection thresholds cpen(U) are as small as possible. When the

detection thresholds cpen(U) become small, the cardinality of Epen
U decreases, and the cardinality

of the set of elements at the least detected A \ Epen
U consequently increases. Because cpen(U) is

a vector (there is a detection threshold for each column of X), we need a norm φ that indicates

how small cpen(U) is. From now, φ will denote a Lq norm (q > 0) on Rp. The theorem 1 shows

that it is possible to pick a transformation Uφ for which φ(cpen(Uφ)) is minimal.

Theorem 1 There exists a linear transformation Uφ ∈ G, a tuning parameter λpen
0 (Uφ) and a

set Epen
Uφ

such that

1) P(Âpen(λpen
0 (Uφ)) ⊂ A}) > 1− α and

2) P(A \ Epen
Uφ
⊂ Âpen(λpen

0 (Uφ)) > 1− η.

Moreover, cpen(Uφ) is minimal for the norm φ.

The linear transformation Uφ depends on the penalized estimator, α and η. We choose to simplify

the notation by not writing these dependencies.

The previous theorem gives the existence of Uφ. The following two lemmas are the main

steps of its construction. Because Uφ should provide small detection thresholds, let us first recall
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their expressions,

classo
i = λlasso

0 /di + se(β̂olsi )z1−η/p and cadapt
i =

√
λadapt

0 /di + se(β̂olsi )z1−η/p.

Notice that cpen(U) increases when the variance matrix of β̂ols(U) is large. Indeed, the term

se(β̂olsi (U))z1−η/p increases with the standard error of β̂ols
i (U). Furthermore λpen

0 (U) is inflated

when the variance matrix of β̂ols(U) is large. Lemma 1 exhibits linear transformations Vδ that

orthogonalise the design matrix X and for which the estimator β̂ols(Vδ) has a small variance (it

is efficient).

Lemma 1 Let δ ∈]0,+∞[p and Pδ be a n× n matrix such that

PδX =

∆

0

 , with ∆ = diag(
√
δ1, . . . ,

√
δp) and 0 the null matrix.

Let M be a p× n matrix defined by

M = ((PδX)T (PδΓP
T
d )−1PδX)−1(PδX)T (PδΓP

T
δ )−1 =

(
M1 M2

)
,

where M1 and M2 are p× p and a p× (n− p) matrices, respectively. The matrix Vδ is an n× n

matrix defined by

Vδ =

Idp ∆M2

0 0

Pδ.

Vδ then belongs to G, and β̂ols(Vδ) is equal to the maximum likelihood estimator β̂mle of (1).

If the linear transformation U in (7) is equal to Vδ, we obtain a tuning parameter λpen
0 (Vδ) and

detection thresholds cpen(Vδ), both of which have a closed form. More precisely, if Zmle is a

centred Gaussian random variable with the same variance matrix as the maximum likelihood

estimator β̂mle,

Zmle ∼ N (0, (XTΓ−1X)−1), (8)

the tuning parameters λlasso
0 (Vδ) and λadapt

0 (Vδ) are respectively defined as the 1 − α quantiles

of the distributions of max{δ1|Zmle
1 |, . . . , δp|Zmle

p |} and max{δ1(Zmle
1 )2, . . . , δp(Z

mle
p )2}. Further-
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more, if se(β̂mle
i ) is the standard errors of β̂mle

i , threshold detection classo
i (Vδ) and cadapt

i (Vδ) are

equal to

classo
i (Vδ) = λlasso

0 (Vδ)/δi + se(β̂mle
i )z1−η/p and cadapt

i (Vδ) =

√
λadapt

0 (Vδ))/δi + se(β̂mle
i )z1−η/p.

The expression of cpen(Vδ) is easy to optimise with respect to δ and only requires simulation

of the Gaussian vector Zmle. This optimisation allows minimal detection thresholds cpen(Uφ)

to be obtained for the norm φ. The next lemma proves that theorem 1 holds for the linear

transformation Uφ.

Lemma 2 Set

Uφ = Vδ∗ with δ∗ = arginf
δ∈]0,+∞[p

φ(cpen(Vδ)). (9)

Then,

∀U ∈ G,φ(cpen(Uφ)) 6 φ(cpen(U)).

As shown in the proof, there always exists at least a value δ∗ ∈]0,+∞[p such that the infimum

is reached. Consequently, theorem 1 holds for Uφ = Vδ∗ .

In the particular case where φ is the supremum norm, the next proposition shows that the

components of cpen(U∞) are equal. By optimizing cpen for this norm, we obtain a single detection

threshold (the same for all columns of X).

Proposition 3 Let Vδ∗ as in lemma 2 be an element for which ‖cpen(Vδ∗)‖∞ is minimal. Assume

that η, defined in proposition 2, is such that η/p < 1/2; then we have

∀U ∈ G, ‖cpen(Vδ∗)‖∞ 6 ‖cpen(U)‖∞ ⇔ cpen1 (Vδ∗) = · · · = cpen
p (Vδ∗).

The assumption η/p < 1/2 is not restrictive. It simply ensures that the detection thresholds

are positive. The result given by theorem 1 depends on the penalized estimator used. A priori,

one might think that the estimators Âlasso(λlasso
0 (U lasso

φ )) and Âadapt(λadapt
0 (Uadapt

φ )) given by

this theorem are different. However, the next proposition shows that the distributions of these

two estimators are equal.
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Proposition 4 Let δ∗ be an element of ]0,+∞[p for which φ(classo(Vδ∗)) is minimal. Define

ζ∗ = ((δ∗1)2, . . . , (δ∗p)2); then, we have the two results that φ(cadapt(Vζ∗)) is minimal and the

distribution of Âlasso(λlasso
0 (Vδ∗)) is equal to that of Âadapt(λadapt

0 (Vζ∗)).

Consequently, there is no gain from using an adaptive lasso instead of a lasso estimator to

estimate the active set. Thus, in the following, we restrict ourself to Âlasso.

The study of the asymptotic properties of lasso-type active set estimators is not the main

purpose of this article. Nevertheless, it is interesting to show that these estimators behave

properly when n tends to +∞ and p is fixed as shown in the following proposition. Remind that

the estimator Âlasso(λlasso
0 (Uφ)) depends on α and n.

Proposition 5 There exists a sequence (αn)n∈N∗ that converges to zero such that

lim
n→+∞

P(Âlasso(λlasso
0 (Uφ)) = A) = 1.

4 Comparison with other active set estimators

In this part the letters z and q denotes respectively quantiles of a N (0, 1) and χ2
1 distributions.

4.1 Comparison with Lounici’s estimator

Lounici (2008) used a thresholded lasso estimator β̂th,lasso to build the following estimator of A:

ÂL = {i ∈ [[1, p]] | β̂th,lasso
i 6= 0}.

He proved that the event {ÂL = A} has a controlled probability when the Gram matrix 1
nX

TX

is close to the identity, the noise ε is Gaussian, and the smallest non-null parameter |β∗i | is

sufficiently large. To enable comparison of ÂL and Âlasso, we assume that X is orthogonal

(XTX = Idp). In this setting, the detection thresholds given in Proposition 2 are all equal to

classo = σ
(√

q p√1−α + z1−η/p

)
. If λlasso

0 is chosen as in the proposition 1, we have

min
i∈A
{β∗i } > classo ⇒ P(Âlasso(λlasso

0 ) = A) > 1− α− η,

9



whereas in the same setting, Lounici gave

min
i∈A
{β∗i } > cL ⇒ P(ÂL = A) > 1− p1−A2/8,

where cL = 3Aσ
√

log(p) and A > 2
√

2.

If cL and classo are both chosen such that P(ÂL = A) > 1 − α and P(Âlasso = A) > 1 − α,

they have the same order of magnitude σ
√

log(p), but for any p, classo is smaller than cL, as

illustrated by Table 1.

p 10 20 50 100
cL/σ 18.20 19.53 21.15 22.30
classo/σ 5.37 5.82 6.37 6.76

Table 1: This table provides a numerical comparison of cL and classo. We chose α = η = 0.025
and A such that 1 − p1−A2/8 = 0.95. These values ensure that P(Â = A) > 0.95. This table
shows that for any p > 1, classo is smaller than cL.

The main explanation of the observed difference between classo and cL relies on the choice

of the tuning parameter. Indeed, the tuning parameter λlasso
0 is the 1 − α quantile of

max{|Zols
1 |, . . . , |Zols

p |}, whereas Lounici’s tuning parameter bounds above the 1 − α quantile

of 2 max{|Zols
1 |, . . . , |Zols

p |}. It results that ÂL ⊆ Âlasso, implying that cL > classo.

4.2 Comparison with the maximum likelihood estimator

Using the maximum likelihood estimator, one can build a test that rejects the null hypothesis

β∗i = 0 when |β̂mle
i | is larger than a threshold ti. The set of rejected hypotheses provides an

estimator Âmle of A defined by

Âmle = {i ∈ [[1, p]] | |β̂mle
i | > ti}.

This estimator depends on the thresholds t1, . . . , tp that can be chosen as follows. If there is

at least one false rejection (if there exists an integer i for which β∗i = 0 and |β̂mle
i | > ti), then

Âmle 6⊂ A. Thus, to ensure that the event {Âmle ⊂ A} holds with a large probability, it is

necessary to control the family-wise error rate (FWER) (Lehmann and Romano, 2005). When

the β̂mle
i values are independent, a Šidák procedure gives exact control of the FWER (Dudoit
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and Van Der Laan, 2007), whereas in all other cases, a Bonferroni procedure provides only

approximate control. The following proposition compares the distributions of Âlasso and Âmle in

a simplified case of independence.

Proposition 6 Assume that β̂mle ∼ N (β∗, σ2Idp), and let us set t1 = · · · = tp = σ
√
q p√1−α and

Vδ∗ as defined in proposition 3. Then, P({Âmle ⊂ A}) > 1 − α. Moreover, the distributions of

Âmle and Âlasso(λlasso(Vδ∗)) are equal.

As shown hereafter, when the components of the maximum likelihood estimator are no longer

independent, Âlasso(λlasso(Uφ)) has better performance than Âmle. Let us recall that the propo-

sition 1 ensures that P(Âlasso(λlasso
0 (Uφ)) ⊂ A) > 1 − α and the proposition 2 gives a set E lasso

such that P(A \ E lasso ⊂ Âlasso(λlasso
0 (Uφ)) 6 1 − η. It is possible to define an estimator Âmle

with similar characteristics to Âlasso(λlasso(Uφ)). Indeed, a Bonferroni procedure yields thresh-

olds t1, . . . , tp such that {Âmle ⊂ A} occurs with a probability of at least 1−α. Furthermore, in

a similar manner as E lasso, it is possible to build Emle such that P(A\Emle ⊂ Âmle) > 1− η. The

following proposition compares the detection thresholds associated to Emle with that associated

to E lasso.

Proposition 7 If we set t1 = se(β̂mle
1 )z1−α/2p, . . . , tp = se(β̂mle

p )z1−α/2p then

P(Âmle ⊂ A) > 1− α.

Let us define Emle = {i ∈ [[1, p]] | |β∗i | 6 cmle
i } with cmle

i = ti + se(β̂mle
i )z1−η/p then

P(A \ Emle ⊂ Âmle) > 1− η.

Furthermore, let Uφ ∈ G be the linear transformation for which φ(classo(Uφ)) is minimal then,

φ(classo(Uφ)) 6 φ(cmle).

Because the detection thresholds classo(Uφ) and cmle measure the performance of Âlasso(λlasso(Uφ))

and Âmle, respectively, the estimator Âlasso(λlasso(Uφ)) is better than Âmle. Heuristically, the

performance of Âlasso is even better than that of Âmle when the components of β̂mle (and thus

those of Zmle in (8)) are correlated or when p is large.
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5 Simulation experiments

The simulations given in subsection 5.1 illustrate the theoretical results obtained in the previous

section. The numerical comparison of the optimal threshold detection for several norms is per-

formed in subsection 5.2. In subsection 5.3, it is shown that the detection thresholds give exact

control of P(i ∈ Âlasso).

5.1 Numerical comparison with Âmle

In this subsection, we numerically compare P(Âlasso = A) and P(Âmle = A). The tuning

parameter λlasso
0 and the thresholds t1, . . . , tp were chosen according to proposition 1 and section

4.2 to guarantee that the event {Â ⊂ A} holds with a probability greater than 0.95. We set

p = 10 or p = 100; for all i 6 p, β̂mle
i ∼ N (β∗i , σ

2), and for all i 6= j, corr(β̂mle
i , β̂mle

j ) = ρ and

β∗1 = · · · = β∗5 = c > 0; β∗6 = · · · = β∗p = 0. Figure 1 represents the curve of

Pc(A = Âlasso(λlasso
0 ))

Pc(A = Âmle)

as a function of c/σ.

This figure illustrates that the ratio Pc(Âlasso = A)/P(Âmle = A) increases with increasing

p and ρ. For p = 10 (resp. p = 100), Pc(Âlasso = A) > P(Âmle = A) when c/σ 6 5 (resp.

c/σ 6 5.5), whereas the reverse inequality holds elsewhere. Consequently, for any p and ρ, when

|β∗i | 6 5se(β̂mle
i ), Âlasso better estimates A than Âmle.

When c/σ > 5, Âmle is better. This is not surprising because

lim
c→+∞

Pc(Âlasso(λlasso
0 ) = A)

Pc(Âmle = A)
= lim
c→+∞

Pc(Âlasso(λlasso
0 ) ⊂ A)

Pc(Âmle ⊂ A)
.

This latter ratio (which, in fact, does not depend on c) is less than 1 because P(Âlasso ⊂ A) is

closer to the nominal probability (0.95) than P(Âmle ⊂ A). This performance of Âlasso simply

reflects that Âlasso has better control of P(Â ⊂ A) than Âmle.
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Figure 1: These figures represent the curves of Pc(A = Âlasso(λlasso
0 ))/Pc(A = Âmle) as a function

of c/σ for ρ = 0.9 (solid line), ρ = 0.7 (dashed line) and ρ = 0.5 (dotted line). One can observe
that this ratio increases with increasing number of columns p and with the correlation ρ. When
the coefficient c/σ goes to infinity, the ratio converges to Pc(Âlasso(λlasso

0 ) ⊂ A)/Pc(Âmle ⊂ A).

5.2 A single or several detection thresholds?

From proposition 3, optimisation of the detection thresholds classo for the supremum norm leads

to a single threshold (i.e. the threshold is the same for each column of X). If the optimisation of

classo is performed with another norm, several detection thresholds are obtained. In this section,

we study the influence of the standard errors of β̂mle
i on the optimal thresholds for the L1 and

L∞ norms. Recall that these thresholds are defined by

classo(Ui) = classo(V ∗δ ), with δ∗ = arginf
δ∈]0,+∞[p

‖classo(Vδ)‖i, with i ∈ {1,∞}.

We used 100,000 realizations of the random vector Zmle defined by (8) to compute classo(Vδ). For

simplicity, we assumed that β̂mle has independent components. We first assumed that var(β̂mle) =

σ2Idp. In this case, the optimal thresholds for the L1 norm are equal to optimal thresholds for
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the supremum norm,

∀i ∈ [[1, 10]],
classo
i (U∞)

σ
=
classo(U1)

σ
= 4.44.

This equality is no longer true when var(β̂mle) = σ2diag(1, . . . , 10). The optimal thresholds

for the L1 norm are

classo(U1)

σ
= (5.39, 6.24, 7.81, 8.86, 9.82, 10.72, 11.70, 12.32, 13.18, 13.61),

whereas those that are optimal for the supremum norm are

∀i ∈ [[1, 10]],
classo
i (U∞)

σ
= 12.29.

In this second setting, one notes that the optimal threshold for the supremum norm is slightly

less than the maximum of optimal thresholds for the L1 norm. Because in practice the standard

errors of β̂mle are unequal, it is preferable to optimise the L1 norms of the thresholds.

5.3 Lasso estimation of the active set

The detection thresholds should ensure that if β∗i > c
lasso
i , P(i ∈ Âlasso) > 1−η/p. However, λlasso

0

as defined in proposition 1 should guarantee that P(Âlasso ⊂ A) > 1−α. We will evaluate whether

these latter probabilities are close to their targets. In this simulation, we set n = 100, p = 10; Γ

is equal to

∀i, j ∈ [[1, 100]],Γi,j = σ2ρ|i−j|, with ρ = 0.5.

The design matrix X was chosen such that

(XTX)i,j


1 if i = j,

0.5 if |i− j| = 1,

0 in the other cases.

Table 2 shows that for the ith variable: β∗i , classo
i and P(i ∈ Âlasso). These numerical results were

obtained assuming α = η/p = 0.05.
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i β∗i /σ classo
i /σ P (i ∈ Âlasso(λlasso

0 (U1)))
1 5.65 8.47 0.563
2 7.82 9.39 0.824
3 10.95 10.95 0.950
4 13.38 11.15 0.994
5 16.92 11.28 0.999
6 0 11.34 0.010
7 0 10.82 0.012
8 0 10.45 0.008
9 0 9.28 0.007
10 0 8.35 0.003

Table 2: As soon as |β∗i | is greater than the corresponding threshold detection, P(i ∈
Âlasso(λlasso

0 (U1)) > 0.95. The parameter β∗3 = classo
3 ; thus, P(3 ∈ Âlasso(λlasso

0 (U1))) = 0.95.
Note that the sum of the probabilities P(i ∈ Âlasso) over the variables that do not belong to A
(i.e. 6, 7, 8, 9, 10) is less than 0.05.

The set E lasso of variables that are difficult to detect is comprised of those for which 0 < β∗i <

classo
i that is {1, 2}. Note that for these variables, P(i ∈ Âlasso) < 0.95. When λlasso

0 is chosen as

described in proposition 1-i.e. without knowing the cardinality of A-we have

P(Âlasso(λlasso
0 (U1)) ⊂ {1, . . . , 5}) = 0.969 > 0.95,

whereas

P(A \ E lasso ⊂ Âlasso) = 0.943 and P(Âlasso = A) = 0.389.

6 Application in metabolomics: detection of metabolites

Metabolomics is the science concerned with the detection of metabolites (small molecules) in

biological mixtures (e.g. blood and urine). The most common technique for performing such

characterization is proton nuclear magnetic resonance (NMR). Each metabolite generates a char-

acteristic resonance signature in the NMR spectra with an intensity proportional to its concen-

tration in the mixture. The number of peaks generated by a metabolite and their locations and

ratio of heights are reproducible and uniquely determined: each metabolite has its own signa-

ture in the spectra. Each signature spectrum of each metabolite can be stored in a library that

could contain hundreds of spectra. One of the major challenges in NMR analysis of metabolic
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profiles remains to be automatic metabolite assignment from spectra. To identify metabolites,

experts use spectra of pure metabolites and manually compare these spectra to the spectrum of

the biological mixture under analysis. Such a method is time-consuming and requires domain-

specific knowledge. Furthermore, complex biological mixtures can contain hundreds or thousands

of metabolites, which can result in highly overlapping peaks. Figure 2 gives an example of an

annotated spectrum of a mixture.

Figure 2: Example of an annotated mixture spectrum. There are overlaps between peaks of
lipides and valine and between the peaks of glutamine and lysine.

Recently, automatic methods have been proposed. For example, Metabohunter (Tulpan et al.,

2011) is very fast, but the statistical interpretation of the scoring function associated with each

metabolite is difficult. Other methods, such as BATMAN (Astle et al., 2012; Hao et al., 2012),

Mercier et al. (2011) or Zheng et al. (2011), are based on a modelling using a Lorentzian shape

and a Bayesian strategy. Nevertheless, they are time-consuming and thus cannot be applied to a

large library of metabolites, and their statistical properties are not proven. Thus, establishment

of a gold-standard methodology with proven statistical properties for identification of metabolites

would be very helpful for the metabolomic community.
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Let us denote A as the set of metabolites in the mixture and Â as the set of detected

metabolites. The event {Â ⊂ A} implies that there is no false detection; thus, the method

must control the probability of false detections. Furthermore, if E ⊂ A is the set of undetected

metabolites, the main objective is to provide a set E as small as possible. As proved in the

previous sections, the estimator Âlasso can fulfil these conditions and provide us with a good

estimate for the active set A.

6.1 Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact

interval T. We assume that we have a library of spectra containing all p metabolites {fi}16i6p

(with
∫
T
fi(t)dt = 1) that can be found in a mixture. This family of p spectra is assumed to be

linearly independent. In a first approximation, the observed spectrum of the mixture Y can be

modelled as a discretized noisy convex combination of the pure spectra:

Yj =

(
p∑
i=1

β∗i fi(tj)

)
+ εj with 1 6 j 6 n and t1 < · · · < tn a subdivision of T .

The random vector (ε1, . . . , εn) is a standard GaussianN (0, σ2Idn). The variance σ2 is estimated

using several observations of a metabolite spectrum. Recall that the objective is to estimate the

active set A = {i ∈ [[1, p]] | β∗i 6= 0}.

6.2 Real dataset

The method for the detection of metabolites was performed on a known mixture. The metabolomi-

cians supplied us with a library of 36 spectra of pure metabolites and a mixture composed of

these metabolites. The number of used metabolites and their proportions were unknown to us.

The results are presented in Table 3.

The 6 metabolites that are present in the complex mixture are detected, including those with

small proportions. There is no false detection because the 30 other metabolites are not detected.

The detection thresholds are very different from one metabolite to another. They are strongly

impacted by two characteristics of the metabolite spectrum: first, the height of the peaks. If,

among all peaks of a spectrum, there is one large peak, the detection threshold would be lower,
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Metabolites Detected by Âlasso Actual proportions classo

Choline chloride Yes 0.545 0.011
Creatinine Yes 0.209 0.011
Benzoic acid Yes 0.086 0.018
L-Proline Yes 0.069 0.034
D-Glucose Yes 0.060 0.036
L-Phenylalanine Yes 0.029 0.025
30 other metabolites No 0 [0.010; 0.034]

Table 3: This table presents the results for the 36 metabolites of the library. The metabolites
detected using Âlasso are presented in the first column. The actual proportions of each metabolite
are presented in the second column. The detection thresholds, calculated using proposition 2
with η/p = 0.05, are listed in the last column.

and this metabolite would be easier to detect. This is the case for the choline chloride spectrum

but not for that of D-glucose, which is composed of many small peaks. Second, the detection

threshold decreases with increasing number of peaks that do not overlap with others. Because

the whole procedure is quite fast, lasting only a few seconds, it could be easily applied to a

library containing several hundred metabolites.

7 Conclusions

In this article, we proposed a lasso-type estimation of the active set Âpen in the small-dimensional

setting. When the design matrix has orthogonal columns, we gave a tuning parameter λpen
0 and

a set Epen such that the events {Âlasso(λpen
0 ) ⊂ A} and {A \ Epen ⊂ Âlasso(λpen

0 )} occur with a

controlled probability. The keystone of the paper is to apply a linear transformation U to each

member of the model (1) such that U orthogonalises X and for which the estimator β̂ols(U) is

efficient. We then applied the results from the orthogonal case to the non-orthogonal one. We

obtained good performance for the estimator Âpen(λpen
0 (U)) based on β̂ols(U). However, this

estimator is no longer available in the high-dimensional setting. Of course, the least squares

estimator and orthogonal design matrix are specific to the small-dimensional setting. However,

the methods developed in this paper could most likely be combined with the results of Lounici

to relax the well-known irrepresentable condition and improve active set estimation in the high-

dimensional setting.
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8 Appendix

Proof (Proposition 1) When the design matrix is orthogonal (i.e. XTX = Idp) or has orthog-

onal columns, both the lasso and adaptive lasso estimators have explicit expressions (Tibshirani,

1996; Hastie et al., 2009; Bühlmann and van de Geer, 2011) given by

β̂adapt
i (λ) = sgn(β̂ols

i )

(
|β̂ols
i | −

λ

di|β̂ols
i |

)
+

and β̂lasso
i (λ) = sgn(β̂ols

i )

(
|β̂ols
i | −

λ

di

)
+

. (10)

When i /∈ A, β∗i = 0, the Gaussian vector (β̂ols
i )i/∈A has the same distribution as (Zols

i )i/∈A.

Therefore, we obtain that for the adaptive lasso,

P
(
Âpen(λ) ⊂ A

)
= P

(
∀i /∈ A, β̂pen

i (λ) = 0
)

= P

(
∀i /∈ A, |β̂ols

i | −
λadapt

0

di|β̂ols
i |
6 0

)
,

= P
(
∀i /∈ A, (Zols

i )2 × di 6 λadapt
0

)
,

> P
(
∀i ∈ [[1, p]], (Zols

i )2 × di 6 λadapt
0

)
,

> P
(
T adapt 6 λadapt

0

)
= 1− α.

Using the same arguments, the same result holds for the usual lasso. �

Proof (Proposition 2) As in the proof of proposition 1, we provide only the proof for the

adaptive lasso because the same arguments can be used for the lasso. From the form of the

adaptive lasso solution given in (10), we derive

β̂adapt
i (λadapt

0 ) 6= 0⇔ di × (β̂ols
i )2 > λadapt

0 .

If we set Zols = β̂ols − β∗, we obtain

β̂adapt
i (λadapt

0 ) 6= 0 ⇔ di × (Zols
i + β∗i )2 > λadapt

0 ,

⇔
(
β∗i + Zols

i −
√
λadapt

0 /di

)(
β∗i + Zols

i +

√
λadapt

0 /di

)
> 0.
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Because β∗i +Zols
i −

√
λadapt

0 /di 6 β∗i +Zols
i +

√
λadapt

0 /di, one deduces that β∗i >
√
λadapt

0 /di−Zols
i

is a sufficient condition for β̂adapt
i (λadapt

0 ) 6= 0. Furthermore, because cadapt
i is defined as the

1− η/p quantile of the distribution of

√
λadapt

0 /di − Zols
i , if |β∗i | > c

adapt
i , we have

P(β̂adapt
i (λadapt

0 ) 6= 0) = P(i ∈ Âadapt(λadapt
0 )) > 1− η/p.

Finally, a Bonferroni procedure leads to

P(∀i ∈ A \ Eadapt, i ∈ Âadapt(λadapt
0 )) = P(A \ Eadapt ⊂ Âadapt(λadapt

0 )) > 1− η,

which is the announced result. �

Proof (Lemma 1) Let us assume that the linear transformation U in (7) is equal to Pδ.

Thus, we have

Ỹ = X̃β∗ + ε̃, with Ỹ = PδY, X̃ = PδX and ε̃ = Pδε.

Because the variance of ε̃ is equal to PδΓP
T
δ , the maximum likelihood estimator of the model

(1) is

β̂mle = (X̃T (PδΓP
T
δ )−1X̃)−1X̃(PδΓP

T
δ )−1Ỹ

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1PδY,

=

(
M1 M2

)
PδY.

Furthermore, the ordinary least squares estimator β̂ols(Vδ) is

β̂ols(Vδ) = ((VδX)T (VδX))−1(VδX)TVδY.

Let us now check that β̂mle = β̂ols(Vδ) =

(
∆−1 M2

)
PδY. If we denote by (e1, . . . , en) and

(b1, . . . , bp) the canonical basis of Rn and Rp, we have

∀i ∈ [[1, p]],Mei = ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1ei,

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1 1√

δi
PδXbi =

1√
δi
bi
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and, as a result,

(
∆−1 M2

)
PδY = β̂mle. It is straightforward to show that VδX =

(
∆ 0

)T
,

thus Vδ ∈ G. Moreover, we have

β̂ols(Vδ) = ((VδX)T (VδX))−1(VδX)TVδY,

= ∆−2

(
∆ 0

)
VδY

=

(
∆−1 M2

)
PδY = β̂mle,

which gives the result �

The proof of lemma 2 relies on two main steps. In the first step, using lemmas A and B given

below, we obtain that the function

δ ∈]0,+∞[p 7→ φ(cpen(Vδ))

is minimized for at least one element δ∗. In the second step, we prove that the linear transfor-

mation Vδ∗ is such that φ(cpen(Vδ∗)) is minimal.

In the following, we denote λpen
0 (Vδ) = λpen

0 (δ), with δ ∈]0,+∞[p. It is straightforward to

show that λpen
0 given in the proposition 1 verifies the following two properties.

1. The function δ ∈]0,+∞[p 7→ λpen
0 (δ) is homogeneous:

∀k > 0,∀δ ∈]0,+∞[p, λpen
0 (kδ) = kλpen

0 (δ).

2. The function δ ∈]0,+∞[p 7→ λpen
0 (δ) is componentwise-increasing:

let δ, d ∈]0,+∞[p, if δ is componentwise-smaller than d, then λpen
0 (δ) 6 λ0(d).

The following lemma provides the continuity of the function δ ∈]0,+∞[p 7→ λpen
0 (δ).

Lemma A Let g be a function that satisfies the two previous properties; then, the function g is

continuous.

Proof Let x = (x1, . . . , xp) ∈]0,+∞[p, we set u = (u1, . . . , up) the unit vector u = x/‖x‖. Let
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r > 0 such that x− ru ∈]0,+∞[p. The function g is homogeneous; thus,

g(x− ru) = g

(
x

(
1− r

‖x‖

))
=

(
1− r

‖x‖

)
g(x) and

g(x+ ru) =

(
1 +

r

‖x‖

)
g(x).

Let y ∈]0,+∞[p be such that the following inequality occurs componentwise: x−ru 6 y 6 x+ru.

Because g is componentwise-increasing, we have g(x− ru) 6 g(y) 6 g(x+ ru). More precisely,

∀y ∈ [x1 − ru1, x1 + ru1]× · · · × [xp − rup, xp + rup], |g(y)− g(x)| 6 r

‖x‖
|g(x)|. (11)

Let ε > 0; one can choose r0 > 0 small enough such that r0|g(x)|/‖x‖ 6 ε. We set η =

r0 min{u1, . . . , up}; thus, the inequality (11) gives

‖y − x‖∞ 6 η ⇒ |g(y)− g(x)| 6 ε,

which proves the continuity of g on ]0,+∞[p. �

Lemma B Let φ be a Lq norm on Rp with q > 0; the function

f : δ ∈]0,+∞[p 7→ φ(cpen(Vδ))

attains its minimum for at least one element δ∗.

Proof Let us recall the expression of the function f

f : δ ∈]0,+∞[p 7→ φ

(
λpen

0 (δ)

δ1
+ se(β̂mle

i )z1−η/p, . . . ,
λpen

0 (δ)

δp
+ se(β̂mle

i )z1−η/p

)
.

Because f is homogeneous, one deduces that if the restriction of f onto the unit sphere reaches

its minimum, then f has a global minimum on ]0,+∞[p. We denote S∞(1) as the unit sphere

of Rp for the supremum norm. Using Lemma A, we obtain that f is continuous; moreover, the

restriction of f onto the set ]0,+∞[p∩S∞(1) can be extended by continuity to [0,+∞[p∩S∞(1)
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by setting

f̄ : δ ∈ [0,+∞[p∩S∞(1)


f(δ) if δ ∈]0,+∞[p∩S∞(1)

+∞ if ∃i ∈ [[1, p]] such that δi = 0.

The function f̄ is continuous on the compact set [0,+∞[p∩S∞(1); thus, f̄ attains its minimum at

δ∗. The minimum of the function f̄ is finite, so one deduces that δ∗ ∈]0,+∞[p∩S∞(1). Finally,

we obtain

∀δ ∈]0,+∞[p, φ(cpen(Vδ)) > φ(cpen(Vδ∗));

hence, the result follows. �

The following lemma is a consequence of corollary 3 of Anderson (1955).

Lemma C (Anderson) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be centred Gaussian vec-

tors with variance matrices ΓX and ΓY , respectively. Assume that the matrix ΓY − ΓX is a

positive semidefinite matrix; then,

∀x > 0,P(max{|Y1|γ , . . . , |Yn|γ} > x) > P(max{|X1|γ , . . . , |Xn|γ} > x), with γ ∈ {1, 2}.

This inequality implies that max{|Y1|γ , . . . , |Yn|γ} is stochastically greater than

max{|X1|γ , . . . , |Xn|γ}.

Proof (Lemma 2) For any U ∈ G, the matrix (UX)TUX is diagonal and (UX)TUX =

∆ = diag(δ1, . . . , δp) = diag(δ). The difference between the variance matrices of the Gaussian

vectors (δ1Z
ols
1 (U), . . . , δpZ

ols
p (U)) = ∆Zols(U) and (δ1Z

mle
1 , . . . , δpZ

mle
p ) = ∆Zmle is semidefinite

positive. Indeed, we obtain that

∀x ∈ Rp, xT (var(∆Zols(U))− var(∆Zmle))x = (∆x)T (var(Zols(U))− var(Zmle))∆x,

= (∆x)T (var(β̂ols(U))− var(β̂mle))∆x > 0.

The last inequality is a consequence of the Gauss-Markov theorem (Rencher and Schaalje,

2008) (page 146). Because λpen
0 (U) and λpen

0 (Vδ) are the respective 1 − α quantiles of

max{δ1|Zols
1 (U)|, . . . , δp|Zols

p (U)|} and max{δ1|Zmle
1 |, . . . , δp|Zmle

p |}, the lemma C gives λpen
0 (U) >
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λpen
0 (Vδ). Furthermore, the inequalities ∀i ∈ [[1, p]], se(β̂mle

i ) 6 se(β̂ols
i (U)) lead to

∀i ∈ [[1, p]], cpen
i (Vδ∗) =

λpen
0 (Vδ)

δi
+ se(β̂mle

i )z1−η/p 6 c
pen
i (U) =

λpen
0 (U)

δi
+ se(β̂ols

i (U))z1−η/p.

Because cpen(Vδ) is componentwise smaller than cpen(U), one deduces that φ(cpen(U)) >

φ(cpen(Vδ)). Finally, using lemma B, the inequality φ(cpen(Vδ)) > φ(cpen(Vδ∗)) gives the result.

�

Proof (Proposition 3) The proposition can be shown by proving that

∀δ ∈]0,+∞[p, ‖cpen(Vδ∗)‖∞ 6 ‖cpen(Vδ)‖∞ ⇔ cpen
1 (Vδ∗) = · · · = cpen

p (Vδ∗).

Here, we denote cpen(Vδ) = cpen(δ) = cpen(δ1, . . . , δp). Assume that δ∗ ∈]0,+∞[p is such that

cpen
1 (δ∗) = · · · = cpen

p (δ∗). We will prove that ‖cpen(δ∗)‖∞ 6 ‖cpen(δ)‖∞ for any δ 6= δ∗. For this

purpose, we denote

k = max
i∈[[1,p]]

{δ∗i /δi}.

There exists i0 ∈ [[1, p]] such that k = δ∗i0/δi0 . We have

cpen
i0

(δ1, . . . , δp) =

√
λpen

0 (δ1, . . . , δp)

δi0
+ se(β̂mle

i0 )z1−η/p,

=

√
λpen

0 (kδ1, . . . , kδp)

kδi0
+ se(β̂mle

i0 )z1−η/p.

Because (kδ1, . . . , kδp) is componentwise-greater than (δ∗1 , . . . , δ
∗
p), from the componentwise-

increasing property of λpen
0 , one deduces that

cpen
i0

(δ1, . . . , δp) >

√
λpen

0 (δ∗1 , . . . , δ
∗
p)

δ∗i0
+ se(β̂mle

i0 )z1−η/p,

> cpen
i0

(δ∗1 , . . . , δ
∗
p) = ‖cpen(δ∗1 , . . . , δ

∗
p)‖∞.

This shows that ‖cpen(δ1, . . . , δp)‖∞ > ‖cpen(δ∗1 , . . . , δ
∗
p)‖∞.

Conversely, assume that δ∗ ∈]0,+∞[p such that ‖cpen(δ∗)‖∞ is minimal, and assume that

24



the inequality cpen
1 (δ∗) = · · · = cpen

p (δ∗) does not hold. We set

I0 = {i ∈ [[1, p]] | ci(δ∗) = ‖c(δ∗)‖∞}.

Because I0 ( [[1, p]], one can choose ε > 0 such that

∀i /∈ I0, (1 + ε)ci(δ
∗) < ‖c(δ∗)‖∞.

We define δ0 as the parameter

δ0 :=


δ0
i = (1 + ε)δ∗i if i ∈ I0,

δ0
i = δ∗i if i /∈ I0.

If i ∈ I0, we have

cpen
i (δ0) =

√
λpen

0 (δ0)

δ0
i

+ se(β̂mle
i0 )z1−η/p.

Because λpen
0 is strictly componentwise-increasing, one deduces that

cpen
i (δ0) <

√
λpen

0 ((1 + ε)δ∗)

(1 + ε)δ∗i
+ se(β̂mle

i0 )z1−η/p,

< cpen
i (δ∗) = ‖cpen(δ∗)‖∞.

If i /∈ I0, we have

cpen
i (δ0) =

√
λpen

0 (δ0)

δ0
i

+ se(β̂mle
i0 )z1−η/p,

=

√
λpen

0 (δ0)

δ∗i
+ se(β̂mle

i0 )z1−η/p,

<

√
λpen

0 ((1 + ε)δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p.
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Because the function λ0 is homogeneous, we obtain

cpen
i (δ0) <

√
1 + ε

√
λpen

0 (δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p,

< (1 + ε)

(√
λpen

0 (δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p

)
,

< (1 + ε)ci(δ
∗) < ‖c(δ∗)‖∞.

Therefore, ‖cpen(δ0)‖∞ < ‖cpen(δ∗)‖∞, which results in a contradiction. �

Proof (Proposition 4) Let δ ∈]0,+∞[p, and let us define ζ = (ζ1, . . . , ζp) = (δ2
1 , . . . , δ

2
p).

We have

{E = Âadapt(λadapt
0 (Vζ))} =

{⋂
i∈E
{i ∈ Âadapt(λadapt

0 (Vζ))}

}⋂{⋂
i/∈E

{i /∈ Âadapt(λadapt
0 (Vζ))}

}
,

=

{⋂
i∈E
{β̂adapt

i (λadapt
0 (Vζ)) 6= 0}

}⋂{⋂
i/∈E

{β̂adapt
i (λadapt

0 (Vζ)) = 0}

}
.

The closed form of the adaptive lasso estimator given in (10) gives that

{E = Âadapt(λadapt
0 (Vζ))} =

{⋂
i∈E
{ζi(β̂mle

i )2 > λadapt
0 (Vζ)}

}⋂{⋂
i/∈E

{ζi(β̂mle
i )2 6 λadapt

0 (Vζ)}

}
,

=

{⋂
i∈E
{δi|β̂mle

i | >
√
λadapt

0 (Vζ)}

}⋂{⋂
i/∈E

{δi|β̂mle
i | 6

√
λadapt

0 (Vζ)}

}
.

Furthermore, we have

{E = Âlasso(λlasso
0 (Vδ))} =

{⋂
i∈E

{
δi|β̂mle

i | > λlasso
0 (Vδ)

}}
∩

{⋂
i/∈E

{
δi|β̂mle

i | 6 λlasso
0 (Vδ)

}}
.

Thus, the distributions of Âadapt(λadapt
0 (Vζ)) and Âlasso(λlasso

0 (Vδ)) are equal if and only if

λlasso
0 (Vδ) =

√
λadapt

0 (Vζ). We have that

1− α = P(max{ζ1(Zmle
1 )2, . . . , ζp(Z

mle
p )2} 6 λadapt

0 ),

= P((max{δ1|Zmle
1 |, . . . , δp|Zmle

p |})2 6 λadapt
0 ),

= P
(

max{δ1|Zmle
1 |, . . . , δp|Zmle

p |} 6
√
λadapt

0

)
.
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Because P
(
max{δ1|Zmle

1 |, . . . , δp|Zmle
p |} 6 λlasso

0

)
= 1 − α, one deduces that λlasso

0 =

√
λadapt

0 .

This leads to classo(Vδ) = cadapt(Vζ). Thus, if δ∗ is an element for which φ(classo(Vδ∗)) is minimal,

then φ(cadapt(Vζ∗)) is also minimal. �

Proof (Proposition 5) In this proof, the dependencies in α and n are provided in order to

facilitate understanding. So, instead of β̂mle, λlasso
0 (U) and Âlasso(λlasso

0 (U)) we denote respec-

tively β̂n, λ1−α(U) and Ân(λ1−α(U)). We have P(Ân(λ1−αn(Uφ)) ⊂ A) > 1 − αn. Since αn

converges toward 0, one deduces that P(Ân(λ1−αn(Uφ)) ⊂ A) −→
n→+∞

1. It remains to check that

P(A ⊂ Ân(λ1−αn(Uφ))) −→
n→+∞

1. We have the following equalities

P(A ⊂ Ân(λ1−αn(Uφ))) = P(∀i ∈ A, β̂lasso
i (λ1−αn(Uφ)) 6= 0),

= P
(
∀i ∈ A, sgn(β̂ni )

(
|β̂ni | − λ1−αn(Vδ∗)/δ∗i

)
+
6= 0

)
,

= P
(
∀i ∈ A, |β̂ni | > λ1−αn(Vδ∗)/δ∗i

)
.

For all i ∈ A , we have that |β̂ni | −→
n→+∞

|β∗i | > 0. Thus, to prove that

P
(
∀i ∈ A, |β̂ni | > λ1−αn(Vδ∗)/δ∗i

)
−→

n→+∞
1, it suffices to prove

(
λ1−αn(Vδ∗)

δ∗1
, . . . ,

λ1−αn(Vδ∗)

δ∗p

)
−→

n→+∞
0Rp ⇔ φ

(
λ1−αn(Vδ∗)

δ∗1
, . . . ,

λ1−αn(Vδ∗)

δ∗p

)
−→

n→+∞
0. (12)

Let us set δ = (δ1, . . . , δp) = (1/se(β̂n1 ), . . . , 1/se(β̂np )), the optimality of the linear transformation

Uφ = Vδ∗ gives

δ ∈]0,+∞[p, φ

(
λ1−αn(Vδ∗)

δ∗1
, . . . ,

λ1−αn(Vδ∗)

δ∗p

)
6 φ

(
λ1−αn(Vδ)

δ1
, . . . ,

λ1−αn(Vδ)

δp

)
.

Thus, the limit given in (12) holds if

lim
n→+∞

φ

(
λ1−αn(Vδ)

δ1
, . . . ,

λ1−αn(Vδ)

δp

)
= 0. (13)

The tuning parameter λ1−αn(Vδ) is the 1 − αn quantile of

max{|Zmle
1 |/se(β̂mle

1 ), . . . , |Zmle
p |/se(β̂mle

p )}. One notices that |Zmle
i |/se(β̂mle

i ) has a folded

standard Gaussian distribution. So, classical inequality yields to λ1−αn(Vδ) 6
√

2 ln(p/αn). If
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we set αn = 1/n, one obtains

λ1−αn(Vδ)/δi 6 se(β̂
n
i )×

√
2 ln(pn).

Since β̂n has a rate of convergence of 1/
√
n, one deduces that the limits given in (12) and (13)

hold together. Therefore, limn→+∞ P(A ⊂ Ân(λ1−αn(Vφ))) = 1 that completes the proof. �

Proof (Proposition 6) Let us recall that the Gaussian vector (β̂mle
i )i/∈A has the same

distribution as (Zmle
i )i/∈A defined in (8). Thus, we have

P(Âmle ⊂ A) = P(∀i /∈ A, |β̂mle
i | 6 σ

√
q p√1−α),

= P(∀i /∈ A, |Zmle
i | 6 σ

√
q p√1−α),

≥ P(∀i ∈ [[1, p]], |Zmle
i | 6 σ

√
q p√1−α).

Because σ
√
q p√1−α is the 1− α quantile of max{|Zmle

1 |, . . . , |Zmle
p |}, one deduces that P(Âmle ⊂

A) ≥ 1− α.

The norm ‖classo(Vδ∗)‖∞ reaches a minimum for a linear transformation Vδ∗ for which δ∗ =

(1, . . . , 1). Thus, the tuning parameter λlasso
0 (Vδ∗) is the 1 − α quantile of {|Zmle

1 |, . . . , |Zmle
p |},

and λlasso
0 (V ∗δ ) = σ

√
q p√1−α.

For all E ⊂ [[1, p]], we have

{E = Âlasso(λlasso
0 (Vδ∗))} =

{⋂
i∈E
{i ∈ Âlasso(λlasso

0 (Vδ∗))}

}⋂{⋂
i/∈E

{i /∈ Âlasso(λlasso
0 (Vδ∗))}

}
,

=

{⋂
i∈E
{β̂lasso

i (λlasso
0 (Vδ∗)) 6= 0}

}⋂{⋂
i/∈E

{β̂lasso
i (λlasso

0 (Vδ∗)) = 0}

}
.

The closed form of the lasso estimator given by (10) allows us to write

{E = Âlasso(λlasso
0 (Vδ∗))} =

{⋂
i∈E
{|β̂mle

i | > σ
√
q p√1−α}

}⋂{⋂
i/∈E

{|β̂mle
i | 6 σ

√
q p√1−α}

}
,

= {E = Âmle}

which proves the proposition. �
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Proof (Proposition 7) Let us define δ as follow

δ = (δ1, . . . , δp) =

(
1

se(β̂mle1 )
, . . . ,

1

se(β̂mlep )

)
.

We are going to prove that

∀i ∈ [[1, p]], classo
i (Vδ) 6 c

mle
i .

The previous inequality implies that φ(classo(Vδ)) 6 φ(cmle).

Let k1−α be the 1− α quantile of the random variable max{δ1|Zmle
1 |, . . . , δp|Zmle

p |}. Since for

any integer i, the random variable δiZ
mle
i has a standard Gaussian distribution, the Bonferroni

inequality gives k1−α 6 z1−α/2p. Therefore, we have

classoi (Vδ) = se(β̂mle
i )(k1−α + z1−η/p) 6 se(β̂

mle
i )(z1−α/2p + z1−η/p) = cmle

i .

Since φ(classo(Uφ)) is smaller than φ(classo(Vδ)), one deduces that φ(classo(Uφ)) 6 φ(cmle). �

The previous proof shows that the difference between φ(classo(Uφ)) and φ(cmle) increases

when the difference between k1−α and z1−α/2p becomes large. Furthermore, one can notice that

when the components of β̂mle are correlated, the distribution of max{δ1|Zmle
1 |, . . . , δp|Zmle

p |} is

approximately equals to that of a folded standard Gaussian. Thus, in this case k1−α ≈ z1−α/2

that is much smaller than z1−α/2p especially when p is large. One deduces that Âlasso is much

better than Âmle in this particular case.
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Bühlmann, P. and S. van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory

and Applications. Springer.

Chand, S. (2012). On tuning parameter selection of lasso-type methods - A Monte Carlo study.

In Proceedings of 2012 9th International Bhurban Conference on Applied Sciences Technology

(IBCAST), pp. 120–129.

Dudoit, S. and M. J. Van Der Laan (2007). Multiple testing procedures with applications to

genomics. Springer.

Efron, B., T. Hastie, I. Johnstone, R. Tibshirani, et al. (2004). Least angle regression. The

Annals of statistics 32(2), 407–499.

Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software 33(1), 1–22.

G’Sell, M. G., S. Wager, A. Chouldechova, and R. Tibshirani (2015). Sequential selection pro-

cedures and false discovery rate control. Journal of the Royal Statistical Sociey: Series B

(Statistical Methodology) 78(2), 423–444.

Hao, J., W. Astle, M. De Iorio, and T. M. Ebbels (2012). BATMAN - an R package for the auto-

mated quantification of metabolites from nuclear magnetic resonance spectra using a bayesian

model. Bioinformatics 28(15), 2088–2090.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer.

30



Hui, F. K. C., D. I. Warton, and S. D. Foster (2015). Tuning parameter selection for the adaptive

lasso using eric. Journal of the American Statistical Association 110(509), 262–269.

Lehmann, E. L. and J. P. Romano (2005). Testing statistical hypotheses (Third ed.). Springer

Texts in Statistics. New York: Springer.

Leng, C., Y. Lin, and G. Wahba (2006). A note on the lasso and related procedures in model

selection. Statistica Sinica 16(4), 1273–1284.

Lockhart, R., J. Taylor, R. J. Tibshirani, and R. Tibshirani (2014). A significance test for the

lasso. Annals of statistics 42(2), 413–468.

Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of lasso and

dantzig estimators. Electronic Journal of statistics 2, 90–102.
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