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Non-asymptotic active set properties of lasso-type

estimators in small-dimension

Patrick J. C. Tardivel∗, Rémi Servien and Didier Concordet

Abstract

We propose to estimate the active set associated with a standard linear Gaussian model
when the design matrix is a n × p full-rank matrix (thus, n > p). Asymptotic results are
available for lasso-type estimators in the high-dimensional setting (n < p). In this paper,
we present non-asymptotic results for estimation of the active set in small dimension by
providing an explicit tuning parameter. Both theoretical and numerical arguments illustrate
the benefits of our approach. An application to the detection of metabolites in metabolomic
data is provided.

Keywords: Lasso, Adaptive lasso, Active set estimation, Tuning parameter.

1 Introduction

Let us consider the linear Gaussian model

Y = Xβ∗ + ε, (1)

where X = (X1| . . . |Xp) is an n× p full-rank design matrix with n > p, ε is a Gaussian vector
with an invertible variance matrix Γ, and β∗ is an unknown parameter. We want to estimate
the set A = {i ∈ [[1, p]] | β∗

i 6= 0} of relevant variables, which is called the active set. A natural
way to estimate A is to consider

Â(β̂) = {i ∈ [[1, p]] | β̂i 6= 0} (2)

where β̂ is any sparse estimator of β∗. This problem has been well studied for the case in which
β̂ is a lasso-type estimator,

β̂pen(λ) = argmin
β∈Rp

{

1

2
‖Y −Xβ‖2 + λpen(β)

}

, (3)

where pen(β) is a penalty. Two main lasso-type estimators have been used to build active set

estimators: the lasso β̂lasso(λ) (Tibshirani, 1996) and the adaptive lasso β̂adapt (Zou, 2006), which

are obtained with pen(β) = ‖β‖1 and pen(β) =
∑n

i=1
1

|β̂i|
|βi|, respectively, where β̂ is a consistent

estimator of β∗. Regardless of the estimator used, the properties of Âpen(λ)
∆
= Â(β̂pen(λ))

strongly depend on the choice of the tuning parameter λ. Most studies have been performed
for the high-dimensional framework i.e. when n < p (Meinshausen and Bühlmann, 2006; Zhao
and Yu, 2006; Zou, 2006). These authors noted that the irrepresentable condition on the design
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matrix X is an almost necessary and sufficient condition to obtain a consistent estimator of the
active set using the lasso estimator. Geometrically, this condition means that each variable Xi

with i /∈ A is almost orthogonal with the subspace Vect{Xi, i ∈ A}.
Thus, this irrepresentable condition is quite a strong assumption. Zou (2006) then proposed

a consistent estimator of A based on the adaptive lasso estimator that does not require this
condition. Instead, it requires a consistent estimator of β∗. The convergence results for these
two active set estimators were obtained under conditions on the order of magnitude of λ according
to n without giving an explicit value. For example, the assumptions in Zou (2006) are that the
tuning parameter must satisfy limn→+∞ λn = +∞ and limn→+∞ λn/

√
n = 0. Thus, to be

useful, these active set estimators require a specific tuning parameter. In practice, this choice
could be very challenging. Furthermore, it could have a strong impact on the performance of the
estimators. It could be tempting to select the tuning parameter using so-called cross-validation,
which achieves the optimal prediction accuracy (Tibshirani, 1996) and is available in some well-
known R packages , such as lars (Efron et al., 2004) and glmnet (Friedman et al., 2010). However,
as noted by Leng et al. (2006), this procedure is unsuitable for the active set estimation. Recently,
a new method referred to as a covariance test (Lockhart et al., 2014) used the entire lasso solution
path to provide a choice for the tuning parameter. More precisely, this method tests whether the
active set A is contained in the current lasso model (i.e. A ⊂ {i ∈ [[1, p]] | β̂lasso

i (λ) 6= 0} where
λ is a knot of the lasso solution path). G’Sell et al. (2015) applied the covariance test to define
a procedure to test ordered hypotheses Hk : A ⊂ {i1, . . . , ik−1}, where the indices i1, . . . , ik−1

are given by the lasso solution path. This method provides control of the false discovery rate
for the sequential procedure, but the properties of the obtained active set estimator are not
studied. Finally, under the assumptions that the design matrix is close to an orthogonal matrix
(which implies the irrepresentable condition) and the smallest non-null parameter of β∗ is larger
than a threshold (beta-min condition), Lounici (2008) provides an explicit choice for the tuning
parameter λ and presents non-asymptotic results for controlling the probability of {Â = A}.
All of these results, which were obtained for the high dimension are obviously usable in the
low-dimensional setting (n ≥ p). Nevertheless, they are not properly adapted to this setting,
and consequently, results adapted to the small-dimension could be improved by using weakened
assumptions.

The aim of this article is to explicitly describe how to choose the tuning parameter λ such
that, up to a predetermined set E ⊂ A, {Âpen(λ) ⊂ A} and {Âpen(λ) \ E ⊂ Â} both occur
with large probabilities. These non-asymptotic results are obtained without the irrepresentable
condition regardless of the value of n ≥ p.

This article is organised as follows. In section 2, we study the particular case in which
the design matrix has orthogonal columns (i.e. XTX is diagonal), whereas section 3 addresses
the general case in which X is a full-rank design matrix. A naive and common method to
perform active set estimation in the small-dimension is used to compute the maximum likelihood
estimator to test the nullity of each component of β∗. The set of rejected hypotheses provides
an estimator Âmle, and the event {Âmle ⊂ A} is then controlled via a Bonferroni-type procedure
that can be quite approximate. In section 4, we show that our λ choice provides an estimator that
outperforms both Lounici’s and the maximum likelihood estimators of the active set. Section 5
is devoted to simulation experiments. In section 6, we focus on the analysis of metabolomic data
that motivated this work.
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2 Orthogonal-columns case

When the design matrix X of the Gaussian linear model (1) has orthogonal columns (i.e. XTX is
diagonal), it is possible to build an estimator Â of A that admits a closed form using a lasso-type
estimator of β∗. In this case, the probability of {Â ⊂ A} is easy to compute. This is the reason
why we first analyse this situation. The results obtained in this section will be adapted to the
general case in which XTX is no longer diagonal.

The active set estimator Â(β̂pen(λ))
∆
= Âpen(λ) (2) depends on a tuning parameter λ. The

next proposition explains how to choose λ such that {Âpen(λ) ⊂ A} occurs with a controlled
probability.

Proposition 1 Let d1, . . . , dp be the diagonal coefficients of XTX, Zols be a random variable dis-
tributed according to a N

(

0, (XTX)−1XTΓX(XTX)−1
)

distribution, and T lasso (resp. T adapt)
be defined by

T lasso = max
i∈[[1,p]]

{di × |Zols
i |} (resp. T adapt = max

i∈[[1,p]]
{di × (Zols

i )2}).

The 1− α quantile of the T pen distribution is denoted λpen
0 (T pen indistinctly denotes T adapt or

T lasso) If λ > λpen
0 , the following inequality holds:

P(Âpen(λ) ⊂ A) > 1− α. (4)

This proposition guarantees with high probability that all elements of Âpen belong to the active
set. However, there can exist some i ∈ [[1, p]] such that β∗

i 6= 0 do not belong to Âpen. Intuitively,

large |β∗
i | are easy to detect, so the probability of the event {i ∈ Âpen} is high. The next

proposition gives a precise meaning to how large |β∗
i | should be for detection.

Proposition 2 Let se(β̂ols
i ) and z1−η/p be the standard error of β̂ols

i and the 1 − η/p quantile

of a N (0, 1) distribution, respectively. We will call detection thresholds the quantities classoi and

cadapti , which are respectively defined as

classoi = λlasso
0 /di + se(β̂ols

i )z1−η/p, c
adapt
i =

√

λadapt
0 /di + se(β̂ols

i )z1−η/p.

If Epen is the set Epen = {i ∈ A | |β∗
i | 6 cpeni } (cpeni indistinctly denotes classoi or cadapti ), then

the following inequality holds:

P(A \ Epen ⊂ Âpen(λpen
0 )) > 1− η. (5)

A direct consequence of (5) is that if A⋂ Epen = ∅, then

P(A ⊂ Âpen(λpen
0 )) > 1− η.

In other words, when all non-null |β∗
i | are sufficiently large, the active set is contained in

Âpen(λpen
0 ) with a high probability. Note that the detection thresholds are deterministic num-

bers that depend only on the design matrix and Γ. Consequently, when the variance matrix
Γ is known a priori, a detection threshold can be computed for each column of X before the
data analysis. In contrast, in their book, Bühlmann and van de Geer (2011) proposed the same
detection threshold for all columns of X (beta-min condition). Using a similar idea, by setting
c = max{cpen1 , . . . , cpenp }, we obtain a single detection threshold that can be used for all columns
of X . Because cpeni can be quite different from one another, this single detection threshold can
be very approximate and should be used with care.
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3 General case

In this section, we no longer assume that the design matrix X has orthogonal columns. In this
general setting, the lasso or adaptive lasso estimators do not have a closed form. Consequently,
it becomes difficult to choose a tuning parameter λ and find a set Epen that ensure that the
events {Âpen(λ) ⊂ A} and {A \ Epen ⊂ Âpen} occur with a controlled probability. To overcome
this difficulty, we propose application of a linear transformation U ∈ G that orthogonalises the
matrix X (i.e. (UX)TUX is diagonal) to each member of the model (1). This leads to the new
linear Gaussian model

Ỹ = X̃β∗ + ε̃ with Ỹ = UY, X̃ = UX and ε̃ = Uε. (6)

For all U ∈ G, β̂ols(U) denotes the ordinary least squares estimator of β∗ once the transformation

U has been applied; namely, β̂ols(U) =
[

X̃T X̃
]−1

X̃T Ỹ . Because X̃ has orthogonal columns, it

is possible to use the propositions of the previous section. More precisely, the propositions 1
and 2 provide a tuning parameter λpen

0 (U) and detection thresholds cpeni (U) that controlled

the probabilities of the events {Âpen(λpen
0 ) ⊂ A} and {i ∈ Â(λpen

0 (U))}, respectively. The
set G of linear transformations that orthogonalise X is large. Among these, we will select a
transformation for which the detection thresholds cpen(U) are as small as possible. When the
detection thresholds cpen(U) become small, the cardinality of Epen

U decreases, and the cardinality
of the set of elements at the least detected A \ Epen

U consequently increases. Because cpen(U) is
a vector (there is a detection threshold for each column of X), we need a norm φ that indicates
how small cpen(U) is. We restrict based on the componentwise increasing norm φ defined by

∀x ∈ (R+)
p, ∀y ∈ (R+)

p, (∀i ∈ [[1, p]], xi 6 yi) ⇒ φ(x) 6 φ(y). (7)

This property is not restrictive and holds for classical Lq, q > 0 norms. The theorem 1 shows
that it is possible to pick a transformation Uφ for which φ(cpen(U)) is minimal.

Theorem 1 Let φ be the componentwise increasing norm on Rp; then there exists a linear
transformation Uφ ∈ G, a tuning parameter λpen

0 (Uφ) and a set Epen
Uφ

such that

1) P(Âpen(λpen
0 (Uφ)) ⊂ A}) > 1− α and

2) P(A \ Epen
Uφ

⊂ Âpen(λpen
0 (Uφ)) > 1− η.

Moreover, cpen(Uφ) is minimal for the norm φ.

The linear transformation Uφ depends on the penalized estimator, α and η. We choose to simplify
the notation by not writing these dependencies.

The previous theorem 1 gives the existence of Uφ. The following two lemmas are the main
steps of its construction. Because Uφ should provide small detection thresholds, let us first recall
their expressions,

classoi = λlasso
0 /di + se(β̂ols

i )z1−η/p and cadapti =

√

λadapt
0 /di + se(β̂ols

i )z1−η/p.

Notice that cpen(U) increases when the variance matrix of β̂ols(U) is large. Indeed, the term

se(β̂ols
i (U))z1−η/p increases with the standard error of β̂ols

i (U). Furthermore λpen
0 (U) is inflated

when the variance matrix of β̂ols(U) is large. Lemma 1 exhibits linear transformations Vδ that

orthogonalise the design matrix X and for which the estimator β̂ols(Vδ) has a small variance (it
is efficient).
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Lemma 1 Let δ ∈]0,+∞[p and Pδ be a n× n matrix such that

PδX =

(

∆
0

)

, with ∆ = diag(
√

δ1, . . . ,
√

δp) and 0 the null matrix.

Let M be a p× n matrix defined by

M = ((PδX)T (PδΓP
T
d )−1PδX)−1(PδX)T (PδΓP

T
δ )−1 =

(

M1 M2

)

,

where M1 and M2 are p× p and a p× (n− p) matrices, respectively. The matrix Vδ is an n× n
matrix defined by

Vδ =

(

Idp ∆M2

0 0

)

Pδ.

Vδ then belongs to G, and β̂ols(Vδ) is equal to the maximum likelihood estimator β̂mle of (1).

If the linear transformation U in (6) is equal to Vδ, we obtain a tuning parameter λpen
0 (Vδ) and

detection thresholds cpen(Vδ), both of which have a closed form. More precisely, if Zmle is a
centred Gaussian random variable with the same variance matrix as the maximum likelihood
estimator β̂mle,

Zmle ∼ N (0, (XTΓ−1X)−1), (8)

the tuning parameters λlasso
0 (Vδ) and λadapt

0 (Vδ) are respectively defined as the 1 − α quantiles
of the distributions of max{δ1|Zmle

1 |, . . . , δp|Zmle
p |} and max{δ1(Zmle

1 )2, . . . , δp(Z
mle
p )2}. Further-

more, if se(β̂mle
i ), the standard errors of β̂mle

i , threshold detection classoi (Vδ) and cadapti (Vδ) are
equal to

classoi (Vδ) = λlasso
0 (Vδ)/δi + se(β̂mle

i )z1−η/p and cadapti (Vδ) =

√

λadapt
0 (Vδ))/δi + se(β̂mle

i )z1−η/p.

The expression of cpen(Vδ) is easy to optimise with respect to δ and only requires simulation
of the Gaussian vector Zmle. This optimisation allows minimal detection thresholds cpen(Uφ)
to be obtained for the norm φ. The next lemma proves that theorem 1 holds for the linear
transformation Uφ.

Lemma 2 Let us consider the componentwise increasing norm φ given by (7) and set

Uφ = Vδ∗ = arginf
δ∈]0,+∞[p

φ(cpen(Vδ)). (9)

Then,
∀U ∈ G,φ(cpen(Uφ)) 6 φ(cpen(U)).

As shown in the proof, there always exists at least a value δ∗ ∈]0,+∞[p such that the infimum
is reached. Consequently, theorem 1 holds for Uφ = Vδ∗ .

In the particular case where φ is the supremum norm, the next proposition shows that the
components of cpen(U∞) are equal. By optimizing cpen for this norm, we obtain a single detection
threshold (the same for all columns of X).

Proposition 3 Let Vδ∗ as in lemma 2 be an element for which ‖cpen(Vδ∗)‖∞ is minimal. Assume
that η, defined in proposition 2, is such that η/p < 1/2; then we have

∀U ∈ G, ‖cpen(Vδ∗)‖∞ 6 ‖cpen(U)‖∞ ⇔ cpen1 (Vδ∗) = · · · = cpenp (Vδ∗).
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The assumption η/p < 1/2 is not restrictive. It simply ensures that the detection thresholds
are positive. The result given by theorem 1 depends on the penalized estimator used. A priori,
one might think that the estimators Âlasso(λlasso

0 (U lasso
φ )) and Âadapt(λadapt

0 (Uadapt
φ )) given by

this theorem are different. However, the next proposition shows that the distributions of these
two estimators are equal.

Proposition 4 Let φ be the componentwise increasing norm given by (7) and δ∗ be an element
of ]0,+∞[p for which φ(classo(Vδ∗)) is minimal. Define ζ∗ = ((δ∗1)

2, . . . , (δ∗p)
2); then, we have the

two results that φ(cadapt(Vζ∗)) is minimal and the distribution of Âlasso(λlasso
0 (Vδ∗)) is equal to

that of Âadapt(λadapt
0 (Vζ∗)).

Consequently, there is no gain from using an adaptive lasso instead of a lasso estimator to
estimate the active set. Thus, in the following, we restrict ourself to Âlasso.

4 Comparison with other active set estimators

4.1 Comparison with Lounici’s estimator

Lounici (2008) used a thresholded lasso estimator β̂th,lasso to build the following estimator of A:

ÂL = {i ∈ [[1, p]] | β̂th,lasso
i 6= 0}.

He proved that the event {ÂL = A} has a controlled probability when the Gram matrix 1
nX

TX
is close to the identity, the noise ε is Gaussian, and the smallest non-null parameter |β∗

i | is
sufficiently large. To enable comparison of ÂL and Âlasso, we assume that X is orthogonal
(XTX = Idp). In this setting, the detection thresholds given in Proposition 2 are all equal to

classo = σ
(√

q p
√
1−α + z1−η/p

)

. If λlasso
0 is chosen as in the proposition 1, we have

min
i∈A

{β∗
i } > classo ⇒ P(Âlasso(λlasso

0 ) = A) > 1− α− η,

whereas in the same setting, Lounici gave

min
i∈A

{β∗
i } > cL ⇒ P(ÂL = A) > 1− p1−A2/8,

where cL = 3Aσ
√

log(p) and A > 2
√
2.

If cL and classo are both chosen such that P(ÂL = A) > 1 − α and P(Âlasso = A) > 1 − α,
they have the same order of magnitude σ

√

log(p), but for any p, classo is smaller than cL, as
illustrated by Table 1.

p 10 20 50 100
cL/σ 18.20 19.53 21.15 22.30

classo/σ 5.37 5.82 6.37 6.76

Table 1: This table provides a numerical comparison of cL and classo. We chose α = η = 0.025
and A such that 1 − p1−A2/8 = 0.95. These values ensure that P(Â = A) > 0.95. This table
shows that for any p > 1, classo is smaller than cL.

The main explanation of the observed difference between classo and cL relies on the choice
of the tuning parameter. Indeed, the tuning parameter λlasso

0 is the 1 − α quantile of
max{|Zols

1 |, . . . , |Zols
p |}, whereas Lounici’s tuning parameter bounds above the 1 − α quantile

of 2max{|Zols
1 |, . . . , |Zols

p |}. This results in ÂL ⊆ Âlasso, implying that cL > classo.
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4.2 Comparison with the maximum likelihood estimator

Using the maximum likelihood estimator, one can build a test that rejects the null hypothesis
β∗
i = 0 when |β̂mle

i | is larger than a threshold ti. The set of rejected hypotheses provides an

estimator Âmle of A defined by

Âmle = {i ∈ [[1, p]] | |β̂mle
i | > ti}.

This estimator depends on the thresholds t1, . . . , tp that can be chosen as follows. If there is

at least one false rejection (if there exists an integer i for which β∗
i = 0 and |β̂mle

i | > ti), then

Âmle 6⊂ A. Thus, to ensure that the event {Âmle ⊂ A} holds with a large probability, it is
necessary to control the family-wise error rate (FWER) (Lehmann and Romano, 2005). When

the β̂mle
i values are independent, a Šidák procedure gives exact control of the FWER (Dudoit

and Van Der Laan, 2007), whereas in all other cases, a Bonferroni procedure provides only
approximate control. The following proposition compares the distributions of Âlasso and Âmle in
a simplified case of independence.

Proposition 5 Assume that β̂mle ∼ N (β∗, σ2Idp), and let us set t1 = · · · = tp = σ
√
q p
√
1−α and

Vδ∗ as defined in proposition 3. Then, P({Âmle ⊂ A}) > 1 − α. Moreover, the distributions of
Âmle and Âlasso(λlasso(Vδ∗)) are equal.

As shown hereafter, when the components of the maximum likelihood estimator are no
longer independent, Âlasso(λlasso(Vδ∗)) has better performance than Âmle, especially when the

components of β̂mle are very correlated and p is large. Let us recall that the proposition 1
ensures that P(Âlasso(λlasso

0 (Vδ∗)) > 1 − α and the proposition 2 gives a set E lasso such that
P(A \ E lasso ⊂ Âlasso(λlasso

0 (Vδ∗)) 6 1 − η. It is possible to define an estimator Âmle with
similar characteristics to Âlasso(λlasso(Vδ∗)). Indeed, a Bonferroni procedure yields thresholds
t1, . . . , tp such that {Âmle ⊂ A} occurs with a probability of at least 1 − α. Furthermore, in

a similar manner as E lasso, it is possible to build Emle such that P(A \ Emle ⊂ Âmle) > 1 − η.
The following proposition compares the cardinalities of Emle and E lasso in the particular case
in which the components of β̂mle have the same variance. For this proposition, let us recall
that E lasso = {i ∈ [[1, p]] | β∗

i 6 classo(Vδ∗)}. Because δ∗ = (1, . . . , 1) in this case, we have
E lasso = {i ∈ [[1, p]] | β∗

i 6 λlasso
0 (Vδ∗) + σz1−η/p}.

Proposition 6 Assume that ∀i ∈ [[1, p]], β̂mle
i ∼ N (β∗

i , σ
2). If we set t1 = · · · = tp = tmle =

σz1−α/2p and Emle = {i ∈ [[1, p]] | |β∗
i | 6 tmle + σz1−η/p} to have

P(Âmle ⊂ A) > 1− α and P(A \ Emle ⊂ Âmle) > 1− η

, then the cardinality of Emle is greater than that of E lasso.

Because the cardinalities of E lasso and Emle measure the performance of Âlasso(λlasso(Vδ∗)) and
Âmle, respectively, the estimator Âlasso(λlasso(Vδ∗)) is better than Âmle.

Heuristically, the performance of Âlasso is even better than that of Âmle when the components
of β̂mle (and thus those of Zmle in (8)) are correlated or when p is large. Indeed, λlasso

0 (Vδ∗) is
the 1 − α quantile of the distribution max{|Zmle

1 |, . . . , |Zmle
p |}; thus, when the components of

Zmle are extremely correlated, λlasso
0 (Vδ∗) ≈ σz1−α/2. Moreover, because tmle = σz1−α/2p, as

soon as p is large or the components of β̂mle are very correlated, tmle−λlasso
0 (Vδ∗) becomes large.

Consequently, the cardinality of Emle becomes greater than that of E lasso when p or when the
correlations increase.
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5 Simulation experiments

The simulations given in subsection 5.1 illustrate the theoretical results obtained in the previous
section. The numerical comparison of the optimal threshold detection for several norms is per-
formed in subsection 5.2. In subsection 5.3, it is shown that the detection thresholds give exact
control of P(i ∈ Âlasso).

5.1 Numerical comparison with Âmle

In this subsection, we numerically compare P(Âlasso = A) and P(Âmle = A). The tuning
parameter λlasso

0 and the threshold tmle were chosen according to proposition 1 and section 4.2
to guarantee that the event {Â ⊂ A} holds with a probability greater than 0.95. We set p = 10

or p = 100; for all i 6 p, β̂mle
i ∼ N (β∗

i , σ
2), and for all i 6= j, corr(β̂mle

i , β̂mle
j ) = ρ and

β∗
1 = · · · = β∗

5 = c > 0; β∗
6 = · · · = β∗

p = 0. Figure 1 represents the curve of

Pc(A = Âlasso(λlasso
0 ))

Pc(A = Âmle)

as a function of c/σ.

2 3 4 5 6

1.
0

1.
2

1.
4

1.
6

1.
8

ratio of probabilities, p=10

c σ

ra
tio

2 3 4 5 6

1
2

3
4

ratio of probabilities, p=100

c σ

ra
tio

Figure 1: These figures represent the curves of Pc(A = Âlasso(λlasso
0 ))/Pc(A = Âmle) as a function

of c/σ for ρ = 0.9 (solid line), ρ = 0.7 (dashed line) and ρ = 0.5 (dotted line). One can observe
that this ratio increases with increasing number of columns p and with the correlation ρ. When
the coefficient c/σ goes to infinity, the ratio converges to Pc(Âlasso(λlasso

0 ) ⊂ A)/Pc(Âmle ⊂ A).

This figure illustrates that the ratio Pc(Âlasso = A)/P(Âmle = A) increases with increasing
p and ρ. For p = 10 (resp. p = 100), Pc(Âlasso = A) > P(Âmle = A) when c/σ 6 5 (resp.
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c/σ 6 5.5), whereas the reverse inequality holds elsewhere. Consequently, for any p and ρ, when

|β∗
i | 6 5se(β̂mle

i ), Âlasso better estimates A than Âmle.

When c/σ > 5, Âmle is better. This is not surprising because

lim
c→+∞

Pc(Âlasso(λlasso
0 ) = A)

Pc(Âmle = A)
= lim

c→+∞
Pc(Âlasso(λlasso

0 ) ⊂ A)

Pc(Âmle ⊂ A)
.

This latter ratio (which, in fact, does not depend on c) is less than 1 because P(Âlasso ⊂ A) is
closer to the nominal probability (0.95) than P(Âmle ⊂ A). This performance of Âlasso simply
reflects that Âlasso has better control of P(Â ⊂ A) than Âmle.

5.2 A single or several detection thresholds?

From proposition 3, optimisation of the detection thresholds classo for the supremum norm leads
to a single threshold (i.e. the threshold is the same for each column of X). If the optimisation of
classo is performed with another norm, several detection thresholds are obtained. In this section,
we study the influence of the standard errors of β̂mle

i on the optimal thresholds for the L1 and
L∞ norms. Recall that these thresholds are respectively defined by

classo(U1) = arginf
δ∈]0,+∞[p

‖classo(Vδ)‖1 and classo(U∞) = arginf
δ∈]0,+∞[p

‖classo(Vδ)‖∞.

We used 100,000 realizations of the random vector Zmle defined by (8) to compute classo(Vδ). For

simplicity, we assumed that β̂mle has independent components. We first assumed that var(β̂mle) =
σ2Idp. In this case, the optimal thresholds for the L1 norm are equal to optimal thresholds for
the supremum norm,

∀i ∈ [[1, 10]],
classoi (U∞)

σ
=

classo(U1)

σ
= 4.44.

This equality is no longer true when var(β̂mle) = σ2diag(1, . . . , 10). The optimal thresholds
for the L1 norm are

classo(U1)

σ
= (5.39, 6.24, 7.81, 8.86, 9.82, 10.72, 11.70, 12.32, 13.18, 13.61),

whereas those that are optimal for the supremum norm are

∀i ∈ [[1, 10]],
classoi (U∞)

σ
= 12.29.

In this second setting, one notes that the optimal threshold for the supremum norm is slightly
less than the maximum of optimal thresholds for the L1 norm. Because in practice the standard
errors of β̂mle are unequal, it is preferable to optimise the L1 norms of the thresholds.

5.3 Lasso estimation of the active set

The detection thresholds should ensure that if β∗
i > classoi , P(i ∈ Âlasso) > 1−η/p. However, λlasso

0

as defined in proposition 1 should guarantee that P(Âlasso ⊂ A) > 1−α. We will evaluate whether
these latter probabilities are close to their targets. In this simulation, we set n = 100, p = 10; Γ
is equal to

∀i, j ∈ [[1, 100]],Γi,j = σ2ρ|i−j|, with ρ = 0.5.
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The design matrix X was chosen such that

(XTX)i,j











1 if i = j,

0.5 if |i− j| = 1,

0 in the other cases.

Table 2 shows that for the ith variable: β∗
i , c

lasso
i and P(i ∈ Âlasso). These numerical results were

obtained assuming α = η/p = 0.05.

i β∗
i /σ classoi /σ P (i ∈ Âlasso(λlasso

0 (U1)))
1 5.65 8.47 0.563
2 7.82 9.39 0.824
3 10.95 10.95 0.950
4 13.38 11.15 0.994
5 16.92 11.28 0.999
6 0 11.34 0.010
7 0 10.82 0.012
8 0 10.45 0.008
9 0 9.28 0.007
10 0 8.35 0.003

Table 2: As soon as |β∗
i | is greater than the corresponding threshold detection, P(i ∈

Âlasso(λlasso
0 (U1)) > 0.95. The parameter β∗

3 = classo3 ; thus, P(3 ∈ Âlasso(λlasso
0 (U1))) = 0.95.

Note that the sum of the probabilities P(i ∈ Âlasso) over the variables that do not belong to A
(i.e. 6, 7, 8, 9, 10) is less than 0.05.

The set E lasso of variables that are difficult to detect is comprised of those for which 0 < β∗
i <

classoi that is {1, 2}. Note that for these variables, P(i ∈ Âlasso) < 0.95. When λlasso
0 is chosen as

described in proposition 1-i.e. without knowing the cardinality of A-we have

P(Âlasso(λlasso
0 (U1)) ⊂ {1, . . . , 5}) = 0.969 > 0.95

, whereas
P(A \ E lasso ⊂ Âlasso) = 0.943 and P(Âlasso = A) = 0.389.

6 Application in metabolomics: detection of metabolites

Metabolomics is the science concerned with the detection of metabolites (small molecules) in
biological mixtures (e.g. blood and urine). The most common technique for performing such
characterization is proton nuclear magnetic resonance (NMR). Each metabolite generates a char-
acteristic resonance signature in the NMR spectra with an intensity proportional to its concen-
tration in the mixture. The number of peaks generated by a metabolite and their locations and
ratio of heights are reproducible and uniquely determined: each metabolite has its own signa-
ture in the spectra. Each signature spectrum of each metabolite can be stored in a library that
could contain hundreds of spectra. One of the major challenges in NMR analysis of metabolic
profiles remains to be automatic metabolite assignment from spectra. To identify metabolites,
experts use spectra of pure metabolites and manually compare these spectra to the spectrum of
the biological mixture under analysis. Such a method is time-consuming and requires domain-
specific knowledge. Furthermore, complex biological mixtures can contain hundreds or thousands
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of metabolites, which can result in highly overlapping peaks. Figure 2 gives an example of an
annotated spectrum of a mixture.

Figure 2: Example of an annotated mixture spectrum. There are overlaps between peaks of
lipides and valine and between the peaks of glutamine and lysine.

Recently, automatic methods have been proposed. For example, Metabohunter (Tulpan et al.,
2011) is very fast, but the statistical interpretation of the scoring function associated with each
metabolite is difficult. Other methods, such as BATMAN (Astle et al., 2012; Hao et al., 2012),
Mercier et al. (2011) or Zheng et al. (2011), are based on a modelling using a Lorentzian shape
and a Bayesian strategy. Nevertheless, they are time-consuming and thus cannot be applied to a
large library of metabolites, and their statistical properties are not proven. Thus, establishment
of a gold-standard methodology with proven statistical properties for identification of metabolites
would be very helpful for the metabolomic community.

Let us denote A as the set of metabolites in the mixture and Â as the set of detected
metabolites. The event {Â ⊂ A} implies that there is no false detection; thus, the method
must control the probability of false detections. Furthermore, if E ⊂ A is the set of undetected
metabolites, the main objective is to provide a set E as small as possible. As proved in the
previous sections, the estimator Âlasso can fulfil these conditions and provide us with a good
estimate for the active set A.

6.1 Modelling

The spectrum of a metabolite (or a mixture) is a nonnegative function defined on a compact
interval T. We assume that we have a library of spectra containing all p metabolites {fi}16i6p

(with
∫

R
fi(t)dt = 1) that can be found in a mixture. This family of p spectra is assumed to be

linearly independent. In a first approximation, the observed spectrum of the mixture Y can be
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modelled as a discretized noisy convex combination of the pure spectra:

Yj =

(

p
∑

i=1

β∗
i fi(tj)

)

+ εj with 1 6 j 6 n and t1 < · · · < tn a subdivision of T .

The random vector (ε1, . . . , εn) is a standard GaussianN (0, σ2Idn). The variance σ
2 is estimated

using several observations of a metabolite spectrum. Recall that the objective is to estimate the
active set A = {i ∈ [[1, p]] | β∗

i 6= 0}.

6.2 Real dataset

The method for the detection of metabolites was performed on a knownmixture. The metabolomi-
cians supplied us with a library of 36 spectra of pure metabolites and a mixture composed of
these metabolites. The number of used metabolites and their proportions were unknown to us.
The results are presented in Table 3.

Metabolites Detected by Âlasso Actual proportions classo

Choline chloride Yes 0.545 0.011
Creatinine Yes 0.209 0.011
Benzoic acid Yes 0.086 0.018
L-Proline Yes 0.069 0.034
D-Glucose Yes 0.060 0.036
L-Phenylalanine Yes 0.029 0.025
30 other metabolites No 0 [0.010; 0.034]

Table 3: This table presents the results for the 36 metabolites of the library. The metabolites
detected using Âlasso are presented in the first column. The actual proportions of each metabolite
are presented in the second column. The detection thresholds, calculated using proposition 2
with η/p = 0.05, are listed in the last column.

The 6 metabolites that are present in the complex mixture are detected, including those with
small proportions. There is no false detection because the 30 other metabolites are not detected.
The detection thresholds are very different from one metabolite to another. They are strongly
impacted by two characteristics of the metabolite spectrum: first, the height of the peaks. If,
among all peaks of a spectrum, there is one large peak, the detection threshold would be lower,
and this metabolite would be easier to detect. This is the case for the choline chloride spectrum
but not for that of D-glucose, which is composed of many small peaks. Second, the detection
threshold decreases with increasing number of peaks that do not overlap with others. Because
the whole procedure is quite fast, lasting only a few seconds, it could be easily applied to a
library containing several hundred metabolites.

7 Conclusions

In this article, we proposed a lasso-type estimation of the active set Âpen in the small-dimensional
setting. When the design matrix has orthogonal columns, we gave a tuning parameter λpen

0 and

a set Epen such that the events {Âlasso(λpen
0 ) ⊂ A} and {A \ Epen ⊂ Âlasso(λpen

0 )} occur with a
controlled probability. The keystone of the paper is to apply a linear transformation U to each
member of the model (1) such that U orthogonalises X and for which the estimator β̂ols(U) is
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efficient. We then applied the results from the orthogonal case to the non-orthogonal one. We
obtained good performance for the estimator Âpen(λpen

0 (U)) based on β̂ols(U). However, this
estimator is no longer available in the high-dimensional setting. Of course, the least squares
estimator and orthogonal design matrix are specific to the small-dimensional setting. However,
the methods developed in this paper could most likely be combined with the results of Lounici
to relax the well-known irrepresentable condition and improve active set estimation in the high-
dimensional.

8 Appendix

Proof (Proposition 1) When the design matrix is orthogonal (i.e. XTX = Idp) or has orthog-
onal columns, both the lasso and adaptive lasso estimators have explicit expressions (Tibshirani,
1996; Hastie et al., 2009; Bühlmann and van de Geer, 2011) given by

β̂adapt
i (λ) = sgn(β̂ols

i )

(

|β̂ols
i | − λ

di|β̂ols
i |

)

+

and β̂lasso
i (λ) = sgn(β̂ols

i )

(

|β̂ols
i | − λ

di

)

+

. (10)

When i /∈ A, β∗
i = 0, the Gaussian vector (β̂ols

i )i/∈A has the same distribution as (Zols
i )i/∈A.

Therefore, we obtain that for the adaptive lasso,

P
(

Âpen(λ) ⊂ A
)

= P
(

∀i /∈ A, β̂pen
i (λ) = 0

)

= P

(

∀i /∈ A, |β̂ols
i | − λadapt

0

di|β̂ols
i |

6 0

)

,

= P
(

∀i /∈ A, (Zols
i )2 × di 6 λadapt

0

)

,

> P
(

∀i ∈ [[1, p]], (Zols
i )2 × di 6 λadapt

0

)

,

> P
(

T adapt 6 λadapt
0

)

= 1− α.

Using the same arguments, the same result holds for the usual lasso. �

Proof (Proposition 2) As in the proof of proposition 1, we provide only the proof for the
adaptive lasso because the same arguments can be used for the lasso. From the form of the
adaptive lasso solution given in (10), we derive

β̂adapt
i (λadapt

0 ) 6= 0 ⇔ di × (β̂ols
i )2 > λadapt

0 .

If we set Zols = β̂ols − β∗, we obtain

β̂adapt
i (λadapt

0 ) 6= 0 ⇔ di × (Zols
i + β∗

i )
2 > λadapt

0 ,

⇔
(

β∗
i + Zols

i −
√

λadapt
0 /di

)(

β∗
i + Zols

i +

√

λadapt
0 /di

)

> 0.

Because β∗
i +Zols

i −
√

λadapt
0 /di 6 β∗

i +Zols
i +

√

λadapt
0 /di, one deduces that β

∗
i >

√

λadapt
0 /di−Zols

i

is a sufficient condition for β̂adapt
i (λadapt

0 ) 6= 0. Furthermore, because cadapti is defined as the

1− η/p quantile of the distribution of

√

λadapt
0 /di − Zols

i , if |β∗
i | > cadapti , we have

P(β̂adapt
i (λadapt

0 ) 6= 0) = P(i ∈ Âadapt(λadapt
0 )) > 1− η/p.
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Finally, a Bonferroni procedure leads to

P(∀i ∈ A \ Eadapt, i ∈ Âadapt(λadapt
0 )) = P(A \ Eadapt ⊂ Âadapt(λadapt

0 )) > 1− η,

which is the announced result. �

Proof (Lemma 1) Let us assume that the linear transformation U in (6) is equal to Pδ.
Thus, we have

Ỹ = X̃β∗ + ε̃, with Ỹ = PδY, X̃ = PδX and ε̃ = Pδε.

Because the variance of ε̃ is equal to PδΓP
T
δ , the maximum likelihood estimator of the model

(1) is

β̂mle = (X̃T (PδΓP
T
δ )−1X̃)−1X̃(PδΓP

T
δ )−1Ỹ

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1PδY,

=
(

M1 M2

)

PδY.

Furthermore, the ordinary least squares estimator β̂ols(Vδ) is

β̂ols(Vδ) = ((VδX)T (VδX))−1(VδX)TVδY.

Let us now check that β̂mle = β̂ols(Vδ) =
(

∆−1 M2

)

PδY. If we denote by (e1, . . . , en) and
(b1, . . . , bp) the canonical basis of Rn and Rp, we have

∀i ∈ [[1, p]],Mei = ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1ei,

= ((PδX)T (PδΓP
T
δ )−1PδX)−1(PδX)T (PδΓP

T
δ )−1 1√

δi
PδXbi =

1√
δi
bi

and, as a result,
(

∆−1 M2

)

PδY = β̂mle. It is straightforward to show that VδX =
(

∆ 0
)T

,
thus Vδ ∈ G. Moreover, we have

β̂ols(Vδ) = ((VδX)T (VδX))−1(VδX)TVδY,

= ∆−2
(

∆ 0
)

VδY

=
(

∆−1 M2

)

PδY = β̂mle,

which gives the result �

The proof of lemma 2 relies on two main steps. In the first step, using lemmas A and B given
below, we obtain that the function

δ ∈]0,+∞[p 7→ φ(cpen(Vδ))

is minimized for at least one element δ∗. In the second step, we prove that the linear transfor-
mation Vδ∗ is such that φ(cpen(Vδ∗)) is minimal.

In the following, we denote λpen
0 (Vδ) = λpen

0 (δ), with δ ∈]0,+∞[p. It is straightforward to
show that λpen

0 given in the proposition 1 verifies the following two properties.

1. The function δ ∈]0,+∞[p 7→ λpen
0 (δ) is homogeneous:

∀k > 0, ∀δ ∈]0,+∞[p, λpen
0 (kδ) = kλpen

0 (δ).

2. The function δ ∈]0,+∞[p 7→ λpen
0 (δ) is componentwise-increasing:

let δ, d ∈]0,+∞[p, if δ is componentwise-smaller than d, then λpen
0 (δ) 6 λ0(d).
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The following lemma provides the continuity of the function δ ∈]0,+∞[p 7→ λpen
0 (δ).

Lemma A Let g be a function that satisfies the two previous properties; then, the function g is
continuous.

Proof Let x = (x1, . . . , xp) ∈]0,+∞[p, we set u = (u1, . . . , up) the unit vector u = x/‖x‖. Let
r > 0 such that x− ru ∈]0,+∞[p. The function g is homogeneous; thus,

g(x− ru) = g

(

x

(

1− r

‖x‖

))

=

(

1− r

‖x‖

)

g(x) and

g(x+ ru) =

(

1 +
r

‖x‖

)

g(x).

Let y ∈]0,+∞[p be such that the following inequality occurs componentwise: x−ru 6 y 6 x+ru.
Because g is componentwise-increasing, we have g(x− ru) 6 g(y) 6 g(x+ ru). More precisely,

∀y ∈ [x1 − ru1, x1 + ru1]× · · · × [xp − rup, xp + rup], |g(y)− g(x)| 6 r

‖x‖|g(x)|. (11)

Let ǫ > 0; one can choose r0 > 0 small enough such that r0|g(x)|/‖x‖ 6 ǫ. We set η =
r0 min{u1, . . . , up}; thus, the inequality (11) gives

‖y − x‖∞ 6 η ⇒ |g(y)− g(x)| 6 ǫ,

which proves the continuity of g on ]0,+∞[p. �

Lemma B Let φ be a componentwise-increasing norm on Rp; the function

f : δ ∈]0,+∞[p 7→ φ(cpen(Vδ))

attains its minimum for at least one element δ∗.

Proof Let us recall the expression of the function f

f : δ ∈]0,+∞[p 7→ φ

(

λpen
0 (δ)

δ1
+ se(β̂mle

i )z1−η/p, . . . ,
λpen
0 (δ)

δp
+ se(β̂mle

i )z1−η/p

)

.

Because f is homogeneous, one deduces that if the restriction of f onto the unit sphere reaches
its minimum, then f has a global minimum on ]0,+∞[p. We denote S∞(1) as the unit sphere
of Rp for the supremum norm. Using Lemma A, we obtain that f is continuous; moreover, the
restriction of f onto the set ]0,+∞[p∩S∞(1) can be extended by continuity to [0,+∞[p∩S∞(1)
by setting

f̄ : δ ∈ [0,+∞[p∩S∞(1)

{

f(δ) if δ ∈]0,+∞[p∩S∞(1)

+∞ if ∃i ∈ [[1, p]] such that δi = 0.

The function f̄ is continuous on the compact set [0,+∞[p∩S∞(1); thus, f̄ attains its maximum
at δ∗. The minimum of the function f̄ is finite, so one deduces that δ∗ ∈]0,+∞[p∩S∞(1). Finally,
we obtain

∀δ ∈]0,+∞[p, φ(cpen(Vδ)) > φ(cpen(Vδ∗));

hence, the result follows. �

The following lemma is a consequence of corollary 3 of Anderson (1955).
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Lemma C (Anderson) Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be centred Gaussian vec-
tors with variance matrices ΓX and ΓY , respectively. Assume that the matrix ΓY − ΓX is a
positive semidefinite matrix; then,

∀x > 0,P(max{|Y1|γ , . . . , |Yn|γ} > x) > P(max{|X1|γ , . . . , |Xn|γ} > x), with γ ∈ {1, 2}.

This inequality implies that max{|Y1|γ , . . . , |Yn|γ} is stochastically greater than
max{|X1|γ , . . . , |Xn|γ}.

Proof (Lemma 2) For any U ∈ G, the matrix (UX)TUX is diagonal and (UX)TUX =
∆ = diag(δ1, . . . , δp) = diag(δ). The difference between the variance matrices of the Gaussian
vectors (δ1Z

ols
1 (U), . . . , δpZ

ols
p (U)) = ∆Zols(U) and (δ1Z

mle
1 , . . . , δpZ

mle
p ) = ∆Zmle is semidefinite

positive. Indeed, we obtain that

∀x ∈ Rp, xT (var(∆Zols(U))− var(∆Zmle))x = (∆x)T (var(Zols(U))− var(Zmle))∆x,

= (∆x)T (var(β̂ols(U))− var(β̂mle))∆x > 0.

The last inequality is a consequence of the Gauss-Markov theorem (Rencher and Schaalje,
2008) (page 146). Because λpen

0 (U) and λpen
0 (Vδ) are the respective 1 − α quantiles of

max{δ1|Zols
1 (U)|, . . . , δp|Zols

p (U)|} and max{δ1|Zmle
1 |, . . . , δp|Zmle

p |}, the lemma C gives λpen
0 (U) >

λpen
0 (Vδ). Furthermore, the inequalities ∀i ∈ [[1, p]], se(β̂mle

i ) 6 se(β̂ols
i (U)) lead to

∀i ∈ [[1, p]], cpeni (Vδ∗) =
λpen
0 (Vδ)

δi
+ se(β̂mle

i )z1−η/p 6 cpeni (U) =
λpen
0 (U)

δi
+ se(β̂ols

i (U))z1−η/p.

Because φ is componentwise-increasing, one deduces that φ(cpen(U)) > φ(cpen(Vδ)). Finally,
using lemma B, the inequality φ(cpen(Vδ)) > φ(cpen(Vδ∗)) gives the result. �

Proof (Proposition 3) The proposition can be shown by proving that

∀δ ∈]0,+∞[p, ‖cpen(Vδ∗)‖∞ 6 ‖cpen(Vδ)‖∞ ⇔ cpen1 (Vδ) = · · · = cpenp (Vδ).

Here, we denote cpen(Vδ) = cpen(δ) = cpen(δ1, . . . , δp). Assume that δ∗ ∈]0,+∞[p is such that
cpen1 (δ∗) = · · · = cpenp (δ∗). We will prove that ‖cpen(δ∗)‖∞ 6 ‖cpen(δ)‖∞ for any δ 6= δ∗. For this
purpose, we denote

k = max
i∈[[1,p]]

{δ∗i /δi}.

There exists i0 ∈ [[1, p]] such that k = δ∗i0/δi0 . We have

cpeni0
(δ1, . . . , δp) =

√

λpen
0 (δ1, . . . , δp)

δi0
+ se(β̂mle

i0 )z1−η/p,

=

√

λpen
0 (kδ1, . . . , kδp)

kδi0
+ se(β̂mle

i0 )z1−η/p.

Because (kδ1, . . . , kδp) is componentwise-greater than (δ∗1 , . . . , δ
∗
p), from the componentwise-

increasing property of λpen
0 , one deduces that

cpeni0
(δ1, . . . , δp) >

√

λpen
0 (δ∗1 , . . . , δ

∗
p)

δ∗i0
+ se(β̂mle

i0 )z1−η/p,

> cpeni0
(δ∗1 , . . . , δ

∗
p) = ‖cpen(δ∗1 , . . . , δ∗p)‖∞.
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This shows that ‖cpen(δ1, . . . , δp)‖∞ > ‖cpen(δ∗1 , . . . , δ∗p)‖∞.
Conversely, assume that δ∗ ∈]0,+∞[p such that ‖cpen(δ∗)‖∞ is minimal, and assume that

the inequality cpen1 (δ∗) = · · · = cpenp (δ∗) does not hold. We set

I0 = {i ∈ [[1, p]] | ci(δ∗) = ‖c(δ∗)‖∞}.

Because I0 ( [[1, p]], one can choose ǫ > 0 such that

∀i /∈ I0, (1 + ǫ)ci(δ
∗) < ‖c(δ∗)‖∞.

We define δ0 as the parameter

δ0 :=

{

δ0i = (1 + ǫ)δ∗i if i ∈ I0,

δ0i = δ∗i if i /∈ I0.

If i ∈ I0, we have

cpeni (δ0) =

√

λpen
0 (δ0)

δ0i
+ se(β̂mle

i0 )z1−η/p.

Because λpen
0 is strictly componentwise-increasing, one deduces that

cpeni (δ0) <

√

λpen
0 ((1 + ǫ)δ∗)

(1 + ǫ)δ∗i
+ se(β̂mle

i0 )z1−η/p,

< cpeni (δ∗) = ‖cpen(δ∗)‖∞.

If i /∈ I0, we have

cpeni (δ0) =

√

λpen
0 (δ0)

δ0i
+ se(β̂mle

i0 )z1−η/p,

=

√

λpen
0 (δ0)

δ∗i
+ se(β̂mle

i0 )z1−η/p,

<

√

λpen
0 ((1 + ǫ)δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p.

Because the function λ0 is homogeneous, we obtain

cpeni (δ0) <
√
1 + ǫ

√

λpen
0 (δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p,

< (1 + ǫ)

(
√

λpen
0 (δ∗)

δ∗i
+ se(β̂mle

i0 )z1−η/p

)

,

< (1 + ǫ)ci(δ
∗) < ‖c(δ∗)‖∞.

Therefore, ‖cpen(δ0)‖∞ < ‖cpen(δ∗)‖∞, which results in a contradiction. �
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Proof (Proposition 4) Let δ ∈]0,+∞[p, and let us define ζ = (ζ1, . . . , ζp) = (δ21 , . . . , δ
2
p).

We have

{E = Âadapt(λadapt
0 (Vζ))} =

{

⋂

i∈E

{i ∈ Âadapt(λadapt
0 (Vζ))}

}

⋂

{

⋂

i/∈E

{i /∈ Âadapt(λadapt
0 (Vζ))}

}

,

=

{

⋂

i∈E

{β̂adapt
i (λadapt

0 (Vζ)) 6= 0}
}

⋂

{

⋂

i/∈E

{β̂adapt
i (λadapt

0 (Vζ)) = 0}
}

.

The closed form of the adaptive lasso estimator given in (10) gives that

{E = Âadapt(λadapt
0 (Vζ))} =

{

⋂

i∈E

{ζi(β̂mle
i )2 > λadapt

0 (Vζ)}
}

⋂

{

⋂

i/∈E

{ζi(β̂mle
i )2 6 λadapt

0 (Vζ)}
}

,

=

{

⋂

i∈E

{δi|β̂mle
i | >

√

λadapt
0 (Vζ)}

}

⋂

{

⋂

i/∈E

{δi|β̂mle
i | 6

√

λadapt
0 (Vζ)}

}

.

Furthermore, we have

{E = Âlasso(λlasso
0 (Vδ))} =

{

⋂

i∈E

{

δi|β̂mle
i | > λlasso

0 (Vδ)
}

}

∩
{

⋂

i/∈E

{

δi|β̂mle
i | 6 λlasso

0 (Vδ)
}

}

.

Thus, the distributions of Âadapt(λadapt
0 (Vζ)) and Âlasso(λlasso

0 (Vδ)) are equal if and only if

λlasso
0 (Vδ) =

√

λadapt
0 (Vζ). We have that

1− α = P(max{ζ1(Zmle
1 )2, . . . , ζp(Z

mle
p )2} 6 λadapt

0 ),

= P((max{δ1|Zmle
1 |, . . . , δp|Zmle

p |})2 6 λadapt
0 ),

= P

(

max{δ1|Zmle
1 |, . . . , δp|Zmle

p |} 6

√

λadapt
0

)

.

Because P
(

max{δ1|Zmle
1 |, . . . , δp|Zmle

p |} 6 λlasso
0

)

= 1 − α, one deduces that λlasso
0 =

√

λadapt
0 .

This leads to classo(Vδ) = cadapt(Vζ). Thus, if δ
∗ is an element for which φ(classo(Vδ∗)) is minimal,

then φ(cadapt(Vζ∗)) is also minimal. �

Proof (Proposition 5) Let us recall that the Gaussian vector (β̂mle
i )i/∈A has the same

distribution as (Zmle
i )i/∈A defined in (8). Thus, we have

P(Âmle ⊂ A) = P(∀i /∈ A, |β̂mle
i | 6 σ

√

q p
√
1−α),

= P(∀i /∈ A, |Zmle
i | 6 σ

√

q p
√
1−α),

≥ P(∀i ∈ [[1, p]], |Zmle
i | 6 σ

√

q p
√
1−α).

Because σ
√
q p
√
1−α is the 1 − α quantile of max{|Zmle

1 |, . . . , |Zmle
p |}, one deduces that P(Âmle ⊂

A) ≥ 1− α.
The norm ‖classo(Vδ∗)‖∞ reaches a minimum for a linear transformation Vδ∗ for which δ∗ =

(1, . . . , 1). Thus, the tuning parameter λlasso
0 (Vδ∗) is the 1 − α quantile of {|Zmle

1 |, . . . , |Zmle
p |},

and λlasso
0 (V ∗

δ ) = σ
√
q p
√
1−α.
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For all E ⊂ [[1, p]], we have

{E = Âlasso(λlasso
0 (Vδ∗))} =

{

⋂

i∈E

{i ∈ Âlasso(λlasso
0 (Vδ∗))}

}

⋂

{

⋂

i/∈E

{i /∈ Âlasso(λlasso
0 (Vδ∗))}

}

,

=

{

⋂

i∈E

{β̂lasso
i (λlasso

0 (Vδ∗)) 6= 0}
}

⋂

{

⋂

i/∈E

{β̂lasso
i (λlasso

0 (Vδ∗)) = 0}
}

.

The closed form of the lasso estimator given by (10) allows us to write

{E = Âlasso(λlasso
0 (Vδ∗))} =

{

⋂

i∈E

{|β̂mle
i | > σ

√

q p
√
1−α}

}

⋂

{

⋂

i/∈E

{|β̂mle
i | 6 σ

√

q p
√
1−α}

}

,

= {E = Âmle}

which proves the proposition. �

Proof (Proposition 6) Using a Bonferroni procedure, we obtain

P(Âmle ⊂ A) = P(∀i /∈ A, |β̂mle
i | 6 tmle) > 1− α.

If |β∗
i | > tmle + σz1−η/p, then

P(i ∈ Âmle) = P(|β̂mle
i | > tmle) > 1− η/p.

A Bonferroni procedure yields

P(∀i ∈ A \ Emle ⊂ Âmle) = P(A \ Emle ⊂ Âmle) > 1− η.

Note that the same inequalities hold for both Âmle and Âlasso(λlasso(Vδ∗)).
From the previous computation, we have that P(max{|ζ1|, . . . , |ζp|} 6 tmle) > 1 − α with

ζ1, . . . , ζp i.i.d N (0, σ2) and P(max{|β̂mle
1 |, . . . , |β̂mle

p |} 6 λlasso
0 (Vδ∗)) = 1 − α. Lemma C then

shows that max{|ζ1|, . . . , |ζp|} is stochastically greater than max{|β̂mle
1 |, . . . , |β̂mle

p |}, so tmle >

λlasso
0 (Vδ∗). One deduces that the cardinality Emle is greater than the cardinality of E lasso. �
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