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Abstract. Prox is a stochastic method to map the local and global structures of 

real-world complex networks which are called Small Worlds. Prox transforms a 

graph into a Markov chain, the states of which are the nodes of the graph in 

question. Particles wander from one node to another within the graph by fol-

lowing the graph‟s edges. It is the dynamics of the particles‟ trajectories that 

map the structural properties of the graphs that are studied. Concrete examples 

are presented in a graph of synonyms to illustrate this approach. 

1   Introduction 

Recent research in graph theory has brought to light a whole series of properties which 

most real networks share in common: these characteristics define the Small World 

(SW) class of graphs. This is the case for protein interaction networks, the graph of 

the world wide web, the telephone calls graphs, the graphs of co-authors of scientific 

publications, lexical graphs, etc. These graphs have a very particular topology, in 

which the relationship between the local structure and the global structure bears no 

comparison with traditionally-studied random or regular graphs. This accounts for the 

considerable interest that SWs have generated in different scientific communities. One 

can hypothesize that these characteristics reflect the properties of the systems which 

the real networks describe, and that therefore the study of their structures will permit a 

better understanding of the phenomena from which they come. In the present article 

we present Prox which is a particularly well-adapted method for drawing the structure 

of SWs. Part 2 presents a brief summary of the main properties of SW graphs, and 

provides a rapid overview of the lexical graphs that will be used as concrete examples 

in this article. In Part 3 we will see how the dynamics of random walks on an SW are 

substantially constrained and channelled by the topological structure of SWs. In Part 4 

we will show that we can map the form of meaning in SW graphs by analysing the 

dynamic of random walks in SWs. In Part 5 we will be using these dynamics to super-

pose global information contained in a graph on a topological extraction performed on 

this graph and projected onto a local map. We discuss the complexity of Prox in 

Part 6. In part 7 we will show how this method can be applied to creating a model of 

young children‟s semantic approximations during the acquisition-phase, with results 

from a study of the child corpus. Finally in Part 8, we will draw conclusions and con-

sider the perspectives. 
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2   The properties of real-world complex networks 

A presentation of the SWs can be found, for example, in [1]. Real networks are 

sparse: in a graph with n nodes, the maximum number of possible edges is O(n
2
) while 

the number of edges in real networks is generally <O(nlog(n)). In 1998, Watts and 

Strogatz [2] proposed two indicators to characterise a large sparse graph G: its L and 

its C, where L = “characteristic path length”: the mean of the shortest path between 

two nodes of G; and C = “clustering coefficient”: C [0,1], and measures a graph‟s 

tendency to possess zones denser in edges. (The more clustered the graph, the more 

the graph‟s C approaches 1, whereas in random graphs C is very close to 0). In apply-

ing these criteria to different types of graphs, these researchers found that:  

 

– real networks have a tendency to have a small L: generally there is at least one 

short path between any two nodes; 

– real networks have a tendency to have a large C: this reflects a relative tendency for 

two neighbours on the same node to be directed inter-connected; 

– random graphs have a small L: when one constructs a graph randomly with a densi-

ty of edges comparable to real networks, one obtains graphs with a small L; 

– random graphs have a small C: they are not formed from aggregates. In a random 

graph there is no reason why neighbours on a same node are more likely to be con-

nected than any two nodes, hence the weakness of their tendency to form aggregates. 

 

Echoing the “small world phenomenon” [3], Watts and Strogatz proposed calling 

graphs which have these two characteristics (a small L and a large C) “small worlds”, 

which they found in all the real networks they observed, and which they postulated as 

universal for real networks. More recent research has shown that most small worlds 

also have a hierarchical structure. The distribution of the degrees of incidence follows 

a power law. The probability P(k) that a given node has k neighbours decreases as a 

power law, P(k) ≈ k
-

, where  is a constant characteristic of the graph [4], while ran-

dom graphs conforms to a Poisson Law. 

 

There are several types of lexical graphs, varying according to the semantic relation 

that defines the graph‟s edges (the nodes representing the lexical units of a language: 

from some tens of thousands to hundreds of thousands of elements, depending on the 

language and the coverage of the corpus used). The two principal types of relations 

used are:  

 

– Syntagmatic relationships, or rather relationships of co-occurrence: one constructs 

an edge between two words if one finds them close to each other  in a large corpus, 

typically at a maximum distance of two or three words or more, (cf. [5]). 

 

– Paradigmatic relationships, particularly of synonymy: using lexical data bases, 

such as the well-known WordNet [6], one constructs a graph in which two nodes are 

linked by an edge if the corresponding words have a relationship of synonymy. 



All these graphs are clearly of the SW type [7]: they are sparse, show a strong cluster-

ing coefficient, a very small characteristic path length, as well as a hierarchical struc-

ture (the incidence curve ≈ power law). For example, DicoSyn.Verbe
1
 is a symmetric 

and reflexive graph with roughly 9,000 nodes, 50,000 edges, its L ≈ 4 and its C ≈ 0.3, 

as is typical of an SW. The curve representing the distribution of the degrees of inci-

dence of its nodes (see Fig. 1) is typical of SW graphs (in log-log, it forms approx-

imately a straight line). 

 

 

Fig. 1. Log-log curve of the distribution of incidences of the DicoSyn.Verbe nodes  

3   Wandering in a small world 

Notation: 

If U is a vector row with the dimension n, we will note [U]i: the i
th

 value of U; 

If M is a matrix mxn then we will note: 

[M]i k: the value located at the intersection of the i
th

 row and the k
th

 column of M; 

[M]i : the i
th

 vector row of M; 

[M]  k: the k
th

 vector column of M.  

 

We assume that we have a connected graph, that is reflexive, G = (V,E) with n = |V| 

nodes and m = |E| edges, and that in this graph a particle can at any moment t ℕ  

wander randomly on the nodes: 

– At time t the particle is on a node r V; 

– When the particle is at time t on a node r V, it can only reach, at time t+1, a node s 

randomly and uniformly selected among the neighbours of the node r. 

 

Let Â be the one-step transition matrix from the Markov chain associated to the ran-

dom walk on the graph. That is to say that, at each stage, the probability of transition 

from the node r V to the node s V is equal to [Â]r s = [A]r s/d(r), where A is the adja-

                                                           
1 DicoSyn is a synonym dictionary consisting of seven classic French dictionaries (Bailly, 

Benac, Du Chazaud, Guizot, Lafaye, Larousse and Robert) from which the synonymic rela-

tionships were extracted by ATILF (http://www.atilf.fr/) subsequently homogenized at 

CRISCO (http://elsap1.unicaen.fr/). DicoSyn.Verbe is the graph of the verbs extracted from 

DicoSyn: there is an edge {a,b} if the verbs represented by the nodes a and b are synonyms in 

DicoSyn. 

 

 

 

DicoSyn.Verbe 
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p
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x = degree 

http://www.atilf.fr/
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cency matrix of graph G: Ar s=1 if {r,s} E and 0 otherwise; and d(r) is the degree of 

node r: d(r)= ∑x V(Ar x). 

 

If the initial law of the Markov chain given by the vector row P (i.e., [P]r is the proba-

bility that the particle is on the node r at time t = 0), then [PÂ
t
]r is the probability that 

the particle is on the node r at time t.  

 

Let F V, a non-empty set of nodes. We should note that P
F
 is the vector of n dimen-

sions, such that [P
F
]r = 1/|F|, if r F, and [P

F
]r = 0 if r F. If the initial law of the Mar-

kov chain is given by the vector P
F
, this will therefore correspond to a random walk, 

starting on the nodes of F, each of which is equiprobable. [(P
F
)Â

t
]s is then the proba-

bility that the particle will be on the node s at time t when the particle starts its random 

walk equiprobably on one of the nodes of F at t = 0. One should note that 

[(P
{r}

)Â
t
]s = [Â]r s which is then the probability that the particle is on the node s at time 

t when the particle starts its walk on node r at t = 0. 

 

One can demonstrate2 that if G = (V,E) is a connected and reflextive graph, then:  

 

r,s V, limt→  [Â
t
]r s = d(s)/∑x V(d(x)).  (1) 

 

The probability of being on node s at time t (when t is long enough) no longer depends 

on the departure node r, but solely on the degree of s and is equal to d(s)/∑x V(d(x)). 

 

On the other hand, since L, the characteristic path length, is small in an SW, we know 

that two nodes are generally linked by at least one relatively short path. However two 

types of topological configuration can differentiate between two nodes s and u in their 

relationship from node r. 

 

Configuration 1: the node r can be linked to the node s by many short paths (there is 

a strong confluence going from r to s); 

Configuration 2: the node r can be linked to the node u by only a few short paths 

(there is only a weak confluence going from r to u). 

 

If formula (1) indicates that when t is long enough, the probability to find itself at time 

t on the node s does not depend on the departure node, nevertheless the dynamic to-

wards this limit depends strongly on the departure node and the type of confluence 

that it has towards the node s. For example, when d(s)=d(u), then by formula (1), the 

sequences ([Â
t
]r s)0≤t and ([Â

t
]r u)0≤t converge towards the same limit d(s)/ ∑x V(d(x)); 

however these two sequences are not identical. In fact the dynamic of the particle‟s 

trajectory on its random walk is completely determined by the graph‟s topological 

structure: after t steps, every node s at a distance of t edges or less from the departure 

node can be reached. When t remains small, the probability of reaching a node at the 

                                                           
2

 See [7], this is a consequence of the Perron-Frobenius theorem  [8], since when the graph 

G=(V,E) is connected and reflexive, Â the transition matrix of the Markov chain associated 

with a random walk on graph G is then ergodic.  



t
th

 step depends on the number of paths between the departure node and node s, on 

their length and on the structure of the graph around the intermediary nodes along the 

way (the more paths there are, the shorter the paths, the weaker the degree of the 

nodes, the greater the probability of reaching s from the departure node at the t
th

 step –

when t remains small). Therefore, if the confluence from node r towards s is stronger 

than the confluence from node r towards u, then for a random walk of length t that is 

not too long, there is [Â
t
]r s>[Â

t
]r u. At the beginning of the random walk from a depar-

ture node, the particle will more likely pass through the nodes towards which the de-

parture node has strong confluence. For example in DicoSyn.Verbe the nodes 

“dépiauter” [to skin, as “to skin a animal”] and “rêvasser” [“to day-dream”] have 

the same number of neighbours (d(dépiauter) = d(rêvasser)), and so, following (1): 

 

  limt→  [Â
t
]déshabiller dépiauter = limt→  [Â

t
]déshabiller rêvasser. 

 

One can however see in Fig. 2 that the two sequences ([Â
t
]déshabiller dépiauter)0≤t and 

([Â
t
]déshabiller rêvasser)0≤t, are very different for a small t, which shows us that the conflu-

ence from “déshabiller” [to undress] towards “dépiauter” is stronger than the conflu-

ence from “déshabiller” towards “rêvasser”. 

 

 

Fig. 2. ([Ât]déshabiller dépiauter)0≤ t and ([Ât]déshabiller rêvasser)0≤ t in DicoSyn.Verbe 

We can choose therefore t between L and 2L in order to reach nearly all the nodes 

from whichever happens to be the departure node, without however attaining the limit 

when the t becomes too large. In the rest of this article, we illustrate this process using 

DicoSyn.Verbe of the L ≈ 4, selecting t = 5. 

4 Forms of meaning 

For a given t one can consider Â
t
 as a matrix in which r,s V, [Â

t
]r s tells us the con-

fluence level of the node r towards the node s. For example, Fig. 3 is a list in decreas-

ing order of 50 nodes towards which the node “déshabiller” has the strongest conflu-

ence (scored at t = 5) in the DicoSyn.Verbe graph. In other words, Fig. 3 is the list in 

decreasing order of the set: {x V, [Â
t
]déshabiller x  0.0026} which contains 50 ele-

ments. 
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1dépouiller [to skin], 2défaire [to open (a packet)], 3démunir [to deprive], 

4déshabiller [to undress], 5découvrir [to uncover], 6dénuder [to strip], 

7montrer [to show], 8dévêtir [to undress], 9dégarnir [to clear (a table)], 

10 révéler [to reveal], 11étaler [to spread], 12ôter [to take away], 13écorcher 

[to skin (an animal)], 14délacer [to unlace], 15 dévoiler [to unveil], 

16démasquer [to unmask], 17médire [to denigrate], 18 dégager [to clear up], 

19exhiber [to put on show], 20 afficher [to put on display], 21 enlever [to take 

away], 22 dénouer [to untie (a knot)], 23 desserrer [to loosen], 24 désaffubler [to 

take off (strange clothes)], 25 arracher [to tear off], 26 voler [to steal], 

27 dépourvoir [to lack], 28 développer [to develop], 29 exposer [to expose], 

30 déchirer [to tear up], 31 ouvrir [to open], 32 déchausser [to unshoe], 

33 débarrasser [to get rid of], 34 déployer [to deploy], 35 priver [to deprive], 

36 trahir [to betray], 37 dépiauter [to skin (an animal) or to analyse in detail], 

38 vider [to empty], 39 frustrer [to frustrate], 40 démontrer [to demonstrate], 

41 déposséder [to dispossess], 42 prouver [to prove], 43 faire voir [to make seen], 

44 tailler [to prune], 45 peler [to peal], 46 deviner [to guess], 47 sevrer [to sever], 

48 dénantir [to take away(a possession)], 49 tondre [to cut (a lawn)], 50 couper [to 

cut], … 

Fig. 3. The 50 nodes with the strongest confluence from “déshabiller” in DicoSyn.Verbe 

In Fig. 3, the words with an arrow  are the 16 neighbours of the verb “déshabiller”. 

One can see that the verb “dépouiller” [to skin], which is a hypernym of “déshabiller”, 

is the verb with which “déshabiller” has the strongest confluence (measured at t = 5). 

The verb “dépiauter” is 37
th

, and the verb “défaire” [to undo or to open (a packet)] 

which has a strong incidence (d(défaire) = 81), is a high-level hypernym of “déshabil-

ler”, and is 2
nd

 in this table. 

 

Another approach is to consider Â
t
 as an nxn matrix with the coordinates of n vector 

rows ([Â
t
]x )x V in ℝ

n
. This viewpoint then allows us to plunge the graph G = (V,E) in 

ℝ
n
, where a node r V has the vector row [Â

t
]r  for coordinates in ℝ

n
. The idea3 is that 

two nodes r and s, with the coordinates [Â
t
]r  and [Â

t
]s  in ℝ

n
, will be even closer in 

ℝ
n
 when their relationship to the whole graph is similar. For example in Fig. 4, the 

graph G1 has 9 nodes, and nodes 5 and 7 have exactly the same neighbours: {5, 6, 7}, 

which entails t ℕ*, [Â
t
]5  = [Â

t
]7 , their coordinates in ℝ

9
 are equal, and the edge 

{5,7} has therefore a length of zero, while the edge {4,6} is the longest, with a length 

of 0.2740 at t = 5. 

 

                                                           
3 This idea was firstly proposed by [7] for metrology of small worlds and linguistic modeling of 

lexical wide-area networks : http://Prox.irit.fr 

http://prox.irit.fr/


 

Fig. 4. The geometric length in ℝ
9
 of the edges of G1 at t = 5 

It is the combination of these two approaches (Â
t
 as an nxn matrix of coordinates of n 

vector rows in ℝ
n, or Â

t
 as an nxn confluence matrix between the n nodes of the graph) 

which will enable us to display a graph globally or locally, while still taking its global 

structure into account. 

The Â
t
 matrix, as a matrix of coordinates in ℝ

n
, contains information calculated from 

the whole graph that could be represented in ℝ
3
 by means of a Principle Components 

Analysis (PCA) of Â
t
, retaining the first 3 axes. For example, Fig. 5 illustrates the 3D 

form of the graph G1 of Fig. 4. 

 

 

Fig. 5. The map of G1 at t = 5 (on the first 3 axes of the PCA of Â5) 

However the 9000 nodes of our DicoSyn.Verbe graph present an unreadable image 

when displayed on a screen. We will therefore only show “one part around” a set of 

nodes F. If one wishes to observe the structure of graph G = (V,E) around a non-

empty set of nodes F V with a “map around F”, then: 

 

(a) One extracts the set Tt,F,α V, where Tt,F,α = {x V, [(P
F
)Â

t
]x α}. Let Rt,F,α=|Tt,F,α|. 

For α [0,1], Tt,F,α is to some extent a “topological extraction around F”, if F = {r} is 

a singleton, then it is the Rt,F,α nodes x V of which the confluences towards x are 

stronger that are selected. For instance, we can see in Fig. 3 the set T5 {déshabiller},0.0026. 

 

(b) One extracts the matrix Mt,F,α from Â
t
 matrix, the former being the squared matrix 

(Rt,F,α)x(Rt,F,α), formed by the intersection of the Rt,F,α rows [Â
t
]x  with Rt,F,α columns 

[Â
t
]  x such that x Tt,F,α. Mt,F,α is a sort of “topological zoom around F”. 

 

(c) One then normalizes the Rt,F,α rows of Mt,F,α (for each x Tt,F,α, replacing the row 

[Mt,F,α]x  with [Mt,F,α]x /||[Mt,F,α]x ||, where ||.|| is the Euclidean norm of ℝ
n). One then 

performs a PCA on Mt,F,α, retaining only the first 3 dimensions (which then preserve 
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most of the information relevant to the reduction to ℝ
3
) so as to obtain Dt,F,α which is 

the 3D display of the region
4
 in G, maping the “topologogical confluence region 

around F” for a given time t. 

 

Example 1: Fig. 8.a shows us D5,{jouer},0.0015, the 3D map around the singleton {jouer} 

[to play], in other words the first 3 coordinates of the PCA of Mt,F,α for t = 5, 

F = {jouer}, α = 0.0015, where Rt,F,α = 100. We can see that the geometric structure of 

D5,{jouer},0.0015 (the form that it has now taken) is a good reflection of the polysemic 

structure of the verb “jouer” with its four principle meanings in French:  “tromper” [to 

dupe], “imiter” [to imitate], “parier” [to bet], “s‟amuser” [to enjoy oneself]. 

 

Example 2: In asserting F = {monter, descendre} [to go up],[to go down] and 

α = 0.001, we can display D5,{monter, descendre},0.001 (Fig. 9.a), where we can see that at the 

transition-point of the semantic articulation {“descendre”, “monter”} we find “sauter” 

[to jump], although this verb has no direct connection with “monter”. 

 

Only the major population centres and the major axes appear on a map of the whole 

world; if you are looking for more details about a given region, you consult another 

more detailed regional map. One could say that our local displays (where F is a single-

ton like {jouer}) plays the role of a regional map: for instance, in the region of “jouer” 

(Fig. 8.a ), it is α that gives us the range of the “topologogical confluence region 

around” “jouer”. To obtain a global view of a graph G = (V,E) without at the same 

time having to show all the nodes, but just the “capital nodes” which are at the heart 

of the major confluences, we just need to assert F = V. 

 

Example 3: Fig. 10 shows D5,V,0.0005, the global 3D display around V (all the nodes) 

for α = 0.0005 and t = 5, where Rt,F,α = 200. Using Dicosyn.Verbe, the geometric form 

obtained in this way has roughly the shape of a tetrahedron, organizing the French 

verbs in a semantic continuum thereby making four axes apparent (the corners of the 

tetrahedron): (1) LOCOMOTIVE, (2) POSITIVE, (3) FIXATIVE, (4) NEGATIVE. 

 

Example 4: Fig. 11.a shows us D5,V,0, applied to G2, (the two-dimensional 10x10 grid) 

and Fig. 11.b shows us D5,V,0 applied to a G3 graph with eight nodes made up of four 

nodes forming a clique and 4 hanging nodes. 

5   From global confluences to local forms through colours 

In Fig. 8.b (the global map D5,V,0.0005) the darker a node x, the larger is [Â
t
]jouer x (the 

stronger is the confluence of the node “jouer” towards the node x). We can readily see 

that the node “jouer” is a highly polysemic verb, and it covers many meanings distrib-

uted across the whole semantic space. To construct D5,{jouer},0.0015 (Fig 8.a), one starts 

                                                           
4 For each non-empty set F V, if α = 0, then Tt F,α = V and Rt F,0 = n; it will then be the n 

nodes of the whole graph which will be displayed in Dt F,0. 



by extracting R5,{jouer},0.0015 = 100 nodes in Tt,{jouer},0.0015, which are then displayed in 

D5,{jouer},0.0015 (the local display around “jouer”), but then we can no longer know from 

which semantic region of D5,V,0.0005 a displayed node has been extracted. In order to 

make up for this lack of available information, we will see how to display the relation-

ship between the local form with the whole graph relative to a set of given nodes. We 

can choose, for example the four nodes in the corners of the tetrahedron {fuir, exciter, 

fixer, briser} [to flee, to excite, to fix, to break] in DicoSyn.Verbe and select 4 colour 

vectors5 {Bfuir, Bexciter, Bfixer, Bbriser}. For each node s in our graph we can assign a 

colour Cs in the following way: 

 

 
 

Cs is the barycentre of the four colour vectors, weighted by the confluences of s to-

wards each of the 4 respective nodes. The colour Cs of a node s therefore reflects the 

strength of the confluences that s has with the 4 nodes: fuir, exciter, fixer, briser (if we 

were to choose other nodes, we would observe other confluences). One can see in Fig. 

8.a that it is the nodes {voler, coulisser, marcher, passer, couler} [to fly, to slide, to 

walk, to pass, to flow] – all verbs involving movement) that are closer to colour Bfuir 

(blue), which has been associated with “fuir” located at the LOCOMOTIVE angle of the 

tetrahedron. This shows us then that these 5 nodes have their strongest confluence 

with the nodes in this semantic region, the LOCOMOTIVE verbs. 

6   Complexity 

Fig. 6 provides a summary of the procedures for calculating the map Dt,F,α in which the 

Rt,F,α nodes are displayed. 

 

 

Fig. 6. Flow-chart: (Â, t, F, α)  Dt,F,α 

– Procedure A: One first calculates the vector URow(Â,t,P
F
) (see Fig. 7), then one 

extracts the set Tt,F,α V, such that Tt,F,α = {x V, Ux α}. 

– Procedure B: For each of the Rt,F,α nodes x Tt,F,α, one calculates 

Hx Row(Â,t,P
{x}

) (see Fig. 7), then one constructs Mt,F,α, the squared matrix 

(Rt,F,α)x(Rt,F,α) made up of the Rt,F,α columns H  x, such that x Tt,F,α. 

– Procedure C: One normalizes each of the Rt,F,α rows of the matrix Mt,F,α, then one 

conducts a PCA from which one retains the first 3 axes in Dt,F,α. 

                                                           
5 The colours coded in RGB are treated as vectors of dimension 3. 

Tt F,α  Mt F,α  

  

Dt F,α  A B C 
(F, α) 

(Â, t) 

([Â
t
]s fuir)Bfuir + ([Â

t
]s exciter)Bexciter + ([Â

t
]s fixer)Bfixer + ([Â

t
]s briser)Bbriser) 

[Â
t
]s fuir + [Â

t
]s exciter + [Â

t
]s fixer + [Â

t
]s briser 

Cs= 



 

By exploiting the sparse structure of Â, the nxn matrix with m non null values, the 

computing time and the memory work-space required to calculate UoutRow(Â,t,Uin) 

are respectively O(n+tm) and O(2n+m). The cumulative computing time of the two 

procedures A and B is then O((Rt,F,α)(n+tm)), and memory work-space is O(2n+m). 

 

Both the computing time and the memory work-space required for procedure C only 

depend on Rt,F,α, (the dimension of the squared matrix Mt,F,α), which never needs to be 

large for a relevant mapping either for the global or the local displays in the SWs, 

thanks to their hierarchical structures and strong C. By increasing Rt,F,α by K, the 

maximum number of nodes that can be displayed on a map (K is O(100) and depends 

on the maximum cognitive load that is accepted), one can consider that the computing 

time and the memory work-space for procedure C are constants. Then the time and 

space needed for calculating Dt,F,α are O((Rt,F,α)(n+tm))≤O(K(n+tm)) and O(2n+m) 

respectively. But generally in an SW, m<nlog(n) and one therefore arrives at comput-

ing time in O(Ktnlog(n)) and memory work-space in O(nlog(n)). 

 

Uoutfunction Row(M,t,Uin) 

UoutUin ; 

for i from 1 to t 

Uout(Uout)M; 

end 

end 

input: 

M: sparse matrixnxn of real 

t: integer 

Uin: full vectorn of real 

output: 

Uout: full vectorn of real 

Fig. 7. Algorithm: Uoutfunction Row(M, t, Uin) 

7   Small worlds and small words 

Let G=(V,E), a lexical network containing n words. For each vertice  r V, one can  

rank all the n vertex of V in decreasing order resulting [Â
t
]r  on V : r,x V, 

1  rankr(x)  n and ([Â
t
]r x<[Â

t
]r y) ⇒ (rankr(y)<rankr(x) ). 

 

The ranking of words calculated by Prox, based on different lexical networks, are 

consistent with “semantic approximation by analogy” produced by young children. 

For example, the spontaneous utterance “I undress a tree” [I peal the bark off a tree], 

produced by a 2½ year-old child, demonstrates a partial matching between these two 

verbs that is consistent with the low rank of “déshabiller” “undress” relative to 

“écorcer”  “peel”: rankécorcer(déshabiller) <<n. 
 

Here are some examples of “semantic approximation by analogy” (taken from the 

corpus [2]). 
 

« je déshabille l’orange » 36 mois (l‟enfant épluche une orange) 

[child Déshabiller/Adult Eplucher] (145
e
) 

“I undress an orange” age : 36 months (the child peels an orange) 

[child Undress/adult Peel] (145
th

) 

 



 « le livre est cassé » 26 mois (le livre est déchiré) [child Casser/Adult Déchirer] (6
e
) 

“The book is broken” age : 26 month (the book is torn) [child Break/adult Tear] (6
th

) 

 

 « il faut la soigner la voiture » 38 mois (il faut réparer la voiture) 

[child Soigner/Adult Réparer] (332
e
) 

 “The car has to be cared for” age : 38 months (the car has to be repaired) 

[child Care for/adult Repair] (332
nd

) 
 

The ranking shown in the examples above indicated the rank of the verb uttered by the 

child relative to the verb uttered by the adult (rankadult_world(child_world)) to describe 

the same scene, calculated by Prox using DicoRob.verbe, the verb graph extracted 

from DicoRob6 : 

 

The child first learns words that correspond to “capitals cities”, and uses these de-

scribe a large area: the child attempting to communicate event A [for example: tearing 

up a book] for which he does not dispose of the constituted verbal category (1) would 

make an analogy with a past event B [breaking a glass] already stored in memory with 

a lexical entry “break” and (2) using this analogy, says “the book is broken” to com-

micate event A. Then the child progressively acquire the words corresponding to “ci-

ties” less important than “the capital city”, thereby refining the precision of his desig-

nation. 

 

This analysis, based on a corpus of 230 “semantic approximations by analogy” pro-

duced by young children (aged 1.8 to 4.2 years) shows that the mean rank of the verb 

uttered by the child (such as “break”) relative to the “correct” word (like “tear”) is 

239 (mean{rankadult_world(child_world)}=239), which is relatively low given the 10,860 

verbs in the graph extracted from the “Grand Robert” [10]. 

8   Conclusion and perspectives 

There are many applications7 of this geometrical representation presented in Part 4. 

Identifying shortcuts through distance refining is one of them. The standard distance 

between two vertices r and s of a finite graph is the minimum length of the paths con-

necting them. If no path exists, the distance is infinite. However, in small worlds 

graphs, the standard graph distance often loses its interest: for almost any nodes r and 

s, there exists a short path connecting r and s, and it can be difficult to use this dis-

tance to distinguish nodes. 

 

Consider a graph with n nodes G=(V,E) is plunged in ℝ
n
 by the method mentioned 

above in Part 4. Any edge e between two nodes r and s has a canonical geometrical 

                                                           
6  DicoRob is a graph constructed from the “Grand Robert 1994”: Vertex are the entries in the 

Robert and there is a edge  r↔s if and only if  r=s or if r is contained in the definition of s, or 

s is contained in the definition of r. 
7 See [7] for applications in linguistics, psycholinguistics and data processing. 



weight. This correspond to the geometrical distance separating r and s in ℝ
n
. For ex-

ample, in Figure 4 , using euclidian distance, edge (2,4) has a weight equals to 0.0744, 

whereas the weight of edge (4,6) is equal to 0.2740. Comparing the distances in the 

graph gives some insight about the graph structure. Indeed we note that edges between 

nodes from different communities are often called short cuts ([1], [2], [11]). These 

edges enables low diameter of small worlds that enables better routing algorithm per-

formances. Notice that nodes belonging to different communities are geometrically 

very distant in ℝ
n
 while two nodes belonging in the same community are geometrical-

ly close. It is thus reasonable to claim that an edge geometrical length is a valuable 

estimation of its practical importance. In other words, short cuts are long edges. Fig-

ure 4, illustrate that the longest edge (4,6), is obviously the more important, since 

connectivity between {1,2,3,4,8,9} and {5,6,7} relies on it. 

 

This type of approach, by exploiting the Small World structure of lexical networks, 

provides a new conceptual framework for establishing tools of lexical metrology. For 

example, traditionally, verb categorization has been built on the basis of syntactic 

structures and restrictive selection (the semantic properties of the verb arguments); 

this does not take account of the analogical relations between verbs. Thus “soigner”  

“to care for” and “ravaler”  “to clean the outside of” are not, in this approach, 

grouped together under the same category because of the differences in their restric-

tive selection (complement / animate vs. inanimate/. On the contrary, our work makes 

it possible to group these two verbs together in the same “aggregate”, labeled 

REMETTRE-EN-ÉTAT TO-PUT-BACK-IN-ORDER, these compounds being them-

selves structures by domain:  
 

REMETTRE-EN-ETAT/CORPS  soigner, …  

REMETTRE-EN-ETAT/BÂTIMENT  ravaler, … 

REMETTRE-EN-ETAT/VÊTEMENT  rapiécer, … 
TO-PUT-BACK-IN-ORDER /BODY  to provide care to …  

TO-PUT-BACK-IN-ORDER /BUILDING  to clean the outside of …  

TO-PUT-BACK-IN-ORDER /CLOTHING  to sew up …  
 

 

We are currently developing a « proxemic » electronic dictionary from TLF-i8 with his 

associated metrology. With this dictionary it will be possible to find a verb such as 

“peel” without knowing the word one is looking for by using a known analogous verb 

such as “undress” and a word designating the domain as “tree”. In fact, if one looks 

at the definition of  “écorcer” “peel” there appear words like « écorce », “arbre”, 

“grain”, “fruit” “bark”, “tree”, “kernel”, “fruit” which can be seen as close when 

Prox is queried for substantives. Thus, among the verbs close to “déshabiller” “un-

dress” which are themselves close to “arbre” “tree” one finds: 

 
 

DÉSHABILLER/ARBRE  tailler, décortiquer, démascler, entailler, écorcer, ef-

feuiller, émonder, inciser  

UNDRESS/TREE  prune, derind, strip, tap, debark, unleaf, cut off the deadwood, 

incise, clip 

                                                           
8 http://atilf.atilf.fr/tlf.htm 

http://atilf.atilf.fr/tlf.htm
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Fig. 8. D5,{jouer},0.0015 in DicoSyn.Verbe, the conceptual form of  “jouer”, R5,{jouer},0.0015=100 

 

Fig. 9. D5,{monter,descendre},0.001 : Topological zoom on {monter,descendre}, R5,{monter,descendre},0.001=50 
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a : D5,{jouer},0.0015 with Bfuir=   , Bexciter=   , Bfixer=   , Bbriser=       

b : [Â
5
]jouer x in D5,V,0.0005 
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exciter 
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Fig. 10. The tretrahedron of DicoSyn.Verbe (9043 French verbs): D5,V,0.0005, R5,V,0.0005=200 

 

Fig. 11. Global display of two laboratory graphs (at t=5) 
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