Kinematical structural stability - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series S Année : 2016

Kinematical structural stability

Résumé

This paper gives an overview of our results obtained from 2009 until 2014 about paradoxical stability properties of non conservative systems which lead to the concept of Kinematical Structural Stability (Ki.s.s.). Due to Fischer-Courant results, this ki.s.s. is universal for conservative systems whereas new interesting situations may arise for non conservative ones. A remarkable algebraic property of the symmetric part of linear operators may generalize this result for divergence stability but leading only to a conditional ki.s.s. By duality, the concept of geometric degree of nonconservativity is highlighting. Paradigmatic examples of Ziegler systems illustrate the general results and their effectiveness.

Dates et versions

hal-01321988 , version 1 (26-05-2016)

Identifiants

Citer

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete and Continuous Dynamical Systems - Series S, 2016, 9 (2), pp.529--536. ⟨10.3934/dcdss.2016010⟩. ⟨hal-01321988⟩
254 Consultations
0 Téléchargements

Altmetric

Partager

More