HAL
open science

Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials

Loïc Foissy

To cite this version:

Loïc Foissy. Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials. Advances in Pure and Applied Mathematics, 2019, 10 (1), pp.27-63. 10.1515/apam-2016-0051 . hal-01321986v2

HAL Id: hal-01321986
https://hal.science/hal-01321986v2
Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials

Loïc Foissy
Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Université du Littoral Côte d'Opale-Centre Universitaire de la Mi-Voix 50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France

Email: foissy@lmpa.univ-littoral.fr

Abstract

To any poset or quasi-poset is attached a lattice polytope, whose Ehrhart polynomial we study from a Hopf-algebraic point of view. We use for this two interacting bialgebras on quasi-posets. The Ehrhart polynomial defines a Hopf algebra morphism taking its values in $\mathbb{Q}[X]$; we deduce from the interacting bialgebras an algebraic proof of the duality principle, a generalization and a new proof of a result on B-series due to Whright and Zhao, using a monoid of characters on quasi-posets, and a generalization of Faulhaber's formula.

We also give non-commutative versions of these results: polynomials are replaced by packed words. We obtain in particular a non-commutative duality principle.

Keywords. Ehrhart polynomials; Quasi-posets; Characters monoids; Interacting bialgebras

AMS classification. 16T30; 06A11

Contents

1 Bialgebras in cointeraction 5
1.1 Definition 5
1.2 Monoids actions 6
1.3 Polynomial morphisms 8
2 Examples from quasi-posets 13
2.1 Definition 13
2.2 First coproduct 14
2.3 Second coproduct 16
2.4 Cointeractions 19
3 Ehrhart polynomials 21
3.1 Definition 22
3.2 Recursive computation of $e h r$ and $e h r^{s t r}$ 24
3.3 Characterization of quasi-posets by packed words 26
3.4 Link with linear extensions 27
4 Characters associated to $e h r$ and $e h r^{s t r}$ 28
4.1 The character λ 28
4.2 The character $\alpha^{\text {str }}$ 31
4.3 The character α and the duality principle 32
4.4 A link with Bernoulli numbers 34
5 Noncommutative version 35
5.1 Reminders on packed words 35
5.2 Hopf algebra morphisms in WQSym 35
5.3 The non-commutative duality principle 38
5.4 Compatibility with the other product and coproduct 40
5.5 Restriction to posets 44

Introduction

Let P be a lattice polytope, that is to say that all its vertices are in \mathbb{Z}^{n}. The Ehrhart polynomial $e h r_{P}^{c l}(X)$ is the unique polynomial such that, for all $k \geq 1, e h r_{P}^{c l}(k)$ is the number of points in $\mathbb{Z}^{n} \cap k P$, where $k P$ is the image of P by the homothety of center 0 and ratio k. For example, if S is the square $[0,1]^{n}$ and T is the triangle of vertices $(0,0),(1,0)$ and $(1,1)$:

$$
e h r_{S}^{c l}(X)=(X+1)^{2}, \quad e h r_{T}^{c l}(X)=\frac{(X+1)(X+2)}{2}
$$

These polynomials satisfy the reciprocity principle: for all $k \geq 1,(-1)^{\operatorname{dim}(P)} e h r^{c l}(-k)$ is the number of points of $\mathbb{Z}^{n} \cap k \dot{P}$, where \dot{P} is the interior of P. For example:

$$
e h r_{S}^{c l}(-X)=(X-1)^{2}, \quad e h r_{T}^{c l}(-X)=\frac{(X-1)(X-2)}{2}
$$

We refer to [2] for general results on Ehrhart polynomials.
It turns out that these polynomials appear in the theory of B-series (B for Butcher [4]), as explained in $[3,6]$. We now consider rooted trees:

If t is a rooted tree, we orient its edges from the root to the leaves. If i, j are two vertices of t, we shall write $i \xrightarrow{t} j$ if there is an edge from i to j in t.

To any rooted tree t, whose vertices are indexed by $1 \ldots n$, we associate a lattice polytope $\operatorname{pol}(t)$ in a following way:

$$
\operatorname{pol}(t)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n} \mid \forall 1 \leq i, j \leq n,(i \xrightarrow{t} j) \Longrightarrow\left(x_{i} \leq x_{j}\right)\right\}
$$

For example, if $t=\mathfrak{l}$, indexed as \mathfrak{l}_{1}^{2}, then $\operatorname{pol}(t)=T$.
We can consider the Ehrhart polynomial $e h r_{p o l(t)}^{c l}(X)$, which we shall simply denote by $e h r_{t}^{c l}(X)$: for all $k \geq 1$,

$$
e h r_{t}^{c l}(k)=\sharp\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0, \ldots, k\}^{n} \mid \forall 1 \leq i, j \leq n,(i \xrightarrow{t} j) \Longrightarrow\left(x_{i} \leq x_{j}\right)\right\}
$$

Note that $e h r_{t}^{c l}$ does not depend on the indexation of the vertices of t. By the duality principle:

$$
(-1)^{n} e h r_{t}^{c l}(-k)=\sharp\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{1, \ldots, k-1\}^{n} \mid \forall 1 \leq i, j \leq n,(i \xrightarrow{t} j) \Longrightarrow\left(x_{i}<x_{j}\right)\right\}
$$

A B-series is a formal series indexed by rooted trees, of the form:

$$
\sum_{t} a_{t} \frac{t}{a u t(t)}=a_{.}+a_{\mathbf{1}}!+a v \frac{\vee}{2}+a_{\mathfrak{1}}!+\ldots,
$$

where $\operatorname{aut}(t)$ is the number of automorphisms of t. The following B-series is of special importance in numerical analysis:

$$
E=\sum_{t} \frac{1}{t!} \frac{t}{a u t(t)}=\cdot+\frac{1}{2} a_{!}:+\frac{1}{3} \frac{V}{2}+\frac{1}{6} \ddagger+\ldots,
$$

where t ! is the tree factorial (see definition 33). This series is the formal solution of an ordinary differential equation, describing the flow of a vector field. The set of B-series is given a group structure by a substitution operation, which is dually represented by the contraction-extraction coproduct defined in [5]. The inverse of E is called the backward error analysis:

$$
E^{-1}=\sum_{t} \lambda_{t} \frac{t}{\operatorname{aut}(t)!} .
$$

Wright and Zhao [19] proved that these coefficients λ_{t} are related to Ehrhart polynomials:

$$
\left.\lambda_{t}=(-1)^{|t|} \frac{d e h r_{t}^{c l}(X)}{d X} \right\rvert\, X=-1 .
$$

We shall in this text study Ehrhart polynomial attached to quasi-posets in a combinatorial Hopf-algebraic way. A quasi-poset P is a pair $\left(A, \leq_{P}\right)$, where A is a finite set and \leq_{P} is a reflexive and transitive relation on A. The isoclasses of quasi-posets are represented by their Hasse graphs:

In particular, rooted trees can be seen as quasi-posets. For any quasi-poset $P=\left(\{1, \ldots, n\}, \leq_{P}\right)$, the polytope associated to P is:

$$
\operatorname{pol}(P)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n} \mid \forall 1 \leq i, j \leq n,\left(i \leq_{P} j\right) \Longrightarrow\left(x_{i} \leq x_{j}\right)\right\} .
$$

We put $e h r_{P}(X)=e h r_{p o l(P)}^{c l}(X-1)$; note the translation by -1 , which will give us objects more suitable to our purpose. In other words, for all $k \geq 1$:

$$
\operatorname{ehr}_{P}(k)=\sharp\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{1, \ldots, k\}^{n} \mid \forall 1 \leq i, j \leq n,\left(i \leq_{P} j\right) \Longrightarrow\left(x_{i} \leq x_{j}\right)\right\} .
$$

We also define a polynomial $e h r_{P}^{s t r}(X)$ such that for all $k \geq 1$:
$e h r_{P}^{s t r}(k)=\sharp\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{1, \ldots, k\}^{n} \mid \forall 1 \leq i, j \leq n,\left(i \leq_{P} j\right.\right.$ and not $\left.\left.j \leq_{P} i\right) \Longrightarrow\left(x_{i}<x_{j}\right)\right\}$.
See definition 21 and proposition 22 for more details. These polynomials can be inductively computed, with the help of the minimal elements of P (proposition 25).

We shall consider two products m and \downarrow, and two coproducts Δ and δ on the space $\mathcal{H}_{\text {qp }}$ generated by isoclasses of quasi-posets. The coproduct Δ, defined in $[10,11]$ by restriction to open and closed sets of the topologies associated to quasi-posets, makes ($\mathcal{H}_{\mathbf{q p}}, m, \Delta$) a graded, connected Hopf algebra, and ($\mathcal{H}_{\mathrm{qp}}, \downarrow, \Delta$) an infinitesimal bialgebra; the coproduct δ, defined in [8] by an extraction-contraction operation, makes ($\mathcal{H}_{\text {qp }}, m, \delta$) a bialgebra. Moreover, δ is also a right coaction of ($\left.\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$ over ($\mathcal{H}_{\mathbf{q p}}, m, \Delta$), and $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ becomes a Hopf algebra in the category of $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$-comodules, which we summarize telling that $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ and $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$
are two bialgebras in cointeraction (definition 1). For example, the bialgebras ($\mathbb{K}[X], m, \Delta$) and $(\mathbb{K}[X], m, \delta)$ where m is the usual product of $\mathbb{K}[X]$ and Δ, δ are the coproducts defined by

$$
\Delta(X)=X \otimes 1+1 \otimes X, \quad \delta(X)=X \otimes X
$$

are two cointeracting bialgebras.

Ehrhart polynomials $e h r_{P}(X)$ and $e h r_{P}^{s t r}(X)$ can now be seen as maps from $\mathcal{H}_{\text {qp }}$ to $\mathbb{K}[X]$, and both are Hopf algebra morphisms from $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ to $(\mathbb{K}[X], m, \Delta)$ (theorem 23); we shall prove in theorem 37 that $e h r^{s t r}$ is the unique morphism from $\mathcal{H}_{\text {qp }}$ to $\mathbb{K}[X]$ compatible with both bialgebra structures on $\mathcal{H}_{\mathrm{qp}}$ and $\mathbb{K}[X]$. Using the cointeraction between the two bialgebra structures on $\mathcal{H}_{\mathbf{q p}}$, we show that the monoid $M_{\mathbf{q p}}$ of characters of ($\mathcal{H}_{\mathbf{q p}}, m, \delta$) acts on the set $E_{\mathcal{H}_{\mathbf{q p}} \rightarrow \mathbb{K}[X]}$ of Hopf algebra morphisms from $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ to $\mathbb{K}[X]$ (lemma 5). Moreover, there exists a particular homogeneous morphism $\phi_{0} \in E_{\mathcal{H}_{\mathrm{qp}} \rightarrow \mathbb{K}[X]}$ such that for all quasi-poset P :

$$
\phi_{0}(P)=\lambda_{P} X^{c l(P)}=\frac{\mu_{P}}{c l(P)!} X^{c l(P)},
$$

where μ_{P} is the number of heap-orderings of P and $c l(P)$ is the number of equivalence classes of the equivalence associated to the quasi-order of P (proposition 32). This formula simplifies if P is a rooted tree: in this case,

$$
\phi_{0}(P)=\frac{1}{P!} X^{|P|} .
$$

We prove that there exist characters α and $\alpha^{s t r}$ in M_{qp}, such that for any quasi-poset P :

$$
e h r_{P}(X)=\sum_{\sim \triangleleft P} \frac{\mu_{P / \sim}}{c l(\sim)!} \alpha_{P \mid \sim} X^{c l(\sim)}, \quad e h r_{P}^{s t r}(X)=\sum_{\sim \triangleleft P} \frac{\mu_{P / \sim}}{c l(\sim)!} s_{P \mid \sim}^{s t r} X^{c l(\sim)},
$$

where the sum is over a certain family of equivalence relations \sim on the set of vertices of V, $P \mid \sim$ is a restriction operation and P / \sim is a contraction operation. Applied to corollas, this gives Faulhaber's formula. We prove that $\alpha^{s t r}$ is the inverse of the character λ associated to ϕ_{0} (theorem 37), which is a generalization, as well as a Hopf-algebraic proof, of Wright and Zhao's result. We also give an algebraic proof of the duality principle (theorem 38), and we define a Hopf algebra automorphism $\theta:\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right) \longrightarrow\left(h_{\mathbf{q p}}, m, \Delta\right)$ with the help of the cointeraction of the two bialgebra structures on $\mathcal{H}_{\mathbf{q p}}$, satisfying $e h r^{s t r} \circ \theta=e h r$ (proposition 39).

We propose non-commutative versions of these results in the last section of the paper. Here, (isoclasses of) quasi-posets are replaced by quasi-posets on sets $[n]=\{1, \ldots, n\}$, making a Hopf algebra $\mathcal{H}_{\mathbf{Q P}}$, in cointeraction with $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$, and $\mathbb{K}[X]$ is replaced by the Hopf algebra of packed words WQSym [15]. We define two surjective Hopf algebra morphisms EHR and $E H R^{s t r}$ from $\mathcal{H}_{\mathbf{Q P}}$ to WQSym (proposition 41), generalizing $e h r$ and $e h r^{s t r}$. The automorphism θ is generalized as a Hopf algebra automorphism $\Theta: \mathcal{H}_{\mathbf{Q P}} \longrightarrow \mathcal{H}_{\mathbf{Q P}}$, such that $E H R^{s t r} \circ \Theta=E H R$ (proposition 42), and we formulate a non-commutative duality principle
(theorem 45), and we obtain a commutative diagram of Hopf algebras:

The two triangles reflects the properties of morphisms Θ and θ, whereas the two squares are the duality principles.

Aknowledgment. The research leading these results was partially supported by the French National Research Agency under the reference ANR-12-BS01-0017.

Notations. We denote by \mathbb{K} a commutative field of characteristic zero. All the objects (vector spaces, algebra, and so on) in this text are taken over \mathbb{K}.

1 Bialgebras in cointeraction

We give in this section some general results on bialgebras in cointeractions. They will be used in the sequel for quasi-posets, leading to Ehrhart polynomials. We shall use them on graphs in order to obtain chromatic polynomials in [9].

1.1 Definition

Definition 1 Let A and B be two bialgebras. We shall say that A and B are in cointeraction $i f$:

- B coacts on A, via a map $\rho:\left\{\begin{array}{rll}A & \longrightarrow & A \otimes B \\ a & \longrightarrow & \rho(a)=a_{1} \otimes a_{0} .\end{array}\right.$
- A is a bialgebra in the category of B-comodules, that is to say:
$-\rho\left(1_{A}\right)=1_{A} \otimes 1_{B}$.
$-m_{2,4}^{3} \circ(\rho \otimes \rho) \circ \Delta_{A}=\left(\Delta_{A} \otimes I d\right) \circ \rho$, with:

$$
m_{2,4}^{3}:\left\{\begin{aligned}
& A \otimes B \otimes A \otimes B \longrightarrow A \otimes A \otimes B \\
& a_{1} \otimes b_{1} \otimes a_{2} \otimes b_{2} \longrightarrow \\
& a_{1} \otimes a_{2} \otimes b_{1} b_{2}
\end{aligned}\right.
$$

Equivalently, in Sweedler's notations, for all $a \in A$:

$$
\left(a^{(1)}\right)_{1} \otimes\left(a^{(2)}\right)_{1} \otimes\left(a^{(1)}\right)_{0}\left(a^{(2)}\right)_{0}=\left(a_{1}\right)^{(1)} \otimes\left(a_{1}\right)^{(2)} \otimes a_{0}
$$

- For all $a, b \in A, \rho(a b)=\rho(a) \rho(b)$.
- For all $a \in A,\left(\varepsilon_{A} \otimes I d\right) \circ \rho(a)=\varepsilon_{A}(a) 1_{B}$.

Examples of bialgebras in interaction can be found in [5] (for rooted trees) and in [14] (for various families of graphs). Another example is given by the algebra $\mathbb{K}[X]$, with its usual product m, and the two coproducts defined by:

$$
\Delta(X)=X \otimes 1+1 \otimes X, \quad \delta(X)=X \otimes X
$$

The bialgebras $(\mathbb{K}[X], m, \Delta)$ and $(\mathbb{K}[X], m, \delta)$ are in cointeractions, via the coaction $\rho=\delta$. Identifying $\mathbb{K}[X] \otimes \mathbb{K}[X]$ and $\mathbb{K}[X, Y]$:

$$
\Delta(P)(X, Y)=P(X+Y), \quad \delta(P)(X, Y)=P(X Y)
$$

Remark. If A and B are in cointeraction, the coaction of B on A is an algebra morphism.
Proposition 2 Let A and B be two bialgebras in cointeraction. We assume that A is a Hopf algebra, with antipode S. Then S is a morphism of B-comodules, that is to say:

$$
\rho \circ S=(S \otimes I d) \circ \rho
$$

Proof. We work in the space $\operatorname{End}_{\mathbb{K}}(A, A \otimes B)$. As $A \otimes B$ is an algebra and A is a coalgebra, it is an algebra for the convolution product \circledast :

$$
\forall f, g \in \operatorname{End}_{\mathbb{K}}(A, A \otimes B), f \circledast g=m_{A \otimes B} \circ(f \otimes g) \circ \Delta_{A}
$$

Its unit is:

$$
\eta:\left\{\begin{array}{rll}
A & \longrightarrow & A \otimes B \\
a & \longrightarrow & \varepsilon(a) 1_{A} \otimes 1_{B}
\end{array}\right.
$$

We consider three elements in this algebra, respectively $\rho, F_{1}=(S \otimes I d) \circ \rho$ and $F_{2}=\rho \circ S$. Firstly:

$$
\begin{aligned}
\left(F_{1} \circledast \rho\right)(a) & =S\left(\left(a^{(1)}\right)_{1}\right)\left(a^{(2)}\right)_{1} \otimes\left(a^{(1)}\right)_{0}\left(a^{(2)}\right)_{0} \\
& =S\left(\left(a_{1}\right)^{(1)}\right)\left(a_{1}\right)^{(2)} \otimes a_{0} \\
& =\varepsilon_{A}\left(a_{1}\right) 1_{A} \otimes a_{0} \\
& =\varepsilon_{A}(a) 1_{A} \otimes 1_{B} \\
& =\eta(a) .
\end{aligned}
$$

Secondly:

$$
\begin{aligned}
\left(\rho \circledast F_{2}\right)(a) & =\left(a^{(1)}\right)_{1} S\left(a^{(2)}\right)_{1} \otimes\left(a^{(1)}\right)_{0}\left(S\left(a^{(2)}\right)\right)_{0} \\
& =\varepsilon_{A}(a)\left(1_{A}\right)_{1} \otimes\left(1_{A}\right)_{0} \\
& =\varepsilon_{A}(a) 1_{A} \otimes 1_{B} \\
& =\eta(a)
\end{aligned}
$$

We obtain that $F_{1} \circledast \rho=\rho \circledast F_{2}=\eta$, so $F_{1}=F_{1} \circledast \eta=F_{1} \circledast \rho \circledast F_{2}=\eta \circledast F_{2}=F_{2}$.

1.2 Monoids actions

Proposition 3 Let A and B be two bialgebras in cointeraction, through the coaction ρ. We denote by M_{A} and M_{B} the monoids of characters of respectively A and B. Then B acts on A by monoid endomorphisms, via the map:

$$
\leftarrow:\left\{\begin{array}{rll}
M_{A} \times M_{B} & \longrightarrow M_{A} \\
(\phi, \lambda) & \longrightarrow & \phi \leftarrow \lambda=(\phi \otimes \lambda) \circ \rho .
\end{array}\right.
$$

Proof. We denote by $*$ the convolution product of M_{B} and by \star the convolution product of M_{A}. As $\rho: A \longrightarrow A \otimes B$ is an algebra morphism, \leftarrow is well-defined. Let $\phi \in M_{A}, \lambda_{1}, \lambda_{2} \in M_{B}$.

$$
\begin{aligned}
\left(\phi \leftarrow \lambda_{1}\right) \leftarrow \lambda_{2} & =\left(\phi \otimes \lambda_{1} \otimes \lambda_{2}\right) \circ(\rho \otimes I d) \circ \rho \\
& =\left(\phi \otimes \lambda_{1} \otimes \lambda_{2}\right) \circ\left(I d \otimes \Delta_{B}\right) \circ \rho \\
& =\phi \leftarrow\left(\lambda_{1} * \lambda_{2}\right) .
\end{aligned}
$$

So \leftarrow is an action. Let $\phi_{1}, \phi_{2} \in M_{A}, \lambda \in M_{B}$. For all $a \in A$:

$$
\begin{aligned}
\left(\left(\phi_{1} \star \phi_{2}\right) \leftarrow \lambda\right)(a) & =\left(\phi_{1} \otimes \phi_{2} \otimes \lambda\right) \circ\left(\Delta_{A} \otimes I d\right) \circ \rho(a) \\
& =\left(\phi_{1} \otimes \phi_{2} \otimes \lambda\right)\left(\left(a_{0}\right)^{(1)} \otimes\left(a_{0}\right)^{(2)} \otimes a_{1}\right) \\
& =\left(\phi_{1} \otimes \phi_{2} \otimes \lambda\right)\left(\left(a^{(1)}\right)_{0} \otimes\left(a^{(2)}\right)_{0} \otimes\left(a^{(1)}\right)_{1}\left(a^{(2)}\right)_{1}\right) \\
& =\phi_{1}\left(\left(a^{(1)}\right)_{0}\right) \lambda\left(\left(a^{(1)}\right)_{1}\right) \phi_{2}\left(\left(a^{(2)}\right)_{0}\right) \lambda\left(\left(a^{(2)}\right)_{1}\right) \\
& =\left(\phi_{1} \leftarrow \lambda\right)\left(a^{(1)}\right)\left(\phi_{2} \leftarrow \lambda\right)\left(a^{(2)}\right) \\
& =\left(\left(\phi_{1} \leftarrow \lambda\right) \star\left(\phi_{2} \leftarrow \lambda\right)\right)(a)
\end{aligned}
$$

So \leftarrow is an action by monoid endomorphisms.

Example. We take $A=(\mathbb{K}[X], m, \Delta), B=(\mathbb{K}[X], m, \delta)$ and $\rho=\delta$. We consider the map:

$$
e v:\left\{\begin{array}{rlll}
\mathbb{K} & \longrightarrow & \mathbb{K}[X]^{*} \\
\lambda & \longrightarrow & \left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow & \mathbb{K} \\
P(X) & \longrightarrow & e v_{\lambda}(P)=P(\lambda) .
\end{array}\right.
\end{array}\right.
$$

Then $e v$ is an isomorphism from $(\mathbb{K},+)$ to $\left(M_{A}, \star\right)$ and from $(\mathbb{K},$.$) to \left(M_{B}, *\right)$. Moreover, for all $\lambda, \mu \in \mathbb{K}$:

$$
e v_{\lambda} \leftarrow e v_{\mu}=e v_{\lambda \mu}
$$

Proposition 4 Let A and B be two bialgebras in cointeraction, through the coaction ρ.

1. Let H be a bialgebra. We denote by M_{B} the monoid of characters of B and by $E_{A \rightarrow H}$ the set of bialgebra morphisms from A to H. Then M_{B} acts on $E_{A \rightarrow H}$ via the map:

$$
\leftarrow:\left\{\begin{array}{rll}
E_{A \rightarrow H} \times M_{B} & \longrightarrow & E_{A \rightarrow H} \\
(\phi, \lambda) & \longrightarrow & \phi \leftarrow \lambda=(\phi \otimes \lambda) \circ \rho
\end{array}\right.
$$

2. Let H_{1} and H_{2} be two bialgebras and let $\theta: H_{1} \longrightarrow H_{2}$ be a bialgebra morphism. For all $\phi \in E_{A \leftarrow H_{1}}$, for all $\lambda \in M_{B}$, in $E_{A \leftarrow H_{2}}$:

$$
\theta \circ(\phi \leftarrow \lambda)=(\theta \circ \phi) \leftarrow \lambda
$$

3. if $\lambda, \mu \in M_{B}$, in $E_{A \rightarrow A}$:

$$
(I d \leftarrow \lambda) \circ(I d \leftarrow \mu)=I d \leftarrow(\lambda * \mu)
$$

The following map is an injective monoid morphism:

$$
\left\{\begin{aligned}
\left(M_{B}, *\right) & \longrightarrow\left(E_{A \rightarrow A}, \circ\right) \\
\lambda & \longrightarrow I d \leftarrow \lambda .
\end{aligned}\right.
$$

Proof. 1. For all $\phi \in E_{A \leftarrow B}, \lambda \in M_{B}, \phi \leftarrow \lambda: A \longrightarrow H \otimes \mathbb{K}=H$. As ϕ, λ and ρ are algebra morphisms, by composition $\phi \leftarrow \lambda$ is an algebra morphism. Let $a \in A$.

$$
\begin{aligned}
\Delta_{H}(\phi \leftarrow \lambda(a)) & =\Delta_{H}\left(\phi\left(a_{0}\right) \lambda\left(a_{1}\right)\right) \\
& =\lambda\left(a_{1}\right) \Delta_{H} \circ \phi\left(a_{1}\right) \\
& =\lambda\left(a_{1}\right) \phi\left(a_{0}\right)^{(1)} \otimes \phi\left(a_{0}\right)^{(2)} \\
& =\lambda\left(a_{1}\right) \phi\left(\left(a_{0}\right)^{(1)}\right) \otimes \phi\left(\left(a_{0}\right)^{(2)}\right) \\
& =\lambda\left(\left(a^{(1)}\right)_{1}\left(a^{(2)}\right)_{1}\right) \phi\left(\left(a^{(1)}\right)_{0}\right) \otimes \phi\left(\left(a^{(2)}\right)_{0}\right) \\
& =\lambda\left(\left(a^{(1)}\right)_{1}\right) \lambda\left(\left(a^{(2)}\right)_{1}\right) \phi\left(\left(a^{(1)}\right)_{0}\right) \otimes \phi\left(\left(a^{(2)}\right)_{0}\right) \\
& =\phi\left(\left(a^{(1)}\right)_{0}\right) \lambda\left(\left(a^{(1)}\right)_{1}\right) \otimes \phi\left(\left(a^{(2)}\right)_{0}\right) \lambda\left(\left(a^{(2)}\right)_{1}\right) \\
& =\phi \leftarrow \lambda\left(a^{(1)}\right) \otimes \phi \leftarrow \lambda\left(a^{(2)}\right) \\
& =((\phi \leftarrow \lambda) \otimes(\phi \leftarrow \lambda)) \circ \Delta_{A}(a) .
\end{aligned}
$$

So $\phi \leftarrow \lambda \in E_{A \rightarrow H}$.
Let $\phi \in E_{A \rightarrow H}$. For all $a \in A, \phi \leftarrow \eta \circ \varepsilon(a)=\phi\left(a_{0}\right) \varepsilon\left(a_{1}\right)=\phi(a)$. Let $\lambda, \mu \in M_{B}$.

$$
(\phi \leftarrow \lambda) \leftarrow \mu=(\phi \otimes \lambda \otimes \mu) \circ(\rho \otimes I d) \circ \rho=(\phi \otimes \lambda \otimes \mu) \circ\left(I d \otimes \Delta_{B}\right) \circ \rho=\phi \leftarrow(\lambda * \mu) .
$$

So \leftarrow is indeed an action of M_{B} on $E_{A \rightarrow H}$.
2. Let $a \in H$.

$$
(\theta \circ \phi) \leftarrow \lambda(a)=\theta \circ \phi\left(a_{1}\right) \lambda\left(a_{0}\right)=\theta\left(\phi\left(a_{1}\right) \lambda\left(a_{0}\right)\right)=\theta(\phi \leftarrow \lambda(a))=\theta \circ(\phi \leftarrow \lambda)(a) .
$$

So $(\theta \circ \phi) \leftarrow \lambda=\theta \circ(\phi \leftarrow \lambda)$.
3. Consequently, if $\lambda, \mu \in M_{B}$, in $E_{A \rightarrow A}$:

$$
(I d \leftarrow \lambda) \circ(I d \leftarrow \lambda)=(I d \leftarrow \lambda) \leftarrow \mu)=I d \leftarrow(\lambda * \mu) .
$$

If $I d \leftarrow \lambda=I d$, then, composing by ε^{\prime}, we obtain $\varepsilon^{\prime} * \lambda=\varepsilon^{\prime}$, so $\lambda=\varepsilon^{\prime}$.
Example. We take $A=(\mathbb{K}[X], m, \Delta), B=(\mathbb{K}[X], m, \delta)$ and $\rho=\delta$. In $E_{A \rightarrow A}$, for any $\lambda \in \mathbb{K}$:

$$
I d \leftarrow e v_{\lambda}(X)=e v_{\lambda}(X) X=\lambda X,
$$

so for any $P \in \mathbb{K}[X],\left(I d \leftarrow e v_{\lambda}\right)(P)=P(\lambda X)$. In this case, the monoids $\left(M_{B}, *\right)$ and $\left(E_{A \rightarrow A}, \circ\right)$ are isomorphic.

1.3 Polynomial morphisms

In this section, we deal with a family (A, m, Δ, δ) such that:

1. (A, m, Δ) is a graded, connected Hopf algebra. As a graded algebra, it is isomorphic to the symmetric algebra $S(V)$, where V is a graded subspace of A.
2. (A, m, δ) is a bialgebra.
3. (A, m, Δ) and (A, m, δ) are in cointeraction, through the coaction δ.
4. $V_{1}=A_{1}$ has a basis $\left(g_{i}\right)_{i \in I}$ such that:

$$
\forall i \in I, \delta\left(g_{i}\right)=g_{i} \otimes g_{i}
$$

We shall denote by J the set of sequences $\alpha=\left(\alpha_{i}\right)_{i \in I}$ with a finite support. For all $\alpha \in J$, we put $g_{\alpha}=\prod_{i \in I} g_{i}^{\alpha_{i}}$. These are group-like elements of (A, m, δ).
5. For all $n \geq 2, V_{n}$ can be decomposed as:

$$
V_{n}=\bigoplus_{i \in I, \alpha \in J} V_{n}\left(g_{i}, g_{\alpha}\right)
$$

such that for all $x \in V_{n}\left(g_{i}, g_{\alpha}\right)$:

$$
\delta(x)-g_{i} \otimes x-x \otimes g_{\alpha} \in S\left(V_{1} \oplus \ldots \oplus V_{n-1}\right)^{\otimes 2}
$$

The counit of (A, m, Δ) will be denoted by ε and the counit of (A, m, δ) by ε^{\prime}. We denote by M_{B} the monoid of characters of (A, m, δ).

Remark. If $x \in V_{n}\left(g_{i}, g_{\alpha}\right)$, as $\varepsilon^{\prime}\left(g_{i}\right)=\varepsilon^{\prime}\left(g_{\alpha}\right)=1$, necessarily, $\varepsilon^{\prime}(x)=0$ and:

$$
\delta(x)-g_{i} \otimes x-x \otimes g_{\alpha} \in \operatorname{Ker}\left(\varepsilon^{\prime}\right)^{\otimes 2}
$$

Lemma 5 Let $\lambda \in M_{B}$. It has an inverse in M_{B} if, and only if, for all $i \in I, \lambda\left(g_{i}\right) \neq 0$.
Proof. \Longrightarrow. Let μ be the inverse of λ in M_{B}. For all $i \in I, \lambda * \mu\left(g_{i}\right)=\lambda\left(g_{i}\right) \mu\left(g_{i}\right)=\varepsilon^{\prime}\left(g_{i}\right)=1$, so $\lambda\left(g_{i}\right) \neq 0$.
\Longleftarrow. We define two characters $\mu, \nu \in M_{B}$ by inductively definining $\mu_{n}=\mu_{\mid V_{n}}$ and $\nu_{n}=\nu_{\mid V_{n}}$. For $n=1$, we put $\mu_{1}\left(g_{i}\right)=\nu_{1}\left(g_{i}\right)=\lambda\left(g_{i}\right)^{-1}$. Let us assume that g_{1}, \ldots, g_{n-1} are already defined, with $n \geq 2$. If $x \in V_{n}\left(g_{i}, g_{\alpha}\right)$, we put:

$$
\delta(x)-g_{i} \otimes x-x \otimes g_{\alpha}=\sum x_{k}^{\prime} \otimes x_{k}^{\prime \prime} \in S\left(V_{1} \oplus \ldots \oplus V_{n-1}\right)^{\otimes 2}
$$

Hence, for all $k, \mu\left(x_{k}^{\prime}\right)$ and $\nu\left(x_{k}^{\prime \prime}\right)$ are defined. We put:

$$
\begin{aligned}
\mu_{n}(x) & =\prod_{i \in I} \frac{1}{\lambda\left(g_{i}\right)^{\alpha_{i}}}\left(\varepsilon^{\prime}(x)-\mu\left(g_{i}\right) \lambda(x)-\sum \mu\left(x_{k}^{\prime}\right) \lambda\left(x_{k}^{\prime \prime}\right)\right) \\
\nu_{n}(x) & =\frac{1}{\lambda\left(g_{i}\right)}\left(\varepsilon^{\prime}(x)-\lambda(x) \nu\left(g_{\alpha}\right)-\sum \lambda\left(x_{k}^{\prime}\right) \nu\left(x_{k}^{\prime \prime}\right)\right)
\end{aligned}
$$

Consequently, $\mu, \nu \in M_{B}$ and for all $x \in V, \mu * \lambda(x)=\lambda * \nu(x)=\varepsilon^{\prime}(x)$, so $\mu * \lambda=\lambda * \nu=\varepsilon^{\prime}$, and finally $\mu=\mu *(\lambda * \nu)=(\mu * \lambda) * \nu=\nu$, so λ is invertible in M_{B}.

Lemma 6 Let C be a graded, connected Hopf algebra. We denote by $C_{+}=\operatorname{Ker}\left(\varepsilon_{C}\right)$ its augmentation ideal. Let $\lambda: C_{+} \longrightarrow \mathbb{K}$ be any linear map. There exists a unique coalgebra morphism $\phi: C \longrightarrow \mathbb{K}[X]$ such that:

$$
\forall x \in C_{+}, \frac{d \phi(x)}{d X}(0)=\lambda(x)
$$

Moreover:

1. ϕ is homogeneous if, and only if, for all $n \geq 2, \lambda\left(C_{n}\right)=(0)$.
2. ϕ is a Hopf algebra morphism if, and only if, for all $x, y \in C_{+}, \lambda(x y)=0$.

Proof. Let $\pi: \mathbb{K}[X] \longrightarrow \operatorname{Vect}(X)$ be the canonical projection. For any $P \in \mathbb{K}[X]:$

$$
\pi(P)=\frac{d P}{d X}(0) X
$$

Existence. We define $\phi_{\mid C_{n}}$ by induction on n. For $n=0$, we put $\phi(1)=1$. Let us assume that $\phi_{\mid C_{0} \oplus \ldots \oplus C_{n-1}}$ is defined such that for all $x \in C_{0} \oplus \ldots \oplus C_{n-1}$,

$$
\Delta \circ \phi(x)=(\phi \otimes \phi) \circ \Delta(x), \quad \pi \circ \phi(x)=\lambda(x) X
$$

Let $x \in C_{n}$. As $\tilde{\Delta}(x) \in\left(C_{1} \oplus \ldots \oplus C_{n-1}\right)^{\otimes 2}$, we can consider the element

$$
y=(\phi \otimes \phi) \circ \tilde{\Delta}(x) \in \mathbb{K}[X]_{+}^{\otimes 2}
$$

We put:

$$
y=\sum_{i, j \geq 1} a_{i, j} \frac{X^{i}}{i!} \otimes \frac{X^{j}}{j!}
$$

Moreover:

$$
\begin{aligned}
\tilde{\Delta} \otimes I d(y) & =((\tilde{\Delta} \circ \phi) \otimes \phi) \circ \tilde{\Delta}(x) \\
& =(\phi \otimes \phi \otimes \phi) \circ(\tilde{\Delta} \otimes I d) \circ \tilde{\Delta}(x) \\
& =(\phi \otimes \phi \otimes \phi) \circ(I d \otimes \tilde{\Delta}) \circ \tilde{\Delta}(x) \\
& =(\phi \otimes(\tilde{\Delta} \circ \phi)) \circ \tilde{\Delta}(x) \\
& =(I d \otimes \tilde{\Delta})(y) .
\end{aligned}
$$

Hence:

$$
\sum_{i, j, k \geq 1} a_{i+j, k} \frac{X^{i}}{i!} \otimes \frac{X^{j}}{j!} \otimes \frac{X^{k}}{k!}=\sum_{i, j, k \geq 1} a_{i j+k} \frac{X^{i}}{i!} \otimes \frac{X^{j}}{j!} \otimes \frac{X^{k}}{k!}
$$

For all $i, j, k \geq 1, a_{i+j, k}=a_{i, j+k}$, so there exist scalars a_{n} such that for all $i, j \geq 1, a_{i, j}=a_{i+j}$. We obtain that:

$$
y=\sum_{n \geq 2} a_{n}\left(\sum_{i, j \geq 1, i+j=n} \frac{X^{i}}{i!} \otimes \frac{X^{j}}{j!}\right)=\sum_{n \geq 2} a_{n} \tilde{\Delta}\left(\frac{X^{n}}{n!}\right) .
$$

We then put $\phi(x)=\sum_{n \geq 2} a_{n} \frac{X^{n}}{n!}+\lambda(x) X$.
We obtain in this way a coalgebra morphism such that $\pi \circ \phi(x)=\lambda(x) X$ for all $x \in C$.
Unicity. Let $\phi, \psi: C \longrightarrow \mathbb{K}[X]$ be coalgebra morphisms such that $\pi \circ \phi=\pi \circ \psi$. Let us prove that $\phi(x)=\psi(x)$ for all $x \in A_{n}, n \geq 0$, by induction on n. For $n=0$, as the unique group-like element of $\mathbb{K}[X]$ is $1, \phi(1)=\psi(1)=1$. Let us assume the result at all ranks $k<n$. Then, if $x \in A_{n}$:

$$
\tilde{\Delta} \circ \phi(x)=(\phi \otimes \phi) \circ \tilde{\Delta}(x)=(\psi \otimes \psi) \circ \tilde{\Delta}(x)=\tilde{\Delta} \circ \psi(x),
$$

so $\phi(x)-\psi(x) \in \operatorname{Ker}(\tilde{\Delta})=\operatorname{Vect}(X)$. Hence, $0=\pi \circ \phi(x)-\pi \circ \psi(x)=\phi(x)-\psi(x)$.
$1 . \Longrightarrow$. If ϕ is homogeneous, then, for all $n \geq 2, \phi\left(C_{n}\right) \subseteq \operatorname{Vect}\left(X^{n}\right)$, so:

$$
\pi \circ \phi\left(C_{n}\right)=\lambda\left(C_{n}\right) X=(0)
$$

1. \Longleftarrow. Let us go back to the construction of ϕ is the Existence part. If $n \geq 1, x \in C_{1}$, then $\phi(x)=\lambda(x) X$ is homogeneous of degree 1 . If $n \geq 2$, then, by homogeneity, $a_{i, j}=0$ if $i+j \neq n$, so $a_{k}=0$ if $n \neq k$, and $\phi(x)=a_{n} \frac{X^{n}}{n!}: \phi$ is homogeneous.

$$
\text { 2. } \Longrightarrow \text {. Let } x, y \in C_{+} \text {. Then } \phi(x), \phi(y) \in \mathbb{K}[X]_{+}=X \mathbb{K}[X] \text {, so } \phi(x y)=\phi(x) \phi(y) \in X^{2} \mathbb{K}[X]
$$ and $\pi \circ \phi(x y)=\lambda(x y) X=0$.

$2 . \Longleftarrow$. Let us consider $\phi_{1}=m \circ(\phi \otimes \phi)$ and $\phi_{2}=\phi \circ m$. By composition, they are both coalgebra morphisms from the graded bialgebra $C \otimes C$ to $\mathbb{K}[X]$. Moreover, if $x, y \in C_{+}$:

$$
\begin{array}{ll}
\pi \circ \phi_{1}(1 \otimes y)=\pi \circ \phi(y), & \pi \circ \phi_{2}(1 \otimes y)=\pi \circ \phi(y) \\
\pi \circ \phi_{1}(x \otimes 1)=\pi \circ \phi(x), & \pi \circ \phi_{2}(x \otimes 1)=\pi \circ \phi(x) \\
\pi \circ \phi_{1}(x \otimes y)=\pi(\phi(x) \phi(y))=0, & \pi \circ \phi_{2}(x \otimes y)=\lambda(x y) X=0
\end{array}
$$

So, for all $z \in(C \otimes C)_{+}=\left(\mathbb{K} 1 \otimes C_{+}\right) \oplus\left(C_{+} \otimes \mathbb{K} 1\right) \oplus\left(C_{+} \otimes C_{+}\right), \pi \circ \phi_{1}(z)=\pi \circ \phi_{2}(z)$. By the Unicity part, $\phi_{1}=\phi_{2}$, so ϕ is an algebra morphism.

Remark. If $x \in V_{1}, \phi(x)=\lambda(x) X$.
Theorem 7 Under the hypotheses 1-5, there exists a unique homogeneous Hopf algebra morphism $\phi_{0}:(A, m, \Delta) \longrightarrow(\mathbb{K}[X], m, \Delta)$ such that:

$$
\forall x \in A_{1}, \phi_{0}(x)=\varepsilon^{\prime}(x) X
$$

Moreover, there exists a unique character $\lambda_{0} \in M_{B}$, invertible in M_{B}, such that:

$$
\forall n \geq 0, \forall x \in A_{n}, \phi_{0}(x)=\lambda_{0}(x) X^{n}
$$

Proof. Existence. Let $\lambda \in A^{*}$ such that $\lambda(x)=\varepsilon^{\prime}(x)$ if $x \in A_{1}$ and $\lambda(x)=0$ if $x \in A_{n}$, $n \geq 2$. We denote by ϕ_{0} the unique coalgebra morphism such that $\frac{d \phi_{0}(x)}{d X}(0)=\lambda(x)$ for all $x \in A_{+}$. By the first point of lemma $6, \phi_{0}$ is homogeneous. As $A_{+}^{2} \subseteq A_{\geq 2}$, by the second point of lemma $6, \phi_{0}$ is an algebra morphism.

Unicity. If ϕ is such a morphism, by the first point of lemma 6 , for all $x \in A_{n}, n \geq 2$, $\pi \circ \phi(x)=0$; hence, for all $x \in A_{+}, \pi \circ \phi_{0}=\pi \circ \phi$. By the unicity in lemma $6, \phi=\phi_{0}$.

By homogeneity of ϕ_{0}, for all $x \in A_{n}$, there exists a unique scalar $\lambda_{0}(x) \in \mathbb{K}$ such that:

$$
\phi_{0}(x)=\lambda_{0}(x) X^{n}
$$

If $x \in A_{m}, y \in A_{n}, x y \in A_{m+n}$ and then:

$$
\phi(x y)=\lambda_{0}(x y) X^{n+m}=\phi(x) \phi(y)=\lambda_{0}(x) \lambda_{0}(y) X^{n+m}
$$

so $\lambda_{0} \in M_{B}$. For all $i \in I, \phi\left(g_{i}\right)=\varepsilon^{\prime}\left(g_{i}\right) X=X$, so $\lambda_{0}\left(g_{i}\right)=1$. By lemma $5, \lambda_{0}$ is an invertible element of M_{B}.

Theorem 8 Under the hypotheses 1-5, the following map is a bijection:

$$
\theta:\left\{\begin{array}{rll}
M_{B} & \longrightarrow & E_{A \rightarrow \mathbb{K}[X]} \\
\lambda & \longrightarrow & \phi_{0} \leftarrow \lambda .
\end{array}\right.
$$

Moreover, if $\phi=\theta(\lambda)$, with $\lambda \in M_{B}$, then for all $x \in V$,

$$
\lambda(x)=\frac{d \phi(x)}{d X}(0)
$$

Proof. Let $\lambda \in M_{B}$, and $\phi=\phi_{0} \leftarrow \lambda$. For all $i \in I, \phi\left(g_{i}\right)=X \lambda\left(g_{i}\right)$, so $\frac{d \phi\left(g_{i}\right)}{d X}(0)=\lambda\left(g_{i}\right)$. If $n \geq 2$ and $x \in V_{n}\left(g_{i}, g_{\alpha}\right)$, we put:

$$
\delta(x)=g_{i} \otimes x+\sum x_{k}^{\prime} \otimes x_{k}^{\prime \prime}
$$

with for all k, x_{k}^{\prime} homogeneous of degree ≥ 2 or homogeneous of degree 1 , with $\varepsilon^{\prime}\left(x_{k}^{\prime}\right)=0$. For all $k, \pi \circ \phi_{0}\left(x_{k}^{\prime}\right)=0$. We obtain:

$$
\pi \circ \phi(x)=\pi\left(\lambda(x) X+\sum \phi_{0}\left(x_{k}^{\prime}\right) \lambda\left(x_{k}^{\prime \prime}\right)\right)=\lambda(x) X
$$

By the unicity in lemma $6, \phi$ is injective. If $\psi \in E_{A \rightarrow \mathbb{K}[X]}$, we define $\lambda \in M_{B}$ by:

$$
\forall x \in V, \lambda(x)=\frac{d \psi(x)}{d X}(0)
$$

We put $\phi=\phi_{0} \leftarrow \lambda$. Then for all $x \in V, \frac{d \phi(x)}{d X}(0)=\frac{d \psi(x)}{d X}(0)=\lambda(x)$. If $x \in A_{+}^{2}$, by the second point of lemma $6, \frac{d \phi(x)}{d X}(0)=\frac{d \psi(x)}{d X}(0)=0$. Finally, as V generates $A, A_{+}=V+A_{+}^{2}$, and for all $x \in A_{+}, \frac{d \phi(x)}{d X}(0)=\frac{d \psi(x)}{d X}(0)$. By the unicity in lemma $6, \phi=\psi$, so θ is surjective.

Corollary 9 Under the hypotheses 1-5, for any $\mu \in M_{B}$, there exists a unique Hopf algebra morphism $\phi: A \longrightarrow \mathbb{K}[X]$, such that:

$$
\forall x \in A, \phi(x)(1)=\mu(1)
$$

This morphism is: $\phi_{0} \leftarrow\left(\lambda_{0}^{*-1} * \mu\right)$.
Proof. Let ϕ be a Hopf algebra morphism from A to $\mathbb{K}[X]$. By theorem 8, there exists $\lambda \in M_{B}$ such that $\phi=\phi_{0} \leftarrow \lambda$. Let $x \in A$. We write $x=\sum x_{k}^{\prime} \otimes x_{k}^{\prime \prime}$, with, for all k, x_{k}^{\prime} homogeneous of degree n_{k}. Then:

$$
\phi(x)(1)=\left(\sum \lambda_{0}\left(x_{k}^{\prime}\right) X^{n_{k}} \lambda\left(x_{k}^{\prime \prime}\right)\right)_{\mid X=1}=\sum \lambda_{0}\left(x_{k}^{\prime}\right) \lambda\left(x_{k}^{\prime \prime}\right)=\lambda_{0} * \lambda(x)
$$

So ϕ satisfies the required conditions if, and only if, $\lambda_{0} * \lambda=\mu$, if, and only if, $\lambda=\lambda_{0}^{*-1} * \mu$, as λ_{0} is invertible. So such a ϕ exists and is unique.

Corollary 10 Under the hypotheses $1-5$, there exists a unique morphism $\phi_{1}: A \longrightarrow \mathbb{K}[X]$ such that:

1. ϕ_{1} is a Hopf algebra morphism from (A, m, Δ) to $(\mathbb{K}[X], m, \Delta)$.
2. ϕ_{1} is a bialgebra morphism from (A, m, δ) to $(\mathbb{K}[X], m, \delta)$.

Moreover, $\phi_{1}=\phi_{0} \leftarrow \lambda_{0}^{*-1}$ and, for all $x \in A, \phi_{1}(x)(1)=\varepsilon^{\prime}(x)$.
Proof. Unicity. If such a ϕ_{1} exists, then for all $x \in A, \phi_{1}(x)(1)=\varepsilon^{\prime} \circ \phi_{1}(x)=\varepsilon^{\prime}(x)$. By corollary $9, \phi_{1}=\phi_{0} \leftarrow\left(\lambda_{0}^{*-1} * \varepsilon^{\prime}\right)=\phi_{0} \leftarrow \lambda_{0}^{*-1}$.

Existence. Let ϕ_{1} be the unique Hopf algebra morphism in $E_{A \rightarrow \mathbb{K}[X]}$ such that for all $x \in A$, $\phi_{1}(x)(1)=\varepsilon^{\prime}(x)$. Recall that we identify $\mathbb{K}[X] \otimes \mathbb{K}[X]$ with $\mathbb{K}[X, Y] ;$ for all $P \in \mathbb{K}[X]$:

$$
\Delta(P)(X, Y)=P(X+Y), \quad \delta(P)(X, Y)=P(X Y)
$$

Let us fix $x \in A$. Let us prove that for all $k, l \in \mathbb{N}^{*}, \delta \circ \phi_{1}(x)(k, l)=\left(\phi_{1} \otimes \phi_{1}\right) \circ \Delta(x)(k, l)$ by induction on k. First, observe that $\delta \circ \phi_{1}(x)(k, l)=\phi_{1}(x)(k l)$. If $k=1$, then:

$$
\left(\phi_{1} \otimes \phi_{1}\right) \circ \Delta(x)(1, l)=\phi_{1}\left(\left(\varepsilon^{\prime} \otimes I d\right) \circ \Delta(x)\right)(l)=\phi_{1}(x)(l)
$$

Let us assume the result at rank k. Then:

$$
\begin{aligned}
\left(\phi_{1} \otimes \phi_{1}\right) \circ \Delta(x)(k+1, l) & =(\Delta \otimes I d) \circ\left(\phi_{1} \otimes \phi_{1}\right) \circ \delta(x)(k, 1, l) \\
& =\left(\phi_{1} \otimes \phi_{1} \otimes \phi_{1}\right) \circ(\Delta \otimes I d) \circ \delta(x)(k, 1, l) \\
& =\left(\phi_{1} \otimes \phi_{1} \otimes \phi_{1}\right) \circ m_{2,4}^{3} \circ(\delta \otimes \delta) \circ \Delta(x)(k, 1, l) \\
& =\left(\phi_{1} \otimes \phi_{1} \otimes \phi_{1} \otimes \phi_{1}\right) \circ(\delta \otimes \delta) \circ \Delta(x)(k, l, 1, l) \\
& =\left(\phi_{1} \otimes \phi_{1}\right) \circ \Delta(x)(k l, l) \\
& =\Delta \circ \phi_{1}(x)(k l, l) \\
& =\phi_{1}(x)(k l+l) \\
& =\phi_{1}(x)((k+1) l) .
\end{aligned}
$$

So the result is true for all $k, l \geq 1$. Hence, $\left(\phi_{1} \otimes \phi_{1}\right) \circ \delta(x)=\delta \circ \phi_{1}(x)$: ϕ_{1} is a bialgebra morphism from (A, m, δ) to $(\mathbb{K}[X], m, \delta)$.

2 Examples from quasi-posets

2.1 Definition

Definition 11 1. Let A be a set finite set. A quasi-order on A is a transitive, reflexive relation \leq on A. If \leq is a quasi-order on A, we shall say that (A, \leq) is a quasi-poset. If P is a quasi-poset:
(a) Its isoclass is denoted by $\lfloor P\rfloor$.
(b) \sim_{P} is defined by:

$$
\forall a, b \in A, a \sim_{P} b \text { if }(a \leq b \text { and } b \leq a) .
$$

It is an equivalence on A.
(c) $\bar{A}=A / \sim_{P}$ is given an order by:

$$
\forall a, b \in A, \bar{a} \leq \bar{b} \text { if } a \leq b
$$

The poset (\bar{A}, \leq) is denoted by \bar{P}.
(d) The cardinality of \bar{P} is denoted by $\operatorname{cl}(P)$.
2. Let $n \in \mathbb{N}$.
(a) The set of quasi-posets which underlying set is $[n]=\{1, \ldots, n\}$ is denoted by $\mathbf{Q P}(n)$.
(b) The set of posets which underlying set is $[n]$ is denoted by $\mathbf{P}(n)$.
(c) The set of isoclasses of quasi-posets of cardinality n is denoted by $\mathbf{q p}(n)$.
(d) The set of isoclasses of quasi-posets of cardinality n is denoted by $\mathbf{p}(n)$.

We put:

$$
\begin{aligned}
& \mathbf{Q P}=\bigsqcup_{n \geq 0} \mathbf{Q P}(n), \quad \mathbf{P}=\bigsqcup_{n \geq 0} \mathbf{P}(n), \quad \mathbf{q} \mathbf{p}=\bigsqcup_{n \geq 0} \mathbf{q} \mathbf{p}(n), \quad \mathbf{p}=\bigsqcup_{n \geq 0} \mathbf{p}(n), \\
& \mathcal{H}_{\mathbf{Q P}}=\operatorname{Vect}(\mathbf{Q P}), \quad \mathcal{H}_{\mathbf{P}}=\operatorname{Vect}(\mathbf{P}), \quad \mathcal{H}_{\mathbf{q} \mathbf{p}}=\operatorname{Vect}(\mathbf{q p}) \quad \mathcal{H}_{\mathbf{p}}=\operatorname{Vect}(\mathbf{p}) .
\end{aligned}
$$

As posets are quasi-posets, there are canonical injections from $\mathcal{H}_{\mathbf{P}}$ into $\mathcal{H}_{\mathbf{Q P}}$ and from $\mathcal{H}_{\mathbf{p}}$ into $\mathcal{H}_{\mathbf{q P}}$. Moreover, the map $P \longrightarrow \bar{P}$ induces surjective maps from $\mathcal{H}_{\mathbf{Q P}}$ to $\mathcal{H}_{\mathbf{P}}$ and from
$\mathcal{H}_{\mathrm{qp}}$ to $\mathcal{H}_{\mathbf{p}}$, both denoted by ξ. The map $P \longrightarrow\lfloor P\rfloor$ induces maps $\left\rfloor: \mathcal{H}_{\mathbf{Q P}} \longrightarrow \mathcal{H}_{\mathrm{qp}}\right.$ and $\left\lfloor: \mathcal{H}_{\mathbf{P}} \longrightarrow \mathcal{H}_{\mathbf{p}}\right.$. The following diagram commutes:

We shall represent any element P of $\mathbf{Q P}$ by the Hasse graph of \bar{P}, indicating on the vertices the elements of the corresponding equivalence class. For example, the elements of $\mathbf{Q P}(n), n \leq 3$, are:

We shall represent any element $P \in \mathbf{q p}$ by the Hasse graph of \bar{P}, indicating on the vertices the cardinality of the corresponding equivalence class, if this cardinality is not equal to 1 . For example, the elements of $\mathbf{q p}(n), n \leq 3$, are:

$$
1 ; \quad . ; \quad \ldots,!, ._{2} ; \quad \quad \ldots, .!, \ldots 2 ; \quad \vee, \Lambda,!, \mathfrak{l}^{2}, \mathfrak{l}_{2}, \cdot{ }_{3}
$$

2.2 First coproduct

By Alexandroff's theorem [1, 18], finite quasi-posets are in bijection with finite topological spaces. Let us recall the definition of the topology attached to a quasi-poset.

Definition 12 1. Let $P=(A, \leq)$ be a quasi-poset. An open set of P is a subset O of A such that:

$$
\forall i, j \in A,(i \in O \text { and } i \leq j) \Longrightarrow(j \in O)
$$

The set of open sets of P (the topology associated to P) is denoted by top (P).
2. Let $P=(A, \leq)$ be a quasi-poset and $B \subseteq A$. We denote by $P_{\mid B}$ the quasi-poset $\left(B, \leq_{\mid B}\right)$.
3. Let $P=\left(A, \leq_{P}\right)$ be a quasi-poset. We assume that A is also given a total order \leq : for example, A is a subset of \mathbb{N}. If the cardinality of A is n, there exists a unique increasing bijection f from $[n]$, with its usual order, to (A, \leq). We denote by $\operatorname{Std}(P)$ the quasi-poset, element of $\mathbf{Q P}(n)$, defined by:

$$
\forall i, j \in[n], i \leq_{S t d(P)} j \Longleftrightarrow f(i) \leq_{P} f(j) .
$$

Proposition 13 1. We define a product m on $\mathcal{H}_{\mathbf{Q P}}$ in the following way: if $P \in \mathbf{Q P}(k)$, $Q \in \mathbf{Q P}(l)$, then $P Q=m(P, Q) \in \mathbf{Q P}(k+l)$ and

$$
\begin{aligned}
\forall i, j \in[k+l], i \leq_{P Q} \Longleftrightarrow & \left(1 \leq i, j \leq k \text { and } i \leq_{P} j\right) \\
& \text { or }\left(k+1 \leq i, j \leq k+l \text { and } i-k \leq_{Q} j-k\right) .
\end{aligned}
$$

2. We define a second product \downarrow on $\mathcal{H}_{\mathbf{Q P}}$ in the following way: if $P \in \mathbf{Q P}(k), Q \in \mathbf{Q P}(l)$, then $P Q=m(P, Q) \in \mathbf{Q P}(k+l)$ and

$$
\begin{aligned}
\forall i, j \in[k+l], i \leq_{P Q} \Longleftrightarrow & \left(1 \leq i, j \leq k \text { and } i \leq_{P} j\right) \\
& \text { or }\left(k+1 \leq i, j \leq k+l \text { and } i-k \leq_{Q} j-k\right) \\
& \text { or }(1 \leq i \leq k<j \leq k+l) .
\end{aligned}
$$

3. We define a coproduct Δ on $\mathcal{H}_{\mathbf{Q P}}$ in the following way:

$$
\forall P \in \mathbf{Q P}(n), \Delta(P)=\sum_{O \in \operatorname{top}(P)} S t d\left(P_{\lceil[n] \backslash O}\right) \otimes \operatorname{Std}\left(P_{\mid O}\right) .
$$

Then $\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right)$ is a non-commutative, non-cocommutative Hopf algebra, and $\left(\mathcal{H}_{\mathbf{Q P}}, \downarrow, \Delta\right)$ is an infinitesimal bialgebra.

Proof. See [10, 11].
Examples. If $\{a, b\}=\{1,2\}$ and $\{i, j, k\}=\{1,2,3\}$:

$$
\begin{aligned}
& \Delta\left(\bullet_{1}\right)=\cdot{ }_{1} \otimes 1+1 \otimes \cdot{ }_{1}, \\
& \Delta\left(\mathfrak{l}_{a}^{b}\right)=\mathfrak{l}_{a}^{b} \otimes 1+1 \otimes \mathfrak{l}_{a}^{b}+\cdot{ }_{a} \otimes \cdot{ }_{b}, \\
& \Delta\left({ }^{j} \boldsymbol{V}_{i}{ }^{k}\right)={ }^{j} \mathbf{V}_{i}{ }^{k} \otimes 1+1 \otimes{ }^{j} \boldsymbol{V}_{i}{ }^{k}+\mathbf{t}_{i}^{j} \otimes \cdot{ }_{k}+\mathbf{l}_{i}^{k} \otimes \cdot{ }_{j}+\cdot{ }_{i} \otimes \cdot{ }_{j} \cdot k, \\
& \Delta\left({ }_{j} \AA_{{ }_{k}}^{i}\right)={ }_{j} \AA_{k}^{i} \otimes 1+1 \otimes \otimes_{j} \AA_{k}^{i}+\cdot_{j} \otimes \mathfrak{l}_{k}^{i}+\boldsymbol{\bullet}_{k} \otimes \mathfrak{l}_{j}^{i}+\boldsymbol{\bullet}_{j} \cdot k \otimes \boldsymbol{\bullet}_{i}, \\
& \Delta\left(\mathfrak{l}_{i}^{k}\right)=\mathfrak{l}_{i}^{k} \otimes 1+1 \otimes \mathfrak{l}_{i}^{k} \cdot{ }_{i}^{k} \otimes \mathfrak{l}_{j}^{k}+\mathfrak{l}_{i}^{j} \otimes{ }^{k}{ }_{k} .
\end{aligned}
$$

Remark. This Hopf algebraic structure is compatible with the morphisms of (1), that is to say:

1. $\mathcal{H}_{\mathbf{P}}$ is a Hopf subalgebra of $\mathcal{H}_{\mathbf{Q P}}$.
2. observe that:

- If $\left(P_{1}, P_{2}\right)$ and $\left(Q_{1}, Q_{2}\right)$ are pairs of isomorphic quasi-posets, then $P_{1} Q_{1}$ and $P_{2} Q_{2}$ are isomorphic.
- If P_{1} and P_{2} are isomorphic quasi-posets of $\mathbf{Q P}(n)$, and if $\phi:[n] \longrightarrow[n]$ is an isomorphism from P_{1} to P_{2}, then the topology associated to P_{2} is the image by ϕ of the topology associated to P_{1} and for any subset I of $P_{1}, \phi_{\mid I}$ is an isomorphism from $\left(P_{1}\right)_{\mid I}$ to $\left(P_{2}\right)_{\mid \phi(I)}$.

Consequently, the surjective map $\left\rfloor: \mathcal{H}_{\mathbf{Q P}} \longrightarrow \mathcal{H}_{\mathrm{qp}}\right.$ is compatible with the product and the coproduct: $\mathcal{H}_{\text {qp }}$ inherits a Hopf algebra structure. Its product is the disjoint union of quasi-posets. For any quasi-poset $P=\left(A, \leq_{P}\right)$:

$$
\Delta(\lfloor P\rfloor)=\sum_{O \in \operatorname{top}(P)}\left\lfloor P_{\mid A \backslash O}\right\rfloor \otimes\left\lfloor P_{\mid O}\right\rfloor .
$$

3. $\mathcal{H}_{\mathbf{p}}$ is a Hopf subalgebra of $\mathcal{H}_{\mathbf{q p}}$.
4. All the morphisms in (1) are Hopf algebra morphisms.

Definition 14 1. We shall say that a finite quasi-poset $P=\left(A, \leq_{P}\right)$ is connected if its associated topology is connected.
2. For any finite quasi-poset P, we denote by $c c(P)$ the number of connected components of its associated topology.

It is well-known that P is connected if, and only if, the Hasse graph of \bar{P} is connected. Any quasi-poset P can be decomposed as the disjoint union of its connected components; in an algebraic setting, $\mathcal{H}_{\mathbf{q p}}$ is generated as a polynomial algebra by the connected quasi-posets. This is not true in $\mathcal{H}_{\mathbf{Q P}}$: for example, $\mathbf{I}_{1}^{3} \cdot{ }^{2}$ is both not connected and indecomposable in $\mathcal{H}_{\mathbf{Q P}}$.

2.3 Second coproduct

Definition 15 Let $P=\left(A, \leq_{P}\right)$ be a quasi-poset and let \sim be an equivalence on A.

1. We define a second quasi-order $\leq_{P \mid \sim}$ on A by the relation:

$$
\forall x, y \in A, x \leq_{P \mid \sim} y \text { if }\left(x \leq_{P} y \text { and } x \sim y\right) .
$$

2. We define a third quasi-order $\leq_{P / \sim}$ on A as the transitive closure of the relation \mathcal{R} defined by:

$$
\forall x, y \in A, x \mathcal{R} y \text { if }\left(x \leq_{P} y \text { or } x \sim y\right) .
$$

3. We shall say that \sim is P-compatible and we shall denote $\sim \triangleleft P$ if the two following conditions are satisfied:

- The restriction of P to any equivalence class of \sim is connected.
- The equivalences $\sim_{P / \sim}$ and \sim are equal. In other words:

$$
\forall x, y \in A,\left(x \leq_{P / \sim} y \text { and } y \leq_{P / \sim} x\right) \Longrightarrow x \sim y
$$

note that the converse assertion trivially holds.

Remarks.

1. $P \mid \sim$ is the disjoint union of the restriction of \leq_{P} to the equivalence classes of \sim.
2. Let $x, y \in P$. Then $x \leq_{P / \sim} y$ if there exist $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, x_{k}^{\prime} \in A$ such that:

$$
x \leq_{P} x_{1} \sim x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} \sim x_{k}^{\prime} \leq_{P} y .
$$

3. If $\sim \triangleleft P$, then:
(a) The equivalence classes of $\sim_{P / \sim}$ are the equivalence classes of \sim and are included in a connected component of P. This implies that the connected components of P / \sim are the connected components of P. Consequently:

$$
\begin{equation*}
c l(P / \sim)=c l(\sim), \quad c c(P / \sim)=c c(P), \tag{2}
\end{equation*}
$$

where $\operatorname{cl}(\sim)$ is the number of equivalence classes of \sim.
(b) If $x \sim_{P} y$ and $x \sim y$, then $x \sim_{P \mid \sim y} y$: the equivalence classes of $\sim_{P \mid \sim}$ are the equivalence classes of \sim_{P}; the connected components of $P \mid \sim$ are the equivalence classes of \sim. Consequently:

$$
\begin{equation*}
c l(P \mid \sim)=c l(P), \quad c c(P \mid \sim)=c l(\sim) \tag{3}
\end{equation*}
$$

Definition 16 Let $P \in \mathbf{Q P}$. We shall say that P is discrete if $\lfloor\bar{P}\rfloor=.{ }^{c l(P)}$.
In other words, P is discrete if, and only if, $\sim_{P}=\leq_{P}$.
Definition 17 We define a second coproduct δ on $\mathcal{H}_{\mathbf{Q P}}$ in the following way: for all $P \in \mathbf{Q P}$,

$$
\delta(P)=\sum_{\sim \triangleleft P}(P / \sim) \otimes(P \mid \sim) .
$$

Then $\left(\mathcal{H}_{\mathbf{Q P}}, m, \delta\right)$ is a bialgebra. Its counit ε^{\prime} is given by:

$$
\forall P \in \mathbf{Q P}, \varepsilon^{\prime}(P)=\left\{\begin{array}{l}
1 \text { if } P \text { is discrete }, \\
0 \text { otherwise }
\end{array}\right.
$$

Proof. Firstly, let us prove the compatibility of δ and m. Let $P=\left(A, \leq_{P}\right)$ and $Q=\left(B, \leq_{Q}\right)$ be two elements of $\mathbf{Q P}$. Let \sim be an equivalence relation on P. We denote by \sim^{\prime} and $\sim^{\prime \prime}$ the restriction of \sim to P and Q. Then:

- If $\sim \triangleleft P Q$, then as the equivalence classes of \sim are connected, they are included in A or in B. Consequently, if $x \in A$ and $y \in B, x$ and y are not equivalent for \sim. Moreover, $\sim^{\prime} \triangleleft P$ and $\sim^{\prime \prime} \triangleleft Q$, and:

$$
P Q \mid \sim=\left(P \mid \sim^{\prime}\right)\left(Q \mid \sim^{\prime \prime}\right), \quad P Q / \sim=\left(P / \sim^{\prime}\right)\left(Q / \sim^{\prime \prime}\right)
$$

- Conversely, if $\sim^{\prime} \triangleleft P, \sim^{\prime \prime} \triangleleft Q$ and for all $x \in A, y \in B, x$ and y not are not \sim-equivalent, then $\sim \triangleleft P Q$.

Hence:

$$
\begin{aligned}
\delta(P Q) & =\sum_{\sim \triangleleft P Q}(P Q / \sim) \otimes(P Q \mid \sim) \\
& =\sum_{\sim^{\prime} \triangleleft P, \sim^{\prime \prime} \triangleleft Q}\left(P / \sim^{\prime}\right)\left(Q / \sim^{\prime \prime}\right) \otimes\left(P \mid \sim^{\prime}\right)\left(Q \mid \sim^{\prime \prime}\right) \\
& =\delta(P) \delta(Q)
\end{aligned}
$$

Let us now prove the coassociativity of δ. Let $P \in \mathbf{Q P}$.
First step. We put:

$$
A=\left\{\left(r, r^{\prime}\right) \mid r \triangleleft P, r^{\prime} \triangleleft P / r\right\}, \quad B=\left\{\left(s, s^{\prime}\right) \mid s \triangleleft P, s^{\prime} \triangleleft P_{\mid} s\right\}
$$

We consider the maps:

$$
F:\left\{\begin{array}{rl}
A & \longrightarrow \\
\left(r, r^{\prime}\right) & \longrightarrow
\end{array} r^{\prime}, r\right), \quad G:\left\{\begin{array}{rll}
B & \longrightarrow & A \\
\left(s, s^{\prime}\right) & \longrightarrow & \left(s^{\prime}, s\right) .
\end{array}\right.
$$

F is well-defined: we put $\left(s, s^{\prime}\right)=\left(r^{\prime}, r\right)$. The equivalence classes of s are the equivalence classes of r^{\prime}, so are P-connected. If $x \sim_{P / s} y$, there exist $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, s_{k}^{\prime}$ and $y_{1}, y_{1}^{\prime}, \ldots, y_{l}, y_{l}$ such that:

$$
x \leq_{P} x_{1} r^{\prime} x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} r^{\prime} x_{k}^{\prime} \leq_{P} y, \quad y \leq_{P} y_{1} r^{\prime} y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} r^{\prime} y_{l}^{\prime} \leq_{P} x
$$

Hence:

$$
x \leq_{P / r} x_{1} r^{\prime} x_{1}^{\prime} \leq_{P / r} \ldots \leq_{P / r} x_{k} r^{\prime} x_{k}^{\prime} \leq_{P / r} y, \quad y \leq_{P / r} y_{1} r^{\prime} y_{1}^{\prime} \leq_{P / r} \ldots \leq_{P / r} y_{l} r^{\prime} y_{l}^{\prime} \leq_{P / r} x
$$

So $x \sim_{P / r} y$. As $r^{\prime} \triangleleft P / r, x \sim_{P} y: s \triangleleft P$.
Let us assume that $x s^{\prime} y$. Then $x r y$, so, as $r \triangleleft y$, there exists a path from x to y in the Hasse graph of P, made of vertices all r-equivalent to x and y. If x^{\prime} and y^{\prime} are two elements of this path, Then $x^{\prime} r y^{\prime}$, so $x^{\prime} \leq_{G / r} y^{\prime}$ and finally $x^{\prime} \leq_{(P / r) / r^{\prime}} y^{\prime}$. As $r^{\prime} \triangleleft P / r, x^{\prime} r^{\prime} y^{\prime}$, so $x s y$. So the elements of this path are all $P \mid s$-equivalent: the equivalence classes of s^{\prime} are $P \mid s$-connected.

Let us assume that $x \sim_{(P \mid s) / s^{\prime}} y$. There exist $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, x_{k}^{\prime}$ and $y_{1}, y_{1}^{\prime}, \ldots, y_{l}, y_{l}^{\prime}$ such that:

$$
x \leq_{P \mid r^{\prime}} x_{1} r x_{1}^{\prime} \leq_{P \mid r^{\prime}} \ldots \leq_{P \mid r^{\prime}} x_{k} r x_{k}^{\prime} \leq_{P \mid r^{\prime}} y, \quad y \leq_{P \mid r^{\prime}} y_{1} r y_{1}^{\prime} \leq_{P \mid r^{\prime}} \ldots \leq_{P \mid r^{\prime}} y_{l} r y_{l}^{\prime} \leq_{P \mid r^{\prime}} x
$$

Then:

$$
x \leq_{P} x_{1} r x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} r x_{k}^{\prime} \leq_{P} y, \quad y \leq_{P} y_{1} r y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} r y_{l}^{\prime} \leq_{P} x
$$

So $x \leq_{P / r} y$ and $y \leq_{P / r} x$. As $r \triangleleft P, x r y$, so $x s^{\prime} y$: we obtain that $s^{\prime} \triangleleft P \mid s$.
G is well-defined: let $\left(s, s^{\prime}\right) \in B$ and let us put $G\left(s, s^{\prime}\right)=\left(r, r^{\prime}\right)$. The equivalence classes of r are $P \mid s$-connected, so are P-connected. Let us assume that $x \sim_{P / r} y$. There exist $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, x_{k}^{\prime}$ and $y_{1}, y_{1}^{\prime}, \ldots, y_{l}, y_{l}^{\prime}$ such that:

$$
x \leq_{P} x_{1} s^{\prime} x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} s^{\prime} x_{k}^{\prime} \leq_{P} y, \quad y \leq_{P} y_{1} s^{\prime} y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} s^{\prime} y_{l}^{\prime} \leq_{P} x .
$$

As the equivalence classes of s^{\prime} are $P \mid s$-connected, all this elements are in the same connected component of $P \mid s$, so are s-equivalent:

$$
x \leq_{P \mid s} x_{1} s^{\prime} x_{1}^{\prime} \leq_{P \mid s} \ldots \leq_{P \mid s} x_{k} s^{\prime} x_{k}^{\prime} \leq_{P \mid s} y, \quad y \leq_{P \mid s} y_{1} s^{\prime} y_{1}^{\prime} \leq_{P \mid s} \ldots \leq_{P \mid s} y_{l} s^{\prime} y_{l}^{\prime} \leq_{P \mid s} x .
$$

Hence, $x \sim_{(P \mid s) / s^{\prime}} y$, so as $s^{\prime} \triangleleft P \mid s, x s^{\prime} y$, so $x r y: r \triangleleft P$.
The equivalence classes of r^{\prime} are the equivalence classes of s, so are P-connected and therefore P / r-connected. Let us assume that $x \sim_{(P / r) / r^{\prime}} y$. Note that if $x^{\prime} s^{\prime} y^{\prime}$, then x^{\prime} and y^{\prime} are in the same connected component of $P \mid s$, so $x^{\prime} s y$. By the definition of $\leq_{P / s^{\prime}}$ as a transitive closure, using this observation, we obtain:

$$
x \leq_{P} x_{1} s x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} s x_{k}^{\prime} \leq_{P} y, \quad y \leq_{P} y_{1} s y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} s y_{l}^{\prime} \leq_{P} x .
$$

So $x \sim_{P / s} y$. As $s \triangleleft P, x s y$, so $x r^{\prime} y: r^{\prime} \triangleleft P / r$.
Clearly, F and G are inverse bijections.
Second step. Let $\left(r, r^{\prime}\right) \in A$ and let $F\left(r, r^{\prime}\right)=\left(s, s^{\prime}\right)$. Note that if $x r y$, then $x / \sim_{P / r} y$, so $x / \sim(P / r) / r^{\prime} y$, so $x r^{\prime} y$ as $r^{\prime} \triangleleft P / r$. Then:

$$
\begin{aligned}
\leq_{(P / r) / r^{\prime}} & =\text { transitive closure of }\left(\left(x r^{\prime} y\right) \text { or }\left(x \leq_{P / r} y\right)\right) \\
& =\text { transitive closure of }\left(\left(x r^{\prime} y\right) \text { or }\left(x \leq_{P} y\right) \text { or }\left(x \leq_{r} y\right)\right) \\
& =\text { transitive closure of }\left(\left(x r^{\prime} y\right) \text { or }\left(x \leq_{P} y\right)\right) \\
& =\text { transitive closure of }\left((x s y) \text { or }\left(x \leq_{P} y\right)\right) \\
& =\leq_{P / s} .
\end{aligned}
$$

So $P / s=(P / r) / r^{\prime}$.

$$
\begin{aligned}
\leq_{(P \mid s) / s^{\prime}} & =\text { transitive closure of }\left(\left(x s^{\prime} y\right) \text { or }\left(x \leq_{P \mid s} y\right)\right) \\
& =\text { transitive closure of }\left((x r y) \text { or }\left(x \leq_{P \mid r^{\prime}} y\right)\right) \\
& =\text { transitive closure of }\left((x r y) \text { or }\left(\left(x \leq_{P} y\right) \text { and }\left(x r^{\prime} y\right)\right)\right) \\
& =\text { transitive closure of }\left(\left((x r y) \text { or }\left(x \leq_{P} y\right)\right) \text { and }\left((s r y) \text { or }\left(x r^{\prime} y\right)\right)\right) \\
& =\text { transitive closure of }\left(\left(x \leq_{P r / r} y\right) \text { and }\left(s r^{\prime} y\right)\right) \\
& =\leq_{(P / r) \mid r^{\prime}} .
\end{aligned}
$$

So $(P \mid s) / s^{\prime}=(P / r) \mid r^{\prime}$. For all x, y :

$$
\begin{aligned}
x \leq_{(P \mid s) / s^{\prime}} y & \Longleftrightarrow\left(x \leq_{P \mid s} y\right) \text { and }\left(x s^{\prime} y\right) \\
& \Longleftrightarrow\left(x \leq_{P} y\right) \text { and } x s y \text { and }\left(x s^{\prime} y\right) \\
& \Longleftrightarrow\left(x \leq_{P} y\right) \text { and } x r^{\prime} y \text { and }(x r y) \\
& \Longleftrightarrow\left(x \leq_{P} y\right) \text { and }(x r y) \\
& \Longleftrightarrow x \leq_{P \mid r} y .
\end{aligned}
$$

So $(P \mid s)\left|s^{\prime}=P\right| r$. Finally:

$$
\begin{aligned}
(\delta \otimes I d) \circ \delta(P) & =\sum_{\left(r, r^{\prime}\right) \in A}(P / r) / r^{\prime} \otimes(P / r)\left|r^{\prime} \otimes P\right| r \\
& =\sum_{\left(s, s^{\prime}\right) \in B} P / s \otimes(P \mid s) / s^{\prime} \otimes(P \mid s) \mid s^{\prime} \\
& =(I d \otimes \delta) \circ \delta(P) .
\end{aligned}
$$

So $\mathcal{H}_{\mathrm{QP}}$ is a bialgebra.
Let P be a quasi-poset. If P is discrete, then $\delta(P)=P \otimes P$, so $\left(\varepsilon^{\prime} \otimes I d\right) \circ \delta(P)=\left(I d \otimes \varepsilon^{\prime}\right) \circ$ $\Delta(P)=P$. If P is not discrete, there are three types of relations $\sim \triangleleft P$:

1. The equivalence classes of \sim are the connected components of P : in this case, $P \mid \sim=P$ and $P / \sim=P_{1}$ is discrete.
2. $\sim=\sim_{P}$: in this case, $P / \sim=P$ and $P \mid \sim=P_{2}$ is discrete.
3. \sim is not one of two preceding relations: in this case, nor P / \sim, nor P / \sim is discrete.

So:

$$
\delta(P)-P_{1} \otimes P-P \otimes P_{2} \in \operatorname{Ker}\left(\varepsilon^{\prime}\right) \otimes \operatorname{Ker}\left(\varepsilon^{\prime}\right),
$$

which implies that $\left(\varepsilon^{\prime} \otimes I d\right) \circ \delta(P)=\left(I d \otimes \varepsilon^{\prime}\right) \circ \Delta(P)=P$.
Examples. If $\{a, b\}=\{1,2\}$ and $\{i, j, k\}=\{1,2,3\}$:

$$
\begin{aligned}
& \delta\left(\boldsymbol{\bullet}_{1}\right)=\boldsymbol{\bullet}_{1} \otimes \boldsymbol{\bullet}_{1}, \\
& \delta\left(\mathfrak{l}_{a}^{b}\right)=\mathfrak{l}_{a}^{b} \otimes \cdot \boldsymbol{\bullet}_{a} \cdot b+\boldsymbol{\bullet}_{a, b} \otimes \mathfrak{l}_{a}^{b}, \\
& \delta\left({ }^{j} \mathbf{V}_{i}^{k}\right)={ }^{j} \boldsymbol{V}_{i}{ }^{k} \otimes \cdot{ }_{i \cdot j} \cdot{ }_{k}+\mathbf{I}_{i, j}^{k} \otimes \mathfrak{I}_{i}^{j} \cdot{ }_{k}+\mathbf{1}_{i, k}^{j} \otimes \mathfrak{I}_{i}^{k} \cdot{ }_{j}+\boldsymbol{\bullet}_{i, j, k} \otimes{ }^{j} \mathbf{V}_{i}{ }^{k},
\end{aligned}
$$

$$
\begin{aligned}
& \delta\left(\mathfrak{l}_{i}^{k}\right)=\mathfrak{l}_{i}^{k} \otimes \bullet_{i} \cdot{ }_{j} \cdot k+\mathfrak{t}_{i, j}^{k} \otimes \mathfrak{1}_{i}^{j} \cdot{ }_{k}+\mathbf{t}_{i}^{j, k} \otimes \cdot{ }_{i} \mathfrak{l}_{j}^{k}+\cdot{ }_{i, j, k} \otimes \mathfrak{l}_{i}^{k} .
\end{aligned}
$$

Remarks.

1. δ is the internal coproduct of $[8]$.
2. $\left(\mathcal{H}_{\mathbf{Q P}}, m, \delta\right)$ is not a Hopf algebra: for all $n \geq 1, \delta\left({ }^{n}\right)={ }_{\cdot n} \otimes \cdot{ }_{n}$, and $\cdot{ }_{n}$ has no inverse in $\mathcal{H}_{\mathrm{QP}}$.
3. This coproduct is also compatible with the map \lfloor, so we obtain a bialgebra structure on $\mathcal{H}_{\text {qp }}$ with the coproduct defined by:

$$
\delta(\lfloor P\rfloor)=\sum_{\sim \triangleleft P}\lfloor P / \sim\rfloor \otimes\lfloor P \mid \sim\rfloor .
$$

4. $\mathcal{H}_{\mathbf{P}}$ and $\mathcal{H}_{\mathbf{p}}$ are not stable under δ, as if P is a poset and $\sim \triangleleft P, P / \sim$ is not necessarily a poset (although $P \mid \sim$ is). However, there is a way to define a coproduct $\bar{\delta}=(\xi \otimes I d) \circ \delta$ on \mathcal{H}_{p} :

$$
\forall P \in \mathbf{P}(n), \bar{\delta}(\lfloor P\rfloor)=\sum_{\sim \triangleleft P}=\overline{\lfloor P / \sim\rfloor} \otimes\lfloor P \mid \sim\rfloor .
$$

$\left(\mathcal{H}_{\mathbf{p}}, m, \bar{\delta}\right)$ is a quotient of $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$ through the map ξ.

2.4 Cointeractions

Theorem 18 We consider the map:

$$
\rho=(I d \otimes\lfloor \rfloor) \circ \delta:\left\{\begin{aligned}
\mathcal{H}_{\mathbf{Q P}} & \longrightarrow \mathcal{H}_{\mathbf{Q P}} \otimes \mathcal{H}_{\mathbf{q p}} \\
P \in \mathbf{Q P} & \longrightarrow \sum_{\sim \triangleleft P}(P / \sim) \otimes\lfloor P \mid \sim\rfloor .
\end{aligned}\right.
$$

The bialgebras $\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right)$ and $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$ are in cointeraction via ρ.

Proof. By composition, ρ is an algebra morphism. Let us take $P \in \mathbf{Q P}(n)$. We put:

$$
A=\{(r, O) \mid r \triangleleft P, O \in \operatorname{top}(P / r)\}, \quad B=\left\{\left(O, s, s^{\prime}\right) \mid O \in \operatorname{top}(P), s \triangleleft P_{[n] \backslash O}, s^{\prime} \triangleleft P_{\mid O}\right\}
$$

First step. We define a map $F: A \longrightarrow B$, sending (r, O) to $\left(O, s, s^{\prime}\right)$, by:

- xsy if $x r y$ and x, y are in the same connected component of $P_{[[n] \backslash O}$.
- $x s^{\prime} y$ if $x r y$ and x, y are in the same connected component of $P_{\mid O}$.

Let us prove that F is well-defined. Let us take $x, y \in[n]$, with $x \in O$ and $x \leq_{P} y$. Then $x \leq_{P / r} y$. as O is an open set of $P / r, y \in O: O$ is an open set of P. By definition, the equivalence classes of s^{\prime} are the intersection of the equivalence classes of r and of the connected components of O. As O is a union of equivalence classes of r, they are $P_{\mid O}$-connected. If $x \sim_{P_{\mid O} / s^{\prime}} y$, then $x \sim_{P / r} y$ and x and y are in the same connected component of O. As $r \triangleleft r$, $x r y$, so $x s^{\prime} y$: $s^{\prime} \triangleleft P_{\mid O}$. Similarly, $s \triangleleft P_{[[n] \backslash O}$.

Second step. We define a map $G: B \longrightarrow A$, sending $\left(O, s, s^{\prime}\right)$ to $\left(O, r, r^{\prime}\right)$, by:

$$
x r y \text { if }(x, y \notin O \text { and } x s y) \text { or }\left(x, y \in O \text { and } x s^{\prime} y\right) .
$$

Let us prove that G is well-defined. Let $x, y \in[N]$, with $x \in O$ and $x \leq_{P / r} y$. There exists $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, x_{k}^{\prime}$ such that:

$$
x \leq_{P} x_{1} r x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} r x_{k}^{\prime} \leq_{P} y
$$

As O is an open set of $P, x_{1} \in O$; by definition of $r, x_{1}^{\prime} \in O$. Iterating, we obtain that $x_{2}, x_{2}^{\prime}, \ldots, x_{k}, x_{k}^{\prime}, y \in O$. So O is open in P / r.

Let us assume that $x r y$. Then $x, \in O$ or $x, y \notin O$. As $s \triangleleft P_{[[n] \backslash O}$ and $P_{\mid O}$, there exists a path from x to y in the Hasse graph of P formed by elements s - or s^{\prime} - equivalent to x and y, so the equivalence classes of r are P-connected.

Let us assume that $x \sim_{P / r} y$. here exists $x_{1}, x_{1}^{\prime}, \ldots, x_{k}, s_{k}^{\prime}$ and $y_{1}, y_{1}^{\prime}, \ldots, y_{l}, y_{l}$ such that:

$$
x \leq_{P} x_{1} r x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} r x_{k}^{\prime} \leq_{P} y, \quad y \leq_{P} y_{1} r y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} r y_{l}^{\prime} \leq_{P} x .
$$

If $x, y \in O$, then all these elements are in O, so $x \sim_{P_{\mid O} / s^{\prime}} y$, and then $x s^{\prime} y$, so $x r y$. If $x, y \notin O$, as O is an open set, none of these elements is in O, so $x \sim_{P_{[n] \backslash o} / s} y$, so $x s y$ and finally $x r y$: $r \triangleleft P$.

Third step. Let $(r, O) \in A$. We put $F(r, O)=\left(O, s, s^{\prime}\right)$ and $G\left(O, s, s^{\prime}\right)=(\tilde{r}, O)$. If $x r y$, as O is an open set of P / r, both x and y are in O or both are not in O. Hence, $x s y$ or $x s^{\prime} y$, so $x \tilde{r} y$.

If $x \tilde{r} y$, then $x s y$ or $x s^{\prime} y$, so $x r y: \tilde{r}=r$ and $G \circ F=I d_{A}$.
Let $\left(O, s, s^{\prime}\right) \in B$. We put $G\left(O, s, s^{\prime}\right)=(r, O)$ and $F(r, O)=\left(O, \tilde{s}, \tilde{s}^{\prime}\right)$. If $x s y$, then x and y are in the same connected component of $[n] \backslash O$ as $s \triangleleft P_{\mid[n] \backslash O}$ and $x r y$, so $x \tilde{s} y$. If $x \tilde{s} y$, then $x r y$, so $x s y$: we obtain that $\tilde{s}=s$. Similarly, $\tilde{s}^{\prime}=s^{\prime}$, which proves that $F \circ G=I d_{B}$.

We proved that F and G are inverse bijections. Let $(r, O) \in A$ and $\left(O, s, s^{\prime}\right)=F(O, r)$.

$$
\begin{aligned}
\leq_{(P / r)_{\mid[n] \backslash O}} & =\text { transitive closure of }\left(x r y \text { and } x \leq_{P} y\right) \text { restricted to }[n] \backslash O \\
& =\text { transitive closure of }\left(x r y \text { and } x \leq_{P_{[[n] \backslash O}} y\right) \\
& =\text { transitive closure of }\left(x s y \text { and } x \leq_{P_{[[n] \backslash O}} y\right) \\
& =\leq_{P_{[[n] \backslash n]} / s} .
\end{aligned}
$$

So $(P / r)_{\mid[n] \backslash O}=P_{\mid[n] \backslash O} / s$. Similarly, $(P / r)_{\mid O}=P_{\mid O} / s^{\prime}$.

Let us now consider $P_{\mid R}$. Its connected components are the equivalence classes of r, that is to say the equivalence classes of s and s^{\prime}; for any such equivalence class $I,\left(P_{\mid R}\right)_{\mid I}=P_{\mid I}$. So $P_{\mid R}$ is the disjoint union of $\left(P_{\mid[n] \backslash O}\right)_{\mid s}$ and $\left(P_{\mid O}\right)_{\mid s^{\prime}}$, and therefore is isomorphic to $\left.\operatorname{Std}\left(P_{\mid[n] \backslash O}\right)_{\mid s}\right) \operatorname{Std}\left(\left(P_{\mid O}\right)_{\mid s^{\prime}}\right)$, but not equal, because of the reindexation induced by the standardization. Hence, $\left\lfloor P_{\mid R}\right\rfloor=$ $\left\lfloor\left(P_{\mid[n] \backslash O}\right)_{\mid s}\right\rfloor\left\lfloor\left(P_{\mid O}\right)_{\mid s^{\prime}}\right\rfloor$.

Finally:

$$
\begin{aligned}
(\Delta \otimes I d) \circ \rho(P) & =\sum_{(r, O) \in A}(G / r)_{\mid[n] \backslash O} \otimes(G / r)_{\mid O} \otimes\left\lfloor G_{\mid r}\right\rfloor \\
& =\sum_{\left(O, s, s^{\prime}\right) \in B}\left(P_{\mid[n] \backslash O}\right) / s \otimes\left(P_{\mid O}\right) / s^{\prime} \otimes\left\lfloor\left(P_{\mid[n] \backslash O}\right)_{\mid s}\right\rfloor\left\lfloor\left(P_{\mid O}\right)_{\mid s^{\prime}}\right\rfloor \\
& =m_{2,4}^{3} \circ(\rho \otimes \rho) \circ \Delta(P)
\end{aligned}
$$

Moreover, $(\varepsilon \otimes I d) \circ \rho(P)=\delta_{P, 1} 1 \otimes 1=\varepsilon(P) 1 \otimes 1$.
Remark. As noticed in $[8],\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right)$ and $\left(\mathcal{H}_{\mathbf{Q P}}, m, \delta\right)$ are not in cointeraction through δ.
Taking the quotient through \rfloor :
Corollary 19 The bialgebras $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ and $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$ are in cointeraction via δ. Moreover, $\mathcal{H}_{\mathbf{q p}}$ si given a graduation by:

$$
\forall n \geq 0,\left(\mathcal{H}_{\mathbf{q p}}\right)_{n}=\operatorname{Vect}(P \in \mathbf{q p} \mid \operatorname{cl}(P)=n)
$$

With this graduation, hypotheses $1-5$ of section 1.3 are satisfied.
Proof. Here, V is the space generated by the set of connected quasi-posets; the basis $\left(g_{i}\right)_{i \in I}$ of group-like elements of $\left(\mathcal{H}_{\mathbf{q p}}\right)_{1}$ is $\left(\cdot{ }_{n}\right)_{n \geq 1}$.

We denote by $M_{\mathbf{q} \mathbf{p}}$ the monoid of characters of $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$. Its product is denoted by $*$. Using proposition 4 on $\mathcal{H}_{\mathbf{Q P}}$:

Corollary 20 Let $\lambda \in M_{\mathbf{q p}}$. The following map is a Hopf algebra endomorphism:

$$
\phi_{\lambda}:\left\{\begin{aligned}
\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) & \longrightarrow\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) \\
P \in \mathbf{Q P} & \longrightarrow \sum_{\sim \triangleleft P} \lambda_{\lfloor P \mid \sim\lrcorner} P / \sim .
\end{aligned}\right.
$$

It is bijective if, and only if, for all $n \geq 1, \lambda_{\bullet} \neq 0$. If this holds, $\phi_{\lambda}^{-1}=\phi_{\lambda^{*-1}}$.
Proof. $\phi_{\lambda}=I d \leftarrow \lambda$, so is an element of $E_{\mathcal{H}_{\mathrm{QP}} \rightarrow \mathcal{H}_{\mathrm{QP}}}$.
\Longrightarrow. For all $n \geq 0, \phi_{\lambda}\left(\cdot{ }_{n}\right)=\lambda_{\bullet} \cdot{ }_{n}$. As ϕ_{λ} is injective, $\lambda_{\bullet} \neq 0$.
\Longleftarrow. By proposition $5, \lambda$ is invertible in $M_{\mathbf{q} \mathbf{p}}$: let us denote its inverse by μ. Then, by proposition 4:

$$
\phi_{\lambda} \circ \phi_{\mu}=I d \leftarrow(\lambda * \mu)=I d \leftarrow \varepsilon^{\prime}=I d
$$

Similarly, $\phi_{\mu} \circ \phi_{\lambda}=I d$.

3 Ehrhart polynomials

Notations. For all $k \geq 0$, we denote by H_{k} the k-th Hilbert polynomial:

$$
H_{k}(X)=\frac{X(X-1) \ldots(X-k+1)}{k!}
$$

3.1 Definition

Definition 21 Let $P \in \mathbf{Q P}(n)$ and $k \geq 1$. We put:

$$
\begin{aligned}
L_{P}(k) & =\left\{f:[n] \longrightarrow[k] \mid \forall i, j \in[n], i \leq_{P} j \Longrightarrow f(i) \leq f(j)\right\}, \\
L_{P}^{s t r}(k) & =\left\{f \in L_{P}(k) \mid \forall i, j \in[n],\left(i \leq_{P} j \text { and } f(i)=f(j)\right) \Longrightarrow i \sim_{P} j\right\}, \\
W_{P}(k) & =\left\{w \in L_{P}(k) \mid w([n])=[k]\right\}, \\
W_{P}^{s t r}(k) & =\left\{w \in L_{P}^{s t r}(k) \mid w([n])=[k]\right\} .
\end{aligned}
$$

By convention:

$$
L_{P}(0)=L_{P}^{s t r}(0)=W_{P}(0)=W_{P}^{s t r}(0)=\left\{\begin{array}{l}
\emptyset \text { if } P \neq 1, \\
\{1\} \text { if } P=1 .
\end{array}\right.
$$

We also put:

$$
L_{P}=\bigcup_{k \geq 0} L_{P}(k), \quad L_{P}^{s t r}=\bigcup_{k \geq 0} L_{P}^{s t r}(k), \quad W_{P}=\bigsqcup_{k \geq 0} W_{P}(k), \quad W_{P}^{s t r}=\bigsqcup_{k \geq 0} W_{P}^{s t r}(k) .
$$

Note that the elements of W_{P} and $W_{P}^{\text {str }}$ are packed words (see definition 40).
Proposition 22 Let $P \in \mathbf{Q P}$. There exist unique polynomials ehr P_{P} and ehr $r_{P}^{s t r} \in \mathbb{Q}[X]$, such that for $k \geq 0$:

$$
e h r_{P}(k)=\sharp L_{P}(k), \quad e h r_{P}^{s t r}(k)=\sharp L_{P}^{s t r}(k) .
$$

Proof. This is obvious if $P=1$, with $\operatorname{ehr}_{1}(X)=e h r_{1}^{s t r}(X)=1$. Let us assume that $P \in \mathbf{Q P}(n), n \geq 1$. Note that if $i>n, W_{P}(i)=0$. For all $k \geq 1$:

$$
\sharp L_{P}(k)=\sum_{i=1}^{k} \sharp W_{P}(i)\binom{k}{i}=\sum_{i=1}^{k} \sharp W_{P}(i) H_{i}(k)=\sum_{i=1}^{n} \sharp W_{P}(i) H_{i}(k) .
$$

So:

$$
\operatorname{ehr}_{P}(X)=\sum_{i=1}^{n} \sharp W_{P}(i) H_{i}(X) .
$$

Moreover, if $k=0$:

$$
e h r_{P}(0)=\sum_{i=1}^{n} \sharp W_{P}(i) H_{i}(0)=\sharp L_{P}(0) .
$$

In the same way:

$$
e h r_{P}^{s t r}(X)=\sum_{i=1}^{n} \sharp W_{P}^{s t r}(i) H_{i}(X) .
$$

These are indeed elements of $\mathbb{Q}[X]$.

Remarks.

1. Let $P, Q \in \mathbf{Q P}(n)$.

- If they are isomorphic, then $e h r_{P}(k)=e h r_{Q}(k)$ for all $k \geq 1$, so $e h r_{P}=e h r_{Q}$.
- If $w \in L_{P}$, for all $x, y \in P$ such that $x \sim_{P} y$, then $w(x) \leq w(y)$ and $w(y) \leq w(x)$, so $w(x)=w(y): w$ goes through the quotient by \sim_{P}. We obtain in this way a bijection from $L_{P}(k)$ to $L_{\bar{P}}(k)$ for all k, so $e h r_{P}=e h r_{\bar{P}}$. Similarly, ehr $r_{P}^{s t r}=e h r \frac{s t r}{P}$.

Hence, we obtain maps, all denoted by $e h r$ and $e h r^{s t r}$, such the following diagrams commute:

2. Let $P \in \mathbf{P}(n)$. The classical definition of the Ehrhart polynomial $e h r^{c l}(t)$ is the number of of integral points of $t \operatorname{Pol}(P)$, where $\operatorname{Pol}(P)$ is the polytope associated to P. Hence, $e h r^{c l}(X)=\operatorname{ehr}(X+1)$.

Theorem 23 The morphisms ehr, ehr ${ }^{\text {str }}: \mathcal{H}_{\mathbf{Q P}}, \mathcal{H}_{\mathbf{q p}}, \mathcal{H}_{\mathbf{p}} \longrightarrow \mathbb{K}[X]$ are Hopf algebra morphisms.

Proof. It is enough to prove it for $e h r, e h r^{s t r}: \mathcal{H}_{\mathbf{p}} \longrightarrow \mathbb{K}[X]$.

First step. Let $P \in \mathbf{P}(n)$. Let us prove that for all $k, l \geq 0$:

$$
e h r_{P}(k+l)=\sum_{O \in T o p(P)} e h r_{P_{\mid[n] \backslash O}}(k) e h r_{P_{\mid O}}(l), \quad e h r_{P}^{s t r}(k+l)=\sum_{O \in T o p(P)} e h r_{P_{\mid[n] \backslash O}^{s t r}}(k) e h r_{P_{\mid O}}^{s t r}(l) .
$$

Let $f \in L_{P}(k+l)$. We put $O=f^{-1}(\{k+1, \ldots, k+l\})$. If $x \in O$ and $x \leq_{P} y$, then $f(x) \leq f(y)$, so $y \in O: O$ is an open set of P. By restriction, the following maps are elements of respectively $L_{P_{\mid[n] \backslash O}}(k)$ and $L_{P_{\mid O}}(l)$:

$$
f_{1}:\left\{\begin{array}{rll}
{[n] \backslash O} & \longrightarrow & {[k]} \\
x & \longrightarrow & f(x),
\end{array} \quad f_{2}:\left\{\begin{array}{rll}
O & \longrightarrow & {[l]} \\
x & \longrightarrow & f(x)-k .
\end{array}\right.\right.
$$

This defines a map:

$$
v:\left\{\begin{array}{rll}
L_{P}(k+l) & \longrightarrow & \bigsqcup_{O \in T o p(P)} \\
& & L_{P_{\mid[n] \backslash O}}(k) \times L_{P_{\mid O}}(l) \\
f & \longrightarrow & \left(f_{1}, f_{2}\right) .
\end{array}\right.
$$

This map is clearly injective; moreover:

$$
\nu\left(L_{P}^{s t r}(k+l)\right) \subseteq \bigsqcup_{O \in T o p(P)} L_{P_{\mid[n] \backslash O}^{s t r}}^{s i n}(k) \times L_{P \mid O}^{s t r}(l)
$$

Let us prove that f is surjective. Let $\left(f_{1}, f_{2}\right) \in L_{P_{\mid[n] \backslash O}}(k) \otimes L_{P_{\mid O}}(l)$, with $O \in \operatorname{Top}(P)$. We define a map $f: P \longrightarrow[k+l]$ by:

$$
f(x)=\left\{\begin{array}{l}
f_{1}(x) \text { if } x \notin O \\
f_{2}(x)+k \text { if } x \in O
\end{array}\right.
$$

Let $x \leq_{P} i$. As O is an open set of P, three cases are possible:

- $x, y \notin O$: then $f_{1}(x) \leq f_{1}(y)$, so $f(x) \leq f(y)$.
- $x, y \in O$: then $f_{2}(x) \leq f_{2}(y)$, so $f(x) \leq f(y)$.
- $x \notin O, y \in O$: then $f(x) \leq k<f y j)$.

So $f \in L_{P}(k+l)$, and $v(f)=\left(f_{1}, f_{2}\right): v$ is surjective, and finally bijective. Moreover, if $f_{1} \in L_{[n] \backslash O}^{s t r}(k)$ and $f_{2} \in L_{P_{\mid O}}^{s t r}(l)$, then $f=v^{-1}\left(f_{1}, f_{2}\right) \in L_{P}^{s t r}(k+l)$. Finally:

$$
\begin{aligned}
f\left(L_{P}(k+l)\right) & =\bigsqcup_{O \in \operatorname{Top}(P)} L_{P_{\mid[n] \backslash O}}(k) \times L_{P_{\mid O}}(l), \\
f\left(L_{P}^{s t r}(k+l)\right) & =\bigsqcup_{O \in \operatorname{Top}(P)} L_{P_{\mid[n] \backslash O}^{s t r}}^{s t r}(k) \times L_{P_{\mid O}}^{s t r}(l) .
\end{aligned}
$$

Taking the cardinals, we obtain the announced result.
Second step. Let $P \in \mathbf{P}(m), Q \in \mathbf{P}(n)$, and $f:[m+n] \longrightarrow[k]$. Then $f \in L_{P Q}(k)$ if, and only if, $f_{\mid[m]} \in L_{P}(k)$ and $\operatorname{Std}\left(f_{\mid[m+n] \backslash[m]} \in L_{Q}(k)\right.$. So $e h r_{P Q}(k)=e h r_{P}(k) e h r_{Q}(k)$, and then $e h r_{P Q}(X)=e h r_{P}(X) e h r_{Q}(X): e h r$ is an algebra morphism.

Let P be a finite poset, and $k, l \geq 0$. By the first step:

$$
\begin{aligned}
(e h r \otimes e h r) \circ \Delta(P)(k, l) & =\sum_{O \in T o p(P)} e h r_{P_{\mid[n] \backslash O}}(k) e h r_{P_{\mid O}}(l) \\
& =\operatorname{ehr} r_{P}(k+l) \\
& =\Delta \circ \operatorname{ehr}(P)(k, l) .
\end{aligned}
$$

As this is true for all $k, l \geq 1,(e h r \otimes e h r) \circ \Delta(P)=\Delta \circ e h r(P)$. Moreover:

$$
\varepsilon \circ \operatorname{ehr}(P)=\operatorname{ehr}(0)=\left\{\begin{array}{l}
1 \text { if } P=1 \\
0 \text { otherwise }
\end{array}\right.
$$

so $\varepsilon \circ e h r=\varepsilon$.

The proof is similar for $e h r^{s t r}$.

3.2 Recursive computation of $e h r$ and $e h r^{s t r}$

Let us recall this classical result:
Lemma 24 We consider the following maps:

$$
L:\left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\
H_{k}(X) & \longrightarrow & H_{k+1}(X)
\end{array}\right.
$$

The map L is injective, and $L(\mathbb{K}[X])=\mathbb{K}[X]_{+}$. Moreover, for all $P \in \mathbb{K}[X]$, for all $n \geq 0$:

$$
L(P)(n+1)=P(0)+\ldots+P(n)
$$

Proof. Let us consider $P=H_{k}(X)$. For all $n \geq 0$:

$$
\begin{aligned}
H_{k}(0)+\ldots+H_{k}(n) & =\binom{0}{k}+\ldots+\binom{n}{k} \\
& =\binom{k}{k}+\ldots+\binom{n}{k} \\
& =\binom{n+1}{k+1} \\
& =H_{k+1}(n+1) \\
& =L\left(H_{k}\right)(n+1) .
\end{aligned}
$$

By linearity, for any $P \in \mathbb{K}[X], L(P)(n+1)=P(0)+\ldots+P(n)$ for all $n \geq 1$.

$$
\begin{aligned}
e h r_{P}(X) & =L\left(\sum_{\emptyset \neq O \in T o p(P)} e h r_{P_{[[n] \backslash O}}(X)\right), \\
e h r_{P}^{s t r}(X) & =L\left(\sum_{\emptyset \neq O \in T o p(P), \text { discrete }} e h r_{P_{\mid[n] \backslash O}^{s t r}}(X)\right) .
\end{aligned}
$$

Proof. Let $n \geq 1$. As $L_{Q}(1)$ is reduced to a singleton for all finite poset Q :

$$
\begin{aligned}
\operatorname{ehr}_{P}(n+1) & =\sum_{O \in T o p(P)} e h r_{P_{[\mid n] \backslash O}}(n) e h r_{P_{\mid O}}(1) \\
& =\sum_{\emptyset \neq O \in T o p(P)} e h r_{P_{[n] \backslash O}}(n)+e h r_{P}(n) .
\end{aligned}
$$

We put:

$$
Q(X)=\sum_{\emptyset \neq O \in T o p(P)} e h r_{P_{[n n] O}}(X) .
$$

In particular:

$$
Q(0)=\sum_{\emptyset \neq O \in T o p(P)} e h r_{P_{\mid[n] \backslash O}}(0)=e h r_{\emptyset}(0)+0=1=e h r_{P}(1) .
$$

Then:

$$
\begin{aligned}
\operatorname{ehr}_{P}(n+1) & =Q(n)+e h r_{P}(n) \\
& =Q(n)+Q(n-1)+e h r_{P}(n-1) \\
& \vdots \\
& =Q(n)+Q(n-1)+\ldots+Q(1)+e h r_{P}(1) \\
& =Q(n)+\ldots+Q(1)+Q(0) \\
& =L(Q)(n+1) .
\end{aligned}
$$

So $e h r_{P}=L(Q)$.
For $e h r_{P}^{s t r}$, observe that $e h r_{Q}^{s t r}(1)=1$ if Q is discrete, and 0 otherwise, which implies:

$$
e h r_{P}^{s t r}(n+1)=\sum_{\emptyset \neq O \in T o p(P), \text { discrete }} e h r_{P_{[[n] \backslash O}^{s t r}}(n)+e h r_{P}^{s t r}(n) .
$$

The end of the proof is similar.

Examples.

$$
\begin{aligned}
& \text { ehr. }(X)=H_{1}(X)=X, \\
& \text { ehr } r(X)=H_{1}(X)+H_{2}(X)=\frac{X(X+1)}{2},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ehr}_{\mathfrak{l}}(X)=H_{1}(X)+2 H_{2}(X)+H_{3}(X)=\frac{X(X+1)(X+2)}{6} ; \\
& e h r{ }^{s t r}(X)=H_{1}(X)=X, \\
& e h r_{!}^{s t r}(X)=H_{2}(X)=\frac{X(X-1)}{2}, \\
& e h r^{s t r}(X)=e h r^{s t r}(X)=H_{2}(X)+2 H_{3}(X)=\frac{X(X-1)(2 X-1)}{6}, \\
& e h r^{s t r}(X)=H_{3}(X)=\frac{X(X-1)(X-2)}{6} .
\end{aligned}
$$

3.3 Characterization of quasi-posets by packed words

Lemma 26 Let $P \in \mathbf{Q P}(n)$ and let I_{1}, \ldots, I_{k} be distinct minimal classes of the poset \bar{P}; let $w^{\prime} \in W_{\left.P_{[n] \backslash\left(I_{1} \sqcup \ldots\right.}^{s t} I_{k}\right)}^{s t r}$. The following map belongs to $W_{P}^{s t r}$:

$$
w:\left\{\begin{aligned}
{[n] } & \longrightarrow \mathbb{N}^{*} \\
x \in I_{p}, 1 \leq p \leq k & \longrightarrow p \\
x \notin I_{1} \sqcup \ldots \sqcup I_{k} & \longrightarrow w^{\prime}(x) .
\end{aligned}\right.
$$

Proof. Let us assume that $i \leq_{P} j$.

- If $i \in I_{p}$, as I_{p} is a minimal class of $\bar{P}, j \in I_{p}$ or $j \notin I_{1} \sqcup \ldots \sqcup I_{k}$. In the first case, $w(i)=w(j)$; in the second case, $w(i) \leq k<w(j)$. If moreover $w(i)=w(j)$, then necessarily $j \in I_{p}$, so $i \sim_{P} j$.
- If $i \notin I_{1} \sqcup \ldots \sqcup I_{k}$, as $i \leq_{P} j, j \notin I_{1} \sqcup \ldots \sqcup I_{k}$, so $i \leq_{P_{[n] \backslash\left(I_{1} \sqcup \ldots \sqcup I_{k}\right)} j}$ and $w^{\prime}(i) \leq w^{\prime}(j)$, so $w^{\prime}(i) \leq w^{\prime}(j)$. If moreover $w(i)=w(j)$, then $w^{\prime}(i)=w^{\prime}(j)$, so $i \sim_{P_{[n] \backslash\left(I_{1} \sqcup \ldots \sqcup I_{k}\right)}} j$ and finally $i \sim_{P} j$.

As a conclusion, $w \in W_{P}^{s t r}$.
Remark. This lemma implies that $W_{P}^{\text {str }}$ is non-empty for any non-empty quasi-poset P.
Proposition 27 Let $P=\left([n], \leq_{P}\right)$ be a quasi-poset and let $i, j \in[n]$. The following assertions are equivalent:

1. $i \leq_{P} j$.
2. For all $w \in L_{P}, w(i) \leq w(j)$.
3. For all $w \in L_{P}^{s t r}, w(i) \leq w(j)$.
4. For all $w \in W_{P}, w(i) \leq w(j)$.
5. For all $w \in W_{P}^{s t r}, w(i) \leq w(j)$.

Proof. Obviously:

It is enough to prove that $5 . \Longrightarrow 1$. We proceed by induction on n. If $n=1$, there is nothing to prove. Let us assume the result at all ranks $<n$. Let $i, j \in[n]$, such that we do not have $i \leq_{P} j$. Let us prove that there exists $w \in W_{P}^{s t r}$, such that $w(i)>w(j)$. There exists a minimal element $k \in[n]$, such that $k \leq_{P} j$; let I be the class of k in \bar{P}. By hypothesis on i, i and k are not equivalent for \sim_{P}, so $i \notin I$. If $j \in I$, let us choose an element $w^{\prime} \in W_{P_{[n n] \backslash I}^{s t r}}^{s i f}$; if $j \notin I$, then by the induction hypothesis, there exists $w^{\prime} \in W_{P_{\mid[n] \backslash I}}^{s t r}$, such that $w^{\prime}(i)>w^{\prime}(j)$. By lemma 26 , the following map is an element of $W_{P}^{s t r}$:

$$
w:\left\{\begin{array}{rll}
{[n]} & \longrightarrow & \mathbb{N} \\
x \in I & \longrightarrow & 1 \\
x \notin I & \longrightarrow & w^{\prime}(x)+1
\end{array}\right.
$$

If $j \in I$, then $w(j)=1<w(i)$; if $j \notin I, w(i)=w^{\prime}(i)+1>w^{\prime}(j)+1=w(j)$. In both cases, $w(i)>w(j)$.

3.4 Link with linear extensions

Let $P \in \mathbf{Q P}(n)$. Linear extensions, as defined in [10], are elements of $W_{P}^{\text {str }}$: they are the elements $f \in W_{P}^{\text {str }}$ such that

$$
\forall i, j \in[n], f(i)=f(j) \Longleftrightarrow i \sim_{P} j
$$

It may happens that not all elements of $W_{P}^{s t r}$ are linear extensions. For example, if $P={ }^{2} \gamma_{1}{ }^{3}$, $W_{P}^{s t r}(3)=\{(123),(132),(122)\}$, and (122) is not a linear extension of P. The set of linear extensions of P will be denoted by E_{P}.

Definition 28 Let w and w^{\prime} be two packed words of the same length n. We shall say that $w \leq w^{\prime} i f:$

$$
\forall i, j \in[n], w(i)<w(j) \Longrightarrow w^{\prime}(i)<w^{\prime}(j)
$$

Proposition 29 Let $P \in \mathbf{Q P}(n)$. Then:

$$
W_{P}=\bigcup_{w \in E_{P}}\left\{w^{\prime} \mid w^{\prime} \leq w\right\}
$$

This union may be not disjoint. Moreover, the maximal elements of W_{P} for the order of definition 28 are the elements of E_{P}.

Proof. \subseteq. Let $w \in W_{P}$. For all $1 \leq p \leq \max (w)$, we put $I_{p}=w^{-1}(p)$. Let f_{p} be a linear extension of $P_{\mid I_{p}}$. Let us consider:

$$
f:\left\{\begin{array}{rll}
{[n]} & \longrightarrow & \mathbb{N} \\
i & \longrightarrow & \max \left(f_{1}\right)+\ldots+\max \left(f_{p-1}\right)+f_{p}(i) \text { if } i \in I_{p}
\end{array}\right.
$$

By construction, if $w(i)<w(j)$, then $f(i)<f(j): w \leq f$. Let us prove that $f \in E_{P}$.
If $i \leq_{P} j$, then as $w \in W_{P}, w(i) \leq w(j)$. If $w(i)=w(j)=p$, then $i \leq_{P_{\mid I_{p}}} j$, so $f_{p}(i) \leq f_{p}(j)$, and $f(i) \leq f(j)$. If $w(i)<w(j)$, then $f(i)<f(j)$.

If $f(i)=f(j)$, then $w(i)=w(j)=p$, and $f_{p}(i)=f_{p}(j)$. As $f_{p} \in E_{P_{\mid P_{p}}}, i \sim_{P_{\mid P_{p}}} j$, so $i \sim_{P} j$.
\supsetneq. Let $w \in E_{P}$ and $w^{\prime} \leq w$. If $i \leq_{P} j$, then $w(i) \leq w(j)$ as w is a linear extension of P. As $w^{\prime} \leq w, w^{\prime}(i) \leq w^{\prime}(j)$, so $w^{\prime} \in W_{P}$.

Let w be a maximal element of W_{P}. There exists a linear extension w^{\prime} of P, such that $w \leq w^{\prime}$. As w is maximal, $w=w^{\prime}$ is a linear extension of P. Conversely, if w is a linear extension of P and $w \leq w^{\prime}$ in W_{P}, then as w is a linear extension of $P, \max (w)=c l(P)$. Moreover, as $w \leq w^{\prime}, \max (w) \leq \max \left(w^{\prime}\right)$. As $w^{\prime} \in W_{P}, \max \left(w^{\prime}\right) \leq c l(P)$, which implies that $\max (w)=\max \left(w^{\prime}\right)=c l(P)$, and finally $w=w^{\prime}: w$ is a maximal element of W_{P}.

Example. For $P={ }^{2} \gamma_{1}{ }^{3}$:

$$
\begin{aligned}
E_{P} & =\{(123),(132)\} \\
W_{P} & =\{(123),(122),(112),(111)\} \cup\{(132),(122),(121),(111)\} \\
& =\{(123),(132),(122),(112),(121),(111)\}
\end{aligned}
$$

Note that the two components of W_{P} are not disjoint.
Remark. A similar result is proved in [10] for T-partitions of a quasi-poset, generalizing Stanley's result [17] for P-partitions of posets; nevertheless, this is different here, as the union is not a disjoint one.

4 Characters associated to $e h r$ and $e h r^{s t r}$

Recall that $\left(M_{\mathbf{q p}}, *\right)$ the monoid of characters of $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$.
By theorems 7 and 23:
Proposition 30 1. There exists a unique homogeneous Hopf algebra morphism ϕ_{0} from $\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right)$ to $(\mathbb{K}[X], m, \Delta)$ such that:

$$
\forall n \geq 1, \phi_{0}\left(\cdot{ }_{n}\right)=X
$$

There exists a unique character $\lambda \in M_{\mathbf{q} \mathbf{p}}$ such that for all $P \in \mathbf{q p}$,

$$
\phi_{0}(P)=\lambda_{P} X^{c l(P)}
$$

2. There exist unique characters $\alpha, \alpha^{\text {str }} \in M_{\mathbf{q p}}$, such that:

$$
e h r=\phi_{0} \leftarrow \alpha, \quad e h r^{s t r}=\phi_{0} \leftarrow \alpha^{s t r}
$$

Remarks.

1. Let $P \in \mathbf{q p}$. Then $e h r_{P}=e h r_{\bar{P}}$ and $e h r_{P}^{s t r}=e h r_{\bar{P}}^{s t r}$, so $\alpha_{P}=\alpha_{\bar{P}}$ and $\alpha_{P}^{s t r}=\alpha_{\bar{P}}^{s t r}$.
2. Still by theorem 7, there exists a unique homogeneous Hopf algebra morphism ϕ_{0}^{\prime} from $\mathcal{H}_{\mathbf{p}}$ to $\mathbb{K}[X]$ such that $\phi_{0}^{\prime}(\cdot)=X$. By unicity, $\phi_{0}=\phi_{0}^{\prime} \circ \Xi$, so for any $P \in \mathbf{q p}, \lambda_{P}=\lambda_{\bar{P}}$.

4.1 The character λ

Lemma 31 For all $P \in \mathbf{P}(n), n \geq 0$:

$$
\lambda_{\lfloor P\rfloor}=\left\{\begin{array}{l}
1 \text { if } P=1 \\
\frac{1}{n} \sum_{M \in \max (P)} \lambda_{\left\lfloor P_{\lfloor[n] \backslash\{M\}\rfloor}\right.}=\frac{1}{n} \sum_{m \in \min (P)} \lambda_{\left\lfloor P_{\lfloor[n \backslash \backslash\{m\}}\right\rfloor} \text { otherwise. }
\end{array}\right.
$$

Proof. Let $P \in \mathbf{P}(n)$, with $n \geq 0$. Recall that $\pi: \mathbb{K}[X] \longrightarrow \operatorname{Vect}(X)$ is the canonical projection.

$$
\begin{aligned}
(I d \otimes \pi) \circ \Delta \circ \phi_{0}(\lfloor P\rfloor) & =\lambda_{\lfloor P\rfloor}(I d \otimes \pi) \circ \Delta\left(X^{n}\right) \\
& =\lambda_{\lfloor P\rfloor} n X^{n-1} ; \\
=(I d \otimes \pi) \circ\left(\phi_{0} \otimes \phi_{0}\right) \circ \Delta(\lfloor P\rfloor) & =\sum_{O \in T o p(P)} \lambda_{\left\lfloor P_{\backslash O\rfloor}\right\rfloor} \lambda_{\left\lfloor P_{\mid[n] \backslash O\rfloor}\right.} X^{|[n\rfloor \backslash O|} \pi\left(X^{|O|}\right) \\
& =\sum_{O \in T o p(P),|O|=1} \lambda_{\left\lfloor P_{\backslash O\rfloor}\right\rfloor} \lambda_{\left\lfloor P_{\mid[n\rfloor \backslash O\rfloor}\right.} X^{n-1} \\
& =\sum_{M \in \max (P)} \lambda_{\left\lfloor P_{\lfloor[n\rfloor \backslash\{M\}\rfloor} X^{n-1}\right.}
\end{aligned}
$$

This implies the first equality. The second is proved by considering $(\pi \otimes I d) \circ \Delta \circ \phi_{0}(\lfloor P\rfloor)$.

Remarks.

1. This lemma allows to inductively compute λ_{P}. This gives:

P	-	1	V	A	1	V	.	V	\therefore	Y	\downarrow	,	N	M	V
λ_{P}	1	$\frac{1}{2}$	$\frac{1}{3}$	$\overline{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{24}$	$\frac{5}{24}$	$\frac{1}{6}$	1

2. If $P=(P, \leq)$ is a finite poset, we denote by $P^{o p}$ the opposite poset (P, \geq). It is not difficult to deduce from this lemma that $\lambda_{P}=\lambda_{P o p}$.

Proposition 32 Let $P \in \mathbf{P}(n)$. The number of elements of $W_{P}(n)$ of P is denoted by μ_{P} : in other words, μ_{P} is the number of bijections from $[n]$ to $[n]$ such that for all $x, y \in[n]$,

$$
x \leq_{P} y \Longrightarrow f(x) \leq f(y)
$$

These bijections are called heap-orderings of P. Then, for any finite poset $P, \lambda_{P}=\frac{\mu_{P}}{n!}$.
Proof. Let us fix a non-empty finite poset $P \in \mathbf{P}(n)$. The set of heap-orderings of P is $H O(P)=W_{P}(n)$. We consider the map:

$$
\left\{\begin{array}{rll}
H O(P) & \longrightarrow & \bigsqcup_{M \in \max (P)} H O(P \backslash\{M\}) \\
f & \longrightarrow & f_{\mid[n-1]} \in H O\left(P \backslash\left\{f^{-1}(n)\right\}\right)
\end{array}\right.
$$

It is not difficult to prove that this is a bijection. So:

$$
\mu_{P}=\sum_{M \in \max (P)} \mu_{P \backslash\{M\}} ; \quad \frac{\mu_{P}}{n!}=\frac{1}{n} \sum_{M \in \max (P)} \frac{\mu_{P \backslash\{M\}}}{|P \backslash\{M\}|!}
$$

An easy induction on $|P|$ then proves that $\lambda_{P}=\frac{\mu_{P}}{n!}$ for all P.
This formula can be simplified for rooted forests.
Definition 33 Let P be a non-empty finite poset.

1. We put:

$$
P!=\prod_{i \in V(P)} \sharp\left\{j \in V(P) \mid i \leq_{P} j\right\} .
$$

By convention, $1!=1$.
2. We shall say that P is a rooted forest if P does not contain any subposet isomorphic to \AA.

For example, here are isoclasses of rooted forests of cardinality ≤ 4 :

$$
1 ; \quad \quad ; \quad 1, \ldots ; \quad \vee,!,!, \ldots ; \quad \vee, \downarrow, Y, \downarrow, V,!.,!!,!\ldots, \ldots \ldots
$$

Examples.

P	-	1	V	\wedge	1	V	^.	ϑ	\bigcirc	Y	λ	1	N	M	ϑ
$P!$	1	2	3	4	6	4	8	8	12	12	18	24	6	9	16

Proposition 34 For all finite poset $P, \lambda_{P} \geq \frac{1}{P!}$, with equality if, and only if, P is a rooted forest.

Proof. We proceed by induction on $n=|P|$. It is obvious if $n=0$. Let us assume the result at all ranks $<n$.

$$
\begin{aligned}
\lambda_{P} & =\frac{1}{|P|} \sum_{m \in \min (P)} \lambda_{P \backslash\{m\}} \\
& \geq \frac{1}{|P|} \sum_{m \in \min (P)} \prod_{i \in V(P), i \neq m} \frac{1}{\sharp\left\{j \in V(P) \mid j \neq m, i \leq_{P} j\right\}} \\
& =\frac{1}{|P|} \sum_{m \in \min (P)} \prod_{i \in V(P), i \neq m} \frac{1}{\sharp\left\{j \in V(P) \mid i \leq_{P} j\right\}} \\
& =\frac{1}{P!} \frac{1}{|P|} \sum_{m \in \min (P)} \sharp\left\{j \in V(P) \mid m \leq_{P} j\right\} .
\end{aligned}
$$

For any $j \in A$, there exists $m \in \min (P)$ such that $m \leq_{P} j$, so:

$$
\sum_{m \in \min (P)} \sharp\left\{j \in V(P) \mid m \leq_{P} j\right\} \geq|P| .
$$

Consequently, $\lambda_{P} \geq \frac{1}{P!}$.
Let us assume that this is an equality. Then:

$$
\sum_{m \in \min (P)} \sharp\left\{j \in V(P) \mid m \leq_{P} j\right\}=|P| .
$$

Consequently, for all $j \in \min (P)$, there exists a unique $m \in \min (P)$ such that $m \leq_{P} j$. Moreover, for all $m \in \min (P), \lambda_{P \backslash\{m\}}=\frac{1}{P \backslash\{m\}!}$. By the induction hypothesis, $P \backslash\{m\}$ is a rooted forest; this implies that P is also a rooted forest.

Let us assume that P is a rooted forest. For any $j \in V(P)$, there exists a unique $m \in \min (P)$ such that $m \leq_{P} j$, so:

$$
\sum_{m \in \min (P)} \sharp\left\{j \in V(P) \mid m \leq_{P} j\right\}=|P| .
$$

Moreover, for all $m \in \min (P), P \backslash\{m\}$ is also a rooted forest. By the induction hypothesis, $\lambda_{P \backslash\{m\}}=\frac{1}{P \backslash\{m\}!}$. Hence, $\lambda_{P}=\frac{1}{P!}$.

4.2 The character $\alpha^{s t r}$

Let us now apply theorem 8 to $e h r$ and $e h r^{s t r}$:
Theorem 35 For all finite connected quasi-poset P, we have:

$$
\alpha_{P}=\frac{d e h r_{P}}{d X}(0),
$$

$$
\alpha_{P}^{s t r}=\frac{d e h r_{P}^{s t r}}{d X}(0)
$$

For any quasi-poset P :

$$
e h r_{P}(X)=\sum_{\sim \triangleleft P} \frac{\mu_{P / \sim}}{c l(\sim)!} \alpha_{P \mid \sim} X^{c l(\sim)}, \quad e h r_{P}^{s t r}(X)=\sum_{\sim \triangleleft P} \frac{\mu_{P / \sim}}{c l(\sim)!} \alpha_{P \mid \sim}^{s t r} X^{c l(\sim)},
$$

where $\operatorname{cl}(\sim)$ is the number of equivalence classes of \sim.
Let us give a few values of α :

P	-	$!$	V	入	$!$	V	\&	ϑ	\bigcirc	Y	λ	$!$	N	N	γ
α_{P}	1	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	0	0	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$

Lemma 36 Let $P \in \mathbf{Q P}$, not discrete. Then:

$$
(-1)^{c l(P)} \operatorname{ehr}_{P}(-1)=e h r_{P}^{s t r}(1)=\left\{\begin{array}{l}
1 \text { if } P \text { is discrete }, \\
0 \text { otherwise } .
\end{array}\right.
$$

Proof. If P is discrete, then $\operatorname{ehr_{P}}(X)=e h r_{P}^{s t r}(X)=X^{c l(P)}$ and the result is obvious. Let us assume that P is not discrete. There exists a unique map f from $[n]$ to $[1]$; as P is not discrete, $f \notin L_{P}^{s t r}(1)$, so $e h r_{P}^{s t r}(1)=0$. We now proceed with $e h r_{P}(-1)$.

First step. Let us prove that $L\left(H_{k}(-X)\right)=-H_{k+1}(-X)$ for all $k \geq 0$. For all $l, n \geq 0$:

$$
H_{l}(-n)=(-1)^{l}\binom{n+l-1}{l} .
$$

For all $k, n \geq 0$:

$$
\begin{aligned}
L\left(H_{k}(-X)\right)(n+1) & =H_{k}(0)+\ldots+H_{k}(-n) \\
& =(-1)^{k} \sum_{i=0}^{n}\binom{i+k-1}{k} \\
& =(-1)^{k} \sum_{j=k}^{n+k-1}\binom{j}{k} \\
& =(-1)^{k}\binom{n+k}{k+1} \\
& =-H_{k+1}(-(n+1)) .
\end{aligned}
$$

Second step. Let us prove that $L((X+1) \mathbb{K}[X]) \subseteq(X+1) \mathbb{K}[X]$. For all $k \geq 2$, let us put $H_{k}(-X)=X(X+1) L_{k}(X) ;\left(L_{k}(X)\right)_{k \geq 2}$ is a basis of $\left.\mathbb{K} \mid X\right]$, which implies that $\left(H_{k}(-X)\right)_{k \geq 2}$ is a basis of $X(X+1) \mathbb{K}[X]$, and that $(X+1) \sqcup\left(H_{k}(-X)\right)_{k \geq 2}$ is a basis of $(X+1) \mathbb{K}[X]$. First:
$L(X+1)=L\left(H_{1}(X)+H_{0}(X)\right)=H_{2}(X)+H_{1}(X)=\frac{X(X-1)}{2}+X=\frac{X(X+1)}{2} \in(X+1) \mathbb{K}[X] ;$
if $k \geq 2$, by the first step, $L\left(H_{k}(-X)\right)=-H_{k+1}(-X) \in(X+1) \mathbb{K}[X]$.
Last step. We can replace P by \bar{P}, and we now assume that $P \in \mathbf{P}(n)$. There is nothing to prove if $n=0,1$. Let us assume the result at all rank $<n$. Then, by the second step and the induction hypothesis:

$$
\begin{aligned}
e h r_{\lfloor P\rfloor}(-1) & =L\left(\sum_{\emptyset \neq O \in T o p(P)} e h r_{\left\lfloor P_{\mid[n] \backslash O\rfloor}(X)\right.}\right)_{\mid X=-1} \\
& =L\left(\sum_{\substack{\emptyset \neq O \in T o p(P) \\
P_{\mid[n] \backslash O} \text { discrete }}} e h r_{\left\lfloor P_{\mid[n] \backslash O\rfloor}(X)\right)_{\mid X=-1}}\right. \\
& =L\left(\sum_{[n] \neq J \subseteq \min (P)} e h r_{\left\lfloor P_{\mid J}\right\rfloor}(X)\right)_{\mid X=-1} \\
& =L\left(\sum_{J \subseteq \min (P)} e h r_{\left\lfloor P_{\mid J}\right\rfloor} J(X)\right)_{\mid X=-1} \\
& =L \sum_{\left.\sum_{J \subseteq \min (P)} X^{|J|}\right)_{\mid X=-1}} \\
& =L(\underbrace{(1+X)^{|\min (P)|}}_{\in(X+1) \mathbb{K}[X]})_{\mid X=-1} \\
& =0 .
\end{aligned}
$$

For the fourth equality, note that P is not discrete, so $\min (P) \neq P$.

In other words, for any $P \in \mathbf{q p},(-1)^{c l(P)} e h r_{P}(-1)=e h r_{P}^{s t r}(1)=\varepsilon^{\prime}(P)$. By corollary 10:

Theorem 37 ehr ${ }^{\text {str }}$ is the unique morphism from $\mathcal{H}_{\mathbf{q p}}$ to $\mathbb{K}[X]$ such that:

1. ehr $r^{\text {str }}$ is a Hopf algebra morphism from $\left(\mathcal{H}_{\mathbf{q} \mathbf{p}}, m, \Delta\right)$ to $(\mathbb{K}[X], m, \Delta)$.
2. ehr ${ }^{\text {str }}$ is a bialgebra morphism from $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$ to $(\mathbb{K}[X], m, \delta)$.

Moreover, the character $\alpha^{\text {str }}$ is the inverse of λ in M_{b}.

4.3 The character α and the duality principle

Theorem 38 1. (Duality principle). For any quasi-poset P :

$$
e h r_{P}^{s t r}(X)=(-1)^{c l(P)} e h r_{P}(-X)
$$

2. For any quasi-poset $P, \alpha_{P}=(-1)^{c l(P)+c c(P)} \alpha_{P}^{s t r}$.
3. α is invertible in $M_{\mathbf{q p}}$. We denote by β its inverse. For any quasi-poset P :

$$
\beta_{P}=(-1)^{c l(P)+c c(P)} \lambda_{P}=(-1)^{c l(P)+c c(P)} \frac{\mu_{P}}{c l(P)!}
$$

Proof. 1. We consider the morphism:

$$
\phi:\left\{\begin{array}{rll}
\mathcal{H}_{\mathbf{q p}} & \longrightarrow & \mathbb{K}[X] \\
P \in \mathbf{q p} & \longrightarrow & (-1)^{c l(P)} e h r_{P}(-X) .
\end{array}\right.
$$

We put:

$$
\theta_{1}:\left\{\begin{array}{rl}
\mathcal{H}_{\mathbf{q p}} & \longrightarrow \mathcal{H}_{\mathbf{q p}} \\
P \in \mathbf{q p} & \longrightarrow(-1)^{c l(P)} P,
\end{array} \quad \theta_{2}:\left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow \mathbb{K}[X] \\
P(X) & \longrightarrow P(-X) .
\end{array}\right.\right.
$$

Both are Hopf algebra morphisms, and $\phi=\theta_{2} \circ e h r \circ \phi_{1}$, so ϕ is a Hopf algebra morphism. If P is a non discrete quasi-poset, then $\phi(P)(1)=(-1)^{c l(P)} e h r_{P}(-1)=0=\varepsilon^{\prime}(x)$. If P is a discrete quasi-poset, then $e h r_{P}(X)=X^{c l(P)}$, so $\phi(P)(1)=1=\varepsilon^{\prime}(x)$. By corollary $10, \phi=\phi_{1}=e h r^{s t r}$.
2. and 3. Immediate consequences of the first point.

Proposition 39 The following map is a Hopf algebra automorphism:

$$
\theta:\left\{\begin{aligned}
\left(\mathcal{H}_{\mathbf{q p}}, m, \Delta\right) & \longrightarrow \\
P & \longrightarrow \sum_{\sim \triangleleft P} P / \sim
\end{aligned}\right.
$$

Its inverse is:

$$
\theta^{-1}:\left\{\begin{aligned}
\left(\mathcal{H}_{\mathrm{qp}}, m, \Delta\right) & \longrightarrow\left(\mathcal{H}_{\mathrm{qp}}, m, \Delta\right) \\
P & \longrightarrow \sum_{\sim \triangleleft P}(-1)^{c l(\sim)+c l(P)} P / \sim .
\end{aligned}\right.
$$

Moreover:

$$
e h r^{s t r} \circ \theta=e h r, \quad e h r \circ \theta^{-1}=e h r^{s t r} .
$$

Proof. Let ι be the character of $\mathcal{H}_{\text {qp }}$ which sends any quasi-poset to 1 . By corollary $20, \theta$ is an automorphism and $\theta^{-1}=\phi_{l^{*-1}}$. For any quasi-poset P :

$$
\iota(1)=1=e h r_{P}(1)=\sum_{\sim \triangleleft P} \frac{\mu_{P / \sim}}{c l(P / \sim)!} \alpha_{P \mid \sim}=\sum_{\sim \triangleleft P} \lambda_{P / \sim} \alpha_{P \mid \sim}=\lambda * \alpha(P),
$$

so $\iota=\lambda * \alpha$; hence, its inverse is $\beta * \alpha^{s t r}$, and for any quasi-poset P, as $\operatorname{cl}(P / \sim)=\operatorname{cl}(\sim)$ and $c c(P / \sim)=c c(P)$ for any $\sim \triangleleft P$:

$$
\begin{aligned}
\beta * \alpha^{s t r}(P) & =\sum_{\sim \triangleleft P}(-1)^{c l(\sim)+c c(P)} \frac{\mu_{P / \sim}^{c l(P / \sim)!}}{c \mid} \alpha_{P \mid \sim}^{s t r} \\
& =(-1)^{c c(P)} e h r_{P}^{s t r}(-1) \\
& =(-1)^{c c(P)+c l(P)} e h r^{s t r}(1) \\
& =(-1)^{c c(P)+c l(P)} .
\end{aligned}
$$

Hence:

$$
\theta^{-1}(P)=I d \leftarrow\left(\beta * \alpha^{s t r}\right)(P)=\sum_{\sim \triangleleft P}(-1)^{c c(P \mid \sim)+c l(P \mid \sim)} P / \sim=\sum_{\sim \triangleleft P}(-1)^{c l(\sim)+c l(P)} P / \sim .
$$

Moreover:

$$
\begin{aligned}
e h r^{s t r} \circ \theta & =\left(\phi_{0} \leftarrow \alpha^{s t r}\right) \circ(I d \leftarrow \iota) \\
& =\left(\left(\phi_{0} \leftarrow \alpha^{s t r}\right) \circ I d\right) \leftarrow \iota \\
& =\left(\phi_{0} \leftarrow \alpha^{s t r}\right) \leftarrow \iota \\
& =\phi_{0} \leftarrow\left(\alpha^{s t r} * \iota\right) \\
& =\phi_{0} \leftarrow\left(\alpha^{s t r} * \lambda * \alpha\right) \\
& =\phi_{0} \leftarrow \alpha \\
& =\text { ehr. }
\end{aligned}
$$

4.4 A link with Bernoulli numbers

For any $k \in \mathbb{N}$, let c_{k} be the corolla quasi-poset with k leaves: $c_{k}=\left([k+1], \leq_{c_{k}}\right)$, with $1 \leq_{c_{k}}$ $2, \ldots, k+1$:

$$
c_{0}=\cdot{ }_{1}, \quad c_{1}=\mathfrak{1}_{1}^{2}, \quad c_{2}={ }^{2} \bigvee_{1}^{3}, \quad c_{3}={ }^{2} \stackrel{3}{V}_{1}^{4} \ldots
$$

B proposition 34, $\lambda_{c_{k}}=\frac{1}{k+1}$. Moreover:

$$
\begin{aligned}
L_{c_{k}} & =\left\{f:[k+1] \longrightarrow \mathbb{N}^{*} \mid f(1) \leq f(2), \ldots, f(k+1)\right\}, \\
L_{c_{k}}^{s t r} & =\left\{f:[k+1] \longrightarrow \mathbb{N}^{*} \mid f(1)<f(2), \ldots, f(k+1)\right\},
\end{aligned}
$$

so, for all $n \geq 1$:

$$
E h r_{c_{k}}^{s t r}(n)=(n-1)^{k}+\ldots+1^{k}=S_{k}(n)
$$

where $S_{k}(X)$ is the unique polynomial such that for all $n \geq 1, S_{k}(n)=1^{k}+\ldots+(n-1)^{k}$. As a consequence, $\alpha_{c_{k}}^{s t r}$ is equal to the k-th Bernoulli number b_{k}.

Let $\sim \triangleleft c_{k}$. As the equivalence classes of \sim are connected:

- The equivalence class of the minimal element 1 of c_{k} contains i leaves, $0 \leq i \leq k$.
- The other equivalence classes are formed by a unique leaf.

Hence:

$$
\delta\left(\left\lfloor c_{k}\right\rfloor\right)=\sum_{i=0}^{k}\binom{k}{i}\left\lfloor c_{i, k-i}^{\prime}\right\rfloor \otimes\left\lfloor c_{i}\right\rfloor \cdot^{k-i}
$$

where $c_{i, k-i}^{\prime}$ is the quasi poset on $[k+1]$ such that:

$$
1 \sim_{c_{i, k-i}^{\prime}} \ldots \sim_{c_{i, k-i}^{\prime}} i+1 \leq_{c_{i, k-i}^{\prime}} i+2, \ldots k+1
$$

Hence, by theorem 35:

$$
\begin{aligned}
S_{k}(X) & =\sum_{i=0}^{k}\binom{k}{i} \lambda_{c_{i, k-i}^{\prime}} b_{i} X^{k-i+1} \\
& =\sum_{i=0}^{k}\binom{k}{i} \lambda_{\overline{c_{i, k-i}^{\prime}}} b_{i} X^{k-i+1} \\
& =\sum_{i=0}^{k}\binom{k}{i} \lambda_{c_{k-i}} b_{i} X^{k-i+1} \\
& =\sum_{i=0}^{k}\binom{k}{i} \frac{b_{i}}{k-i+1} X^{k-i+1}
\end{aligned}
$$

We recover in this way Faulhaber's formula. For all $n \geq 1$, ehr $r_{c_{k}}(n)=n^{k}+\ldots+1^{k}$, and the duality principle gives, for all $n \geq 1$:

$$
(-1)^{k+1} S_{k}(-n)=1^{k}+\ldots+n^{k}=S_{k}(n)+n^{k}
$$

5 Noncommutative version

5.1 Reminders on packed words

Let us recall the construction of the Hopf algebra of packed words WQSym [15, 16].
Definition 40 Let $w=x_{1} \ldots x_{n}$ be a word which letters are positive integers.

1. We shall say that w is a packed word if there exists an integer k such that $\left\{x_{1}, \ldots, x_{n}\right\}=[k]$. The set of packed words of length n is denoted by $\mathbf{P W}(n)$; the set of all packed words is denoted by $\mathbf{P W}$.
2. There exists a unique increasing bijection $f:\left\{x_{1}, \ldots, x_{n}\right\} \longrightarrow[k]$ for a well-chosen k. We denote by Pack (w) the packed word $f\left(x_{1}\right) \ldots f\left(x_{k}\right)$. Note that w is packed if, and only if, $w=\operatorname{Pack}(w)$.
3. Let $I \subseteq \mathbb{N}$. Let $i_{1}<\ldots<i_{p}$ be the indices i such that $x_{i} \in I$. We denote by w_{I} the word $x_{i_{1}} \ldots x_{i_{p}}$.
As a vector space, WQSym is generated by the set $\mathbf{P W}$. The product is given by:

$$
\forall u \in \mathbf{P W}(k), \forall v \in \mathbf{P W}(l), u . v=\sum_{\substack{w=x_{1} \ldots x_{k+l} \in \mathbf{P W}(k+l), P \operatorname{Pcck}\left(x_{1} \ldots x_{k}\right)=u, \operatorname{Pack}\left(x_{k+1} \ldots x_{k+l}\right)=v}} w .
$$

The unit is the empty word 1 . The coproduct is given by:

$$
\forall w \in \mathbf{P W}, \Delta(w)=\sum_{k=0}^{\max (w)} w_{\{1, \ldots, k\}} \otimes \operatorname{Pack}\left(w_{\{k+1, \ldots, \max (w)\}}\right) .
$$

For example:

$$
\begin{aligned}
(11) \cdot(11) & =(1111)+(1122)+(2211), \\
(11) \cdot(12) & =(1112)+(1123)+(2212)+(2213)+(3312), \\
(11) \cdot(21) & =(1121)+(1132)+(2231)+(3321), \\
(12) \cdot(11) & =(1211)+(1222)+(1233)+(1322)+(2311), \\
(12) \cdot(12) & =(1212)+(1213)+(1223)+(1234)+(1323)+(1324) \\
& +(1423)+(2312)+(2313)+(2314)+(2413)+(3412), \\
(12) \cdot(21) & =(1221)+(1231)+(1232)+(1243)+(1332)+(1342) \\
& +(1432)+(2321)+(2331)+(2341)+(2431)+(3421), \\
\Delta(111) & =(111) \otimes 1+(111) \otimes 1, \\
\Delta(212) & =(212) \otimes 1+(1) \otimes(11)+1 \otimes(212), \\
\Delta(312) & =(312) \otimes 1+(1) \otimes(21)+(12) \otimes(1)+1 \otimes(312) .
\end{aligned}
$$

5.2 Hopf algebra morphisms in WQSym

Proposition 41 The two following maps are surjective Hopf algebra morphisms:

$$
\begin{aligned}
& E H R:\left\{\begin{array}{rll}
\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) & \longrightarrow & \text { WQSym } \\
P & \longrightarrow & \sum_{w \in W_{P}} w,
\end{array}\right. \\
& E H R^{s t r}:\left\{\begin{array}{rlr}
\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) & \longrightarrow & \text { WQSym } \\
P & \longrightarrow & \sum_{w \in W_{P}^{s t r}} w .
\end{array}\right.
\end{aligned}
$$

Proof. Let $P \in \mathbf{Q P}(k), Q \in \mathbf{Q P}(l)$, and w be a packed word of length $k+l$. Then:

- $w \in W_{P Q}$ if, and only if, $\operatorname{Pack}\left(w_{1} \ldots w_{k}\right) \in W_{P}$ and $\operatorname{Pack}\left(w_{k+1} \ldots w_{k+l}\right) \in W_{Q}$.
- $w \in W_{P Q}^{s t r}$ if, and only if, $\operatorname{Pack}\left(w_{1} \ldots w_{k}\right) \in W_{P}^{s t r}$ and $\operatorname{Pack}\left(w_{k+1} \ldots w_{k+l}\right) \in W_{Q}^{s t r}$.

This implies that:

$$
E H R(P Q)=E H R(P) E H R(Q), \quad E H R^{s t r}(P Q)=E H R^{s t r}(P) E H R^{s t r}(Q)
$$

Let $P \in \mathbf{Q P}(n)$. We consider the two sets:

$$
\begin{aligned}
& A=\left\{(w, k) \mid w \in W_{P}, 0 \leq k \leq \max (w)\right\} \\
& B=\left\{\left(O, w_{1}, w_{2}\right) \mid O \in \operatorname{Top}(P), w_{1} \in W_{\operatorname{Pack}\left(P_{\mid[n] \backslash O}\right)}, w_{2} \in W_{\operatorname{Pack}\left(P_{\mid O}\right)}\right\}
\end{aligned}
$$

We define a bijection between A and B by $F(w, k)=\left(O, w_{1}, w_{2}\right)$, where:

- $O=w^{-1}(\{k+1, \ldots, \max (w)\})$.
- $w_{1}=\operatorname{Pack}\left(w_{\{1, \ldots, k\}}\right)$.
- $w_{2}=\operatorname{Pack}\left(w_{\{k+1, \ldots, \max (w)\}}\right)$.

Then:

$$
\begin{aligned}
\Delta \circ E H R(P) & =\sum_{(w, k) \in A} \operatorname{Pack}\left(w_{\{1, \ldots, k\}}\right) \otimes \operatorname{Pack}\left(w_{\{k+1, \ldots, \max (w)\}}\right) \\
& =\sum_{\left(O, w_{1}, w_{2}\right) \in B} w_{1} \otimes w_{2} \\
& =(E H R \otimes E H R) \circ \Delta(P)
\end{aligned}
$$

So $E H R$ is a Hopf algebra morphism. In the same way, $E H R^{s t r}$ is a Hopf algebra morphism.
Let w be a packed word of length n. We define a quasi-poset structure on $[n]$ by $i \leq_{P} j$ if, and only if, $w_{i} \leq w_{j}$. Then $W_{P}^{s t r}=\{w\}$, so $E H R^{s t r}(P)=w$: $E H R^{s t r}$ is surjective. If $w^{\prime} \in W_{P}$, then $\max \left(w^{\prime}\right) \leq \max (w)$ with equality if, and only if, $w=w^{\prime}$. Hence:

$$
E H R(P)=w+\text { words } w^{\prime} \text { with } \max \left(w^{\prime}\right)<\max (w)
$$

By a triangular argument, $E H R$ is surjective.

Examples.

$$
\begin{aligned}
\operatorname{EHR}\left(\bullet_{1}\right) & =(1), & E H R^{\operatorname{str}}\left(\bullet_{1}\right) & =(1), \\
\operatorname{EHR}\left(\mathfrak{l}_{1}^{2}\right) & =(12)+(11), & E H R^{\operatorname{str}}\left(\mathfrak{l}_{1}^{2}\right) & =(12), \\
\operatorname{EHR}\left(\mathfrak{l}_{2}^{1}\right) & =(21)+(11), & E H R^{s t r}\left(\mathfrak{l}_{2}^{1}\right) & =(21), \\
E H R\left(\cdot \bullet_{2}\right) & =(12)+(21)+(11), & E H R^{s t r}\left(\cdot \bullet_{1}\right) & =(12)+(21)+(11), \\
E H R\left(\cdot \bullet_{12}\right) & =(11), & E H R^{s t r}\left(\cdot \bullet_{1,2}\right) & =(11) .
\end{aligned}
$$

Remark. The Hopf algebra WQSym has a polynomial representation [16]. Let $X=$ $\left\{x_{1}, x_{2}, \ldots\right\}$ be an infinite, totally ordered alphabet; then, for any packed word w :

$$
P_{w}(X)=\sum_{w^{\prime} \in X^{*}, \operatorname{Pack}\left(w^{\prime}\right)=w} w^{\prime}
$$

With this polynomial representation, for any $P \in \mathbf{Q P}(n)$:

$$
E H R(P)=\sum_{f \in L_{P}} x_{f(1)} \ldots x_{f(n)}, \quad E H R^{s t r}(P)=\sum_{f \in L_{P}^{s t r}} x_{f(1)} \ldots x_{f(n)}
$$

Proposition 42 The following map is a Hopf algebra automorphism:

$$
\Theta:\left\{\begin{aligned}
\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) & \longrightarrow\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) \\
P & \longrightarrow \sum_{\sim \triangleleft P} P / \sim
\end{aligned}\right.
$$

Its inverse is:

$$
\Theta^{-1}:\left\{\begin{aligned}
\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) & \longrightarrow\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right) \\
P & \longrightarrow \sum_{\sim \triangleleft P}(-1)^{c l(P)+c l(\sim)} P / \sim
\end{aligned}\right.
$$

Moreover, $E H R^{\text {str }} \circ \Theta=E H R$ and $E H R \circ \Theta^{-1}=E H R^{\text {str }}$.
Proof. By corollary 20, $\Theta=\phi_{\iota}$ is a Hopf algebra automorphism, where ι is defined in the proof of proposition 39. Its inverse is $\phi_{l^{*-1}}$.

Let us prove that:

$$
W_{G}=\sum_{\sim \triangleleft P} W_{G / \sim}^{s t r} .
$$

Let $w \in W_{G}$; we define an equivalence \sim_{w} by $x \sim_{w} y$ if $w(x)=w(y)$ and x and y are in the same connected component of $w^{-1}(w(x))$. By definition, the equivalence classes of \sim_{w} are connected. If $x \sim_{P / \sim_{w}} y$, there exists $x_{1}, x_{1}^{\prime} \ldots, x_{k}, x_{k}^{\prime}, y_{1}, y_{1}^{\prime} \ldots, y_{l}, y_{l}^{\prime}$ such that:

$$
\begin{aligned}
& x \leq_{P} x_{1} \sim_{w} x_{1}^{\prime} \leq_{P} \ldots \leq_{P} x_{k} \sim_{w} x_{k}^{\prime} \leq_{P} y \\
& y \leq_{P} y_{1} \sim_{w} y_{1}^{\prime} \leq_{P} \ldots \leq_{P} y_{l} \sim_{w} y_{l}^{\prime} \leq_{P} x .
\end{aligned}
$$

As $w \in W_{P}, w(x) \leq w\left(x_{1}\right)=w\left(x_{1}^{\prime}\right) \leq \ldots \leq w\left(x_{k}\right)=w\left(x_{k}^{\prime}\right) \leq w(y)$; by symmetry, $w(x)=$ $w\left(x_{1}\right)=\ldots=w\left(x_{k}^{\prime}\right)=w(y)=i$. Moreover, as the equivalence classes of \sim_{w} are connected, x and y are in the same connected component of $w^{-1}(i)$, so $x \sim_{w} y: \sim_{w} \triangleleft P$.

If $x \leq_{P} y$ or $x \sim_{w} y$, then $w(x) \leq w(q)$. By transitive closure, if $x \leq_{P / \sim_{w}} y$, then $w(x) \leq$ $w(y)$, so $w \in W_{P / \sim_{w}}$. Moreover, if $w(i) \neq w(j)$, we do not have $x \sim_{w} y$, so $w \in W_{P / \sim_{w}}^{\text {str }}$.

Let us assume that $\sim \triangleleft P$ and let $w \in W_{P / \sim}^{s t r}$. If $x \leq_{P} y$, then $x \leq_{P / \sim}^{y}$, so $w(x) \leq w(y)$: $W_{P / \sim}^{s t r} \subseteq W_{P}$.

Let us assume that $w \in W_{P / \sim}^{s t r}$, with $\sim \triangleleft P$. If $x \sim y$, then $w(x)=w(y)=i$ and x and y are in the same connected component of $P \mid \sim$, so are in the the same connected component of $w^{-1}(i): x \sim_{w} y$. If $x \sim_{w} y$, then $w(x)=w(y)=i$ and there exists $x_{1}, x_{1}^{\prime} \ldots, x_{k}, x_{k}^{\prime}$ with $w\left(x_{1}\right)=w\left(x_{1}^{\prime}\right)=\ldots=w\left(x_{k}\right)=w\left(x_{k}^{\prime}\right)=i$ such that:

$$
x \leq_{P} x_{1} \geq_{P} x_{1}^{\prime} \leq_{P} \ldots \geq_{P} x_{k}^{\prime} \leq_{P} y .
$$

As $w \in W_{P / \sim}^{s t r}, x \sim_{P / \sim} x_{1}, x_{1} \sim_{P / \sim} x_{1}^{\prime}, \ldots, x_{k}^{\prime} \sim_{P / \sim} y$. So $x \sim_{P / \sim} y$; as $\sim \triangleleft P, x \sim y$. Finally, $\sim=\sim_{w}$.

We obtain that:

$$
E H R(P)=\sum_{w \in W_{P}} w=\sum_{\sim \triangleleft P} \sum_{w \in W_{P / \sim}^{s t r}} w=\sum_{\sim \triangleleft P} E H R^{s t r}(P / \sim)=E H R^{s t r}(\Theta(P)) .
$$

So $E h r^{s t r} \circ \Theta=E H R$.
Proposition 43 Let us consider the following map:

$$
H:\left\{\begin{array}{lll}
\text { WQSym } & \longrightarrow & \mathbb{K}[X] \\
w \in \mathbf{P W} & \longrightarrow & H_{\max (w)}(X) .
\end{array}\right.
$$

Proof. Let $P \in \mathbf{Q P}$. Then:

$$
\operatorname{ehr}(\lfloor P\rfloor)=\sharp W_{P}(k) H_{k}(X)=\sum_{w \in W_{P}} H_{\max (w)}(X)=\sum_{w \in W_{P}} H(w)=H \circ E H R(P) .
$$

So $e h r \circ\left\rfloor=H \circ E H R\right.$. Similarly, $e h r^{s t r} \circ\lfloor \rfloor=H \circ E H R^{s t r}$.
Let us prove that H is a Hopf algebra morphism. Let $w_{1}, w_{2} \in \mathbf{W Q S y m}$. There exist $x_{1}, x_{2} \in \mathcal{H}_{\mathbf{Q P}}$, such that $w_{1}=\operatorname{EHR}\left(x_{1}\right)$ and $w_{2}=\operatorname{EHR}\left(x_{2}\right)$. Then:

$$
\begin{aligned}
H\left(w_{1} w_{2}\right) & =H\left(E H R\left(x_{1}\right) E H R\left(x_{2}\right)\right) \\
& =H \circ E H R\left(x_{1} x_{2}\right) \\
& =\operatorname{ehr}\left(\left\lfloor x_{1} x_{2}\right\rfloor\right) \\
& =\operatorname{ehr}\left(\left\lfloor x_{1}\right\rfloor\right) \operatorname{ehr}\left(\left\lfloor x_{2}\right\rfloor\right) \\
& =H \circ E H R\left(x_{1}\right) H \circ E H R\left(x_{2}\right) \\
& =H\left(w_{1}\right) H\left(w_{2}\right) .
\end{aligned}
$$

Let $w \in \mathbf{W Q S y m}$. There exists $x \in \mathcal{H}_{\mathbf{Q P}}$ such that $w=E H R(x)$.

$$
\begin{aligned}
\Delta \circ H(w) & =\Delta \circ H \circ E H R(x) \\
& =(H \otimes H) \circ(E H R \otimes E H R) \circ \Delta(x) \\
& =(H \otimes H) \circ \Delta \circ E H R(x) \\
& =(H \otimes H) \circ \Delta(w)
\end{aligned}
$$

So H is a Hopf algebra morphism.

5.3 The non-commutative duality principle

Lemma 44 The following map is an involution and a Hopf algebra automorphism:

$$
\Phi_{-1}:\left\{\begin{aligned}
\text { WQSym } & \longrightarrow \\
w & \longrightarrow(-1)^{\max (w)} \\
& \sum_{[:[\max (w)]} \sigma \circ[l], \text { non-decreasing }
\end{aligned}\right.
$$

Proof. Using the surjective morphisms $E H R^{s t r}$ and $e h r^{s t r}$, taking the quotients of the cointeracting bialgebras $\left(\mathcal{H}_{\mathbf{Q P}}, m, \Delta\right)$ and $\left(\mathcal{H}_{\mathbf{q p}}, m, \delta\right)$, we obtain that (WQSym, $\left.m, \Delta\right)$ and $(\mathbb{K}[X], m, \delta)$ are cointeracting bialgebras, with the coaction defined by:

$$
\rho=(I d \otimes H) \circ \delta: \mathbf{W Q S y m} \longrightarrow \mathbf{W Q S y m} \otimes \mathbb{K}[X]
$$

For any packed word w :

$$
\rho(w)=\sum_{\sigma:[k] \rightarrow[l], \text { non-decreasing }} \sigma \circ w \otimes H_{\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(1)}\right)\right)}(X) \ldots H_{\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(l)}\right)\right)}(X)
$$

Using proposition 4 , for any $\lambda \in \mathbb{K}$, considering the character:

$$
e v_{\lambda}:\left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow & \mathbb{K} \\
P & \longrightarrow & P(\lambda),
\end{array}\right.
$$

we obtain an endomorphism Φ_{λ} of (WQSym, m, Δ) defined by $\Phi_{\lambda}=I d \leftarrow e v_{\lambda}$. if $\lambda \neq 0, \Phi_{\lambda}$ is invertible, of inverse $\Phi_{\lambda^{-1}}$. For any packed word w, denoting by k its maximum:

$$
\Phi_{\lambda}(w)=\sum_{\sigma:[k] \rightarrow[l], \text { non-decreasing }} H_{\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(1)}\right)\right)}(\lambda) \ldots H_{\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(l)}\right)\right)}(\lambda) \sigma \circ w .
$$

In particular, for $\lambda=-1$, for any $p \in \mathbb{N}$:

$$
H_{p}(-1)=\frac{(-1)(-2) \ldots(-k)}{k!}=(-1)^{k}
$$

Hence:

$$
\begin{aligned}
\Phi_{-1}(w) & =\sum_{\sigma:[k] \rightarrow[l], \text { non-decreasing }}(-1)^{\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(1)}\right)\right)+\ldots+\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(l)}\right)\right)} \sigma \circ w \\
& =(-1)^{k} \sum_{\sigma:[k] \rightarrow[l], \text { non-decreasing }} \sigma \circ w .
\end{aligned}
$$

Indeed, if $x \in(\sigma \circ w)^{-1}(p)$ and $y \in(\sigma \circ w)^{-1}(q)$, with $p<q$, then $\sigma \circ w(x)<\sigma \circ x(y)$; as σ is non-decreasing, $x<y$. So there exists $n_{1}<n_{2}<\ldots<n_{l}=k$ such that for all p, the values taken by w on $(\sigma \circ w)^{-1}(p)$ are $n_{p-1}+1, \ldots, n_{p}$. Hence, the values taken by $\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(p)}\right)$ are $1, \ldots, n_{p}-n_{p-1}$, so:
$\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(1)}\right)\right)+\ldots+\max \left(\operatorname{Pack}\left(w_{\mid(\sigma \circ w)^{-1}(l)}\right)\right)=n_{1}+n_{2}-n_{1}+\ldots+n_{l}-n_{l-1}=n_{l}=k$.
In particular, Φ_{-1} is an involution and a Hopf algebra automorphism of (WQSym, m, Δ).
Theorem 45 (Non commutative duality principle) For any quasi-poset $P \in \mathbf{Q P}$:

$$
E H R(P)=(-1)^{c l(P)} \Phi_{-1} \circ E R H^{s t r}(P), \quad E H R^{s t r}(P)=(-1)^{c l(P)} \Phi_{-1} \circ E R H(P)
$$

Proof. We shall use the following involution and Hopf algebra automorphism:

$$
\Psi:\left\{\begin{array}{rll}
\mathcal{H}_{\mathbf{Q P}} & \longrightarrow & \mathcal{H}_{\mathbf{Q P}} \\
p \in \mathbf{Q P} & \longrightarrow & (-1)^{c l(P)} P .
\end{array}\right.
$$

Recall that the character ι of $\mathcal{H}_{\mathbf{Q P}}$ sends any $P \in \mathbf{Q P}$ to 1 . By the duality principle:

$$
\iota \circ \Psi(P)=(-1)^{c l(P)}=(-1)^{c l(P)} e h r(P)(1)=e h r^{s t r}(-1)=e v_{-1} \circ e h r^{s t r}(P)
$$

So $\iota \circ \Psi=e v_{-1} \circ e h r^{s t r}$.

Let $P \in \mathbf{Q P}$. Recalling that if $\sim \triangleleft P, \operatorname{cl}(P \mid \sim)=\operatorname{cl}(P)$:

$$
\delta \circ \Psi(P)=(-1)^{c l(P)} \sum_{\sim \triangleleft P} P / \sim \otimes P\left|\sim=\sum_{\sim \triangleleft P} P / \sim \otimes(-1)^{c l(P \mid \sim)} P\right| \sim=(I d \otimes \Psi) \circ \delta(P)
$$

So $\delta \circ \Psi=(I d \otimes \Psi) \circ \delta$. Hence, for any $x \in \mathcal{H}_{\mathbf{Q P}}$:

$$
\begin{aligned}
E H R \circ \Psi(x) & =E H R^{s t r} \circ(I d \leftarrow \iota) \circ \Psi(x) \\
& =E H R^{s t r}\left(\Psi(x)_{0}\right) \iota \circ \Psi(x)_{1} \\
& =E H R^{s t r}\left(x_{0}\right) \iota \Psi\left(x_{1}\right) \\
& =E H R^{s t r}\left(x_{0}\right) e v_{-1} \circ e h r^{s t r}\left(x_{1}\right) \\
& =E H R^{s t r}\left(x^{(1)}\right) e v_{-1} \circ E H R^{s t r}\left(x^{(2)}\right) \\
& =E H R \leftarrow e v_{-1}(x) \\
& =\left(I d \leftarrow e v_{-1}\right) \circ E H R^{s t r}(x) \\
& =\Phi_{-1} \circ E H R^{s t r}(x)
\end{aligned}
$$

where we denote $\delta(x)=x^{(1)} \otimes x^{(2)}$ and $\rho(x)=x_{0} \otimes x_{1}$. As Φ_{-1} and Ψ are involutions, $E H R^{s t r} \circ \Psi=\Phi_{-1} \circ E H R$.

In $E_{\mathbb{K}[X] \rightarrow \mathbb{K}[X]}$, putting $\phi_{\lambda}=I d \leftarrow e v_{\lambda}$, for any $P \in \mathbb{K}[X], \phi_{\lambda}(P)=P(\lambda X)$. Moreover, as H is compatible with the coactions:

$$
H \circ \Phi_{\lambda}=H \circ\left(I d \leftarrow e v_{\lambda}\right)=H \leftarrow e v_{\lambda}=\left(I d \leftarrow e v_{\lambda}\right) \circ H=\phi_{\lambda} \circ H,
$$

so:

$$
e h r \circ \Psi=H \circ E H R \circ \Psi=H \circ \Phi_{-1} \circ E H R^{s t r}=\phi_{-1} \circ H \circ E H R^{s t r}=\phi_{-1} \circ e h r^{s t r} .
$$

In other words, for any $P \in \mathbf{Q P},(-1)^{c l(P)} e h r_{P}(X)=e h r_{P}^{s t r}(-X)$: we recover the duality principle.

We obtain the commutative diagram of Hopf algebra morphisms:

5.4 Compatibility with the other product and coproduct

Theorem 46 We define a second coproduct δ on WQSym:

$$
\forall w \in \mathbf{P W}, \delta(w)=\sum_{(\sigma, \tau) \in A_{w}}(\sigma \circ w) \otimes(\tau \circ w),
$$

where A_{w} is the set of pairs of packed words (σ, τ) of length $\max (w)$ such that:

- σ is non-decreasing.
- If $1 \leq i<j \leq \max (w)$ and $\sigma(i)=\sigma(j)$, then $\tau(i)<\tau(j)$.

Then (WQSym, m, δ) is a bialgebra and $E H R^{\text {str }}$ is a bialgebra morphism from $\left(\mathcal{H}_{\mathbf{Q P}}, m, \delta\right)$ to (WQSym, m, δ).

Proof. Let us prove that $\delta \circ E H R^{s t r}=\left(E H R^{s t r} \otimes E H R^{s t r}\right) \circ \delta$. Let $P \in \mathbf{Q P}$. We consider the two following sets:

$$
\begin{aligned}
& A=\left\{\left(\sim, w_{1}, w_{2}\right) \mid \sim \triangleleft P, w_{1} \in W_{P / \sim}^{s t r}, w_{2} \in W_{P \mid \sim}^{s t r}\right\}, \\
& B=\left\{(w, \sigma, \tau) \mid w \in W_{P}^{s t r},(\sigma, \tau) \in A_{w}\right\} .
\end{aligned}
$$

Let $\left(\sim, w_{1}, w_{2}\right) \in A$. We put $I_{p}=w_{1}^{-1}(p)$ for all $1 \leq p \leq \max \left(w_{1}\right)$, and $w_{2}^{(p)}$ the standardization of the restriction of w_{2} to I_{p}. We define w by:

$$
w(i)=w_{2}^{(p)}(i)+\max w_{1}^{(2)}+\ldots+\max w_{p-1}^{(2)} \text { if } i \in I_{p} .
$$

Let us prove that $w \in W_{P}^{s t r}$. If $x \leq_{P} y$, then $x \leq_{P / \sim} y$, so $p=w_{1}(x) \leq w_{2}(y)=q$.

- If $p<q$, then $w(x)<w(y)$.
- If $p=q$, then $w_{1}(x)=w_{2}(y)$ and, as $x \leq_{P} y, x$ and y are in the same connected component of $w^{-1}(p)$. So $x \sim_{w_{1}} y$, that is to say $x \sim y$ as $w_{1} \in W_{P / \sim}^{s t r}$, and $x \leq_{P \mid \sim} y$, which implies that $w_{2}(x) \leq w_{2}(y)$ and finally $w(x) \leq w(y)$.

Let us assume that moreover $w(x)=w(y)$. Then $p=q$ and necessarily, $w_{2}(x)=w_{2}(y)$. As $w_{2} \in W_{P \mid \sim}^{s t r}, x \sim_{P \mid \sim} y$, so $x \sim_{P} y$.

If $w(x)=w(y)$, then by definition of $w, w_{1}(x)=w_{1}(y)$. So there exists a unique σ : $[\max (w)] \longrightarrow\left[\max \left(w_{1}\right)\right]$, such that $w_{1}=\sigma \circ w$. If $w(x)<w(y)$, then, by construction of w, $w_{1}(x) \leq w_{1}(y): \sigma$ is non-decreasing.

There exists a unique $\tau:[\max (w)] \longrightarrow\left[\max \left(w_{2}\right)\right]$, such that $w_{2}=\tau \circ \sigma$. As $\operatorname{Pack}\left(w_{\mid I_{p}}\right)=$ $\operatorname{Pack}\left(\left(w_{2}\right)_{\mid I_{p}}\right)$ for all p, τ is increasing on I_{p}.

To any $\left(\sim, w_{1}, w_{2}\right) \in A$, we associate $(w, \sigma, \tau)=F\left(\sim, w_{1}, w_{2}\right) \in B$, such that $w_{1}=\sigma \circ \tau$, $w_{2}=\tau \circ \sigma$, and $\sim=\sim_{\sigma \circ \tau}$. This defines a map $F: A \longrightarrow B$.

Let $(w, \sigma, \tau) \in B$. We put $G(w, \sigma, \tau)=(\sim, \sigma, \tau)=\left(\sim_{\sigma \circ w}, \sigma \circ w, \tau \circ w\right)$. If $x \leq_{P} y$, then $w(x) \leq w(y)$, so $w_{1}(x)=\sigma \circ w(x) \leq \sigma \circ w(y)=w_{1}(y)$. If moreover $w_{1}(x)=w_{1}(y)$, then as $x \leq_{P} y, x$ and y are in the same connected component of $w_{1}^{-1}\left(w_{1}(x)\right)$, so $x \sim_{w_{1}} y: w_{1} \in W_{P / \sim}^{s t r}$.

If $x \leq_{P \mid \sim} y$, then $x \sim_{w_{1}} y$ and $x \leq_{P} y$, so $w_{1}(x)=w_{1}(y)$ and $w_{(}(x) \leq w(y)$. By hypothesis on $\tau, \tau \circ w(x) \leq \tau \circ w(y)$, so $w_{2}(x) \leq w_{2}(y)$. If moreover $w_{2}(x)=w_{2}(y)$, by hypothesis on τ, $w(x)=w(y)$. As $w \in W_{P}^{s t r}, x \sim_{P} y$, so $x \sim_{P \mid \sim} y: w_{2} \in W_{P \mid \sim}^{s t r}$.

We defined in this way a map $G: B \longrightarrow A$. If $\left(\sim, w_{1}, w_{2}\right) \in A$:

$$
G \circ F\left(\sim, w_{1}, w_{2}\right)=G(w, \sigma, \tau)=\left(\sim_{\sigma \circ w}, \sigma \circ w, \tau \circ w\right)=\left(\sim_{w_{1}}, w_{1}, w_{2}\right)=\left(\sim, w_{1}, w_{2}\right) .
$$

So $G \circ F=I d_{A}$. If $(w, \sigma, \tau) \in B$:

$$
F \circ G(w, \sigma, \tau)=F\left(\sim_{\sigma \circ w}, \sigma \circ w, \tau \circ w\right)=(w, \sigma, \tau) .
$$

So $F \circ G=I d_{B}: F$ and G are inverse bijections.
We obtain:

$$
\begin{aligned}
\left(E H R^{s t r} \otimes E H R^{s t r}\right) \circ \delta(P) & =\sum_{\left(\sim, w_{1}, w_{2}\right) \in A} w_{1} \otimes w_{2} \\
& =\sum_{(w, \sigma, \tau) \in B} \sigma \circ w \otimes \tau \circ w \\
& =\sum_{w \in W_{P}^{s t r}} \delta(w) \\
& =\delta \circ E H R^{s t r}(P) .
\end{aligned}
$$

So $E H R^{s t r}$ is compatible with δ.
As $E H R^{s t r}$ is compatible with the product m and the coproduct $\delta, \operatorname{Ker}\left(E H R^{s t r}\right)$ is a biideal of $\left(\mathcal{H}_{\mathbf{Q P}}, m, \delta\right)$, and $(\mathbf{W Q S y m}, m, \delta)$ is identified with the quotient $\mathcal{H}_{\mathbf{Q P}} / \operatorname{Ker}\left(E H R^{s t r}\right)$, so is a bialgebra.

Examples.

$$
\begin{aligned}
& \delta(11)=(11) \otimes(11) \\
& \delta(12)=(12) \otimes((11)+(12)+(21))+(11) \otimes(12) \\
& \delta(21)=(21) \otimes((11)+(12)+(21))+(11) \otimes(21)
\end{aligned}
$$

This coproduct δ on WQSym is the internal coproduct of [16], dual to the product of the Solomon-Tits algebra.

Remarks.

1. The counit of (WQSym $, m, \delta)$ is given by:

$$
\varepsilon_{B}(w)=\left\{\begin{array}{l}
1 \text { if } w=(1 \ldots 1) \\
0 \text { otherwise }
\end{array}\right.
$$

2. There is no coproduct δ^{\prime} on WQSym such that $(E H R \otimes E H R) \circ \delta=\delta^{\prime} \circ E H R$. Indeed, if δ^{\prime} is any coproduct on WQSym, for $x=\mathfrak{l}_{1}^{2}+\mathfrak{l}_{2}^{1}-{ }^{1} \cdot{ }^{\bullet}{ }_{2}-\cdot{ }_{1,2}$:

$$
\delta^{\prime} \circ E H R(x)=\delta^{\prime}(0)=0
$$

but:

$$
\begin{aligned}
& (E H R \otimes E H R) \circ \delta(x) \\
& =(E H R \otimes E H R)\left(\left(\mathfrak{l}_{1}^{2}+\mathfrak{l}_{2}^{1}-\cdot{ }_{1} \cdot 2\right) \otimes \cdot 1 \cdot 2+\cdot{ }_{1,2} \otimes\left(\mathfrak{l}_{1}^{2}+\mathfrak{l}_{2}^{1}-\cdot{ }_{1} \cdot 2-\cdot{ }_{1,2}\right)\right) \\
& =(11) \otimes(11)
\end{aligned}
$$

Proposition $47 \mathrm{H}:(\mathbf{W Q S y m}, m, \delta) \longrightarrow(\mathbb{K}[X], m, \delta)$ is a bialgebra morphism.

Proof. Let w be a packed word. We denote $k=\max (w)$. Let $a, b \in \mathbb{N}$.

$$
\begin{aligned}
(H \otimes H) \circ \delta(w)(a, b) & =\sum_{(\sigma, \tau) \in A_{w}} H_{\max (\sigma \circ w)}(a) H_{\max (\tau \circ w)}(b) \\
& =\sum_{\sigma:[k] \rightarrow[l], \text { non-decreasing }}\binom{a}{l}\binom{b}{\left|\sigma^{-1}(1)\right|} \cdots\binom{b}{\left|\sigma^{-1}(l)\right|} \\
& =\sum_{\substack{1 \leq l \leq k, i_{1}+\ldots+i_{l}=k}}\binom{a}{l}\binom{b}{i_{1}} \cdots\binom{b}{i_{l}} \\
& =\binom{a b}{k} \\
& =H_{k}(a b) \\
& =\delta(H(w))(a, b) .
\end{aligned}
$$

As this is true for any $a, b \in \mathbb{N},(H \otimes H) \circ \delta(w)=\delta \circ H$.
Definition 48 Let $w=w_{1} \ldots w_{k}$ and $w^{\prime}=w_{1}^{\prime} \ldots w_{l}^{\prime}$ be two packed words. We put:

$$
\begin{aligned}
w \downarrow w^{\prime} & =w_{1} \ldots w_{k}\left(w_{1}^{\prime}+\max (w)\right) \ldots\left(w_{l}^{\prime}+\max (w)\right) \\
w \circledast w^{\prime} & =w_{1} \ldots w_{k}\left(w_{1}^{\prime}+\max (w)-1\right) \ldots\left(w_{l}^{\prime}+\max (w)-1\right) \\
w \downarrow w^{\prime} & =w \downarrow w^{\prime}+w \circledast w^{\prime} .
\end{aligned}
$$

These three products are extended to WQSym by bilinearity.
Proposition 49 For all $x, y \in \mathcal{H}_{\mathbf{Q P}}$:

$$
E H R^{s t r}(x \downarrow y)=E H R^{s t r}(x) \downarrow E H R^{s t r}(y), \quad E H R(x \downarrow y)=E H R(x) \downarrow E H R(y)
$$

Proof. Let $P \in \mathbf{Q P}(k)$ and $Q \in \mathbf{Q P}(l)$. If $w=w_{1} \ldots w_{k+l}$ is a packed word of length $k+l$:

$$
\begin{aligned}
w \in W_{P \downarrow Q}^{s t r} & \Longleftrightarrow w_{1} \ldots w_{k} \in L_{P}^{s t r}, w_{k+1} \ldots w_{k+l} \in L_{Q}^{s t r}, w_{1}, \ldots, w_{k}<w_{k+1}, \ldots w_{k+l} \\
& \Longleftrightarrow w=w_{P} \downarrow w_{Q}, \text { with } w_{P} \in W_{P}^{s t r}, w_{Q} \in W_{P}^{s t r} .
\end{aligned}
$$

So $W_{P \downarrow Q}^{s t r}=W_{P}^{s t r} \downarrow W_{Q}^{s t r}$, and:

$$
E H R^{s t r}(P \downarrow Q)=\sum_{w_{P} \in W_{P}^{s t r}, w_{Q} \in W_{Q}^{s t r}} w_{P} \downarrow w_{Q}=E H R^{s t r}(P) \downarrow E H R^{s t r}(Q) .
$$

If $w=w_{1} \ldots w_{k+l}$ is a packed word of length $k+l$:

$$
\begin{aligned}
w \in W_{P \downarrow Q} & \Longleftrightarrow w_{1} \ldots w_{k} \in L_{P}, w_{k+1} \ldots w_{k+l} \in L_{Q}, w_{1}, \ldots, w_{k} \leq w_{k+1}, \ldots w_{k+l} \\
& \Longleftrightarrow w=\left(w_{P} \downarrow w_{Q}, \text { with } w_{P} \in W_{P}, w_{Q} \in W_{P}\right) \\
& \text { or } w=\left(w_{P} \circledast w_{Q}, \text { with } w_{P} \in W_{P}, w_{Q} \in W_{P}\right) .
\end{aligned}
$$

Note that these two conditions are incompatible:

- in the first case, $\max \left(w_{1} \ldots w_{k}\right)=\min \left(w_{k+1} \ldots w_{k+l}\right)-1$;
- in the second case, $\max \left(w_{1} \ldots w_{k}\right)=\min \left(w_{k+1} \ldots w_{k+l}\right)$.

So $W_{P \downarrow Q}=\left(W_{P} \downarrow W_{Q}\right) \sqcup\left(W_{P} \circledast W_{Q}\right)$, and:

$$
\begin{aligned}
E H R(P \downarrow Q) & =\sum_{w_{P} \in W_{P}, w_{Q} \in W_{Q}} w_{P} \downarrow w_{Q}+w_{P} \circledast w_{Q} \\
& =E H R(P) \downarrow E H R(Q)+E H R(P) \circledast E H R(Q),
\end{aligned}
$$

so $E H R(P \downarrow Q)=E H R(P)$ \& $E H R(Q)$.
Remark. As a consequence, (WQSym, \downarrow, Δ) and (WQSym, \downarrow, Δ) are infinitesimal bialgebras [12], as $\left(\mathcal{H}_{\mathbf{Q P}}, \downarrow, \Delta\right)$ is [11, 10].

Corollary 50 For all $x, y \in$ WQSym:

$$
\Phi_{-1}(x \downarrow y)=\Phi_{-1}(x) \downarrow \Phi_{-1}(y) \quad \Phi_{-1}(x \nless y)=\Phi_{-1}(x) \downarrow \Phi_{-1}(y)
$$

Proof. If $P, Q \in \mathbf{Q P}$, then $c l(P \downarrow Q)=c l(P)+c l(Q)$, so:

$$
\Psi(P \downarrow Q)=(-1)^{c l(P)+c l(Q)} P \downarrow Q=\Psi(P) \downarrow \Psi(Q) .
$$

Let $x, y \in \mathbf{W Q S y m}$. There exist $x^{\prime}, y^{\prime} \in \mathcal{H}_{\mathbf{Q P}}$, such that $E H R^{s t r}\left(x^{\prime}\right)=x$ and $E H R^{\text {str }}\left(y^{\prime}\right)=y$. Hence, using the non-commutative duality principle:

$$
\begin{aligned}
\Phi_{-1}(x \downarrow y) & =\Phi_{-1}\left(E H R^{s t r}\left(x^{\prime}\right) \downarrow E H R^{s t r}\left(y^{\prime}\right)\right) \\
& =\Phi_{-1} \circ E H R^{s t r}\left(x^{\prime} \downarrow y^{\prime}\right) \\
& =\Phi_{-1} \circ E H R^{s t r} \circ \Psi\left(\Psi\left(x^{\prime}\right) \downarrow \Psi\left(y^{\prime}\right)\right) \\
& =E H R\left(\Psi\left(x^{\prime}\right) \downarrow \Psi\left(y^{\prime}\right)\right) \\
& =E H R \circ \Psi\left(x^{\prime}\right) \gtreqless E H R \circ \Psi\left(y^{\prime}\right) \\
& =\Phi_{-1}\left(\Phi_{-1} \circ E H R \circ \Psi\left(x^{\prime}\right)\right)\left\langle\Phi_{-1}\left(\Phi_{-1} \circ E H R \circ \Psi\left(y^{\prime}\right)\right)\right. \\
& =\Phi_{-1}\left(E H R^{s t r}\left(x^{\prime}\right)\right) \gtreqless \Phi_{-1}\left(E H R^{s t r}\left(y^{\prime}\right)\right) \\
& \left.=\Phi_{-1}(x)\right\rangle \Phi_{-1}(y) .
\end{aligned}
$$

As Φ_{-1} is an involution, we obtain the second point.

5.5 Restriction to posets

In [10], the image of the restriction to $\mathcal{H}_{\mathbf{P}}$ of the map from $\mathcal{H}_{\mathbf{Q P}}$ to WQSym defined by T partitions is a Hopf subalgebra, isomorphic to the Hopf algebra of permutations FQSym [13, 7]. This is not the case here:

Proposition $51 E H R\left(\mathcal{H}_{\mathbf{P}}\right)=E H R^{s t r}\left(\mathcal{H}_{\mathbf{P}}\right)=$ WQSym.
Proof. Let w be a packed word of length n. We define a poset P on $[n]$ by:

$$
\forall i, j \in[n], i \leq_{P} j \text { if }(i=j) \text { or }(w(i)<w(j)) .
$$

Note that if $i \leq_{P} j$, then $w(i) \leq w(j)$. If $i \leq_{P} j$ and $j \leq_{P} k$, then:

- if $i=j$ or $j=k$, then obviously $i \leq_{P} k$.
- Otherwise, $w(i)<w(j)$ and $w(j)<w(k)$, so $w(i)<w(k)$ and $i \leq_{P} k$.

Let us assume that $i \leq_{P} j$ and $j \leq_{P} i$. Then $w(i) \leq w(j)$ and $w(j) \leq w(i)$, so $w(i)=w(j)$. As $i \leq_{P} j, i=j$. So P is indeed a poset, and we observed that $w \in W_{P}$.

Let w^{\prime} be a packed word of length n. Let us prove that $w^{\prime} \in W_{P}^{s t r}$ if, and only if, $w \leq w^{\prime}$, where \leq is the order on packed words defined in definition 28 .
\Longrightarrow. Let us assume that $w^{\prime} \in W_{P}^{s t r}$. If $w(i)<w(j)$, then $i \leq_{P} j$, so $w^{\prime}(i) \leq w^{\prime}(j)$. Moreover, if $w^{\prime}(i)=w^{\prime}(j)$, then $i \leq_{P} j$, so $i=j$ as P is a poset, and finally $w(i)=w(j)$: contradiction. So $w^{\prime}(i)<w^{\prime}(j)$, we shows that $w \leq w^{\prime}$.
\Longleftarrow. Let us assume that $w^{\prime} \leq w$. If $i \leq_{P} j$, then $i=j$ or $w(i)<w(j)$, so $w^{\prime}(i)=w^{\prime}(j)$ ot $w^{\prime}(i)<w^{\prime}(j)$. If, moreover, $w^{\prime}(i)=w^{\prime}(j)$, then $i=j$; so $w^{\prime} \in W_{P}^{\text {str }}$.

We obtain an element $P \in \mathcal{H}_{\mathbf{P}}$ such that:

$$
E H R^{s t r}(P)=\sum_{w \leq w^{\prime}} w^{\prime} .
$$

As this holds for any w, by a triangularity argument, $E H R^{s t r}\left(\mathcal{H}_{\mathbf{P}}\right)=$ WQSym. By the noncommutative duality principle:

$$
E H R\left(\mathcal{H}_{\mathbf{P}}\right)=\Phi_{-1} \circ E H R^{s t r} \circ \Psi\left(\mathcal{H}_{\mathbf{P}}\right)=\Phi_{-1} \circ E H R^{s t r}\left(\mathcal{H}_{\mathbf{P}}\right)=\Phi_{-1}(\mathbf{W Q S y m})=\mathbf{W Q S y m},
$$

as Φ_{-1} is an automorphism of WQSym.

References

[1] P. Alexandroff, Diskrete Räume., Rec. Math. Moscou, n. Ser. 2 (1937), 501-519 (German).
[2] Matthias Beck and Sinai Robins, Computing the continuous discretely, second ed., Undergraduate Texts in Mathematics, Springer, New York, 2015, Integer-point enumeration in polyhedra, With illustrations by David Austin.
[3] Ch. Brouder, Trees, renormalization and differential equations, BIT 44 (2004), no. 3, 425438.
[4] J. C. Butcher, An algebraic theory of integration methods, Math. Comp. 26 (1972), 79-106.
[5] Damien Calaque, Kurusch Ebrahimi-Fard, and Dominique Manchon, Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), no. 2, 282-308, arXiv:0806.2238.
[6] F. Chapoton, Sur une série en arbres à deux paramètres, Sém. Lothar. Combin. 70 (2013), Art. B70a, 20.
[7] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717.
[8] Frédéric Fauvet, Loïc Foissy, and Dominique Manchon, The Hopf algebra of finite topologies and mould composition, arXiv:1503.03820, 2015.
[9] Loïc Foissy, Chromatic polynomials and bialgebras of graphs, in preparation.
[10] Loïc Foissy and Claudia Malvenuto, The Hopf algebra of finite topologies and T-partitions, J. Algebra 438 (2015), 130-169, arXiv:1407.0476.
[11] Loïc Foissy, Claudia Malvenuto, and Frédéric Patras, Infinitesimal and B_{∞}-algebras, finite spaces, and quasi-symmetric functions, J. Pure Appl. Algebra 220 (2016), no. 6, 2434-2458, arXiv:1403.7488.
[12] Jean-Louis Loday and María Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155, arXiv:math/0405330.
[13] Claudia Malvenuto and Christophe Reutenauer, A self paired Hopf algebra on double posets and a Littlewood-Richardson rule, J. Combin. Theory Ser. A 118 (2011), no. 4, 1322-1333, arXiv:0905.3508.
[14] Dominique Manchon, On bialgebras and Hopf algebras or oriented graphs, Confluentes Math. 4 (2012), no. 1, 1240003, 10, arXiv:1011.3032.
[15] J.-C. Novelli and J.-Y. Thibon, Construction of dendriform trialgebras, C. R. Acad. Sci. Paris 342 (2006), no. 6, 365-446, arXiv:math/0605061.
[16] _ , Polynomial realization of some trialgebras, FPSAC'06 (San Diego) (2006), arXiv:math/0605061v1.
[17] Richard P. Stanley, Ordered structures and partitions, American Mathematical Society, Providence, R.I., 1972, Memoirs of the American Mathematical Society, No. 119.
[18] R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325-340.
[19] David Wright and Wenhua Zhao, D-log and formal flow for analytic isomorphisms of n-space, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3117-3141 (electronic), arXiv:math/0209274.

