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Abstract

To any poset or quasi-poset is attached a lattice polytope, whose Ehrhart polynomial we

study from a Hopf-algebraic point of view. We use for this two interacting bialgebras on

quasi-posets. The Ehrhart polynomial defines a Hopf algebra morphism taking its values in

Q[X ]; we deduce from the interacting bialgebras an algebraic proof of the duality principle,

a generalization and a new proof of a result on B-series due to Whright and Zhao, using a

monoid of characters on quasi-posets, and a generalization of Faulhaber’s formula.

We also give non-commutative versions of these results: polynomials are replaced by

packed words. We obtain in particular a non-commutative duality principle.
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Introduction

Let P be a lattice polytope, that is to say that all its vertices are in Zn. The Ehrhart polynomial
ehrclP (X) is the unique polynomial such that, for all k ≥ 1, ehrclP (k) is the number of points in
Zn ∩ kP , where kP is the image of P by the homothety of center 0 and ratio k. For example, if
S is the square [0, 1]n and T is the triangle of vertices (0, 0), (1, 0) and (1, 1):

ehrclS (X) = (X + 1)2, ehrclT (X) =
(X + 1)(X + 2)

2
.

These polynomials satisfy the reciprocity principle: for all k ≥ 1, (−1)dim(P )ehrcl(−k) is the
number of points of Zn ∩ kṖ , where Ṗ is the interior of P . For example:

ehrclS (−X) = (X − 1)2, ehrclT (−X) =
(X − 1)(X − 2)

2
.

We refer to [2] for general results on Ehrhart polynomials.

It turns out that these polynomials appear in the theory of B-series (B for Butcher [4]), as
explained in [3, 6]. We now consider rooted trees:
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If t is a rooted tree, we orient its edges from the root to the leaves. If i, j are two vertices of

t, we shall write i
t
→ j if there is an edge from i to j in t.

To any rooted tree t, whose vertices are indexed by 1 . . . n, we associate a lattice polytope
pol(t) in a following way:

pol(t) =
{

(x1, . . . , xn) ∈ [0, 1]n | ∀ 1 ≤ i, j ≤ n, (i
t
→ j) =⇒ (xi ≤ xj)

}

For example, if t = q

q

, indexed as q

q

1
2 , then pol(t) = T .

We can consider the Ehrhart polynomial ehrclpol(t)(X), which we shall simply denote by

ehrclt (X): for all k ≥ 1,

ehrclt (k) = ♯
{

(x1, . . . , xn) ∈ {0, . . . , k}
n | ∀ 1 ≤ i, j ≤ n, (i

t
→ j) =⇒ (xi ≤ xj)

}

.

Note that ehrclt does not depend on the indexation of the vertices of t. By the duality principle:

(−1)nehrclt (−k) = ♯
{

(x1, . . . , xn) ∈ {1, . . . , k − 1}n | ∀ 1 ≤ i, j ≤ n, (i
t
→ j) =⇒ (xi < xj)

}

.
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A B-series is a formal series indexed by rooted trees, of the form:

∑
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where aut(t) is the number of automorphisms of t. The following B-series is of special importance
in numerical analysis:

E =
∑

t

1
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1
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where t! is the tree factorial (see definition 33). This series is the formal solution of an ordinary
differential equation, describing the flow of a vector field. The set of B-series is given a group
structure by a substitution operation, which is dually represented by the contraction-extraction
coproduct defined in [5]. The inverse of E is called the backward error analysis:

E−1 =
∑

t

λt
t

aut(t)!
.

Wright and Zhao [19] proved that these coefficients λt are related to Ehrhart polynomials:

λt = (−1)|t|
d ehrclt (X)

dX |X=−1
.

We shall in this text study Ehrhart polynomial attached to quasi-posets in a combinatorial
Hopf-algebraic way. A quasi-poset P is a pair (A,≤P ), where A is a finite set and ≤P is a
reflexive and transitive relation on A. The isoclasses of quasi-posets are represented by their
Hasse graphs:

1; q ; q q , q
q

, q2 ; q q q , q q
q

, q q2 , q

qq

∨ ,
q

∧qq , q
q

q

, q
q2 , q

q

2 , q3 ; . . .

In particular, rooted trees can be seen as quasi-posets. For any quasi-poset P = ({1, . . . , n},≤P ),
the polytope associated to P is:

pol(P ) = {(x1, . . . , xn) ∈ [0, 1]n | ∀ 1 ≤ i, j ≤ n, (i ≤P j) =⇒ (xi ≤ xj)}.

We put ehrP (X) = ehrclpol(P )(X−1); note the translation by −1, which will give us objects more
suitable to our purpose. In other words, for all k ≥ 1:

ehrP (k) = ♯{(x1, . . . , xn) ∈ {1, . . . , k}
n | ∀ 1 ≤ i, j ≤ n, (i ≤P j) =⇒ (xi ≤ xj)}.

We also define a polynomial ehrstrP (X) such that for all k ≥ 1:

ehrstrP (k) = ♯{(x1, . . . , xn) ∈ {1, . . . , k}
n | ∀ 1 ≤ i, j ≤ n, (i ≤P j and not j ≤P i) =⇒ (xi < xj)}.

See definition 21 and proposition 22 for more details. These polynomials can be inductively
computed, with the help of the minimal elements of P (proposition 25).

We shall consider two products m and ↓, and two coproducts ∆ and δ on the space Hqp

generated by isoclasses of quasi-posets. The coproduct ∆, defined in [10, 11] by restriction to
open and closed sets of the topologies associated to quasi-posets, makes (Hqp,m,∆) a graded,
connected Hopf algebra, and (Hqp, ↓,∆) an infinitesimal bialgebra; the coproduct δ, defined in
[8] by an extraction-contraction operation, makes (Hqp,m, δ) a bialgebra. Moreover, δ is also a
right coaction of (Hqp,m, δ) over (Hqp,m,∆), and (Hqp,m,∆) becomes a Hopf algebra in the
category of (Hqp,m, δ)-comodules, which we summarize telling that (Hqp,m,∆) and (Hqp,m, δ)
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are two bialgebras in cointeraction (definition 1). For example, the bialgebras (K[X],m,∆) and
(K[X],m, δ) where m is the usual product of K[X] and ∆, δ are the coproducts defined by

∆(X) = X ⊗ 1 + 1⊗X, δ(X) = X ⊗X,

are two cointeracting bialgebras.

Ehrhart polynomials ehrP (X) and ehrstrP (X) can now be seen as maps from Hqp to K[X],
and both are Hopf algebra morphisms from (Hqp,m,∆) to (K[X],m,∆) (theorem 23); we shall
prove in theorem 37 that ehrstr is the unique morphism from Hqp to K[X] compatible with
both bialgebra structures on Hqp and K[X]. Using the cointeraction between the two bialgebra
structures on Hqp, we show that the monoid Mqp of characters of (Hqp,m, δ) acts on the set
EHqp→K[X] of Hopf algebra morphisms from (Hqp,m,∆) to K[X] (lemma 5). Moreover, there
exists a particular homogeneous morphism φ0 ∈ EHqp→K[X] such that for all quasi-poset P :

φ0(P ) = λPX
cl(P ) =

µP
cl(P )!

Xcl(P ),

where µP is the number of heap-orderings of P and cl(P ) is the number of equivalence classes
of the equivalence associated to the quasi-order of P (proposition 32). This formula simplifies if
P is a rooted tree: in this case,

φ0(P ) =
1

P !
X |P |.

We prove that there exist characters α and αstr in Mqp, such that for any quasi-poset P :

ehrP (X) =
∑

∼⊳P

µP/∼

cl(∼)!
αP |∼X

cl(∼), ehrstrP (X) =
∑

∼⊳P

µP/∼

cl(∼)!
αstrP |∼X

cl(∼),

where the sum is over a certain family of equivalence relations ∼ on the set of vertices of V ,
P | ∼ is a restriction operation and P/ ∼ is a contraction operation. Applied to corollas, this
gives Faulhaber’s formula. We prove that αstr is the inverse of the character λ associated to φ0
(theorem 37), which is a generalization, as well as a Hopf-algebraic proof, of Wright and Zhao’s
result. We also give an algebraic proof of the duality principle (theorem 38), and we define a
Hopf algebra automorphism θ : (Hqp,m,∆) −→ (hqp,m,∆) with the help of the cointeraction
of the two bialgebra structures on Hqp, satisfying ehrstr ◦ θ = ehr (proposition 39).

We propose non-commutative versions of these results in the last section of the paper. Here,
(isoclasses of) quasi-posets are replaced by quasi-posets on sets [n] = {1, . . . , n}, making a
Hopf algebra HQP, in cointeraction with (Hqp,m, δ), and K[X] is replaced by the Hopf alge-
bra of packed words WQSym [15]. We define two surjective Hopf algebra morphisms EHR
and EHRstr from HQP to WQSym (proposition 41), generalizing ehr and ehrstr. The au-
tomorphism θ is generalized as a Hopf algebra automorphism Θ : HQP −→ HQP, such that
EHRstr ◦ Θ = EHR (proposition 42), and we formulate a non-commutative duality principle
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(theorem 45), and we obtain a commutative diagram of Hopf algebras:

HQP� _

Θ
����

EHR
%% %%KK

KK
KK

KK
KK

$$ $$

W V
U

T
S

R
Q

P
O

N
L

K
J

HQP� _

Ψ
����

EHRstr
// //

W V
U

$$ $$

S
R

Q
P

O
N

L
K

J

WQSym� _

Φ−1
����

H

P
P

P
P

P
P

P
P

P
P

P
P

(( ((P
P

P
P

HQP
EHR// //

$$ $$

W V
U

T
S

R
Q

P
O

N
L

K
J

H

WQSym

H

P
P

P
P

P
P

P
P

P
P

P
P

'' ''P
P

P
P

Hqp� _

θ
����

ehr

"" ""F
FF

FF
FF

F

Hqp� _

ψ
����

ehrstr
// // K[X]

� _

φ−1
����

Hqp
ehr

// // K[X]

The two triangles reflects the properties of morphisms Θ and θ, whereas the two squares are the
duality principles.

Aknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notations. We denote by K a commutative field of characteristic zero. All the objects
(vector spaces, algebra, and so on) in this text are taken over K.

1 Bialgebras in cointeraction

We give in this section some general results on bialgebras in cointeractions. They will be used
in the sequel for quasi-posets, leading to Ehrhart polynomials. We shall use them on graphs in
order to obtain chromatic polynomials in [9].

1.1 Definition

Definition 1 Let A and B be two bialgebras. We shall say that A and B are in cointeraction
if:

• B coacts on A, via a map ρ :

{
A −→ A⊗B
a −→ ρ(a) = a1 ⊗ a0.

• A is a bialgebra in the category of B-comodules, that is to say:

– ρ(1A) = 1A ⊗ 1B.

– m3
2,4 ◦ (ρ⊗ ρ) ◦∆A = (∆A ⊗ Id) ◦ ρ, with:

m3
2,4 :

{
A⊗B ⊗A⊗B −→ A⊗A⊗B
a1 ⊗ b1 ⊗ a2 ⊗ b2 −→ a1 ⊗ a2 ⊗ b1b2.

Equivalently, in Sweedler’s notations, for all a ∈ A:

(a(1))1 ⊗ (a(2))1 ⊗ (a(1))0(a
(2))0 = (a1)

(1) ⊗ (a1)
(2) ⊗ a0.

– For all a, b ∈ A, ρ(ab) = ρ(a)ρ(b).

– For all a ∈ A, (εA ⊗ Id) ◦ ρ(a) = εA(a)1B .
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Examples of bialgebras in interaction can be found in [5] (for rooted trees) and in [14] (for
various families of graphs). Another example is given by the algebra K[X], with its usual product
m, and the two coproducts defined by:

∆(X) = X ⊗ 1 + 1⊗X, δ(X) = X ⊗X.

The bialgebras (K[X],m,∆) and (K[X],m, δ) are in cointeractions, via the coaction ρ = δ.
Identifying K[X]⊗K[X] and K[X,Y ]:

∆(P )(X,Y ) = P (X + Y ), δ(P )(X,Y ) = P (XY ).

Remark. If A and B are in cointeraction, the coaction of B on A is an algebra morphism.

Proposition 2 Let A and B be two bialgebras in cointeraction. We assume that A is a Hopf
algebra, with antipode S. Then S is a morphism of B-comodules, that is to say:

ρ ◦ S = (S ⊗ Id) ◦ ρ

Proof. We work in the space EndK(A,A⊗B). As A⊗B is an algebra and A is a coalgebra,
it is an algebra for the convolution product ⊛:

∀f, g ∈ EndK(A,A ⊗B), f ⊛ g = mA⊗B ◦ (f ⊗ g) ◦∆A.

Its unit is:

η :

{
A −→ A⊗B
a −→ ε(a)1A ⊗ 1B .

We consider three elements in this algebra, respectively ρ, F1 = (S ⊗ Id) ◦ ρ and F2 = ρ ◦ S.
Firstly:

(F1 ⊛ ρ)(a) = S((a(1))1)(a
(2))1 ⊗ (a(1))0(a

(2))0

= S((a1)
(1))(a1)

(2) ⊗ a0

= εA(a1)1A ⊗ a0

= εA(a)1A ⊗ 1B

= η(a).

Secondly:

(ρ⊛ F2)(a) = (a(1))1S(a
(2))1 ⊗ (a(1))0(S(a

(2)))0

= εA(a)(1A)1 ⊗ (1A)0

= εA(a)1A ⊗ 1B

= η(a).

We obtain that F1 ⊛ ρ = ρ⊛ F2 = η, so F1 = F1 ⊛ η = F1 ⊛ ρ⊛ F2 = η ⊛ F2 = F2. �

1.2 Monoids actions

Proposition 3 Let A and B be two bialgebras in cointeraction, through the coaction ρ. We
denote by MA and MB the monoids of characters of respectively A and B. Then B acts on A by
monoid endomorphisms, via the map:

←:

{
MA ×MB −→ MA

(φ, λ) −→ φ← λ = (φ⊗ λ) ◦ ρ.
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Proof. We denote by ∗ the convolution product of MB and by ⋆ the convolution product of
MA. As ρ : A −→ A⊗B is an algebra morphism, ← is well-defined. Let φ ∈MA, λ1, λ2 ∈MB.

(φ← λ1)← λ2 = (φ⊗ λ1 ⊗ λ2) ◦ (ρ⊗ Id) ◦ ρ

= (φ⊗ λ1 ⊗ λ2) ◦ (Id⊗∆B) ◦ ρ

= φ← (λ1 ∗ λ2).

So ← is an action. Let φ1, φ2 ∈MA, λ ∈MB . For all a ∈ A:

((φ1 ⋆ φ2)← λ)(a) = (φ1 ⊗ φ2 ⊗ λ) ◦ (∆A ⊗ Id) ◦ ρ(a)

= (φ1 ⊗ φ2 ⊗ λ)((a0)
(1) ⊗ (a0)

(2) ⊗ a1)

= (φ1 ⊗ φ2 ⊗ λ)((a
(1))0 ⊗ (a(2))0 ⊗ (a(1))1(a

(2))1)

= φ1((a
(1))0)λ((a

(1))1)φ2((a
(2))0)λ((a

(2))1)

= (φ1 ← λ)(a(1))(φ2 ← λ)(a(2))

= ((φ1 ← λ) ⋆ (φ2 ← λ))(a).

So ← is an action by monoid endomorphisms. �

Example. We take A = (K[X],m,∆), B = (K[X],m, δ) and ρ = δ. We consider the map:

ev :







K −→ K[X]∗

λ −→

{
K[X] −→ K

P (X) −→ evλ(P ) = P (λ).

Then ev is an isomorphism from (K,+) to (MA, ⋆) and from (K, .) to (MB , ∗). Moreover, for all
λ, µ ∈ K:

evλ ← evµ = evλµ.

Proposition 4 Let A and B be two bialgebras in cointeraction, through the coaction ρ.

1. Let H be a bialgebra. We denote by MB the monoid of characters of B and by EA→H the
set of bialgebra morphisms from A to H. Then MB acts on EA→H via the map:

←:

{
EA→H ×MB −→ EA→H

(φ, λ) −→ φ← λ = (φ⊗ λ) ◦ ρ

2. Let H1 and H2 be two bialgebras and let θ : H1 −→ H2 be a bialgebra morphism. For all
φ ∈ EA←H1, for all λ ∈MB, in EA←H2:

θ ◦ (φ← λ) = (θ ◦ φ)← λ.

3. if λ, µ ∈MB, in EA→A:

(Id← λ) ◦ (Id← µ) = Id← (λ ∗ µ).

The following map is an injective monoid morphism:

{
(MB , ∗) −→ (EA→A, ◦)

λ −→ Id← λ.
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Proof. 1. For all φ ∈ EA←B, λ ∈MB, φ← λ : A −→ H⊗K = H. As φ, λ and ρ are algebra
morphisms, by composition φ← λ is an algebra morphism. Let a ∈ A.

∆H(φ← λ(a)) = ∆H(φ(a0)λ(a1))

= λ(a1)∆H ◦ φ(a1)

= λ(a1)φ(a0)
(1) ⊗ φ(a0)

(2)

= λ(a1)φ((a0)
(1))⊗ φ((a0)

(2))

= λ((a(1))1(a
(2))1)φ((a

(1))0)⊗ φ((a
(2))0)

= λ((a(1))1)λ((a
(2))1)φ((a

(1))0)⊗ φ((a
(2))0)

= φ((a(1))0)λ((a
(1))1)⊗ φ((a

(2))0)λ((a
(2))1)

= φ← λ(a(1))⊗ φ← λ(a(2))

= ((φ← λ)⊗ (φ← λ)) ◦∆A(a).

So φ← λ ∈ EA→H .
Let φ ∈ EA→H . For all a ∈ A, φ← η ◦ ε(a) = φ(a0)ε(a1) = φ(a). Let λ, µ ∈MB .

(φ← λ)← µ = (φ⊗ λ⊗ µ) ◦ (ρ⊗ Id) ◦ ρ = (φ⊗ λ⊗ µ) ◦ (Id⊗∆B) ◦ ρ = φ← (λ ∗ µ).

So ← is indeed an action of MB on EA→H .

2. Let a ∈ H.

(θ ◦ φ)← λ(a) = θ ◦ φ(a1)λ(a0) = θ(φ(a1)λ(a0)) = θ(φ← λ(a)) = θ ◦ (φ← λ)(a).

So (θ ◦ φ)← λ = θ ◦ (φ← λ).

3. Consequently, if λ, µ ∈MB , in EA→A:

(Id← λ) ◦ (Id← λ) = (Id← λ)← µ) = Id← (λ ∗ µ).

If Id← λ = Id, then, composing by ε′, we obtain ε′ ∗ λ = ε′, so λ = ε′. �

Example. We take A = (K[X],m,∆), B = (K[X],m, δ) and ρ = δ. In EA−→A, for any
λ ∈ K:

Id← evλ(X) = evλ(X)X = λX,

so for any P ∈ K[X], (Id← evλ)(P ) = P (λX). In this case, the monoids (MB , ∗) and (EA→A, ◦)
are isomorphic.

1.3 Polynomial morphisms

In this section, we deal with a family (A,m,∆, δ) such that:

1. (A,m,∆) is a graded, connected Hopf algebra. As a graded algebra, it is isomorphic to
the symmetric algebra S(V ), where V is a graded subspace of A.

2. (A,m, δ) is a bialgebra.

3. (A,m,∆) and (A,m, δ) are in cointeraction, through the coaction δ.

4. V1 = A1 has a basis (gi)i∈I such that:

∀i ∈ I, δ(gi) = gi ⊗ gi.

We shall denote by J the set of sequences α = (αi)i∈I with a finite support. For all α ∈ J ,
we put gα =

∏

i∈I g
αi
i . These are group-like elements of (A,m, δ).
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5. For all n ≥ 2, Vn can be decomposed as:

Vn =
⊕

i∈I,α∈J

Vn(gi, gα),

such that for all x ∈ Vn(gi, gα):

δ(x)− gi ⊗ x− x⊗ gα ∈ S(V1 ⊕ . . .⊕ Vn−1)
⊗2.

The counit of (A,m,∆) will be denoted by ε and the counit of (A,m, δ) by ε′. We denote by
MB the monoid of characters of (A,m, δ).

Remark. If x ∈ Vn(gi, gα), as ε′(gi) = ε′(gα) = 1, necessarily, ε′(x) = 0 and:

δ(x) − gi ⊗ x− x⊗ gα ∈ Ker(ε
′)⊗2.

Lemma 5 Let λ ∈MB. It has an inverse in MB if, and only if, for all i ∈ I, λ(gi) 6= 0.

Proof. =⇒. Let µ be the inverse of λ in MB . For all i ∈ I, λ∗µ(gi) = λ(gi)µ(gi) = ε′(gi) = 1,
so λ(gi) 6= 0.

⇐=. We define two characters µ, ν ∈MB by inductively definining µn = µ|Vn and νn = ν|Vn .
For n = 1, we put µ1(gi) = ν1(gi) = λ(gi)

−1. Let us assume that g1, . . . , gn−1 are already defined,
with n ≥ 2. If x ∈ Vn(gi, gα), we put:

δ(x) − gi ⊗ x− x⊗ gα =
∑

x′k ⊗ x
′′
k ∈ S(V1 ⊕ . . .⊕ Vn−1)

⊗2.

Hence, for all k, µ(x′k) and ν(x′′k) are defined. We put:

µn(x) =
∏

i∈I

1

λ(gi)αi

(

ε′(x)− µ(gi)λ(x)−
∑

µ(x′k)λ(x
′′
k)
)

,

νn(x) =
1

λ(gi)

(

ε′(x)− λ(x)ν(gα)−
∑

λ(x′k)ν(x
′′
k)
)

.

Consequently, µ, ν ∈ MB and for all x ∈ V , µ ∗ λ(x) = λ ∗ ν(x) = ε′(x), so µ ∗ λ = λ ∗ ν = ε′,
and finally µ = µ ∗ (λ ∗ ν) = (µ ∗ λ) ∗ ν = ν, so λ is invertible in MB . �

Lemma 6 Let C be a graded, connected Hopf algebra. We denote by C+ = Ker(εC) its
augmentation ideal. Let λ : C+ −→ K be any linear map. There exists a unique coalgebra
morphism φ : C −→ K[X] such that:

∀x ∈ C+,
dφ(x)

dX
(0) = λ(x).

Moreover:

1. φ is homogeneous if, and only if, for all n ≥ 2, λ(Cn) = (0).

2. φ is a Hopf algebra morphism if, and only if, for all x, y ∈ C+, λ(xy) = 0.

Proof. Let π : K[X] −→ V ect(X) be the canonical projection. For any P ∈ K[X]:

π(P ) =
dP

dX
(0)X.

Existence. We define φ|Cn
by induction on n. For n = 0, we put φ(1) = 1. Let us assume

that φ|C0⊕...⊕Cn−1
is defined such that for all x ∈ C0 ⊕ . . . ⊕ Cn−1,

∆ ◦ φ(x) = (φ⊗ φ) ◦∆(x), π ◦ φ(x) = λ(x)X.
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Let x ∈ Cn. As ∆̃(x) ∈ (C1 ⊕ . . . ⊕ Cn−1)
⊗2, we can consider the element

y = (φ⊗ φ) ◦ ∆̃(x) ∈ K[X]⊗2+ .

We put:

y =
∑

i,j≥1

ai,j
Xi

i!
⊗
Xj

j!
.

Moreover:

∆̃⊗ Id(y) = ((∆̃ ◦ φ)⊗ φ) ◦ ∆̃(x)

= (φ⊗ φ⊗ φ) ◦ (∆̃⊗ Id) ◦ ∆̃(x)

= (φ⊗ φ⊗ φ) ◦ (Id⊗ ∆̃) ◦ ∆̃(x)

= (φ⊗ (∆̃ ◦ φ)) ◦ ∆̃(x)

= (Id⊗ ∆̃)(y).

Hence:

∑

i,j,k≥1

ai+j,k
Xi

i!
⊗
Xj

j!
⊗
Xk

k!
=

∑

i,j,k≥1

aij+k
Xi

i!
⊗
Xj

j!
⊗
Xk

k!
.

For all i, j, k ≥ 1, ai+j,k = ai,j+k, so there exist scalars an such that for all i, j ≥ 1, ai,j = ai+j.
We obtain that:

y =
∑

n≥2

an




∑

i,j≥1,i+j=n

Xi

i!
⊗
Xj

j!



 =
∑

n≥2

an∆̃

(
Xn

n!

)

.

We then put φ(x) =
∑

n≥2

an
Xn

n!
+ λ(x)X.

We obtain in this way a coalgebra morphism such that π ◦ φ(x) = λ(x)X for all x ∈ C.

Unicity. Let φ,ψ : C −→ K[X] be coalgebra morphisms such that π ◦φ = π ◦ψ. Let us prove
that φ(x) = ψ(x) for all x ∈ An, n ≥ 0, by induction on n. For n = 0, as the unique group-like
element of K[X] is 1, φ(1) = ψ(1) = 1. Let us assume the result at all ranks k < n. Then, if
x ∈ An:

∆̃ ◦ φ(x) = (φ⊗ φ) ◦ ∆̃(x) = (ψ ⊗ ψ) ◦ ∆̃(x) = ∆̃ ◦ ψ(x),

so φ(x)− ψ(x) ∈ Ker(∆̃) = V ect(X). Hence, 0 = π ◦ φ(x)− π ◦ ψ(x) = φ(x)− ψ(x).

1. =⇒. If φ is homogeneous, then, for all n ≥ 2, φ(Cn) ⊆ V ect(X
n), so:

π ◦ φ(Cn) = λ(Cn)X = (0).

1.⇐=. Let us go back to the construction of φ is the Existence part. If n ≥ 1, x ∈ C1, then
φ(x) = λ(x)X is homogeneous of degree 1. If n ≥ 2, then, by homogeneity, ai,j = 0 if i+ j 6= n,

so ak = 0 if n 6= k, and φ(x) = an
Xn

n!
: φ is homogeneous.

2. =⇒. Let x, y ∈ C+. Then φ(x), φ(y) ∈ K[X]+ = XK[X], so φ(xy) = φ(x)φ(y) ∈ X2K[X]
and π ◦ φ(xy) = λ(xy)X = 0.
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2. ⇐=. Let us consider φ1 = m ◦ (φ ⊗ φ) and φ2 = φ ◦m. By composition, they are both
coalgebra morphisms from the graded bialgebra C ⊗ C to K[X]. Moreover, if x, y ∈ C+:

π ◦ φ1(1⊗ y) = π ◦ φ(y), π ◦ φ2(1⊗ y) = π ◦ φ(y),

π ◦ φ1(x⊗ 1) = π ◦ φ(x), π ◦ φ2(x⊗ 1) = π ◦ φ(x),

π ◦ φ1(x⊗ y) = π(φ(x)φ(y)) = 0, π ◦ φ2(x⊗ y) = λ(xy)X = 0.

So, for all z ∈ (C ⊗ C)+ = (K1⊗C+)⊕ (C+ ⊗K1)⊕ (C+ ⊗ C+), π ◦ φ1(z) = π ◦ φ2(z). By the
Unicity part, φ1 = φ2, so φ is an algebra morphism. �

Remark. If x ∈ V1, φ(x) = λ(x)X.

Theorem 7 Under the hypotheses 1–5, there exists a unique homogeneous Hopf algebra mor-
phism φ0 : (A,m,∆) −→ (K[X],m,∆) such that:

∀x ∈ A1, φ0(x) = ε′(x)X.

Moreover, there exists a unique character λ0 ∈MB, invertible in MB, such that:

∀n ≥ 0, ∀x ∈ An, φ0(x) = λ0(x)X
n.

Proof. Existence. Let λ ∈ A∗ such that λ(x) = ε′(x) if x ∈ A1 and λ(x) = 0 if x ∈ An,

n ≥ 2. We denote by φ0 the unique coalgebra morphism such that
dφ0(x)

dX
(0) = λ(x) for all

x ∈ A+. By the first point of lemma 6, φ0 is homogeneous. As A2
+ ⊆ A≥2, by the second point

of lemma 6, φ0 is an algebra morphism.

Unicity. If φ is such a morphism, by the first point of lemma 6, for all x ∈ An, n ≥ 2,
π ◦ φ(x) = 0; hence, for all x ∈ A+, π ◦ φ0 = π ◦ φ. By the unicity in lemma 6, φ = φ0.

By homogeneity of φ0, for all x ∈ An, there exists a unique scalar λ0(x) ∈ K such that:

φ0(x) = λ0(x)X
n.

If x ∈ Am, y ∈ An, xy ∈ Am+n and then:

φ(xy) = λ0(xy)X
n+m = φ(x)φ(y) = λ0(x)λ0(y)X

n+m,

so λ0 ∈MB . For all i ∈ I, φ(gi) = ε′(gi)X = X, so λ0(gi) = 1. By lemma 5, λ0 is an invertible
element of MB . �

Theorem 8 Under the hypotheses 1–5, the following map is a bijection:

θ :

{
MB −→ EA→K[X]

λ −→ φ0 ← λ.

Moreover, if φ = θ(λ), with λ ∈MB, then for all x ∈ V ,

λ(x) =
dφ(x)

dX
(0).

Proof. Let λ ∈ MB , and φ = φ0 ← λ. For all i ∈ I, φ(gi) = Xλ(gi), so
dφ(gi)

dX
(0) = λ(gi).

If n ≥ 2 and x ∈ Vn(gi, gα), we put:

δ(x) = gi ⊗ x+
∑

x′k ⊗ x
′′
k,

11



with for all k, x′k homogeneous of degree ≥ 2 or homogeneous of degree 1, with ε′(x′k) = 0. For
all k, π ◦ φ0(x

′
k) = 0. We obtain:

π ◦ φ(x) = π
(

λ(x)X +
∑

φ0(x
′
k)λ(x

′′
k)
)

= λ(x)X.

By the unicity in lemma 6, φ is injective. If ψ ∈ EA→K[X], we define λ ∈MB by:

∀x ∈ V, λ(x) =
dψ(x)

dX
(0).

We put φ = φ0 ← λ. Then for all x ∈ V ,
dφ(x)

dX
(0) =

dψ(x)

dX
(0) = λ(x). If x ∈ A2

+, by the

second point of lemma 6,
dφ(x)

dX
(0) =

dψ(x)

dX
(0) = 0. Finally, as V generates A, A+ = V + A2

+,

and for all x ∈ A+,
dφ(x)

dX
(0) =

dψ(x)

dX
(0). By the unicity in lemma 6, φ = ψ, so θ is surjective.

�

Corollary 9 Under the hypotheses 1–5, for any µ ∈MB, there exists a unique Hopf algebra
morphism φ : A −→ K[X], such that:

∀x ∈ A, φ(x)(1) = µ(1).

This morphism is:φ0 ← (λ∗−10 ∗ µ).

Proof. Let φ be a Hopf algebra morphism from A to K[X]. By theorem 8, there exists
λ ∈ MB such that φ = φ0 ← λ. Let x ∈ A. We write x =

∑
x′k ⊗ x′′k, with, for all k, x′k

homogeneous of degree nk. Then:

φ(x)(1) =
(∑

λ0(x
′
k)X

nkλ(x′′k)
)

|X=1
=

∑

λ0(x
′
k)λ(x

′′
k) = λ0 ∗ λ(x).

So φ satisfies the required conditions if, and only if, λ0 ∗ λ = µ, if, and only if, λ = λ∗−10 ∗ µ, as
λ0 is invertible. So such a φ exists and is unique. �

Corollary 10 Under the hypotheses 1–5, there exists a unique morphism φ1 : A −→ K[X]
such that:

1. φ1 is a Hopf algebra morphism from (A,m,∆) to (K[X],m,∆).

2. φ1 is a bialgebra morphism from (A,m, δ) to (K[X],m, δ).

Moreover, φ1 = φ0 ← λ∗−10 and, for all x ∈ A, φ1(x)(1) = ε′(x).

Proof. Unicity. If such a φ1 exists, then for all x ∈ A, φ1(x)(1) = ε′ ◦ φ1(x) = ε′(x). By
corollary 9, φ1 = φ0 ← (λ∗−10 ∗ ε′) = φ0 ← λ∗−10 .

Existence. Let φ1 be the unique Hopf algebra morphism in EA→K[X] such that for all x ∈ A,
φ1(x)(1) = ε′(x). Recall that we identify K[X]⊗K[X] with K[X,Y ]; for all P ∈ K[X]:

∆(P )(X,Y ) = P (X + Y ), δ(P )(X,Y ) = P (XY ).

Let us fix x ∈ A. Let us prove that for all k, l ∈ N∗, δ ◦ φ1(x)(k, l) = (φ1 ⊗ φ1) ◦∆(x)(k, l) by
induction on k. First, observe that δ ◦ φ1(x)(k, l) = φ1(x)(kl). If k = 1, then:

(φ1 ⊗ φ1) ◦∆(x)(1, l) = φ1((ε
′ ⊗ Id) ◦∆(x))(l) = φ1(x)(l).
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Let us assume the result at rank k. Then:

(φ1 ⊗ φ1) ◦∆(x)(k + 1, l) = (∆⊗ Id) ◦ (φ1 ⊗ φ1) ◦ δ(x)(k, 1, l)

= (φ1 ⊗ φ1 ⊗ φ1) ◦ (∆⊗ Id) ◦ δ(x)(k, 1, l)

= (φ1 ⊗ φ1 ⊗ φ1) ◦m
3
2,4 ◦ (δ ⊗ δ) ◦∆(x)(k, 1, l)

= (φ1 ⊗ φ1 ⊗ φ1 ⊗ φ1) ◦ (δ ⊗ δ) ◦∆(x)(k, l, 1, l)

= (φ1 ⊗ φ1) ◦∆(x)(kl, l)

= ∆ ◦ φ1(x)(kl, l)

= φ1(x)(kl + l)

= φ1(x)((k + 1)l).

So the result is true for all k, l ≥ 1. Hence, (φ1 ⊗ φ1) ◦ δ(x) = δ ◦ φ1(x): φ1 is a bialgebra
morphism from (A,m, δ) to (K[X],m, δ). �

2 Examples from quasi-posets

2.1 Definition

Definition 11 1. Let A be a set finite set. A quasi-order on A is a transitive, reflexive
relation ≤ on A. If ≤ is a quasi-order on A, we shall say that (A,≤) is a quasi-poset. If
P is a quasi-poset:

(a) Its isoclass is denoted by ⌊P ⌋.

(b) ∼P is defined by:

∀a, b ∈ A, a ∼P b if (a ≤ b and b ≤ a).

It is an equivalence on A.

(c) A = A/ ∼P is given an order by:

∀a, b ∈ A, a ≤ b if a ≤ b.

The poset (A,≤) is denoted by P .

(d) The cardinality of P is denoted by cl(P ).

2. Let n ∈ N.

(a) The set of quasi-posets which underlying set is [n] = {1, . . . , n} is denoted by QP(n).

(b) The set of posets which underlying set is [n] is denoted by P(n).

(c) The set of isoclasses of quasi-posets of cardinality n is denoted by qp(n).

(d) The set of isoclasses of quasi-posets of cardinality n is denoted by p(n).

We put:

QP =
⊔

n≥0

QP(n), P =
⊔

n≥0

P(n), qp =
⊔

n≥0

qp(n), p =
⊔

n≥0

p(n),

HQP = V ect(QP), HP = V ect(P), Hqp = V ect(qp) Hp = V ect(p).

As posets are quasi-posets, there are canonical injections from HP into HQP and from Hp

into Hqp. Moreover, the map P −→ P induces surjective maps from HQP to HP and from
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Hqp to Hp, both denoted by ξ. The map P −→ ⌊P ⌋ induces maps ⌊⌋ : HQP −→ Hqp and
⌊⌋ : HP −→ Hp. The following diagram commutes:

HQP

ξ

"" ""E
EE

EE
EE

E

⌊⌋ // // Hqp

ξ

!! !!D
DD

DD
DD

D

HP

⌊⌋ // // Hp

HP

Id

<<yyyyyyyyy ⌊⌋ // //
?�

OO

Hp

Id

==zzzzzzzz?�

OO
(1)

We shall represent any element P of QP by the Hasse graph of P , indicating on the vertices
the elements of the corresponding equivalence class. For example, the elements of QP(n), n ≤ 3,
are:

1; q1 ; q1 q2 , q
q

1
2 , q

q

2
1 , q1, 2 ; q1 q2 q3 , q1 q

q

2
3 , q1 q

q

3
2 , q2 q

q

1
3 , q2 q

q

3
1 , q3 q

q

1
2 , q3 q

q

2
1 , q1 q2, 3 , q2 q1, 3 , q3 q1, 2 ,

q

qq

∨1
32
, q

qq

∨2
31
, q

qq

∨3
21
,

q

∧qq 12 3 ,
q

∧qq 21 3 ,
q

∧qq 3
1 2 , q

q

q

1
2
3

, q
q

q

1
3
2

, q
q

q

2
1
3

, q
q

q

2
3
1

, q
q

q

3
1
2

, q
q

q

3
2
1

, q
q

1
2, 3 , q

q

2
1, 3 , q

q

3
1, 2 , q

q

2, 3
1 , q

q

1, 3
2 , q

q

1, 2
3 , q1, 2, 3 .

We shall represent any element P ∈ qp by the Hasse graph of P , indicating on the vertices
the cardinality of the corresponding equivalence class, if this cardinality is not equal to 1. For
example, the elements of qp(n), n ≤ 3, are:

1; q ; q q , q
q

, q2 ; q q q , q q
q

, q q2 ; q

qq

∨ ,
q

∧qq , q
q

q

, q
q2 , q

q

2 , q3 .

2.2 First coproduct

By Alexandroff’s theorem [1, 18], finite quasi-posets are in bijection with finite topological spaces.
Let us recall the definition of the topology attached to a quasi-poset.

Definition 12 1. Let P = (A,≤) be a quasi-poset. An open set of P is a subset O of A
such that:

∀i, j ∈ A, (i ∈ O and i ≤ j) =⇒ (j ∈ O).

The set of open sets of P (the topology associated to P ) is denoted by top(P ).

2. Let P = (A,≤) be a quasi-poset and B ⊆ A. We denote by P|B the quasi-poset (B,≤|B).

3. Let P = (A,≤P ) be a quasi-poset. We assume that A is also given a total order ≤: for
example, A is a subset of N. If the cardinality of A is n, there exists a unique increasing
bijection f from [n], with its usual order, to (A,≤). We denote by Std(P ) the quasi-poset,
element of QP(n), defined by:

∀i, j ∈ [n], i ≤Std(P ) j ⇐⇒ f(i) ≤P f(j).

Proposition 13 1. We define a product m on HQP in the following way: if P ∈ QP(k),
Q ∈ QP(l), then PQ = m(P,Q) ∈ QP(k + l) and

∀i, j ∈ [k + l], i ≤PQ⇐⇒(1 ≤ i, j ≤ k and i ≤P j)

or (k + 1 ≤ i, j ≤ k + l and i− k ≤Q j − k).

2. We define a second product ↓ on HQP in the following way: if P ∈ QP(k), Q ∈ QP(l),
then PQ = m(P,Q) ∈ QP(k + l) and

∀i, j ∈ [k + l], i ≤PQ⇐⇒(1 ≤ i, j ≤ k and i ≤P j)

or (k + 1 ≤ i, j ≤ k + l and i− k ≤Q j − k)

or (1 ≤ i ≤ k < j ≤ k + l).
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3. We define a coproduct ∆ on HQP in the following way:

∀P ∈ QP(n), ∆(P ) =
∑

O∈top(P )

Std(P|[n]\O)⊗ Std(P|O).

Then (HQP,m,∆) is a non-commutative, non-cocommutative Hopf algebra, and (HQP, ↓,∆)
is an infinitesimal bialgebra.

Proof. See [10, 11]. �

Examples. If {a, b} = {1, 2} and {i, j, k} = {1, 2, 3}:

∆( q1 ) = q1 ⊗ 1 + 1⊗ q1 ,

∆( q
q

a
b ) = q

q

a
b ⊗ 1 + 1⊗ q

q

a
b + qa ⊗ qb ,

∆( q

qq

∨i
kj
) = q

qq

∨i
kj
⊗ 1 + 1⊗ q

qq

∨i
kj
+ q

q

i
j ⊗ qk + q

q

i
k ⊗ q j + q i ⊗ q j qk ,

∆(
q

∧qq ij k ) =
q

∧qq i
j k ⊗ 1 + 1⊗

q

∧qq ij k + q j ⊗ q

q

k
i + qk ⊗ q

q

j
i + q j qk ⊗ q i ,

∆( q
q

q

i
j
k

) = q

q

q

i
j
k

⊗ 1 + 1⊗ q

q

q

i
j
k

q i ⊗ q

q

j
k + q

q

i
j ⊗ qk .

Remark. This Hopf algebraic structure is compatible with the morphisms of (1), that is to
say:

1. HP is a Hopf subalgebra of HQP.

2. observe that:

• If (P1, P2) and (Q1, Q2) are pairs of isomorphic quasi-posets, then P1Q1 and P2Q2 are
isomorphic.

• If P1 and P2 are isomorphic quasi-posets of QP(n), and if φ : [n] −→ [n] is an
isomorphism from P1 to P2, then the topology associated to P2 is the image by φ of
the topology associated to P1 and for any subset I of P1, φ|I is an isomorphism from
(P1)|I to (P2)|φ(I).

Consequently, the surjective map ⌊⌋ : HQP −→ Hqp is compatible with the product and
the coproduct: Hqp inherits a Hopf algebra structure. Its product is the disjoint union of
quasi-posets. For any quasi-poset P = (A,≤P ):

∆(⌊P ⌋) =
∑

O∈top(P )

⌊P|A\O⌋ ⊗ ⌊P|O⌋.

3. Hp is a Hopf subalgebra of Hqp.

4. All the morphisms in (1) are Hopf algebra morphisms.

Definition 14 1. We shall say that a finite quasi-poset P = (A,≤P ) is connected if its
associated topology is connected.

2. For any finite quasi-poset P , we denote by cc(P ) the number of connected components of
its associated topology.

It is well-known that P is connected if, and only if, the Hasse graph of P is connected.
Any quasi-poset P can be decomposed as the disjoint union of its connected components; in an
algebraic setting, Hqp is generated as a polynomial algebra by the connected quasi-posets. This
is not true in HQP: for example, q

q

1
3
q2 is both not connected and indecomposable in HQP.
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2.3 Second coproduct

Definition 15 Let P = (A,≤P ) be a quasi-poset and let ∼ be an equivalence on A.

1. We define a second quasi-order ≤P |∼ on A by the relation:

∀x, y ∈ A, x ≤P |∼ y if (x ≤P y and x ∼ y).

2. We define a third quasi-order ≤P/∼ on A as the transitive closure of the relation R defined
by:

∀x, y ∈ A, xRy if (x ≤P y or x ∼ y).

3. We shall say that ∼ is P -compatible and we shall denote ∼ ⊳P if the two following conditions
are satisfied:

• The restriction of P to any equivalence class of ∼ is connected.

• The equivalences ∼P/∼ and ∼ are equal. In other words:

∀x, y ∈ A, (x ≤P/∼ y and y ≤P/∼ x) =⇒ x ∼ y;

note that the converse assertion trivially holds.

Remarks.

1. P | ∼ is the disjoint union of the restriction of ≤P to the equivalence classes of ∼.

2. Let x, y ∈ P . Then x ≤P/∼ y if there exist x1, x
′
1, . . . , xk, x

′
k ∈ A such that:

x ≤P x1 ∼ x
′
1 ≤P . . . ≤P xk ∼ x

′
k ≤P y.

3. If ∼ ⊳P , then:

(a) The equivalence classes of ∼P/∼ are the equivalence classes of ∼ and are included in
a connected component of P . This implies that the connected components of P/ ∼
are the connected components of P . Consequently:

cl(P/ ∼) = cl(∼), cc(P/ ∼) = cc(P ), (2)

where cl(∼) is the number of equivalence classes of ∼.

(b) If x ∼P y and x ∼ y, then x ∼P |∼ y: the equivalence classes of ∼P |∼ are the
equivalence classes of ∼P ; the connected components of P | ∼ are the equivalence
classes of ∼. Consequently:

cl(P | ∼) = cl(P ), cc(P | ∼) = cl(∼). (3)

Definition 16 Let P ∈ QP. We shall say that P is discrete if ⌊P ⌋ = q

cl(P ).

In other words, P is discrete if, and only if, ∼P=≤P .

Definition 17 We define a second coproduct δ on HQP in the following way: for all P ∈ QP,

δ(P ) =
∑

∼⊳P

(P/ ∼)⊗ (P |∼).

Then (HQP,m, δ) is a bialgebra. Its counit ε′ is given by:

∀P ∈ QP, ε′(P ) =

{

1 if P is discrete,

0 otherwise.
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Proof. Firstly, let us prove the compatibility of δ and m. Let P = (A,≤P ) and Q = (B,≤Q)
be two elements of QP. Let ∼ be an equivalence relation on P . We denote by ∼′ and ∼′′ the
restriction of ∼ to P and Q. Then:

• If ∼ ⊳PQ, then as the equivalence classes of ∼ are connected, they are included in A or in
B. Consequently, if x ∈ A and y ∈ B, x and y are not equivalent for ∼. Moreover, ∼′ ⊳P
and ∼′′ ⊳Q, and:

PQ| ∼ = (P | ∼′)(Q| ∼′′), PQ/ ∼ = (P/ ∼′)(Q/ ∼′′).

• Conversely, if ∼′ ⊳P ,∼′′ ⊳Q and for all x ∈ A, y ∈ B, x and y not are not ∼-equivalent,
then ∼ ⊳PQ.

Hence:

δ(PQ) =
∑

∼⊳PQ

(PQ/ ∼)⊗ (PQ| ∼)

=
∑

∼′⊳P,∼′′⊳Q

(P/ ∼′)(Q/ ∼′′)⊗ (P | ∼′)(Q| ∼′′)

= δ(P )δ(Q).

Let us now prove the coassociativity of δ. Let P ∈ QP.
First step. We put:

A = {(r, r′) | r ⊳ P, r′ ⊳ P/r}, B = {(s, s′) | s ⊳ P, s′ ⊳ P|s}.

We consider the maps:

F :

{
A −→ B

(r, r′) −→ (r′, r),
G :

{
B −→ A

(s, s′) −→ (s′, s).

F is well-defined: we put (s, s′) = (r′, r). The equivalence classes of s are the equivalence
classes of r′, so are P -connected. If x ∼P/s y, there exist x1, x

′
1, . . . , xk, s

′
k and y1, y

′
1, . . . , yl, yl

such that:

x ≤P x1r
′x′1 ≤P . . . ≤P xkr

′x′k ≤P y, y ≤P y1r
′y′1 ≤P . . . ≤P ylr

′y′l ≤P x.

Hence:

x ≤P/r x1r
′x′1 ≤P/r . . . ≤P/r xkr

′x′k ≤P/r y, y ≤P/r y1r
′y′1 ≤P/r . . . ≤P/r ylr

′y′l ≤P/r x.

So x ∼P/r y. As r′ ⊳ P/r, x ∼P y: s ⊳ P .
Let us assume that xs′y. Then xry, so, as r ⊳ y, there exists a path from x to y in the Hasse

graph of P , made of vertices all r-equivalent to x and y. If x′ and y’ are two elements of this
path, Then x′ry′, so x′ ≤G/r y

′ and finally x′ ≤(P/r)/r′ y
′. As r′ ⊳ P/r, x′r′y′, so xsy. So the

elements of this path are all P |s-equivalent: the equivalence classes of s′ are P |s-connected.
Let us assume that x ∼(P |s)/s′ y. There exist x1, x

′
1, . . . , xk, x

′
k and y1, y

′
1, . . . , yl, y

′
l such that:

x ≤P |r′ x1rx
′
1 ≤P |r′ . . . ≤P |r′ xkrx

′
k ≤P |r′ y, y ≤P |r′ y1ry

′
1 ≤P |r′ . . . ≤P |r′ ylry

′
l ≤P |r′ x.

Then:

x ≤P x1rx
′
1 ≤P . . . ≤P xkrx

′
k ≤P y, y ≤P y1ry

′
1 ≤P . . . ≤P ylry

′
l ≤P x,

So x ≤P/r y and y ≤P/r x. As r ⊳ P , xry, so xs′y: we obtain that s′ ⊳ P | s.
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G is well-defined: let (s, s′) ∈ B and let us put G(s, s′) = (r, r′). The equivalence classes
of r are P |s-connected, so are P -connected. Let us assume that x ∼P/r y. There exist
x1, x

′
1, . . . , xk, x

′
k and y1, y

′
1, . . . , yl, y

′
l such that:

x ≤P x1s
′x′1 ≤P . . . ≤P xks

′x′k ≤P y, y ≤P y1s
′y′1 ≤P . . . ≤P yls

′y′l ≤P x.

As the equivalence classes of s′ are P |s-connected, all this elements are in the same connected
component of P |s, so are s-equivalent:

x ≤P |s x1s
′x′1 ≤P |s . . . ≤P |s xks

′x′k ≤P |s y, y ≤P |s y1s
′y′1 ≤P |s . . . ≤P |s yls

′y′l ≤P |s x.

Hence, x ∼(P |s)/s′ y, so as s′ ⊳ P | s, xs′y, so xry: r ⊳ P .
The equivalence classes of r′ are the equivalence classes of s, so are P -connected and therefore

P/r-connected. Let us assume that x ∼(P/r)/r′ y. Note that if x′s′y′, then x′ and y′ are in the
same connected component of P |s, so x′sy. By the definition of ≤P/s′ as a transitive closure,
using this observation, we obtain:

x ≤P x1sx
′
1 ≤P . . . ≤P xksx

′
k ≤P y, y ≤P y1sy

′
1 ≤P . . . ≤P ylsy

′
l ≤P x.

So x ∼P/s y. As s ⊳ P , xsy, so xr′y: r′ ⊳ P/r.

Clearly, F and G are inverse bijections.

Second step. Let (r, r′) ∈ A and let F (r, r′) = (s, s′). Note that if xry, then x/ ∼P/r y, so
x/ ∼(P/r)/r′ y, so xr′y as r′ ⊳ P/r. Then:

≤(P/r)/r′ = transitive closure of ((xr′y) or (x ≤P/r y))

= transitive closure of ((xr′y) or (x ≤P y) or (x ≤r y))

= transitive closure of ((xr′y) or (x ≤P y))

= transitive closure of ((xsy) or (x ≤P y))

=≤P/s .

So P/s = (P/r)/r′.

≤(P |s)/s′ = transitive closure of ((xs′y) or (x ≤P |s y))

= transitive closure of ((xry) or (x ≤P |r′ y))

= transitive closure of ((xry) or ((x ≤P y) and (xr′y)))

= transitive closure of (((xry) or (x ≤P y)) and ((sry) or (xr′y)))

= transitive closure of ((x ≤Pr/r y) and (sr′y))

=≤(P/r)|r′ .

So (P |s)/s′ = (P/r)|r′. For all x, y:

x ≤(P |s)/s′ y ⇐⇒ (x ≤P |s y) and (xs′y)

⇐⇒ (x ≤P y) and xsy and (xs′y)

⇐⇒ (x ≤P y) and xr′y and (xry)

⇐⇒ (x ≤P y) and (xry)

⇐⇒ x ≤P |r y.

So (P |s)|s′ = P |r. Finally:

(δ ⊗ Id) ◦ δ(P ) =
∑

(r,r′)∈A

(P/r)/r′ ⊗ (P/r)|r′ ⊗ P |r

=
∑

(s,s′)∈B

P/s⊗ (P |s)/s′ ⊗ (P |s)|s′

= (Id⊗ δ) ◦ δ(P ).

18



So HQP is a bialgebra.

Let P be a quasi-poset. If P is discrete, then δ(P ) = P ⊗P , so (ε′ ⊗ Id) ◦ δ(P ) = (Id⊗ ε′) ◦
∆(P ) = P . If P is not discrete, there are three types of relations ∼ ⊳P :

1. The equivalence classes of ∼ are the connected components of P : in this case, P | ∼= P
and P/ ∼= P1 is discrete.

2. ∼=∼P : in this case, P/ ∼= P and P | ∼= P2 is discrete.

3. ∼ is not one of two preceding relations: in this case, nor P/ ∼, nor P/ ∼ is discrete.

So:

δ(P )− P1 ⊗ P − P ⊗ P2 ∈ Ker(ε
′)⊗Ker(ε′),

which implies that (ε′ ⊗ Id) ◦ δ(P ) = (Id⊗ ε′) ◦∆(P ) = P . �

Examples. If {a, b} = {1, 2} and {i, j, k} = {1, 2, 3}:

δ( q1 ) = q1 ⊗ q1 ,

δ( q
q

a
b ) = q

q

a
b ⊗ qa q b + qa, b ⊗ q

q

a
b ,

δ( q

qq

∨i
kj
) = q

qq

∨i
kj
⊗ q i q j qk + q

q

i, j
k ⊗ q

q

i
j
qk + q

q

i, k
j ⊗ q

q

i
k
q j + q i, j, k ⊗ q

qq

∨i
kj
,

δ(
q

∧qq i
j k ) =

q

∧qq ij k ⊗ q i q j qk + q

q

k
i, j ⊗ q

q

j
i
qk + q

q

j
i, k ⊗ q

q

k
i
q j + q i, j, k ⊗

q

∧qq i
j k ,

δ( q
q

q

i
j
k

) = q

q

q

i
j
k

⊗ q i q j qk + q

q

i, j
k ⊗ q

q

i
j
qk + q

q

i
j, k ⊗ q i q

q

j
k + q i, j, k ⊗ q

q

q

i
j
k

.

Remarks.

1. δ is the internal coproduct of [8].

2. (HQP,m, δ) is not a Hopf algebra: for all n ≥ 1, δ( qn) = qn ⊗ qn, and qn has no inverse in
HQP.

3. This coproduct is also compatible with the map ⌊⌋, so we obtain a bialgebra structure on
Hqp with the coproduct defined by:

δ(⌊P ⌋) =
∑

∼⊳P

⌊P/ ∼⌋ ⊗ ⌊P | ∼⌋.

4. HP and Hp are not stable under δ, as if P is a poset and ∼ ⊳P , P/ ∼ is not necessarily a
poset (although P | ∼ is). However, there is a way to define a coproduct δ = (ξ ⊗ Id) ◦ δ
on Hp:

∀P ∈ P(n), δ(⌊P ⌋) =
∑

∼⊳P

= ⌊P/ ∼⌋ ⊗ ⌊P | ∼⌋.

(Hp,m, δ) is a quotient of (Hqp,m, δ) through the map ξ.

2.4 Cointeractions

Theorem 18 We consider the map:

ρ = (Id⊗ ⌊⌋) ◦ δ :







HQP −→ HQP ⊗Hqp

P ∈ QP −→
∑

∼⊳P

(P/ ∼)⊗ ⌊P |∼⌋.

The bialgebras (HQP,m,∆) and (Hqp,m, δ) are in cointeraction via ρ.
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Proof. By composition, ρ is an algebra morphism. Let us take P ∈ QP(n). We put:

A = {(r,O) | r ⊳ P,O ∈ top(P/r)}, B = {(O, s, s′) | O ∈ top(P ), s ⊳ P[n]\O, s
′ ⊳ P|O}.

First step. We define a map F : A −→ B, sending (r,O) to (O, s, s′), by:

• xsy if xry and x, y are in the same connected component of P|[n]\O.

• xs′y if xry and x, y are in the same connected component of P|O.

Let us prove that F is well-defined. Let us take x, y ∈ [n], with x ∈ O and x ≤P y. Then
x ≤P/r y. as O is an open set of P/r, y ∈ O: O is an open set of P . By definition, the
equivalence classes of s′ are the intersection of the equivalence classes of r and of the connected
components of O. As O is a union of equivalence classes of r, they are P|O-connected. If
x ∼P|O/s′ y, then x ∼P/r y and x and y are in the same connected component of O. As r ⊳ r,

xry, so xs′y: s′ ⊳ P|O. Similarly, s ⊳ P|[n]\O.

Second step. We define a map G : B −→ A, sending (O, s, s′) to (O, r, r′), by:

xry if (x, y /∈ O and xsy) or (x, y ∈ O and xs′y).

Let us prove that G is well-defined. Let x, y ∈ [N ], with x ∈ O and x ≤P/r y. There exists
x1, x

′
1, . . . , xk, x

′
k such that:

x ≤P x1rx
′
1 ≤P . . . ≤P xkrx

′
k ≤P y.

As O is an open set of P , x1 ∈ O; by definition of r, x′1 ∈ O. Iterating, we obtain that
x2, x

′
2, . . . , xk, x

′
k, y ∈ O. So O is open in P/r.

Let us assume that xry. Then x,∈ O or x, y /∈ O. As s ⊳ P|[n]\O and P|O, there exists a path
from x to y in the Hasse graph of P formed by elements s- or s′− equivalent to x and y, so the
equivalence classes of r are P -connected.

Let us assume that x ∼P/r y. here exists x1, x
′
1, . . . , xk, s

′
k and y1, y

′
1, . . . , yl, yl such that:

x ≤P x1rx
′
1 ≤P . . . ≤P xkrx

′
k ≤P y, y ≤P y1ry

′
1 ≤P . . . ≤P ylry

′
l ≤P x.

If x, y ∈ O, then all these elements are in O, so x ∼P|O/s′ y, and then xs′y, so xry. If x, y /∈ O,
as O is an open set, none of these elements is in O, so x ∼P|[n]\O/s y, so xsy and finally xry: r⊳P .

Third step. Let (r,O) ∈ A. We put F (r,O) = (O, s, s′) and G(O, s, s′) = (r̃, O). If xry, as O
is an open set of P/r, both x and y are in O or both are not in O. Hence, xsy or xs′y, so xr̃y.

If xr̃y, then xsy or xs′y, so xry: r̃ = r and G ◦ F = IdA.

Let (O, s, s′) ∈ B. We put G(O, s, s′) = (r,O) and F (r,O) = (O, s̃, s̃′). If xsy, then x and y
are in the same connected component of [n] \O as s ⊳ P|[n]\O and xry, so xs̃y. If xs̃y, then xry,
so xsy: we obtain that s̃ = s. Similarly, s̃′ = s′, which proves that F ◦G = IdB .

We proved that F and G are inverse bijections. Let (r,O) ∈ A and (O, s, s′) = F (O, r).

≤(P/r)|[n]\O
= transitive closure of (xry and x ≤P y) restricted to [n] \O

= transitive closure of (xry and x ≤P|[n]\O
y)

= transitive closure of (xsy and x ≤P|[n]\O
y)

=≤P|[n]\[n]/s .

So (P/r)|[n]\O = P|[n]\O/s. Similarly, (P/r)|O = P|O/s
′.
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Let us now consider P|R. Its connected components are the equivalence classes of r, that is to
say the equivalence classes of s and s′; for any such equivalence class I, (P|R)|I = P|I . So P|R is the
disjoint union of (P|[n]\O)|s and (P|O)|s′ , and therefore is isomorphic to Std(P|[n]\O)|s)Std((P|O)|s′),
but not equal, because of the reindexation induced by the standardization. Hence, ⌊P|R⌋ =
⌊(P|[n]\O)|s⌋⌊(P|O)|s′⌋.

Finally:

(∆⊗ Id) ◦ ρ(P ) =
∑

(r,O)∈A

(G/r)|[n]\O ⊗ (G/r)|O ⊗ ⌊G|r⌋

=
∑

(O,s,s′)∈B

(P|[n]\O)/s⊗ (P|O)/s
′ ⊗ ⌊(P|[n]\O)|s⌋⌊(P|O)|s′⌋

= m3
2,4 ◦ (ρ⊗ ρ) ◦∆(P ).

Moreover, (ε⊗ Id) ◦ ρ(P ) = δP,11⊗ 1 = ε(P )1 ⊗ 1. �

Remark. As noticed in [8], (HQP,m,∆) and (HQP,m, δ) are not in cointeraction through δ.

Taking the quotient through ⌊⌋:

Corollary 19 The bialgebras (Hqp,m,∆) and (Hqp,m, δ) are in cointeraction via δ. More-
over, Hqp si given a graduation by:

∀n ≥ 0, (Hqp)n = V ect(P ∈ qp | cl(P ) = n).

With this graduation, hypotheses 1–5 of section 1.3 are satisfied.

Proof. Here, V is the space generated by the set of connected quasi-posets; the basis (gi)i∈I
of group-like elements of (Hqp)1 is ( qn)n≥1. �

We denote by Mqp the monoid of characters of (Hqp,m, δ). Its product is denoted by ∗.
Using proposition 4 on HQP:

Corollary 20 Let λ ∈Mqp. The following map is a Hopf algebra endomorphism:

φλ :







(HQP,m,∆) −→ (HQP,m,∆)

P ∈ QP −→
∑

∼⊳P

λ⌊P |∼⌋P/ ∼ .

It is bijective if, and only if, for all n ≥ 1, λ qn 6= 0. If this holds, φ−1λ = φλ∗−1 .

Proof. φλ = Id← λ, so is an element of EHQP→HQP
.

=⇒. For all n ≥ 0, φλ( qn) = λ qn
qn. As φλ is injective, λ qn 6= 0.

⇐=. By proposition 5, λ is invertible in Mqp: let us denote its inverse by µ. Then, by
proposition 4:

φλ ◦ φµ = Id← (λ ∗ µ) = Id← ε′ = Id.

Similarly, φµ ◦ φλ = Id. �

3 Ehrhart polynomials

Notations. For all k ≥ 0, we denote by Hk the k-th Hilbert polynomial:

Hk(X) =
X(X − 1) . . . (X − k + 1)

k!
.
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3.1 Definition

Definition 21 Let P ∈ QP(n) and k ≥ 1. We put:

LP (k) = {f : [n] −→ [k] | ∀i, j ∈ [n], i ≤P j =⇒ f(i) ≤ f(j)},

LstrP (k) = {f ∈ LP (k) | ∀i, j ∈ [n], (i ≤P j and f(i) = f(j)) =⇒ i ∼P j},

WP (k) = {w ∈ LP (k) | w([n]) = [k]},

W str
P (k) = {w ∈ LstrP (k) | w([n]) = [k]}.

By convention:

LP (0) = LstrP (0) =WP (0) =W str
P (0) =

{

∅ if P 6= 1,

{1} if P = 1.

We also put:

LP =
⋃

k≥0

LP (k), LstrP =
⋃

k≥0

LstrP (k), WP =
⊔

k≥0

WP (k), W str
P =

⊔

k≥0

W str
P (k).

Note that the elements of WP and W str
P are packed words (see definition 40).

Proposition 22 Let P ∈ QP. There exist unique polynomials ehrP and ehrstrP ∈ Q[X],
such that for k ≥ 0:

ehrP (k) = ♯LP (k), ehrstrP (k) = ♯LstrP (k).

Proof. This is obvious if P = 1, with ehr1(X) = ehrstr1 (X) = 1. Let us assume that
P ∈ QP(n), n ≥ 1. Note that if i > n, WP (i) = 0. For all k ≥ 1:

♯LP (k) =
k∑

i=1

♯WP (i)

(
k

i

)

=
k∑

i=1

♯WP (i)Hi(k) =
n∑

i=1

♯WP (i)Hi(k).

So:

ehrP (X) =
n∑

i=1

♯WP (i)Hi(X).

Moreover, if k = 0:

ehrP (0) =

n∑

i=1

♯WP (i)Hi(0) = ♯LP (0).

In the same way:

ehrstrP (X) =
n∑

i=1

♯W str
P (i)Hi(X).

These are indeed elements of Q[X]. �

Remarks.

1. Let P,Q ∈ QP(n).

• If they are isomorphic, then ehrP (k) = ehrQ(k) for all k ≥ 1, so ehrP = ehrQ.

• If w ∈ LP , for all x, y ∈ P such that x ∼P y, then w(x) ≤ w(y) and w(y) ≤ w(x), so
w(x) = w(y): w goes through the quotient by ∼P . We obtain in this way a bijection
from LP (k) to LP (k) for all k, so ehrP = ehrP . Similarly, ehrstrP = ehrstr

P
.
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Hence, we obtain maps, all denoted by ehr and ehrstr, such the following diagrams com-
mute:

HQP

⌊⌋ // //

ehr ##G
GG

GG
GG

G
Hqp

ξ // //

ehr
��

Hp

ehr||yy
yy
yy
yy

K[X]

HQP

⌊⌋ // //

ehrstr ##G
GG

GG
GG

G
Hqp

ξ // //

ehrstr

��

Hp

ehrstr||yy
yy
yy
yy

K[X]

2. Let P ∈ P(n). The classical definition of the Ehrhart polynomial ehrcl(t) is the number
of of integral points of tPol(P ), where Pol(P ) is the polytope associated to P . Hence,
ehrcl(X) = ehr(X + 1).

Theorem 23 The morphisms ehr, ehrstr : HQP,Hqp,Hp −→ K[X] are Hopf algebra mor-
phisms.

Proof. It is enough to prove it for ehr, ehrstr : Hp −→ K[X].

First step. Let P ∈ P(n). Let us prove that for all k, l ≥ 0:

ehrP (k + l) =
∑

O∈Top(P )

ehrP|[n]\O
(k)ehrP|O

(l), ehrstrP (k + l) =
∑

O∈Top(P )

ehrstrP|[n]\O
(k)ehrstrP|O

(l).

Let f ∈ LP (k + l). We put O = f−1({k + 1, . . . , k + l}). If x ∈ O and x ≤P y, then
f(x) ≤ f(y), so y ∈ O: O is an open set of P . By restriction, the following maps are elements
of respectively LP|[n]\O

(k) and LP|O
(l):

f1 :

{
[n] \O −→ [k]

x −→ f(x),
f2 :

{
O −→ [l]
x −→ f(x)− k.

This defines a map:

υ :







LP (k + l) −→
⊔

O∈Top(P )

LP|[n]\O
(k)× LP|O

(l)

f −→ (f1, f2).

This map is clearly injective; moreover:

ν(LstrP (k + l)) ⊆
⊔

O∈Top(P )

LstrP|[n]\O
(k)× LstrP|O

(l).

Let us prove that f is surjective. Let (f1, f2) ∈ LP|[n]\O
(k) ⊗ LP|O

(l), with O ∈ Top(P ). We
define a map f : P −→ [k + l] by:

f(x) =

{

f1(x) if x /∈ O,

f2(x) + k if x ∈ O.

Let x ≤P i. As O is an open set of P , three cases are possible:

• x, y /∈ O: then f1(x) ≤ f1(y), so f(x) ≤ f(y).

• x, y ∈ O: then f2(x) ≤ f2(y), so f(x) ≤ f(y).

• x /∈ O, y ∈ O: then f(x) ≤ k < fyj).
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So f ∈ LP (k + l), and υ(f) = (f1, f2): υ is surjective, and finally bijective. Moreover, if
f1 ∈ L

str
[n]\O(k) and f2 ∈ L

str
P|O

(l), then f = υ−1(f1, f2) ∈ L
str
P (k + l). Finally:

f(LP (k + l)) =
⊔

O∈Top(P )

LP|[n]\O
(k)× LP|O

(l),

f(LstrP (k + l)) =
⊔

O∈Top(P )

LstrP|[n]\O
(k)× LstrP|O

(l).

Taking the cardinals, we obtain the announced result.

Second step. Let P ∈ P(m), Q ∈ P(n), and f : [m + n] −→ [k]. Then f ∈ LPQ(k) if, and
only if, f|[m] ∈ LP (k) and Std(f|[m+n]\[m] ∈ LQ(k). So ehrPQ(k) = ehrP (k)ehrQ(k), and then
ehrPQ(X) = ehrP (X)ehrQ(X): ehr is an algebra morphism.

Let P be a finite poset, and k, l ≥ 0. By the first step:

(ehr ⊗ ehr) ◦∆(P )(k, l) =
∑

O∈Top(P )

ehrP|[n]\O
(k)ehrP|O

(l)

= ehrP (k + l)

= ∆ ◦ ehr(P )(k, l).

As this is true for all k, l ≥ 1, (ehr ⊗ ehr) ◦∆(P ) = ∆ ◦ ehr(P ). Moreover:

ε ◦ ehr(P ) = ehrP (0) =

{

1 if P = 1,

0 otherwise,

so ε ◦ ehr = ε.

The proof is similar for ehrstr. �

3.2 Recursive computation of ehr and ehr
str

Let us recall this classical result:

Lemma 24 We consider the following maps:

L :

{
K[X] −→ K[X]

Hk(X) −→ Hk+1(X).

The map L is injective, and L(K[X]) = K[X]+. Moreover, for all P ∈ K[X], for all n ≥ 0:

L(P )(n + 1) = P (0) + . . .+ P (n).

Proof. Let us consider P = Hk(X). For all n ≥ 0:

Hk(0) + . . .+Hk(n) =

(
0

k

)

+ . . . +

(
n

k

)

=

(
k

k

)

+ . . . +

(
n

k

)

=

(
n+ 1

k + 1

)

= Hk+1(n+ 1)

= L(Hk)(n+ 1).

By linearity, for any P ∈ K[X], L(P )(n + 1) = P (0) + . . .+ P (n) for all n ≥ 1. �
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Proposition 25 Let P ∈ P(n).

ehrP (X) = L




∑

∅6=O∈Top(P )

ehrP|[n]\O
(X)



 ,

ehrstrP (X) = L




∑

∅ 6= O ∈ Top(P ), discrete

ehrstrP|[n]\O
(X)



 .

Proof. Let n ≥ 1. As LQ(1) is reduced to a singleton for all finite poset Q:

ehrP (n+ 1) =
∑

O∈Top(P )

ehrP|[n]\O
(n)ehrP|O

(1)

=
∑

∅6=O∈Top(P )

ehrP|[n]\O
(n) + ehrP (n).

We put:

Q(X) =
∑

∅6=O∈Top(P )

ehrP|[n]\O
(X).

In particular:

Q(0) =
∑

∅6=O∈Top(P )

ehrP|[n]\O
(0) = ehr∅(0) + 0 = 1 = ehrP (1).

Then:

ehrP (n+ 1) = Q(n) + ehrP (n)

= Q(n) +Q(n− 1) + ehrP (n − 1)

...

= Q(n) +Q(n− 1) + . . .+Q(1) + ehrP (1)

= Q(n) + . . .+Q(1) +Q(0)

= L(Q)(n+ 1).

So ehrP = L(Q).

For ehrstrP , observe that ehrstrQ (1) = 1 if Q is discrete, and 0 otherwise, which implies:

ehrstrP (n+ 1) =
∑

∅ 6= O ∈ Top(P ), discrete

ehrstrP|[n]\O
(n) + ehrstrP (n).

The end of the proof is similar. �
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Examples.

ehr q (X) = H1(X) = X,

ehr
q

q (X) = H1(X) +H2(X) =
X(X + 1)

2
,

ehr
q

qq

∨
(X) = ehr q

∧qq
(X) = H1(X) + 3H2(X) + 2H3(X) =

X(X + 1)(2X + 1)

6
,

ehr
q

q

q (X) = H1(X) + 2H2(X) +H3(X) =
X(X + 1)(X + 2)

6
;

ehrstr
q
(X) = H1(X) = X,

ehrstr
q

q (X) = H2(X) =
X(X − 1)

2
,

ehrstr
q

qq

∨
(X) = ehrstr

q

∧qq
(X) = H2(X) + 2H3(X) =

X(X − 1)(2X − 1)

6
,

ehrstr

q

q

q
(X) = H3(X) =

X(X − 1)(X − 2)

6
.

3.3 Characterization of quasi-posets by packed words

Lemma 26 Let P ∈ QP(n) and let I1, . . . , Ik be distinct minimal classes of the poset P ; let
w′ ∈W str

P|[n]\(I1⊔...⊔Ik)
. The following map belongs to W str

P :

w :







[n] −→ N∗

x ∈ Ip, 1 ≤ p ≤ k −→ p
x /∈ I1 ⊔ . . . ⊔ Ik −→ w′(x).

Proof. Let us assume that i ≤P j.

• If i ∈ Ip, as Ip is a minimal class of P , j ∈ Ip or j /∈ I1⊔. . .⊔Ik. In the first case, w(i) = w(j);
in the second case, w(i) ≤ k < w(j). If moreover w(i) = w(j), then necessarily j ∈ Ip, so
i ∼P j.

• If i /∈ I1 ⊔ . . . ⊔ Ik, as i ≤P j, j /∈ I1 ⊔ . . . ⊔ Ik, so i ≤P|[n]\(I1⊔...⊔Ik)
j and w′(i) ≤ w′(j),

so w′(i) ≤ w′(j). If moreover w(i) = w(j), then w′(i) = w′(j), so i ∼P|[n]\(I1⊔...⊔Ik)
j and

finally i ∼P j.

As a conclusion, w ∈W str
P . �

Remark. This lemma implies that W str
P is non-empty for any non-empty quasi-poset P .

Proposition 27 Let P = ([n],≤P ) be a quasi-poset and let i, j ∈ [n]. The following asser-
tions are equivalent:

1. i ≤P j.

2. For all w ∈ LP , w(i) ≤ w(j).

3. For all w ∈ LstrP , w(i) ≤ w(j).

4. For all w ∈WP , w(i) ≤ w(j).

5. For all w ∈W str
P , w(i) ≤ w(j).
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Proof. Obviously:

1. +3 2. +3

��

3.

��
4. +3 5.

It is enough to prove that 5. =⇒ 1. We proceed by induction on n. If n = 1, there is nothing
to prove. Let us assume the result at all ranks < n. Let i, j ∈ [n], such that we do not have
i ≤P j. Let us prove that there exists w ∈W str

P , such that w(i) > w(j). There exists a minimal
element k ∈ [n], such that k ≤P j; let I be the class of k in P . By hypothesis on i, i and k are
not equivalent for ∼P , so i /∈ I. If j ∈ I, let us choose an element w′ ∈W str

P|[n]\I
; if j /∈ I, then by

the induction hypothesis, there exists w′ ∈ W str
P|[n]\I

, such that w′(i) > w′(j). By lemma 26, the

following map is an element of W str
P :

w :







[n] −→ N

x ∈ I −→ 1
x /∈ I −→ w′(x) + 1

If j ∈ I, then w(j) = 1 < w(i); if j /∈ I, w(i) = w′(i) + 1 > w′(j) + 1 = w(j). In both cases,
w(i) > w(j). �

3.4 Link with linear extensions

Let P ∈ QP(n). Linear extensions, as defined in [10], are elements of W str
P : they are the elements

f ∈W str
P such that

∀i, j ∈ [n], f(i) = f(j)⇐⇒ i ∼P j.

It may happens that not all elements of W str
P are linear extensions. For example, if P = q

qq

∨1
32
,

W str
P (3) = {(123), (132), (122)}, and (122) is not a linear extension of P . The set of linear

extensions of P will be denoted by EP .

Definition 28 Let w and w′ be two packed words of the same length n. We shall say that
w ≤ w′ if:

∀i, j ∈ [n], w(i) < w(j) =⇒ w′(i) < w′(j).

Proposition 29 Let P ∈ QP(n). Then:

WP =
⋃

w∈EP

{w′ | w′ ≤ w}.

This union may be not disjoint. Moreover, the maximal elements of WP for the order of definition
28 are the elements of EP .

Proof. ⊆. Let w ∈ WP . For all 1 ≤ p ≤ max(w), we put Ip = w−1(p). Let fp be a linear
extension of P|Ip . Let us consider:

f :

{
[n] −→ N

i −→ max(f1) + . . .+max(fp−1) + fp(i) if i ∈ Ip.

By construction, if w(i) < w(j), then f(i) < f(j): w ≤ f . Let us prove that f ∈ EP .

If i ≤P j, then as w ∈WP , w(i) ≤ w(j). If w(i) = w(j) = p, then i ≤P|Ip
j, so fp(i) ≤ fp(j),

and f(i) ≤ f(j). If w(i) < w(j), then f(i) < f(j).

If f(i) = f(j), then w(i) = w(j) = p, and fp(i) = fp(j). As fp ∈ EP|Pp
, i ∼P|Pp

j, so i ∼P j.
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). Let w ∈ EP and w′ ≤ w. If i ≤P j, then w(i) ≤ w(j) as w is a linear extension of P . As
w′ ≤ w, w′(i) ≤ w′(j), so w′ ∈WP .

Let w be a maximal element of WP . There exists a linear extension w′ of P , such that
w ≤ w′. As w is maximal, w = w′ is a linear extension of P . Conversely, if w is a linear
extension of P and w ≤ w′ in WP , then as w is a linear extension of P , max(w) = cl(P ).
Moreover, as w ≤ w′, max(w) ≤ max(w′). As w′ ∈ WP , max(w′) ≤ cl(P ), which implies that
max(w) = max(w′) = cl(P ), and finally w = w′: w is a maximal element of WP . �

Example. For P = q

qq

∨1
32
:

EP = {(123), (132)};

WP = {(123), (122), (112), (111)} ∪ {(132), (122), (121), (111)}

= {(123), (132), (122), (112), (121), (111)}.

Note that the two components of WP are not disjoint.

Remark. A similar result is proved in [10] for T -partitions of a quasi-poset, generalizing
Stanley’s result [17] for P -partitions of posets; nevertheless, this is different here, as the union is
not a disjoint one.

4 Characters associated to ehr and ehr
str

Recall that (Mqp, ∗) the monoid of characters of (Hqp,m, δ).

By theorems 7 and 23:

Proposition 30 1. There exists a unique homogeneous Hopf algebra morphism φ0 from
(Hqp,m,∆) to (K[X],m,∆) such that:

∀n ≥ 1, φ0( qn) = X.

There exists a unique character λ ∈Mqp such that for all P ∈ qp,

φ0(P ) = λPX
cl(P ).

2. There exist unique characters α, αstr ∈Mqp, such that:

ehr = φ0 ← α, ehrstr = φ0 ← αstr.

Remarks.

1. Let P ∈ qp. Then ehrP = ehrP and ehrstrP = ehrstr
P

, so αP = αP and αstrP = αstr
P

.

2. Still by theorem 7, there exists a unique homogeneous Hopf algebra morphism φ′0 from Hp

to K[X] such that φ′0( q) = X. By unicity, φ0 = φ′0 ◦ Ξ, so for any P ∈ qp, λP = λP .

4.1 The character λ

Lemma 31 For all P ∈ P(n), n ≥ 0:

λ⌊P ⌋ =







1 if P = 1,
1

n

∑

M∈max(P )

λ⌊P|[n]\{M}⌋ =
1

n

∑

m∈min(P )

λ⌊P|[n]\{m}⌋ otherwise.
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Proof. Let P ∈ P(n), with n ≥ 0. Recall that π : K[X] −→ V ect(X) is the canonical
projection.

(Id⊗ π) ◦∆ ◦ φ0(⌊P ⌋) = λ⌊P ⌋(Id⊗ π) ◦∆(Xn)

= λ⌊P ⌋nX
n−1;

= (Id⊗ π) ◦ (φ0 ⊗ φ0) ◦∆(⌊P ⌋) =
∑

O∈Top(P )

λ⌊P|O⌋λ⌊P|[n]\O⌋X
|[n]\O|π(X |O|)

=
∑

O∈Top(P ), |O|=1

λ⌊P|O⌋λ⌊P|[n]\O⌋X
n−1

=
∑

M∈max(P )

λ⌊P|[n]\{M}⌋X
n−1.

This implies the first equality. The second is proved by considering (π ⊗ Id) ◦∆ ◦ φ0(⌊P ⌋). �

Remarks.

1. This lemma allows to inductively compute λP . This gives:

P q q

q

q

qq

∨
q

∧qq q

q

q

q

qq q

∨
q

∧qq q q

qq

q

∨

q

∧qq
q

q

qq

q

∨ q

∧qq
q

q

q

q

q

q q

q q

�
q q

q q

��
q∨
qq

q

∧

λP 1
1

2

1

3

1

3

1

6

1

4

1

4

1

8

1

8

1

12

1

12

1

24

5

24

1

6

1

12

2. If P = (P,≤) is a finite poset, we denote by P op the opposite poset (P,≥). It is not difficult
to deduce from this lemma that λP = λP op .

Proposition 32 Let P ∈ P(n). The number of elements of WP (n) of P is denoted by µP :
in other words, µP is the number of bijections f from [n] to [n] such that for all x, y ∈ [n],

x ≤P y =⇒ f(x) ≤ f(y).

These bijections are called heap-orderings of P . Then, for any finite poset P , λP =
µP
n!

.

Proof. Let us fix a non-empty finite poset P ∈ P(n). The set of heap-orderings of P is
HO(P ) =WP (n). We consider the map:







HO(P ) −→
⊔

M∈max(P )

HO(P \ {M})

f −→ f|[n−1] ∈ HO(P \ {f−1(n)}).

It is not difficult to prove that this is a bijection. So:

µP =
∑

M∈max(P )

µP\{M};
µP
n!

=
1

n

∑

M∈max(P )

µP\{M}

|P \ {M}|!
.

An easy induction on |P | then proves that λP =
µP
n!

for all P . �

This formula can be simplified for rooted forests.

Definition 33 Let P be a non-empty finite poset.

1. We put:

P ! =
∏

i∈V (P )

♯{j ∈ V (P ) | i ≤P j}.

By convention, 1! = 1.
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2. We shall say that P is a rooted forest if P does not contain any subposet isomorphic to
q

∧qq .

For example, here are isoclasses of rooted forests of cardinality ≤ 4:

1; q ; q

q

, q q ; q

qq

∨ , q
q

q

, q q
q

, q q q ; q

qq q

∨ , q

qq

q

∨ ,
q

qq

q

∨
, q
q

q

q

, q

qq

∨ q , q
q

q

q, q
q

q

q

, q
q

q q , q q q q .

Examples.

P q q

q

q

qq

∨
q

∧qq q

q

q

q

qq q

∨
q

∧qq q q

qq

q

∨

q

∧qq
q

q

qq

q

∨ q

∧qq
q

q

q

q

q

q q

q q

�
q q

q q

��
q∨
qq

q

∧

P ! 1 2 3 4 6 4 8 8 12 12 18 24 6 9 16

Proposition 34 For all finite poset P , λP ≥
1

P !
, with equality if, and only if, P is a rooted

forest.

Proof. We proceed by induction on n = |P |. It is obvious if n = 0. Let us assume the result
at all ranks < n.

λP =
1

|P |

∑

m∈min(P )

λP\{m}

≥
1

|P |

∑

m∈min(P )

∏

i∈V (P ),i 6=m

1

♯{j ∈ V (P ) | j 6= m, i ≤P j}

=
1

|P |

∑

m∈min(P )

∏

i∈V (P ),i 6=m

1

♯{j ∈ V (P ) | i ≤P j}

=
1

P !

1

|P |

∑

m∈min(P )

♯{j ∈ V (P ) | m ≤P j}.

For any j ∈ A, there exists m ∈ min(P ) such that m ≤P j, so:

∑

m∈min(P )

♯{j ∈ V (P ) | m ≤P j} ≥ |P |.

Consequently, λP ≥
1

P !
.

Let us assume that this is an equality. Then:

∑

m∈min(P )

♯{j ∈ V (P ) | m ≤P j} = |P |.

Consequently, for all j ∈ min(P ), there exists a unique m ∈ min(P ) such that m ≤P j. More-
over, for all m ∈ min(P ), λP\{m} =

1
P\{m}! . By the induction hypothesis, P \ {m} is a rooted

forest; this implies that P is also a rooted forest.

Let us assume that P is a rooted forest. For any j ∈ V (P ), there exists a unique m ∈ min(P )
such that m ≤P j, so:

∑

m∈min(P )

♯{j ∈ V (P ) | m ≤P j} = |P |.

Moreover, for all m ∈ min(P ), P \ {m} is also a rooted forest. By the induction hypothesis,

λP\{m} =
1

P\{m}! . Hence, λP =
1

P !
. �
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4.2 The character α
str

Let us now apply theorem 8 to ehr and ehrstr:

Theorem 35 For all finite connected quasi-poset P , we have:

αP =
d ehrP
dX

(0), αstrP =
d ehrstrP
dX

(0).

For any quasi-poset P :

ehrP (X) =
∑

∼⊳P

µP/∼

cl(∼)!
αP |∼X

cl(∼), ehrstrP (X) =
∑

∼⊳P

µP/∼

cl(∼)!
αstrP |∼X

cl(∼),

where cl(∼) is the number of equivalence classes of ∼.

Let us give a few values of α:

P q q

q

q

qq

∨
q

∧qq q

q

q

q

qq q

∨
q

∧qq q q

qq

q

∨

q

∧qq
q

q

qq

q

∨ q

∧qq
q

q

q

q

q

q q

q q

�
q q

q q

��
q∨
qq

q

∧

αP 1
1

2

1

6

1

6

1

3
0 0

1

12

1

12

1

6

1

6

1

4

1

12

1

6

1

6

Lemma 36 Let P ∈ QP, not discrete. Then:

(−1)cl(P )ehrP (−1) = ehrstrP (1) =

{

1 if P is discrete,

0 otherwise.

Proof. If P is discrete, then ehrP (X) = ehrstrP (X) = Xcl(P ) and the result is obvious. Let us
assume that P is not discrete. There exists a unique map f from [n] to [1]; as P is not discrete,
f /∈ LstrP (1), so ehrstrP (1) = 0. We now proceed with ehrP (−1).

First step. Let us prove that L(Hk(−X)) = −Hk+1(−X) for all k ≥ 0. For all l, n ≥ 0:

Hl(−n) = (−1)l
(
n+ l − 1

l

)

.

For all k, n ≥ 0:

L(Hk(−X))(n + 1) = Hk(0) + . . .+Hk(−n)

= (−1)k
n∑

i=0

(
i+ k − 1

k

)

= (−1)k
n+k−1∑

j=k

(
j

k

)

= (−1)k
(
n+ k

k + 1

)

= −Hk+1(−(n+ 1)).

Second step. Let us prove that L((X + 1)K[X]) ⊆ (X + 1)K[X]. For all k ≥ 2, let us put
Hk(−X) = X(X +1)Lk(X); (Lk(X))k≥2 is a basis of K|X], which implies that (Hk(−X))k≥2 is
a basis of X(X + 1)K[X], and that (X + 1) ⊔ (Hk(−X))k≥2 is a basis of (X + 1)K[X]. First:

L(X+1) = L(H1(X)+H0(X)) = H2(X)+H1(X) =
X(X − 1)

2
+X =

X(X + 1)

2
∈ (X+1)K[X];
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if k ≥ 2, by the first step, L(Hk(−X)) = −Hk+1(−X) ∈ (X + 1)K[X].

Last step. We can replace P by P , and we now assume that P ∈ P(n). There is nothing to
prove if n = 0, 1. Let us assume the result at all rank < n. Then, by the second step and the
induction hypothesis:

ehr⌊P ⌋(−1) = L




∑

∅6=O∈Top(P )

ehr⌊P|[n]\O⌋(X)





|X=−1

= L








∑

∅ 6= O ∈ Top(P )
P|[n]\O discrete

ehr⌊P|[n]\O⌋(X)








|X=−1

= L




∑

[n] 6=J⊆min(P )

ehr⌊P|J⌋(X)





|X=−1

= L




∑

J⊆min(P )

ehr⌊P|J⌋J(X)





|X=−1

= L




∑

J⊆min(P )

X |J |





|X=−1

= L((1 +X)|min(P )|

︸ ︷︷ ︸

∈(X+1)K[X]

)|X=−1

= 0.

For the fourth equality, note that P is not discrete, so min(P ) 6= P . �

In other words, for any P ∈ qp, (−1)cl(P )ehrP (−1) = ehrstrP (1) = ε′(P ). By corollary 10:

Theorem 37 ehrstr is the unique morphism from Hqp to K[X] such that:

1. ehrstr is a Hopf algebra morphism from (Hqp,m,∆) to (K[X],m,∆).

2. ehrstr is a bialgebra morphism from (Hqp,m, δ) to (K[X],m, δ).

Moreover, the character αstr is the inverse of λ in Mb.

4.3 The character α and the duality principle

Theorem 38 1. (Duality principle). For any quasi-poset P :

ehrstrP (X) = (−1)cl(P )ehrP (−X).

2. For any quasi-poset P , αP = (−1)cl(P )+cc(P )αstrP .

3. α is invertible in Mqp. We denote by β its inverse. For any quasi-poset P :

βP = (−1)cl(P )+cc(P )λP = (−1)cl(P )+cc(P ) µP
cl(P )!

.
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Proof. 1. We consider the morphism:

φ :

{
Hqp −→ K[X]

P ∈ qp −→ (−1)cl(P )ehrP (−X).

We put:

θ1 :

{
Hqp −→ Hqp

P ∈ qp −→ (−1)cl(P )P,
θ2 :

{
K[X] −→ K[X]
P (X) −→ P (−X).

Both are Hopf algebra morphisms, and φ = θ2 ◦ ehr ◦ φ1, so φ is a Hopf algebra morphism. If P
is a non discrete quasi-poset, then φ(P )(1) = (−1)cl(P )ehrP (−1) = 0 = ε′(x). If P is a discrete
quasi-poset, then ehrP (X) = Xcl(P ), so φ(P )(1) = 1 = ε′(x). By corollary 10, φ = φ1 = ehrstr.

2. and 3. Immediate consequences of the first point. �

Proposition 39 The following map is a Hopf algebra automorphism:

θ :







(Hqp,m,∆) −→ (Hqp,m,∆)

P −→
∑

∼⊳P

P/ ∼ .

Its inverse is:

θ−1 :







(Hqp,m,∆) −→ (Hqp,m,∆)

P −→
∑

∼⊳P

(−1)cl(∼)+cl(P )P/ ∼ .

Moreover:

ehrstr ◦ θ = ehr, ehr ◦ θ−1 = ehrstr.

Proof. Let ι be the character of Hqp which sends any quasi-poset to 1. By corollary 20, θ
is an automorphism and θ−1 = φι∗−1 . For any quasi-poset P :

ι(1) = 1 = ehrP (1) =
∑

∼⊳P

µP/∼

cl(P/ ∼)!
αP |∼ =

∑

∼⊳P

λP/∼αP |∼ = λ ∗ α(P ),

so ι = λ ∗ α; hence, its inverse is β ∗ αstr, and for any quasi-poset P , as cl(P/ ∼) = cl(∼) and
cc(P/ ∼) = cc(P ) for any ∼ ⊳P :

β ∗ αstr(P ) =
∑

∼⊳P

(−1)cl(∼)+cc(P ) µP/∼

cl(P/ ∼)!
αstrP |∼

= (−1)cc(P )ehrstrP (−1)

= (−1)cc(P )+cl(P )ehrstr(1)

= (−1)cc(P )+cl(P ).

Hence:

θ−1(P ) = Id← (β ∗ αstr)(P ) =
∑

∼⊳P

(−1)cc(P |∼)+cl(P |∼)P/ ∼=
∑

∼⊳P

(−1)cl(∼)+cl(P )P/ ∼ .

Moreover:

ehrstr ◦ θ = (φ0 ← αstr) ◦ (Id← ι)

= ((φ0 ← αstr) ◦ Id)← ι

= (φ0 ← αstr)← ι

= φ0 ← (αstr ∗ ι)

= φ0 ← (αstr ∗ λ ∗ α)

= φ0 ← α

= ehr.

�
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4.4 A link with Bernoulli numbers

For any k ∈ N, let ck be the corolla quasi-poset with k leaves: ck = ([k + 1],≤ck), with 1 ≤ck
2, . . . , k + 1:

c0 = q1 , c1 = q

q

1
2 , c2 = q

qq

∨1
32
, c3 = q

qq q

∨1
4

3
2

. . .

B proposition 34, λck =
1

k + 1
. Moreover:

Lck = {f : [k + 1] −→ N∗ | f(1) ≤ f(2), . . . , f(k + 1)},

Lstrck = {f : [k + 1] −→ N∗ | f(1) < f(2), . . . , f(k + 1)},

so, for all n ≥ 1:

Ehrstrck (n) = (n− 1)k + . . . + 1k = Sk(n),

where Sk(X) is the unique polynomial such that for all n ≥ 1, Sk(n) = 1k + . . .+ (n− 1)k. As a
consequence, αstrck is equal to the k-th Bernoulli number bk.

Let ∼ ⊳ck. As the equivalence classes of ∼ are connected:

• The equivalence class of the minimal element 1 of ck contains i leaves, 0 ≤ i ≤ k.

• The other equivalence classes are formed by a unique leaf.

Hence:

δ(⌊ck⌋) =
k∑

i=0

(
k

i

)

⌊c′i,k−i⌋ ⊗ ⌊ci⌋ q
k−i,

where c′i,k−i is the quasi poset on [k + 1] such that:

1 ∼c′i,k−i
. . . ∼c′i,k−i

i+ 1 ≤c′i,k−i
i+ 2, . . . k + 1.

Hence, by theorem 35:

Sk(X) =

k∑

i=0

(
k

i

)

λc′i,k−i
biX

k−i+1

=

k∑

i=0

(
k

i

)

λ
c′i,k−i

biX
k−i+1

=
k∑

i=0

(
k

i

)

λck−i
biX

k−i+1

=
k∑

i=0

(
k

i

)
bi

k − i+ 1
Xk−i+1.

We recover in this way Faulhaber’s formula. For all n ≥ 1, ehrck(n) = nk + . . . + 1k, and the
duality principle gives, for all n ≥ 1:

(−1)k+1Sk(−n) = 1k + . . .+ nk = Sk(n) + nk.
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5 Noncommutative version

5.1 Reminders on packed words

Let us recall the construction of the Hopf algebra of packed words WQSym [15, 16].

Definition 40 Let w = x1 . . . xn be a word which letters are positive integers.

1. We shall say that w is a packed word if there exists an integer k such that {x1, . . . , xn} = [k].
The set of packed words of length n is denoted by PW(n); the set of all packed words is
denoted by PW.

2. There exists a unique increasing bijection f : {x1, . . . , xn} −→ [k] for a well-chosen k. We
denote by Pack(w) the packed word f(x1) . . . f(xk). Note that w is packed if, and only if,
w = Pack(w).

3. Let I ⊆ N. Let i1 < . . . < ip be the indices i such that xi ∈ I. We denote by wI the word
xi1 . . . xip.

As a vector space, WQSym is generated by the set PW. The product is given by:

∀u ∈ PW(k), ∀v ∈ PW(l), u.v =
∑

w=x1...xk+l∈PW(k+l),
Pack(x1...xk)=u,

Pack(xk+1...xk+l)=v

w.

The unit is the empty word 1. The coproduct is given by:

∀w ∈ PW, ∆(w) =

max(w)
∑

k=0

w{1,...,k} ⊗ Pack(w{k+1,...,max(w)}).

For example:

(11).(11) = (1111) + (1122) + (2211),

(11).(12) = (1112) + (1123) + (2212) + (2213) + (3312),

(11).(21) = (1121) + (1132) + (2231) + (3321),

(12).(11) = (1211) + (1222) + (1233) + (1322) + (2311),

(12).(12) = (1212) + (1213) + (1223) + (1234) + (1323) + (1324)

+ (1423) + (2312) + (2313) + (2314) + (2413) + (3412),

(12).(21) = (1221) + (1231) + (1232) + (1243) + (1332) + (1342)

+ (1432) + (2321) + (2331) + (2341) + (2431) + (3421),

∆(111) = (111) ⊗ 1 + (111) ⊗ 1,

∆(212) = (212) ⊗ 1 + (1)⊗ (11) + 1⊗ (212),

∆(312) = (312) ⊗ 1 + (1)⊗ (21) + (12) ⊗ (1) + 1⊗ (312).

5.2 Hopf algebra morphisms in WQSym

Proposition 41 The two following maps are surjective Hopf algebra morphisms:

EHR :







(HQP,m,∆) −→ WQSym

P −→
∑

w∈WP

w,

EHRstr :







(HQP,m,∆) −→ WQSym

P −→
∑

w∈W str
P

w.
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Proof. Let P ∈ QP(k), Q ∈ QP(l), and w be a packed word of length k + l. Then:

• w ∈WPQ if, and only if, Pack(w1 . . . wk) ∈WP and Pack(wk+1 . . . wk+l) ∈WQ.

• w ∈W str
PQ if, and only if, Pack(w1 . . . wk) ∈W

str
P and Pack(wk+1 . . . wk+l) ∈W

str
Q .

This implies that :

EHR(PQ) = EHR(P )EHR(Q), EHRstr(PQ) = EHRstr(P )EHRstr(Q).

Let P ∈ QP(n). We consider the two sets:

A = {(w, k) | w ∈WP , 0 ≤ k ≤ max(w)},

B = {(O,w1, w2) | O ∈ Top(P ), w1 ∈WPack(P|[n]\O), w2 ∈WPack(P|O)}.

We define a bijection between A and B by F (w, k) = (O,w1, w2), where:

• O = w−1({k + 1, . . . ,max(w)}).

• w1 = Pack(w{1,...,k}).

• w2 = Pack(w{k+1,...,max(w)}).

Then:

∆ ◦ EHR(P ) =
∑

(w,k)∈A

Pack(w{1,...,k})⊗ Pack(w{k+1,...,max(w)})

=
∑

(O,w1,w2)∈B

w1 ⊗w2

= (EHR ⊗ EHR) ◦∆(P ).

So EHR is a Hopf algebra morphism. In the same way, EHRstr is a Hopf algebra morphism.

Let w be a packed word of length n. We define a quasi-poset structure on [n] by i ≤P j if,
and only if, wi ≤ wj . Then W str

P = {w}, so EHRstr(P ) = w: EHRstr is surjective. If w′ ∈WP ,
then max(w′) ≤ max(w) with equality if, and only if, w = w′. Hence:

EHR(P ) = w + words w′ with max(w′) < max(w).

By a triangular argument, EHR is surjective. �

Examples.

EHR( q1) = (1), EHRstr( q1 ) = (1),

EHR( q
q

1
2 ) = (12) + (11), EHRstr( q

q

1
2 ) = (12),

EHR( q
q

2
1 ) = (21) + (11), EHRstr( q

q

2
1 ) = (21),

EHR( q1 q2) = (12) + (21) + (11), EHRstr( q1 q2 ) = (12) + (21) + (11),

EHR( q1, 2) = (11), EHRstr( q1, 2) = (11).

Remark. The Hopf algebra WQSym has a polynomial representation [16]. Let X =
{x1, x2, . . .} be an infinite, totally ordered alphabet; then, for any packed word w:

Pw(X) =
∑

w′∈X∗, Pack(w′)=w

w′.

With this polynomial representation, for any P ∈ QP(n):

EHR(P ) =
∑

f∈LP

xf(1) . . . xf(n), EHRstr(P ) =
∑

f∈Lstr
P

xf(1) . . . xf(n).
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Proposition 42 The following map is a Hopf algebra automorphism:

Θ :







(HQP,m,∆) −→ (HQP,m,∆)

P −→
∑

∼⊳P

P/ ∼ .

Its inverse is:

Θ−1 :







(HQP,m,∆) −→ (HQP,m,∆)

P −→
∑

∼⊳P

(−1)cl(P )+cl(∼)P/ ∼ .

Moreover, EHRstr ◦Θ = EHR and EHR ◦Θ−1 = EHRstr.

Proof. By corollary 20, Θ = φι is a Hopf algebra automorphism, where ι is defined in the
proof of proposition 39. Its inverse is φι∗−1 .

Let us prove that:

WG =
∑

∼⊳P

W str
G/∼.

Let w ∈WG; we define an equivalence ∼w by x ∼w y if w(x) = w(y) and x and y are in the same
connected component of w−1(w(x)). By definition, the equivalence classes of ∼w are connected.
If x ∼P/∼w

y, there exists x1, x
′
1 . . . , xk, x

′
k, y1, y

′
1 . . . , yl, y

′
l such that:

x ≤P x1 ∼w x
′
1 ≤P . . . ≤P xk ∼w x

′
k ≤P y,

y ≤P y1 ∼w y
′
1 ≤P . . . ≤P yl ∼w y

′
l ≤P x.

As w ∈ WP , w(x) ≤ w(x1) = w(x′1) ≤ . . . ≤ w(xk) = w(x′k) ≤ w(y); by symmetry, w(x) =
w(x1) = . . . = w(x′k) = w(y) = i. Moreover, as the equivalence classes of ∼w are connected, x
and y are in the same connected component of w−1(i), so x ∼w y: ∼w ⊳P .

If x ≤P y or x ∼w y, then w(x) ≤ w(q). By transitive closure, if x ≤P/∼w
y, then w(x) ≤

w(y), so w ∈WP/∼w
. Moreover, if w(i) 6= w(j), we do not have x ∼w y, so w ∈W str

P/∼w
.

Let us assume that ∼ ⊳P and let w ∈ W str
P/∼. If x ≤P y, then x ≤P/∼ y, so w(x) ≤ w(y):

W str
P/∼ ⊆WP .

Let us assume that w ∈ W str
P/∼, with ∼ ⊳P . If x ∼ y, then w(x) = w(y) = i and x and

y are in the same connected component of P | ∼, so are in the the same connected component
of w−1(i): x ∼w y. If x ∼w y, then w(x) = w(y) = i and there exists x1, x

′
1 . . . , xk, x

′
k with

w(x1) = w(x′1) = . . . = w(xk) = w(x′k) = i such that:

x ≤P x1 ≥P x
′
1 ≤P . . . ≥P x

′
k ≤P y.

As w ∈ W str
P/∼, x ∼P/∼ x1, x1 ∼P/∼ x

′
1, . . . , x

′
k ∼P/∼ y. So x ∼P/∼ y; as ∼ ⊳P , x ∼ y. Finally,

∼=∼w.

We obtain that:

EHR(P ) =
∑

w∈WP

w =
∑

∼⊳P

∑

w∈W str
P/∼

w =
∑

∼⊳P

EHRstr(P/ ∼) = EHRstr(Θ(P )).

So Ehrstr ◦Θ = EHR. �

Proposition 43 Let us consider the following map:

H :

{
WQSym −→ K[X]
w ∈ PW −→ Hmax(w)(X).
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This is a surjective Hopf algebra morphism, making the following diagram commuting:

HQP

EHR

%% %%KK
KK

KK
KK

KK

Θ
����

⌊⌋

{{{{xx
xx
xx
xx

Hqp

θ
����
ehr

"" ""F
FF

FF
FF

F
HQP⌊⌋

xx
x

||||xx
xx

EHRstr
// // WQSym

Hyyyysss
ss
ss
ss
s

Hqp
ehrstr

// // K[X]

Proof. Let P ∈ QP. Then:

ehr(⌊P ⌋) = ♯WP (k)Hk(X) =
∑

w∈WP

Hmax(w)(X) =
∑

w∈WP

H(w) = H ◦ EHR(P ).

So ehr ◦ ⌊⌋ = H ◦EHR. Similarly, ehrstr ◦ ⌊⌋ = H ◦ EHRstr.

Let us prove that H is a Hopf algebra morphism. Let w1, w2 ∈ WQSym. There exist
x1, x2 ∈ HQP, such that w1 = EHR(x1) and w2 = EHR(x2). Then:

H(w1w2) = H(EHR(x1)EHR(x2))

= H ◦ EHR(x1x2)

= ehr(⌊x1x2⌋)

= ehr(⌊x1⌋)ehr(⌊x2⌋)

= H ◦ EHR(x1)H ◦ EHR(x2)

= H(w1)H(w2).

Let w ∈WQSym. There exists x ∈ HQP such that w = EHR(x).

∆ ◦H(w) = ∆ ◦H ◦EHR(x)

= (H ⊗H) ◦ (EHR ⊗ EHR) ◦∆(x)

= (H ⊗H) ◦∆ ◦ EHR(x)

= (H ⊗H) ◦∆(w).

So H is a Hopf algebra morphism. �

5.3 The non-commutative duality principle

Lemma 44 The following map is an involution and a Hopf algebra automorphism:

Φ−1 :







WQSym −→ WQSym

w −→ (−1)max(w)
∑

σ : [max(w)] ։ [l], non-decreasing

σ ◦ w.

Proof. Using the surjective morphisms EHRstr and ehrstr, taking the quotients of the
cointeracting bialgebras (HQP,m,∆) and (Hqp,m, δ), we obtain that (WQSym,m,∆) and
(K[X],m, δ) are cointeracting bialgebras, with the coaction defined by:

ρ = (Id⊗H) ◦ δ : WQSym −→WQSym⊗K[X]

For any packed word w:

ρ(w) =
∑

σ : [k] ։ [l], non-decreasing

σ ◦ w ⊗Hmax(Pack(w|(σ◦w)−1(1)))
(X) . . . Hmax(Pack(w|(σ◦w)−1(l)))

(X).
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Using proposition 4, for any λ ∈ K, considering the character:

evλ :

{
K[X] −→ K

P −→ P (λ),

we obtain an endomorphism Φλ of (WQSym,m,∆) defined by Φλ = Id← evλ. if λ 6= 0, Φλ is
invertible, of inverse Φλ−1 . For any packed word w, denoting by k its maximum:

Φλ(w) =
∑

σ : [k] ։ [l], non-decreasing

Hmax(Pack(w|(σ◦w)−1(1)))
(λ) . . . Hmax(Pack(w|(σ◦w)−1(l)))

(λ)σ ◦ w.

In particular, for λ = −1, for any p ∈ N:

Hp(−1) =
(−1)(−2) . . . (−k)

k!
= (−1)k.

Hence:

Φ−1(w) =
∑

σ : [k] ։ [l], non-decreasing

(−1)max(Pack(w|(σ◦w)−1(1)))+...+max(Pack(w|(σ◦w)−1(l)))σ ◦ w

= (−1)k
∑

σ : [k] ։ [l], non-decreasing

σ ◦ w.

Indeed, if x ∈ (σ ◦ w)−1(p) and y ∈ (σ ◦ w)−1(q), with p < q, then σ ◦ w(x) < σ ◦ x(y); as σ is
non-decreasing, x < y. So there exists n1 < n2 < . . . < nl = k such that for all p, the values
taken by w on (σ ◦ w)−1(p) are np−1 + 1, . . . , np. Hence, the values taken by Pack(w|(σ◦w)−1(p))
are 1, . . . , np − np−1, so:

max(Pack(w|(σ◦w)−1(1)))+. . .+max(Pack(w|(σ◦w)−1(l))) = n1+n2−n1+. . .+nl−nl−1 = nl = k.

In particular, Φ−1 is an involution and a Hopf algebra automorphism of (WQSym,m,∆). �

Theorem 45 (Non commutative duality principle) For any quasi-poset P ∈ QP:

EHR(P ) = (−1)cl(P )Φ−1 ◦ ERH
str(P ), EHRstr(P ) = (−1)cl(P )Φ−1 ◦ ERH(P ).

Proof. We shall use the following involution and Hopf algebra automorphism:

Ψ :

{
HQP −→ HQP

p ∈ QP −→ (−1)cl(P )P.

Recall that the character ι of HQP sends any P ∈ QP to 1. By the duality principle:

ι ◦Ψ(P ) = (−1)cl(P ) = (−1)cl(P )ehr(P )(1) = ehrstr(−1) = ev−1 ◦ ehr
str(P ).

So ι ◦Ψ = ev−1 ◦ ehr
str.

Let P ∈ QP. Recalling that if ∼ ⊳P , cl(P | ∼) = cl(P ):

δ ◦Ψ(P ) = (−1)cl(P )
∑

∼⊳P

P/ ∼ ⊗P | ∼=
∑

∼⊳P

P/ ∼ ⊗(−1)cl(P |∼)P | ∼= (Id⊗Ψ) ◦ δ(P ).

So δ ◦Ψ = (Id⊗Ψ) ◦ δ. Hence, for any x ∈ HQP:

EHR ◦Ψ(x) = EHRstr ◦ (Id← ι) ◦Ψ(x)

= EHRstr(Ψ(x)0)ι ◦Ψ(x)1

= EHRstr(x0)ι ◦Ψ(x1)

= EHRstr(x0)ev−1 ◦ ehr
str(x1)

= EHRstr(x(1))ev−1 ◦EHR
str(x(2))

= EHR← ev−1(x)

= (Id← ev−1) ◦ EHR
str(x)

= Φ−1 ◦EHR
str(x),
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where we denote δ(x) = x(1) ⊗ x(2) and ρ(x) = x0 ⊗ x1. As Φ−1 and Ψ are involutions,
EHRstr ◦Ψ = Φ−1 ◦ EHR. �

In EK[X]→K[X], putting φλ = Id← evλ, for any P ∈ K[X], φλ(P ) = P (λX). Moreover, as H
is compatible with the coactions:

H ◦ Φλ = H ◦ (Id← evλ) = H ← evλ = (Id← evλ) ◦H = φλ ◦H,

so:

ehr ◦Ψ = H ◦ EHR ◦Ψ = H ◦Φ−1 ◦ EHR
str = φ−1 ◦H ◦ EHR

str = φ−1 ◦ ehr
str.

In other words, for any P ∈ QP, (−1)cl(P )ehrP (X) = ehrstrP (−X): we recover the duality prin-
ciple.

We obtain the commutative diagram of Hopf algebra morphisms:

HQP� _

Θ
����

EHR
%% %%KK

KK
KK

KK
KK

⌊⌋

$$ $$

W V
U

T
S

R
Q

P
O

N
L

K
J

HQP� _

Ψ
����

EHRstr
// //

⌊⌋

W V
U

$$ $$

S
R

Q
P

O
N

L
K

J

WQSym� _

Φ−1
����

H

P
P

P
P

P
P

P
P

P
P

P
P

(( ((P
P

P
P

HQP
EHR// //___

⌊⌋

$$ $$

W V
U

T
S

R
Q

P
O

N
L

K
J

H

WQSym

H

P
P

P
P

P
P

P
P

P
P

P
P

'' ''P
P

P
P

Hqp� _

θ
����

ehr

"" ""F
FF

FF
FF

F

Hqp� _

ψ
����

ehrstr
// // K[X]

� _

φ−1
����

Hqp
ehr

// // K[X]

5.4 Compatibility with the other product and coproduct

Theorem 46 We define a second coproduct δ on WQSym:

∀w ∈ PW, δ(w) =
∑

(σ,τ)∈Aw

(σ ◦ w)⊗ (τ ◦ w),

where Aw is the set of pairs of packed words (σ, τ) of length max(w) such that:

• σ is non-decreasing.

• If 1 ≤ i < j ≤ max(w) and σ(i) = σ(j), then τ(i) < τ(j).

Then (WQSym,m, δ) is a bialgebra and EHRstr is a bialgebra morphism from (HQP,m, δ) to
(WQSym,m, δ).

Proof. Let us prove that δ ◦EHRstr = (EHRstr ⊗EHRstr) ◦ δ. Let P ∈ QP. We consider
the two following sets:

A = {(∼, w1, w2) |∼ ⊳P,w1 ∈W
str
P/∼, w2 ∈W

str
P |∼},

B = {(w, σ, τ) | w ∈W str
P , (σ, τ) ∈ Aw}.

Let (∼, w1, w2) ∈ A. We put Ip = w−11 (p) for all 1 ≤ p ≤ max(w1), and w
(p)
2 the standard-

ization of the restriction of w2 to Ip. We define w by:

w(i) = w
(p)
2 (i) + maxw

(2)
1 + . . .+maxw

(2)
p−1 if i ∈ Ip.

Let us prove that w ∈W str
P . If x ≤P y, then x ≤P/∼ y, so p = w1(x) ≤ w2(y) = q.
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• If p < q, then w(x) < w(y).

• If p = q, then w1(x) = w2(y) and, as x ≤P y, x and y are in the same connected component
of w−1(p). So x ∼w1 y, that is to say x ∼ y as w1 ∈ W

str
P/∼, and x ≤P |∼ y, which implies

that w2(x) ≤ w2(y) and finally w(x) ≤ w(y).

Let us assume that moreover w(x) = w(y). Then p = q and necessarily, w2(x) = w2(y). As
w2 ∈W

str
P |∼, x ∼P |∼ y, so x ∼P y.

If w(x) = w(y), then by definition of w, w1(x) = w1(y). So there exists a unique σ :
[max(w)] −→ [max(w1)], such that w1 = σ ◦ w. If w(x) < w(y), then, by construction of w,
w1(x) ≤ w1(y): σ is non-decreasing.

There exists a unique τ : [max(w)] −→ [max(w2)], such that w2 = τ ◦ σ. As Pack(w|Ip) =
Pack((w2)|Ip) for all p, τ is increasing on Ip.

To any (∼, w1, w2) ∈ A, we associate (w, σ, τ) = F (∼, w1, w2) ∈ B, such that w1 = σ ◦ τ ,
w2 = τ ◦ σ, and ∼=∼σ◦τ . This defines a map F : A −→ B.

Let (w, σ, τ) ∈ B. We put G(w, σ, τ) = (∼, σ, τ) = (∼σ◦w, σ ◦ w, τ ◦ w). If x ≤P y, then
w(x) ≤ w(y), so w1(x) = σ ◦ w(x) ≤ σ ◦ w(y) = w1(y). If moreover w1(x) = w1(y), then as
x ≤P y, x and y are in the same connected component of w−11 (w1(x)), so x ∼w1 y: w1 ∈W

str
P/∼.

If x ≤P |∼ y, then x ∼w1 y and x ≤P y, so w1(x) = w1(y) and w(x) ≤ w(y). By hypothesis
on τ , τ ◦ w(x) ≤ τ ◦ w(y), so w2(x) ≤ w2(y). If moreover w2(x) = w2(y), by hypothesis on τ ,
w(x) = w(y). As w ∈W str

P , x ∼P y, so x ∼P |∼ y: w2 ∈W
str
P |∼.

We defined in this way a map G : B −→ A. If (∼, w1, w2) ∈ A:

G ◦ F (∼, w1, w2) = G(w, σ, τ) = (∼σ◦w, σ ◦ w, τ ◦ w) = (∼w1 , w1, w2) = (∼, w1, w2).

So G ◦ F = IdA. If (w, σ, τ) ∈ B:

F ◦G(w, σ, τ) = F (∼σ◦w, σ ◦ w, τ ◦ w) = (w, σ, τ).

So F ◦G = IdB : F and G are inverse bijections.

We obtain:

(EHRstr ⊗ EHRstr) ◦ δ(P ) =
∑

(∼,w1,w2)∈A

w1 ⊗ w2

=
∑

(w,σ,τ)∈B

σ ◦ w ⊗ τ ◦ w

=
∑

w∈W str
P

δ(w)

= δ ◦ EHRstr(P ).

So EHRstr is compatible with δ.

As EHRstr is compatible with the product m and the coproduct δ, Ker(EHRstr) is a biideal
of (HQP,m, δ), and (WQSym,m, δ) is identified with the quotient HQP/Ker(EHR

str), so is a
bialgebra. �

Examples.

δ(11) = (11) ⊗ (11),

δ(12) = (12) ⊗ ((11) + (12) + (21)) + (11) ⊗ (12),

δ(21) = (21) ⊗ ((11) + (12) + (21)) + (11) ⊗ (21).
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This coproduct δ on WQSym is the internal coproduct of [16], dual to the product of the
Solomon-Tits algebra.

Remarks.

1. The counit of (WQSym,m, δ) is given by:

εB(w) =

{

1 if w = (1 . . . 1),

0 otherwise.

2. There is no coproduct δ′ on WQSym such that (EHR ⊗ EHR) ◦ δ = δ′ ◦EHR. Indeed,
if δ′ is any coproduct on WQSym, for x = q

q

1
2 + q

q

2
1 − q1 q2 − q1, 2:

δ′ ◦ EHR(x) = δ′(0) = 0,

but:

(EHR ⊗EHR) ◦ δ(x)

= (EHR ⊗ EHR)(( q
q

1
2 + q

q

2
1 − q1 q2)⊗ q1 q2 + q1, 2⊗ ( q

q

1
2 + q

q

2
1 − q1 q2 − q1, 2 ))

= (11) ⊗ (11).

Proposition 47 H : (WQSym,m, δ) −→ (K[X],m, δ) is a bialgebra morphism.

Proof. Let w be a packed word. We denote k = max(w). Let a, b ∈ N.

(H ⊗H) ◦ δ(w)(a, b) =
∑

(σ,τ)∈Aw

Hmax(σ◦w)(a)Hmax(τ◦w)(b)

=
∑

σ : [k] ։ [l], non-decreasing

(
a

l

)(
b

|σ−1(1)|

)

. . .

(
b

|σ−1(l)|

)

=
∑

1≤l≤k,
i1+...+il=k

(
a

l

)(
b

i1

)

. . .

(
b

il

)

=

(
ab

k

)

= Hk(ab)

= δ(H(w))(a, b).

As this is true for any a, b ∈ N, (H ⊗H) ◦ δ(w) = δ ◦H. �

Definition 48 Let w = w1 . . . wk and w′ = w′1 . . . w
′
l be two packed words. We put:

w ↓ w′ = w1 . . . wk(w
′
1 +max(w)) . . . (w′l +max(w)),

w ⊛ w′ = w1 . . . wk(w
′
1 +max(w) − 1) . . . (w′l +max(w) − 1),

w w′ = w ↓ w′ + w ⊛w′.

These three products are extended to WQSym by bilinearity.

Proposition 49 For all x, y ∈ HQP:

EHRstr(x ↓ y) = EHRstr(x) ↓ EHRstr(y), EHR(x ↓ y) = EHR(x) EHR(y).
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Proof. Let P ∈ QP(k) and Q ∈ QP(l). If w = w1 . . . wk+l is a packed word of length k+ l:

w ∈W str
P↓Q ⇐⇒ w1 . . . wk ∈ L

str
P , wk+1 . . . wk+l ∈ L

str
Q , w1, . . . , wk < wk+1, . . . wk+l

⇐⇒ w = wP ↓ wQ, with wP ∈W
str
P , wQ ∈W

str
P .

So W str
P↓Q =W str

P ↓W str
Q , and:

EHRstr(P ↓ Q) =
∑

wP∈W
str
P ,wQ∈W

str
Q

wP ↓ wQ = EHRstr(P ) ↓ EHRstr(Q).

If w = w1 . . . wk+l is a packed word of length k + l:

w ∈WP↓Q ⇐⇒ w1 . . . wk ∈ LP , wk+1 . . . wk+l ∈ LQ, w1, . . . , wk ≤ wk+1, . . . wk+l

⇐⇒ w = (wP ↓ wQ, with wP ∈WP , wQ ∈WP )

or w = (wP ⊛ wQ, with wP ∈WP , wQ ∈WP ).

Note that these two conditions are incompatible:

• in the first case, max(w1 . . . wk) = min(wk+1 . . . wk+l)− 1;

• in the second case, max(w1 . . . wk) = min(wk+1 . . . wk+l).

So WP↓Q = (WP ↓WQ) ⊔ (WP ⊛WQ), and:

EHR(P ↓ Q) =
∑

wP∈WP ,wQ∈WQ

wP ↓ wQ + wP ⊛wQ

= EHR(P ) ↓ EHR(Q) + EHR(P )⊛ EHR(Q),

so EHR(P ↓ Q) = EHR(P ) EHR(Q). �

Remark. As a consequence, (WQSym, ↓,∆) and (WQSym, ,∆) are infinitesimal bialge-
bras [12], as (HQP, ↓,∆) is [11, 10].

Corollary 50 For all x, y ∈WQSym:

Φ−1(x ↓ y) = Φ−1(x) Φ−1(y) Φ−1(x y) = Φ−1(x) ↓ Φ−1(y).

Proof. If P,Q ∈ QP, then cl(P ↓ Q) = cl(P ) + cl(Q), so:

Ψ(P ↓ Q) = (−1)cl(P )+cl(Q)P ↓ Q = Ψ(P ) ↓ Ψ(Q).

Let x, y ∈WQSym. There exist x′, y′ ∈ HQP, such that EHRstr(x′) = x and EHRstr(y′) = y.
Hence, using the non-commutative duality principle:

Φ−1(x ↓ y) = Φ−1(EHR
str(x′) ↓ EHRstr(y′))

= Φ−1 ◦ EHR
str(x′ ↓ y′)

= Φ−1 ◦ EHR
str ◦Ψ(Ψ(x′) ↓ Ψ(y′))

= EHR(Ψ(x′) ↓ Ψ(y′))

= EHR ◦Ψ(x′) EHR ◦Ψ(y′)

= Φ−1(Φ−1 ◦EHR ◦Ψ(x′)) Φ−1(Φ−1 ◦ EHR ◦Ψ(y′))

= Φ−1(EHR
str(x′)) Φ−1(EHR

str(y′))

= Φ−1(x) Φ−1(y).

As Φ−1 is an involution, we obtain the second point. �
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5.5 Restriction to posets

In [10], the image of the restriction to HP of the map from HQP to WQSym defined by T -
partitions is a Hopf subalgebra, isomorphic to the Hopf algebra of permutations FQSym [13, 7].
This is not the case here:

Proposition 51 EHR(HP) = EHRstr(HP) = WQSym.

Proof. Let w be a packed word of length n. We define a poset P on [n] by:

∀i, j ∈ [n], i ≤P j if (i = j) or(w(i) < w(j)).

Note that if i ≤P j, then w(i) ≤ w(j). If i ≤P j and j ≤P k, then:

• if i = j or j = k, then obviously i ≤P k.

• Otherwise, w(i) < w(j) and w(j) < w(k), so w(i) < w(k) and i ≤P k.

Let us assume that i ≤P j and j ≤P i. Then w(i) ≤ w(j) and w(j) ≤ w(i), so w(i) = w(j). As
i ≤P j, i = j. So P is indeed a poset, and we observed that w ∈WP .

Let w′ be a packed word of length n. Let us prove that w′ ∈ W str
P if, and only if, w ≤ w′,

where ≤ is the order on packed words defined in definition 28.
=⇒. Let us assume that w′ ∈W str

P . If w(i) < w(j), then i ≤P j, so w′(i) ≤ w′(j). Moreover,
if w′(i) = w′(j), then i ≤P j, so i = j as P is a poset, and finally w(i) = w(j): contradiction.
So w′(i) < w′(j), we shows that w ≤ w′.
⇐=. Let us assume that w′ ≤ w. If i ≤P j, then i = j or w(i) < w(j), so w′(i) = w′(j) ot

w′(i) < w′(j). If, moreover, w′(i) = w′(j), then i = j; so w′ ∈W str
P .

We obtain an element P ∈ HP such that:

EHRstr(P ) =
∑

w≤w′

w′.

As this holds for any w, by a triangularity argument, EHRstr(HP) = WQSym. By the non-
commutative duality principle:

EHR(HP) = Φ−1 ◦ EHR
str ◦Ψ(HP) = Φ−1 ◦ EHR

str(HP) = Φ−1(WQSym) = WQSym,

as Φ−1 is an automorphism of WQSym. �
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