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This paper deals with nonconservative mechanical systems as those subjected to noncon- 

servative positional forces and leading to non-symmetric tangential stiffness matrices. In a

previous work, the geometric degree of nonconservativity of such systems, defined as the

minimal number � of kinematic constraints necessary to convert the initial system into a

conservative one is found to be, in the linear framework, the half of the rank of the skew- 

symmetric part of the stiffness matrix. In the present paper, news results are reached. First,

a more efficient solution of the initial linear problem is proposed. Second, always in the

linear framework, the issue of describing the set of all corresponding kinematic constraints

is given and reduced to the one of finding all the Lagrangian planes of a symplectic space.

Third, the extension to the local non-linear case is solved. A four degree of freedom system

exhibiting a maximal geometric degree of nonconservativity ( s = 2 ) is used to illustrate our 

results. The issue of the global non-linear problem is not tackled. Throughout the paper,

the issue of the effectiviness of the solution is systematically addressed.

 

 

 

 

 

 

 

Introduction 

Nonconservative elastic mechanical systems exhibit several paradoxical mechanical behaviors. Destabilizing effect by ad- 

ditional friction is certainly the most famous paradox of these mechanical systems and has been deeply investigated (see

[1 –3] for example). One less reported paradoxical effect is the destabilizing effect by additional kinematical constraints. J.J.

Thompson mentioned this effect in [4] but, to the best of our knowledge, this paradoxical effect had never been systemat-

ically investigated before recently. This paradoxical effect led to the so-called kinematical structural stability (ki.s.s.) issue:

when and how is it possible to destabilize by adding kinematical constraint(s) a given stable system? 

During the last five years, in a sequence of papers ( [5 –9] ), we elucidated this kinematical structural stability (ki.s.s.) issue

for the linear divergence stability of both conservative and nonconservative elastic systems as well. A big part of these works

are also related to the so-called second order work criterion introduced by Hill in the framework of plasticity in 1958 ( [10] )
∗ Corresponding author. Tel.: +33 169477503.
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and independently introduced and used in the framework of elastic nonconservative systems in 2004 ( [11] ). The main result

involves the symmetric part K s of the stiffness matrix and the magnitude of the load parameter as well but it does not

depend on the number of the additional kinematic constraints. 

By duality to the ki.s.s. issue, we investigated in [12] the issue to convert by (judicious) additional kinematic constraints a

nonconservative system � into a conservative one. This issue leads to the concept of geometric degree d of nonconservativity

of �. Calculations show that d = s is the half s of the rank r of the skew-symmetric part K a ( p ) (that is always even r = 2 s ).

In a second stage, a building of the judicious additional kinematic constraints C 1 , . . . , C s ∈ (R 

n ) s has been proposed thanks

to the eigenspaces E −λ2 
i 
, i = 1 , . . . , s of the symmetric matrix K 

2 
a (p) whose the eigenvalues −λ2 

1 , . . . , −λ2 
s are all double: each

C i may be chosen in each distinct E −λ2 
i 
. It is worth noting that, for both issues, the mechanical system � is approximated

by its linear first order approximation at a given equilibrium configuration q e . That means that � is described by the mass

matrix M and the stiffness matrix K . If p is a load parameter, then K = K(p) . The non-symmetry of K ( p ) (namely K � = K s or

K a � = 0) is then the signature of the non-conservative nature of the mechanical system �. In our previous works, the source

of the nonconservativity lies in external forces like follower forces acting on elastic system. Hypoelasticity may also be

another mechanical framework leading to a similar mathematical problem. There exists a broad literature covering hypoe-

lasticity (see for example [13 –16] ). 

In this paper we are concerned by finding the complete solution of the linear case and by the generalization and the

extension to the non-linear differentiable case about to the latter issue. We then use the language of analytic mechanics. In a

first time, we reinvestigate the linear case by using the language of exterior p-forms and especially exterior 1- and 2-forms.

That allow us to more deeply highlight the issue of effectiveness of the calculation of the suitable kinematic constraints

converting the system into a conservative one. That also allow us to investigate the issue of building the set of all the

solutions and to illustrate the geometrical meaning of these solutions. To do it, the language of symplectic geometry is

systematically used. That also suggests the good way for tackling the non-linear case. 

Thus, in a second time, we tackle the non-linear problem with appropriate notations and especially thanks to the lan-

guage of differential p-forms. We accurately focus on the link with the linear case. In a third step, the solution is proposed

by extending to the nonlinear case the concept of geometric degree of nonconservativity and yielding a geometric meaning

to the corresponding non-linear constraints. In the last part, the issue of the calculation of the appropriate non-linear con-

straints is investigated. The problem of a global solution in relationship with the topology of the configuration manifold is

only evoked by just setting the convenient geometric framework of vector bundles. A four degree of freedom system called

the Bigoni system (see [12 , 17] ) is continuously used throughout the paper to illustrate the general results. 

1. The linear case

In what follows we refer to [12] . We only recall that for the linear framework, dynamic equation of the unconstrained

system � read: 

M ̈X + KX = 0 , (1)

with K any (namely non-symmetric) matrix and M symmetric positive definite. K is the stiffness matrix of the system and

M its mass matrix. Because of the nonconservativity of the positional forces acting on σ , K is any. The minimum number

of kinematic constraints allowing to convert the system into a conservative one (with a corresponding symmetric stiffness

matrix) is the geometric degree of nonconservativity of �. (1) is deduced from the Lagrange equation by the usual process

of linearization about an equilibrium configuration. 

1.1. Effectiviness of the solution proposed in [12] 

In introduction, we already recalled the algebraic meaning of the geometric index or degree of nonconservativity: this

the half s of the rank r = 2 s of K a and the distinct constraints, viewed as vectors of R 

n , can be chosen in the s distinct

eigenspaces E −λ2 
i 
, i = 1 , . . . , s of K 

2 
a . We now question the effectiveness of the building of the constraints as proposed in

[12] . To do it, we use the spectral theorem for K 

2 
a . What does mean the effectiveness for the spectral theorem? The usual

proof is done by induction on the dimension of the space. For initializing the induction reasoning, the D’Alembert Gauss

theorem is used for finding an eigenvalue of the characteristic polynomial of K 

2 
a and this theorem is not effective in the

sense where only a numerical method may lead to (an approximation of) the eigenvalues. So, with these tools, the solution

of the linear case itself is not effective. Remark however that the constraints are also the critical points of the Rayleigh

quotient R associated with K 

2 
a and that only the eigenspaces are interesting and not the eigenvalues −λ2 

i 
, i = 1 , . . . , s . The

use of Rayleigh quotient is then especially relevant and the constraints may be evaluated by successive minimizations of

R (X ) = − X T K 2 a X 

X T X
. By Minimax theorem, the constraints are also the solutions of 

min 

dim F = k 
max 

X∈ F \ { 0 } 
R (X ) , 

for k = 1 , . . . , n avoiding by this way the use of D’alembert–Gauss theorem. However, this minimization process gives no

analytic explicit result. 
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1.2. The language of exterior p-forms 

Now, before addressing in a following step the non-linear case, we still focus on the linear case with the help of the

exterior p-forms: we look the matrix K a (skew symmetric part of the stiffness matrix) no longer as the matrix of a linear

map of R 

n but as the matrix of an exterior 2-form on R 

n . We indifferently note E = R 

n and E ∗ its dual space, the vector

space of the linear forms on E . Thus, let φ the exterior 2-form defined on E = R 

n by: 

φ(u, v ) = u 

T K a v , (2) 

after identifying a vector u = (u 1 , . . . , u n ) of R 

n with the column vector u = 

⎛ 

⎝ 

u 1 
.
.
.

u n

⎞ 

⎠ of M n 1 (R ) . Thanks to a basic theorem of

linear algebra (see [18] for example), there is a basis B = (e 1 , . . . , e n ) of R 

n and a number r = 2 s ≤ n such that φ(e 2 i −1 , e 2 i ) =
−φ(e 2 i , e 2 i −1 ) = 1 for i ≤ s and φ(e i , e j ) = 0 for the other values of i and j . In the dual basis (e ∗

1 
, . . . , e ∗n ) of (e 1 , . . . , e n ) , the

form φ reads: 

φ = e ∗1 ∧ e ∗2 + . . . + e ∗2 s −1 ∧ e ∗2 s. (3) 

According to [12] , we have to find out a subspace H of R 

n such that φ(u, v ) = 0 ∀ u, v ∈ H and the constraints, viewed

now as linear forms C 1 , . . . , C s ∈ E ∗, then belong to H 

⊥ , the orthogonality being then understood in the sense of duality.

Choosing each constraint C i in the subspace < e ∗
2 i −1 

, e ∗
2 i 

> spanned by e ∗
2 i −1 

and e ∗
2 i 

in E ∗ leads to the wanted result. Indeed,

suppose to simplify that C i = e ∗
2 i −1 

for all i = 1 , . . . , s and that G is the vector subspace spanned by (e ∗
2 i −1 

) 1 ≤i ≤s . Let u, v ∈
H = G 

⊥ where the bidual is identified with the space itself. Thus, by use of (3) , if u, v ∈ H, e ∗
2 i −1 

∧ e ∗
2 i 
(u, v ) = e ∗

2 i −1 
(u ) e ∗

2 i 
(v ) −

e ∗
2 i 
(u ) e ∗

2 i −1 
(v ) = 0 − 0 = 0 and thus φ(u, v ) = 0 . 

If C i is any in < e ∗
2 i −1 

, e ∗
2 i 

> a similar proof as hereafter for differential forms may be used and is not reproduced.

The effectiveness of the building of the constraints is now brought back to the one of the basis B = (e 1 , . . . , e n ) . The

proof is again done by induction on the dimension n of E (see for example [18] pp 30–31). This proof is effective and the

following paragraph will highlight how it is performing on an example. Before dealing with the example, an interesting

issue is to characterize all the solutions. 

1.3. Set of solutions 

For describing the set of solutions, usual concepts of symplectic geometry are used. To do it, we first brought back

the issue in the usual framework of symplectic geometry. The exterior 2-form φ does not necessarily define a symplectic

structure on R 

n because it has not necessarily a maximal rank namely φ may be degenerate. For instance, that necessarily

occurs when n is odd. Let then F be the kernel of φ. Then (R 

n /F , ˜ φ) is a 2 s -dimensional symplectic vector space where
˜ φ is canonically defined by ˜ φ( ̄u , ̄v ) = φ(x, y ) with x (resp, y ) any vector of the class ū (resp. v̄ ). Remark that thanks to

the canonical scalar product (. | .) on R 

n , one could choose the orthogonal F ⊥ of F for the scalar product as “canonical”

supplementary space of F in R 

n and φF ⊥ the restriction of φ to F ⊥ . Then (F ⊥ , φF ⊥ ) is also a 2 s -dimensional symplectic

vector spaces and there are three possible meanings for orthogonality in F ⊥ : duality, scalar product, and φ-orthogonality.

However the scalar product has no meaning on (R 

n /F , ˜ φ) and only φ-orthogonality and orthogonality for duality keep useful

on (R 

n /F , ˜ φ) . Moreover,when generalizing the reasoning from vector spaces to manifolds, the natural Euclidean structure of

R 

n does not exist in the tangent and cotangent spaces. It is then more judicious to avoid the use of this structure. The 

orthogonal for the duality of any subspace G will the denoted by G 

⊥ . 
If W is any subspace of R 

n /F the φ-orthogonal or symplectic orthogonal of W is the vector subspace of R 

n /F noted

W 

⊥ φ defined by: ū ∈ W 

⊥ φ ⇐⇒ 

˜ φ( ̄u , ̄v ) = 0 ∀ ̄v ∈ W . Because ˜ φ is non-degenerate, the map φ� : R 

n /F → (R 

n /F ) ∗ defined by

φ� ( ̄u )( ̄v ) = 

˜ φ( ̄u , ̄v ) ∀ ̄u , ̄v ∈ R 

n /F is an isomorphism (canonical) and then φ� (W 

⊥ ) = W 

⊥ φ for any W subspace of R 

n /F .

A subspace L of R 

n /F is called Lagrangian if L = L ⊥ φ . It is also often called a Lagrangian plane even though dim L = s .

A straightforward calculation shows that the dual basis of any basis of any Lagrangian subspace is a solution of the initial

problem. More accurately, if L 1 is a Lagrangian plane then there is a Lagrangian supplementary space L 2 of L 1 in R 

n /F . If

(e 2 i −1 ) 1 ≤i ≤s (resp. ( e 2 i ) 1 ≤ i ≤ s ) is any basis of L 1 (resp. L 2 ), then the dual basis (e ∗
2 i −1 

) 1 ≤i ≤s of (e 2 i −1 ) 1 ≤i ≤s in L ∗
1 

is a family of

constraints solution of the mechanical issue. In fact this process realizes any solution. Thus, by this process , the set of all

the solutions of the problem is in a bijective relationship with the set of the bases of all Lagrangian planes of R 

n /F but the

geometrical meaning of the solutions lies in the set of Lagrangian spaces noted �( φ) of (R 

n /F , ˜ φ) . �( φ) has been deeply

investigated especially in relationship with the theory of Maslov index (see [19] for example for a highlighting presentation

of the construction of this index). �( φ) is a s (s +1) 
2 dimensional submanifold of the Grassmanniann manifold of all s-planes

of R 

n /F and called the Lagrangian Grassmanniann of (R 

n /F , ˜ φ) . 

Let �( s ) the Lagrangian Grassmanniann manifold of the usual R -symplectic vector space (C 

s , ω) with its canonical

symplectic structure. This manifold may be explicitly described by and identified with the set U s ( s ) of unitary symmet-

ric complex matrices of M s (C ) . A Lagrangian plane L ∈ �( s ) is identified with the matrix U L ∈ U s ( s ) by the following way:

x ∈ L ←→ x = U L c(x ) where c ( x ) is the conjugate column vector of x ∈ C 

s . If u is a symplectomorphism from (C 

s , ω) onto

(R 

n /F , ˜ φ) , then �(φ) = u (�(s )) which achieves the complete and explicit description of the set of solutions namely �( φ).

Note also that there is an explicit representation of matrices of U s ( s ). If U belongs to U s ( s ), then U = X + iY with X , Y two
3



Fig. 1. n d.o.f. Bigoni system.
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real symmetric matrices of size s . Because of U is unitary, then X 2 + Y 2 = I s and X Y = Y X . Thus there is a common ba-

sis of diagonalization of X and Y and a R - orthogonal matrix O so that X = O 

T Diag(x i ) O and Y = O 

T Diag(y i ) O . We deduce

that x 2 
i 

+ y 2 
i 

= 1 for all i = 1 , . . . , s and we may parametrize the problem by x i = r i cos αi and y i = r i sin αi . We deduce that

 = O 

T RV O with R = diag(r i ) and V = diag(e iα j ) . Remark also that similar tools like the Lagrangian planes may be used to

investigate other objects like the spectrum of Hamiltonian systems (see for example [20] ). Although some developments

seem to be close to each other, the original and unexpected fact of our own investigations lies in the use of these tools of

symplectic geometry and algebra in a non-hamiltonian framework. 

1.4. The example 

As previously announced in the introduction, we illustrate these results with a four degree of freedom system. We tackle

the four degree of freedom non-linear Ziegler system with complete follower forces at each joint like in Fig. 1 with n = 4 .

This system is called Bigoni system in [12] because of the experimental device proposed by this author in [17] . This same

case has been handled in [12] in the linear framework and is also used here in order to compare both linear approaches

(and also to illustrate hereafter the non-linear case). In this section, namely in the linear case, the linearization is done

about the unique equilibrium position θ = 0 
R 4 

. 

The usual case of a unique follower force at the extremity (namely the usual Ziegler system) is not very interesting since

the geometric degree of nonconservativity is then reduced to 1 (see [12] ) with an obvious solution θ4 = 0 . In this case, the

direction of the external force remains constant and this force becomes conservative!. According to the previous notations, it

means that dim F = 2 , s = 1 and that the Lagrangian spaces are one dimensional subspace of the two dimensional symplectic

space (R 

4 /F , ˜ φ) . Finding the one dimensional Lagrangian subspaces of this symplectic space is equivalent to find the set of

linear kinematic constraints such that when the system undergoes one of these constraints, it becomes conservative. 

The force system is then now set up by p = (p 1 , . . . , p 4 ) (see Fig. 1 ). The skew symmetric matrix K a ( p ) reads (see [12] )

(obviously all the elastic terms having a symmetric input in the system are not involved in this matrix): 

K a (p) = 

1 

2 

⎛ 

⎜ ⎜⎝ 

0 p 2 p 3 p 4 

−p 2 0 p 3 p 4 

−p 3 −p 3 0 p 4 

−p 4 −p 4 −p 4 0 

⎞
⎟⎟ ⎠ 

,

4



 

 

 

 

 

 

 

meaning that if (ε1 , . . . , ε4 ) is the canonical basis of R 

4 then 

φ = 

1 

2 

(p 2 ε
∗
1 ∧ ε∗

2 + p 3 ε
∗
1 ∧ ε∗

3 + p 3 ε
∗
2 ∧ ε∗

3 + p 4 ε
∗
1 ∧ ε∗

4 + p 4 ε
∗
2 ∧ ε∗

4 + p 4 ε
∗
3 ∧ ε∗

4 ) . 

Here, det (K a (p)) = p 2 
2 

p 2 
4 

showing that φ is not degenerate when p 2 p 4 � = 0 which is now supposed. Thus, with the previous

notations, F = { 0 } and R 

4 /F = R 

4 and (R 

4 , φ) becomes a four dimensional symplectic space. 

We want to find a basis (e 1 , . . . , e 4 ) so that 

φ = e ∗1 ∧ e ∗2 + e ∗3 ∧ e ∗4 . (4) 

Let us choose 

e ∗1 = ε∗
1 , e 

∗
2 = 

p 2 
2 

ε∗
2 , e 

∗
3 = ε∗

1 + ε∗
2 + ε∗

3 , e 
∗
4 = 

p 3 
2 

ε∗
3 + 

p 4 
2 

ε∗
4 . (5) 

Then (4) holds and for example the constraints x 1 = 0 , x 1 + x 2 + x 3 = 0 convert the system into a conservative one. 

We focus now on the set of all solutions namely here on the set of Lagrangian planes. 

Let 

J = 

⎛
⎜ ⎜⎝ 

0 1 0 0 

−1 0 0 0 

0 0 0 1 

0 0 −1 0 

⎞
⎟⎟ ⎠ 

,

the matrix of the R -symplectic four dimensional vector space (C 

2 , ω) in its canonical basis v 1 = (1 , 0) , v 2 = (i, 0) , v 3 =
(0 , 1) , v 4 = (0 , i ) . Let A be the matrix of a symplectomorphism u from (C 

2 , ω) onto (R 

4 , φ) in their respective canonical

basis. Then the relation ω(x, y ) = φ(u (x ) , u (y )) for all x, y ∈ C 

2 leads to the usual relation J = A 

T K a A . But if Q denotes the

change-of-basis matrix to pass from (ε∗
i 
) to (e ∗

i 
) then P = (Q 

T ) −1 is the corresponding change-of-basis matrix to pass from

( ε i ) to ( e i ) and the formula (4) then reads J = P T K a P . (5) means that 

Q = 

⎛ 

⎜⎜ ⎜⎜⎜ ⎜ ⎝

1 0 1 0 

0 

p 2 
2 

1 0 

0 0 1 

p 3 
2 

0 0 0 

p 4 
2 

⎞
⎟⎟⎟⎟ ⎟⎟⎠

.

It follows that A = (Q 

T ) −1 and calculations give: 

A = 2 

⎛ 

⎜⎜ ⎜⎜⎜⎜ ⎜⎝

1 0 1 0 

0 

1 

p 2 
0 0 

−1 − 1

p 2 
1 0 

p 3 
p 4 

p 3 
p 2 p 4 

− p 3
p 4 

1 

p 4 

⎞
⎟⎟⎟⎟⎟ ⎟⎟⎠

. (6) 

It now remains to parametrize the 3 ( = 

2 ×3 
2 ) dimensional Grassmaniann �(2) of Lagrangian planes of C 

2 which is done as

above in the general case through a parametrization of U s (2). 

Let 

U = 

(
u 1 u 2 

u 3 u 4 

)
∈ U s (2) . 

Because U is symmetric, u 2 = u 3 and because U is unitary, the following three independent relations hold: | u 1 | 2 + | u 2 | 2 =
1 , | u 4 | 2 + | u 2 | 2 = 1 , u 1 c(u 2 ) + u 2 c(u 4 ) = 0 . Then | u 1 | = | u 4 | and we parametrize the problem by u 1 = cos αe iα1 ,u 4 =
cos αe iα4 , u 2 = u 3 = sin αe iα2 . The third relation u 1 c(u 2 ) + u 2 c(u 4 ) = 0 then reads cos α sin α(e i (α1 −α2 ) + e i (α2 −α4 ) ) = 0 .

Generically that leads to α2 = 

α1 + α4 
2 + (2 k + 1) π2 : the parametrization is given by α, α1 , α4 and the corresponding matrix

U ( α, α1 , α4 ) reads: 

U(α, α1 , α4 ) = 

(
cos αe iα1 sin α ie i 

α1 + α4
2

sin α ie i 
α1 + α4

2 cos αe iα4 

)
.

5



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A vector v = (x, y ) ∈ �(2) if and only if (
x 

y 

)
= 

(
cos αe iα1 (−1) k sin α ie i 

α1 + α4
2

(−1) k sin α ie i 
α1 + α4

2 cos αe iα4 

) (
c(x ) 

c(y ) 

)
, (7)

which gives {
x = cos αe iα1 c(x ) + (−1) k sin α ie i 

α1 + α4 
2 c(y ) 

y = (−1) k sin α ie i 
α1 + α4 

2 c(x ) + cos αe iα4 c(y ) . 
(8)

Writing v = (x, y ) = 

∑ 4 
i =1 x i v i in the canonical basis of the R -symplectic four dimensional vector space (C 

2 , ω) , then c(v ) =
(c(x ) , c(y )) = 

∑ 4 
i =1 (−1) i +1 x i v i and (8) then reads:

X = (x 1 x 2 x 3 x 4 ) 
T ∈ ker B (α, α1 , α4 ) , 

with 

B = 

⎛
⎜⎜⎜⎜⎜⎜⎜ ⎜ ⎜⎝

cos α cos α1 − 1 cos α sin α1 (−1) k +1 sin α sin 

α1 + α4 

2 

(−1) k sin α cos 
α1 + α4 

2 

cos α sin α1 − cos α cos α1 − 1 (−1) k sin α cos 
α1 + α4 

2 

(−1) k sin α sin 

α1 + α4 

2 

(−1) k +1 sin α sin 

α1 + α4 

2 

(−1) k sin α cos 
α1 + α4 

2 

cos α cos α4 − 1 cos α sin α4 

(−1) k sin α cos 
α1 + α4 

2 

(−1) k sin α sin 

α1 + α4 

2 

cos α sin α4 − cos α cos α4 − 1 

⎞
⎟⎟⎟⎟⎟⎟ ⎟⎟⎟⎠

.

(9)

These equations define a plane P = P (α, α1 , α4 ) of R 

4 and L (α, α1 , α4 ) = A (P (α, α1 , α4 )) with A given by (6) is then the

Lagrangian plane of (R 

4 , K a ) defined by α, α1 , α4 . It is the parametrization of the set of all solutions of our problem. 

This “symplectic” solution is simple in comparison with the one proposed in [12] that involved tedious calculations for

the calculation of only one solution. This method allows us moreover to get the set of all solutions as well. Thus it shows

that this way is strongly more efficient than the way using the spectral theorem for K 

2 
a by avoiding the calculations of the

eigenvalues and the eigenvectors of K 

2 
a . Such a more efficient method of building the set of convenient constraints converting

the nonconservative system into a conservative system is certainly a good (at least a better!) way for the extension to the

nonlinear case which is now tackled in the following section. 

2. Set up of the non-linear issue. Notations. Link with the linear framework

2.1. Non-linear issue and notations 

We then consider now a mechanical discrete system � so that its configuration manifold is a C ∞ real n dimensional

manifold and (q = (q 1 , . . . , q n ) , U) denotes generically a local coordinate system. That means that U is an open set of M

and there is a function φ : U ⊂ M → R 

n ( C ∞ ) with for all m ∈ M, φ(m ) = q . We suppose that the system is subjected to a

positional force system � so that � is described by a differential 1-form Q � on M whose local expression in ( q , U ) is: 

Q � = 

n ∑ 

k =1

Q �,k (q ) dq k . (10)

According to [18] , the exact vocable for describing � is a semi-basic 1-form. That means that � is described by a 1-form

(or a Pfaff form) ω � on the total space TM of the tangent bundle τM such that ω is on the image of the canonical vertical

operator. The local expression of a such semi-basic form is then 

ω � = 

n ∑ 

k =1

ω �,k (q, ˙ q ) dq k . (11)

Thanks to the positional property of the forces, ω �,k (q, ˙ q ) only depends on q meaning only of the projection TM → M of a

point of TM and may be viewed as a function on the basis M of the tangent bundle. Then, (11) takes the form ( 10 ). 

If there is no ambiguity, we omit the force system � and write Q instead Q �. Any p dimensional ( C ∞ real) submanifold

N of M may locally in ( q , U ) be described by a family ( f 1 , . . . , f n −p ) of n − p independent ( C ∞ real) functions defined on

φ( U ) so that for all q ∈ φ( U ), m = φ−1 (q ) ∈ N ∩ φ−1 (U) ⇔ f 1 (q ) = . . . = f n −p (q ) = 0 . The mechanical system whose N is the

configuration space is called a subsystem �C of � and functions ( f 1 , . . . , f n −p ) are called the local (non-linear) expressions

of the constraints C. We indifferently note �C or � . 
N 
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The positional force system � acting on � is said conservative if there is a function h on M so that in any coordinate

system ( q , U ): 

Q �,k (q ) = 

∂h (φ−1 (q ))

∂q k 
,

which is equivalent to Q = dh on M or that Q is locally exact on M . It implies that Q is a closed differential 1-form and

then dQ = 0 on M . Locally, by use of Poincaré’s theorem and after having chosen an appropriate coordinate system, we may

suppose the reciprocal property true on each U of the atlas covering M . As mentioned above, the global issue involving the

topology of M is out of the scope of this paper. In [18] , the vocable “conservative” means only that the semi basic Pfaff form

Q is closed. The word “Lagrangian system” is reserved for the case where this form is exact in the framework of positional

force system. In this paper, only the local extension to the non-linear case is investigated. 

The issue is then the following: is there a submanifold N of M so that the physical action � on �N is conservative? If so,

find all the possible N with the highest possible dimension p so that the number of constraints is the smallest possible (be-

cause every subsystem built by adding kinematical constraints to a conservative system is again a conservative system!!!). 

2.2. Link with the linear framework 

We focus now on the link with the linear framework of [12] . Suppose that there is a configuration q e (equilibrium config-

uration of �) such that the linear approximation is used. Let x = q − q e = (x 1 , . . . , x n ) . That means that Q � is approximated

by its Taylor expansion to the first order ˜ Q � leading to: 

˜ Q � = 

˜ Q �(x ) = 

n ∑ 

k =1 

(
Q �,k (q e ) + 

n ∑ 

� =1

∂Q �,k (q e ) 

∂q � 
x � 

)
dx k . (12) 

That means that if u = (u 1 , . . . , u n ) ∈ R 

n ≈ T q e M

˜ Q �(x )(u ) = 

n ∑ 

k =1 

(
Q �,k (q e ) + 

n ∑ 

� =1

∂Q �,k (q e ) 

∂q � 
x � 

)
u 

k , 

and the exterior derivative of ˜ Q �(x ) reads: 

d ̃  Q �(x ) = d ̃  Q �(0) = 

n ∑ 

k =1

∑ 

�<k

(
∂Q �,k (q e ) 

∂q � 
− ∂Q �,� (q e )

∂q k 

)
d x � ∧ d x k . 

Because the matrix ( 
∂Q �,k (q e ) 

∂q � 
) k,� is the stiffness matrix K = K(q e ) , then d ̃  Q �(x ) = d ̃  Q �(0) is the linear form φ of the previ-

ous section. 

To conclude this paragraph, it may be noted that the issue of the extension to the non-linear framework of the decom-

position of the stiffness matrix into its symmetric and skew symmetric part is investigated in [21] . The proposed solution

does not use the language of differential forms even though the trick of Poincaré’s Lemma is strongly used in the paper. The

proposed decomposition aims to extend to the non-linear case the remarkable (but obvious) following property of the skew

symmetric matrix K a : x 
T K a x = 

∑ n 
k,� =1 K a,k� x k x � = 0 . In our context, this interesting extension is not usable. 

3. Solution of the non-linear problem

3.1. The solution 

If there is a such p dimensional submanifold N of M , then the restriction Q �, N of Q � to N must be closed. Locally both

conditions are equivalent and the local condition in the local coordinate system ( q , U ) of M reads: 

∀ q ∈ φ(U ∩ N) ∀ X, Y ∈ T N dQ �(q )(X (q ) , Y (q )) = 0 , (13) 

where the differential 2-form dQ � ∈ �2 (M) . Straightforward calculations give: 

dQ �(q ) = 

∑ 

�<k

(
∂Q �,k (q ) 

∂q � 
− ∂Q �,� (q )

∂q k 

)
d q � ∧ d q k , 

and the vector fields X , Y belong to TN if and only if (locally and with above notations) 

df i (X ) = df i (Y ) = 0 , 

for all i = 1 , . . . , n − p (dependency of q is omitted). 

We suppose now that the form dQ � is regular on M meaning that its class r is constant on M . Then here, since the form

dQ is itself a closed form ( d 2 = 0 ), its class is also equal to its rank and is even: r = 2 s . s is the unique number such that

(dQ ) s � = 0 and (dQ ) s +1 = 0 . We then deduce that 2 s ≤ n .
� �
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Darboux’s theorem gives the local modeling of dQ � on an open set U of M and reads: 

d Q � = 

s ∑ 

k =1

d y k ∧ d y k + s , (14)

where y 1 , . . . , y 2 s are 2 s independent functions on U . Choose now the s functions f k = y k on U for all k = 1 , . . . , s . Then if X

and Y ∈ TN then X( f i ) = df i (X ) = 0 = dy i (X ) and Y ( f i ) = df i (Y ) = 0 = dy i (Y ) for all i = 1 , . . . , s . Thus, 

dQ �(X, Y ) = 

s ∑ 

k =1

dy k ∧ dy k + s (X, Y ) = 

s ∑ 

k =1

dy k (X ) dy k + s (Y ) − dy k (Y ) dy k + s (X ) = 0 . 

It is the proof of the following 

Proposition 1. Suppose that the class of dQ � is constant (namely maximal). The (non-linear) degree of non-conservativity of

� is then the half s of the class 2 s of dQ � and thus p = n − s . The local definition of the submanifold N is given by the family

f 1 = 0 , . . . , f s = 0 of equations on M where f i is any linear combination (in the vector space on R and not in the modulus on the

ring on the functions on R ) of y i and y i + s for all i = 1 , . . . , s . 

Proof. The proof has been given for f k = y k on U for all k = 1 , . . . , s . Suppose now that f i is any linear combination of y i and

y i + s for all i = 1 , . . . , s meaning that f i = αi y 
i + βi y 

i + s for i = 1 , . . . , s with ( αi , β i ) � = (0, 0). Then, choosing g i = − βi

α2 
i 
+ β2 

i 

y i +
αi 

α2 
i 
+ β2 

i 

y i + s we deduce d y k ∧ d y k + s = df k ∧ d g k which allow to conclude by a same argument as above. �

Build a family of non-linear constraints converting the system into a conservative one is then brought back to find

(thanks to Darboux’s theorem) the decomposition (14) . This decomposition comes itself (by exterior derivative) from Dar-

boux’s decomposition for the differential 1-form Q �. There are several proofs of the existence of such a decomposition.

Before examining an example, we first ask the effectiveness of the solution. In the following paragraph, the issue of the set

of all non-linear solutions is only formalized in the language of fiber bundles. 

3.2. Effectiveness of the solution 

The issue of the effectiveness of the solution is a significant problem for the physicist. Here, the effectiveness of the

calculation of the degree of nonconservativity is clear at least under the assumption of maximal rank (or class) of dQ �.

Calculating the successive powers of dQ � leads to the value of s . The example in Section 3.4 illustrates this point. 

On the contrary, the effectiveness of the calculation of the constraints defining an appropriate submanifold N of M is

brought back to the one of the canonical expression of dQ � thanks to Darboux’s theorem. In Section 1 , we investigated the

effectiveness of both solutions of the same issue within the linear framework: the one proposed in [12] and the one of this

paper. The former is constructive but not really effective whereas the latter is effective. 

We tackle now the corresponding non-linear issue of the effective calculations of family of constraints f i , i = 1 , . . . , s

which is equivalent to Darboux’s theorem for dQ �. There are several proofs of Darboux’s theorem. Roughly speaking, one

may find two different kinds of proof of Darboux’s theorem. With our notations, the first one is done by induction on s

and we may find such a type of proofs in several books of Analytic Mechanics like in [18] or in [22] . The non-effective step

then lies in the calculation of the flow of a no time-depending vector field at each step of the induction namely here the

calculations of the flows of s no time-depending vector fields (these vectors fields have to be calculated at each step of

the induction reasoning). The second kind of proofs of Darboux’s theorem uses a Moser’s lemma which is a reasoning by

homotopy without induction on s but involving the calculation of the flow of a time-depending vector field (see for example

[23] –[25] ). Both kinds of proofs have its own advantages and disadvantages but both need to calculate the flow of non-linear

vector fields or at least to integrate these vector fields which cannot be done generally analytically but only numerically.

That is the main obstacle to an analytic solution of this issue. The following example of the four degree of freedom Bigoni

system leads to such a situation. 

3.3. Set of solutions 

They are as many solutions as functions y k , k = 1 , . . . , s involved in (14) . But this point of view is not geometric. It is a

similar issue as the one met in the linear case: a solution is a family of linear forms but the set of solutions is described by

(the manifold of) Lagrangian spaces. Here to get an analogous object for the differentiable non-linear case, one has to use

the language of vector bundle. The 2-differential form dQ π may be viewed as a section of the vector bundle �2 ( M ) of the

2-differential forms on M which is itself a vector bundle associated to the tangent bundle τ (M) = (T (M) , p M 

, M) the fiber

being R 

n . Supposing that the class 2 s of dQ π is constant on M then the field q → ker dQ π (q ) defines a vector subbundle

τ 0 ( M ) over M whose the fiber is R 

k with k = n − 2 s . The total space of this vector bundle is 
⋃ 

q ∈ M 

{ q } × ker dQ π (q ) . On

the quotient vector bundle ˜ τ (M) over M of τ ( M ) by τ 0 ( M ), the 2-differential form d ̃  Q π induced by dQ π ( q ) on each fiber

T q M/ ker dQ π (q ) defines a structure of symplectic vector bundle over M . The set of solutions is then built by the set of all

Lagrangian manifolds L of this symplectic vector bundle. The very difficult issue to built it is let to further investigations. 
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3.4. The example 

We now tackle the same four degree of freedom non-linear Bigoni system as in 1.4 with total follower force at each

joint like in Fig. 1 with n = 4 . As already noted, the most usual case of a unique follower force at the extremity (usual

Ziegler system) is not interesting in our context because the geometric degree of nonconservativity is then reduced to 1

with the obvious solution θ4 = 0 in the linear case and θ4 = cte in the non-linear case. In this last case, the direction of the

external force remains constant and this force becomes conservative!. We however deal with this case as a particular case

in the paragraph below. We begin by doing calculations for any value of n and we specify in a second time the value n = 4 .

Remember that the force system is set up by � = (p 1 , . . . , p n ) (see Fig. 1 ) and the local coordinate system is θ = (θ1 , . . . , θn ) .

The configuration manifold is then M = (S 1 ) n . 

Straightforward computations give the following expression for the 1-forme Q � (all bars have the same length � ): 

Q �(θ ) = −� 

n ∑ 

k =1

p k 

k ∑ 

j=1

( cos θ j sin θk − cos θk sin θ j ) dθ j , 

= −� 

n ∑ 

k =1

p k 

k ∑ 

j=1

sin (θ j − θk ) dθ j , 

= −� 

n ∑ 

j=1

∑ 

k> j

p k sin (θ j − θk ) dθ j , 

= 

n ∑ 

j=1

Q �, j (θ ) dθ j , (15) 

with 

Q �, j (θ ) = � 
∑ 

k> j

p k sin (θk − θ j ) . (16) 

Calculations then give (for sake of simplicity � = 1 ): 

dQ �(θ ) = 

∑ 

i< j

p j cos (θ j − θi ) dθi ∧ dθ j . 

Suppose now that n = 4 . Then 

dQ � = p 2 cos (θ2 − θ1 ) dθ1 ∧ dθ2 + p 3 cos (θ3 − θ1 ) dθ1 ∧ dθ3 + p 4 cos (θ4 − θ1 ) dθ1 ∧ dθ4 , 

+ p 3 cos (θ3 − θ2 ) dθ2 ∧ dθ3 + p 4 cos (θ4 − θ2 ) dθ2 ∧ dθ4 + p 4 cos (θ4 − θ3 ) dθ3 ∧ dθ4 , (17) 

and the square of dQ � reads: 

dQ 

2 
�(θ ) = dQ �(θ ) ∧ dQ �(θ ) = ( p 2 p 4 cos (θ1 − θ2 ) cos (θ3 − θ4 ) , 

− p 3 p 4 cos (θ1 − θ3 ) cos (θ2 − θ4 ) + p 3 p 4 cos (θ1 − θ4 ) cos (θ2 − θ3 ) ) d θ1 ∧ d θ2 ∧ d θ3 ∧ d θ4 , 

and obviously because dim M = 4 , dQ 

3 
�

= 0 . 

Remark also that when p 1 = p 2 = p 3 = 0 , dQ 

2 
�

= 0 and the class of dQ � is 1 meaning that when the follower load is

acting only at the extremity of the system (only p 4 � = 0), the (non-linear) degree of nonconservativity is 1. In this case, the

unique constraint then reads f 1 (θ ) = aθ4 + b with a , b any constant. Indeed, in this case: 

dQ � = p 4 ( cos (θ4 − θ1 ) dθ1 ∧ dθ4 + cos (θ4 − θ3 ) dθ3 ∧ dθ4 ) = 0 , 

on N defined by f 1 = 0 because then dθ4 = 0 . We then find again that, for usual Ziegler system, when the action of the

force p 4 is constrained to keep a fixed direction ( θ4 = cst), the system becomes conservative. In a neighborhood of 0, that

reads θ4 = 0 which has been found in [12] in the linear framework. 

Except on the closed hypersurface S of M whose equation reads 

p 2 p 4 cos (θ1 − θ2 ) cos (θ3 − θ4 ) − p 3 p 4 cos (θ1 − θ3 ) cos (θ2 − θ4 ) + p 3 p 4 cos (θ1 − θ4 ) cos (θ2 − θ3 ) = 0 , (18) 

dQ 

2 
�

� = 0 which proves that the geometric degree of nonconservativity is generically 2 meaning on M �S . On S , the geometric

degree of nonconservativity is again 1. According to (18) , the constraint reads, supposing p 4 � = 0: 

g(θ ) = p 2 cos (θ1 − θ2 ) cos (θ3 − θ4 ) − p 3 cos (θ1 − θ3 ) cos (θ2 − θ4 ) + p 3 cos (θ1 − θ4 ) cos (θ2 − θ3 ) = 0 . 

We now tackle the generic issue supposing that the point m ∈ M �S . We are then looking for the families of two constraints

f 1 = 0 , f 2 = 0 defining the family of submanifolds N . That is equivalent to find a coordinate system (y i ) i =1 , ... , 4 of M such

that 

d Q � = d y 1 ∧ d y 3 + d y 2 ∧ d y 4 , (19) 

whose existence is ensured by Darboux’s theorem. 
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For finding the constraints, we follow the approach of S. Lang in [24] . First, since the calculations are local, we choose

θ0 = 0 and we investigate the non-linear problem in a neighborhood U of θ0 = 0 . Then 

dQ �(0) = 

∑ 

i< j

p j dθi ∧ dθ j . 

Let us then put, for θ ∈ U , ω t (θ ) = dQ �(0) + t(dQ �(θ ) − dQ �(0) . Straight forward calculations give: 

ω t (θ ) = 

∑ 

i< j 

p j ((1 − t) + t cos (θi − θ j )) dθi ∧ dθ j = 

∑ 

i< j

p j ((1 + t( cos (θi − θ j ) − 1)) dθi ∧ dθ j . 

We then are led to define the time-dependent vector field ξ t such that for all 0 ≤ t ≤ 1: 

ω t ◦ ξt = Q �(θ ) − Q �(0) = Q �(θ ) , (20)

because Q �(0) = 0 and where the 1-form ω t ◦ξ t is defined in U by: 

ω t ◦ ξt (X ) = ω t (ξt , X ) , 

for all vector field X on U . In local coordinates θ on U , (20) reads: 

∑ 

i< j

p j ((1 + t( cos (θi − θ j ) − 1)) dθi ∧ dθ j (ξt , X ) = 

n ∑ 

j=1

Q �, j (θ ) dθ j (X ) , (21)

for all vector field X on U and using the basis ( ∂ 
∂θi 

) i =1 , ... ,n , (21) becomes: ∑ 

j<i

p j ((1 + t( cos (θi − θ j ) − 1)) ξ j 
t −

∑ 

j>i

p j ((1 + t( cos (θi − θ j ) − 1)) ξ j 
t = Q �, j (θ ) ∀ i = 1 , . . . , n,

where ξt = 

∑ n 
i =1 ξ

i 
t 

∂
∂θi 

and then according to (16) ∑ 

j<i

p j ((1 + t( cos (θi − θ j ) − 1)) ξ j 
t −

∑ 

j>i

p j ((1 + t( cos (θi − θ j ) − 1)) ξ j 
t = 

∑ 

j>i

p j sin (θ j − θi ) , (22)

for i = 1 , . . . , n . 

From now on we restrict the calculations to the case n = 4 . 

The vector field ξ t is then the solution of the linear system ⎧ ⎪ ⎪⎨ 

⎪ ⎪ ⎩
−p 2 ψ 12 (t, θ ) ξ 2 

t − p 3 ψ 13 (t, θ ) ξ 3 
t − p 4 ψ 14 (t, θ ) ξ 4 

t = Q �, 1 (θ ) , 

p 1 ψ 12 (t, θ ) ξ 1 
t − p 3 ψ 23 (t, θ ) ξ 3 

t − p 4 ψ 24 (t, θ ) ξ 4 
t = Q �, 2 (θ ) , 

p 1 ψ 13 (t, θ ) ξ 1 
t + p 2 ψ 23 (t, θ ) ξ 2 

t − p 4 ψ 34 (t, θ ) ξ 4 
t = Q �, 3 (θ ) , 

p 1 ψ 14 (t, θ ) ξ 1 
t + p 2 ψ 24 (t, θ ) ξ 2 

t + p 3 ψ 34 (t, θ ) ξ 3 
t = Q �, 4 (θ ) , 

(23)

where ψ i j (t, θ ) = ψ ji (t, θ ) = 1 + t( cos (θi − θ j ) − 1) for all i � = j and Q �, j is given by (16) . Solving (23) gives the functions

(t, θ ) �→ ξ j 
t (θ ) for all j = 1 , 2 , 3 , 4 whose analytic expressions (found with MAPLE) are complicated but may always be found

because of the linearity of the system with unknowns ξ j 
t , j = 1 , 2 , 3 , 4 (see the annex for the solutions of (23) ). 

Let now αt be the flow of ξ t . This is the first step that may be not analytical effective because we cannot always find an

analytic explicit expression of αt . 

It may be proved (see [24] pp. 152–153) from (20) that 

d(α∗
t ω t ) 

dt 
= 0 , 

namely α∗
t ω t is constant and thus 

α∗
1 ω 1 = α∗

1 d Q � = d Q �(0) . 

(Here, as usually, if φ: M → N is a differential map between two manifolds M and N , φ∗α is the pull-back of any differential

p-form α on N : φ∗α is then a differential p-form on M .) 

But the constant closed 2-form dQ �(0) is of class 2. There is then a new system of coordinates u = (u 1 , u 2 , u 3 , u 4 ) in a

neighborhood of 0 such that 

dQ �(0) = du 1 ∧ du 3 + du 2 ∧ du 4 , 

and this system of coordinates may be found by usual algebraic methods. Here, we find for example: 

u 1 = θ1 , u 2 = θ1 + θ2 + θ3 , u 3 = p 2 θ2 , u 4 = p 3 θ3 + p 4 θ4 , (24)

and conversely 

θ1 = u 1 , θ2 = 

1 

p 2 
u 3 , θ3 = −u 1 + u 2 − 1

p 2 
u 3 , θ4 = 

p 3 
p 4 

u 1 − p 3 
p 4 

u 2 + 

p 3
p 2 p 4 

u 3 + 

1

p 4 
u 4 , (25)

(24) is obviously (5) because, as mentioned in (2.2) , dQ (0) = φ. 
�
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Finally, if the diffeomorphism α1 : V → U reads, after having used (25) to pass from variables θ to variables u : 

α1 (u 1 , u 2 , u 3 , u 4 ) = α1 (u ) = (h 1 (u ) , h 2 (u ) , h 3 (u ) , h 4 (u )) , 

then the coordinates y = (y 1 , y 2 , y 3 , y 4 ) leading to the wanted form (19) are given by the relations u i = h i (y ) or y i = h −1 
i 

(u ) =
g i (θ ) (thanks to (24) ) for all i = 1 , . . . , 4 . Inverting the diffeomorphism h is the second non-analytical effective step of the

calculation of the non-linear constraints. 

This example highlights the two steps that are the obstructions to get an analytic explicit expression of the non-linear

kinematic constraints. 

The other way using the proof by induction leads to other issues of same level of difficulty. Building the nonlinear

kinematic constraints even for this four d.o.f. example is a real challenge. A possible alternative should be to ask whether

there are conditions for an analytic expansion of the canonical coordinates in Darboux’s theorem and, if so, to build at least

this expansion up to a given order. If not, the obstacles might however be overcome thanks to a numerical approach. 

Conclusion 

In this paper, we focus on the so-called geometric degree or index of nonconservativity of a discrete mechanical system

that has been introduced and investigated in [12] in a linear framework. It is here tackled in a linear and nonlinear context

as well. By definition, this index is the minimal number of kinematic constraints in order that the constrained system

becomes conservative or Lagrangian. The paper deals with positional non-Lagrangian mechanical systems like circulatory 

elastic systems and viscosity or friction in the system are not directly taken into account. In the linear framework (namely

on the tangent space of the configuration space at a configuration q e ), the geometric degree of nonconservativity is defined

and investigated through the skew symmetric part K a ( q e ) of the stiffness matrix K ( q e ) of the mechanical system � whereas,

in the non-linear framework, it is studied in the language of analytic mechanics. Firstly, we use the language of exterior p-

forms in order to get an effective solution of the building of the constraints. This method leads to a more effective solution

than the one proposed in [12] . Secondly, the building of the complete set of all the solutions is provided thanks to the

calculations of the Lagrangian planes of an appropriate symplectic space. Thirdly, the extension to the nonlinear case is

done via the language of differential forms. The degree of nonconservativity is then the class of a closed 2-form and the

corresponding constraints are linked with the canonical form of this 2-form whose existence is due to well-known Darboux’s

theorem. An 4 degree of freedom example illustrates all the results. This example shows how building the constraints in the

nonlinear framework but also highlights the steps of the used method that are non-analytically effective. An interesting

open issue could then be first to find conditions for an possible analytic expansion of the canonical coordinates and second

to perform an algorithm providing such an expansion at least up to a fixed order. 

Annex 

We now give the expanded expression of the first component ξ 1 
t = ξ 1 

t (θ ) = ξ1 (t, θ ) of the vector field ξt = 

∑ 4 
i =1 ξ

i 
t 

∂
∂θi 

for the 4 degree of freedom example. Calculations have been done by Maple. The other components are of the same vein.

Maple fails to calculate analytically the flow αt of ξ t and then to find by this way an analytic expression of the non-linear

constraints. 

ξ 1 
t (θ ) = −[ p 4 t sin (θ3 − θ4 ) + p 4 t cos (θ3 − θ4 ) sin (θ2 − θ4 ) − p 4 t cos (θ2 − θ4 ) sin (θ3 − θ4 ) ,

− p 3 t sin (θ2 − θ3 + p 3 t cos (θ3 − θ4 ) sin (θ2 − θ2 ) + p 4 sin (θ2 − θ4 ) 

+ p 3 sin (θ2 − θ3 ) − p 4 sin (θ3 − θ4 ) ] /p 1 [ −t cos (θ2 − θ4 ) − t cos (θ1 − θ3 ) , 

− t 2 cos (θ1 − θ3 ) cos (θ2 − θ4 ) + t 2 cos (θ1 − θ3 ) + t 2 cos (θ2 − θ4 ) + t cos (θ1 − θ4 ) + t cos (θ2 − θ3 ) , 

+ t 2 cos (θ2 − θ3 ) cos (θ1 − θ4 ) − t 2 cos (θ2 − θ3 ) − t 2 cos (θ1 − θ4 ) + 1 + t cos (θ3 − θ4 ) , 

− 2 t + t cos (θ1 − θ2 ) + t 2 cos (θ1 − θ2 ) cos (θ3 − θ4 ) − t 2 cos (θ1 − θ2 ) − t 2 cos (θ3 − θ4 ) + t 2 ] . 
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