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Noël Challamel · Attila Kocsis · C. M. Wang · Jean Lerbet

From Ziegler to Beck’s column: a nonlocal approach

Abstract This paper is concerned with the dynamic stability of a microstructured elastic column loaded by
circulatory forces. This nonconservative lattice (or discrete) problem is shown to be equivalent to the finite
difference formulation of Beck’s problem (cantilever column loaded by follower axial force). The lattice
problem can be exactly solved from the resolution of a linear difference eigenvalue problem. The first part of
the paper deals with the theoretical and numerical analyses of this discrete Beck’s problem, with a particular
emphasis on the flutter load sensitivity with respect to the discretization parameters, such as the number
of links of the lattice. The second part of the paper is devoted to the elaboration of a nonlocal equivalent
continuum that possesses similar mathematical or physical properties as compared to the original lattice
model. A continualized nonlocal model is introduced first by expanding the difference operators present in the
lattice equations in terms of differential operators. The length scale of the continualized nonlocal model is size
independent. Next, Eringen’s nonlocal phenomenological stress gradient is considered and applied at the beam
scale in allowance for scale effects of the microstructured Beck column. The nonlocal Euler–Bernoulli beam
model is able to capture the softening scale effect of the lattice model, even if the length scale of Eringen’s
model appears to be size dependent in this case. The continualized nonlocal continuum slightly differs from the
Eringen’s one, in the sense that the length scale affecting the static and the inertia terms differs in the deflection
equation. A general parametric study illustrates the capability of each nonlocal model, the phenomenological
and the continualized one, with respect to the reference lattice model. Nonlocal Beck’s column is shown to
be a transient medium from Ziegler’s column (two-degree-of-freedom system) to the local continuous Beck’s
column (with an infinite degree of freedom).
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1 Introduction

Lattice systems can be considered as the reference discrete periodic media, for correctly understanding the
role of microstructure in the response of a material or a structural element at a larger scale. The pioneer
atomic chain model of Born and von Kármán [8], composed of concentrated masses connected by linear
elastic springs, is often considered as the paradigmatic uniaxial lattice in vibrations. This uniaxial lattice, also
called microstructured chain or discrete chain, has been later shown to macroscopically behave as a nonlocal
continuous bar by Eringen and Kim [20] or Eringen [21]. Eringen and Kim [20] or Eringen [21] shows that
the integral kernel of the nonlocal equivalent model associated with this axial lattice depended on the lattice
spacing. It is worth mentioning that the model of Born and von Kármán [8] can be used for three-dimensional
crystal lattice applications.

For structuralmechanics applications, the reference bending lattice is themodel ofHencky.CalledHencky’s
system [24], it comprises rigid links connected by elastic rotational springs. It was only found recently that this
system behaves as a nonlocal Euler–Bernoulli beam [11,12,38], where the nonlocality may be associated with
the stress gradient model of Eringen [21]. These results, valid for the bending lattice, may be also generalized
to bending-shear lattices or micropolar lattice (see for instance [16,41]). The link between the microstructured
bending system (Hencky’s model) and some enriched Euler–Bernoulli beam models was already shown by
Andrianov et al. [1] in dynamics, without direct connection to Eringen’s nonlocality. The methodology for
connecting the discrete system with the equivalent continuous one is based on a continualization procedure
that involves expanding the difference operators present in the lattice equations with differential operators.
Starting from the lattice equations of the discrete model, it is possible to define an equivalent continuum from
the associated difference equations, which can be presented as an equivalent nonlocal continuum of the stress
gradient type, as pioneered by Eringen [21] from a phenomenological point of view. Most of the results for
this equivalence between the lattice and the equivalent nonlocal continuum have been derived for conservative
elastic systems.

The aim of this paper is the generalization of this result to nonconservative elastic systems, such as
circulatory systems. The structural paradigm of Beck’s system composed of a cantilever elastic column loaded
by a concentrated follower load has been studied in details (see [6,7,9,19,30,44]). The discrete version of this
structural problem can be understood as Ziegler’s column, at least for the two-degree-of-freedom system [43].
Following a continualization procedure that was previously used for the discrete Euler problem, we show that
the discrete Beck system behaves as a nonlocal equivalent column (see [11] for the buckling problem under
a conservative axial load; the post-buckling behaviour of this discrete column under a conservative load has
been recently investigated by Challamel et al. [14] within nonlocal mechanics). In other words, there is a kind
of continuous transition from the two-degree-of-freedom system (Ziegler’s column—[43]) to the continuous
one (Beck’s column is asymptotically found for an infinite degree of freedom; [6]), possibly captured within
nonlocal theories.

This paper is also related to the effect of discretization in the characterization of the stability domain of
nonconservative elastic systems. Moreover, as discussed in Challamel et al. [15], there is a close connection
between lattice mechanics and finite difference methods. Hencky’s system can be considered as the physi-
cal representation of the finite difference method applied to a continuous beam problem [35]. Leipholz [29],
Sugiyama et al. [36,37], El Naschie and Al-Athel [17,18] investigated nonconservative problems with distrib-
uted axial forces by the finite difference method (or the discrete element method). El Naschie and Al-Athel
[17,18] used a discrete element method (equivalent to Hencky’s bar-chain system) under distributed axial
follower load with a modified clamped boundary condition based on a clamped rotational stiffness larger than
two times the internal rotational stiffness. This approach can be shown to be equivalent to the finite difference
method, except eventually for the modelling of the clamped section. More specifically with respect to the
present study devoted to Beck’s column, Sugiyama et al. [36] also specifically investigated the Beck’s column
by the equivalent finite difference method. El Naschie and Al-Athel [18] studied a massless Beck’s column
with a concentrated tip mass, using Hencky’s system. More recently, the specific effect of discretization of
columns in the presence of follower loads has been numerically handled by Gasparini et al. [23] without any
theoretical correspondence with nonlocal theories. Luongo and D’Annibale [31] investigated the destabilizing
role of damping in discrete and continuous systems, without focusing specifically on the possible connection
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between the discrete system and the continuous one. Awrejcewicz et al. [5] used the finite difference method
for highlighting chaos in the vibration of curvilinear Euler–Bernoulli beams.

The nonlocal Beck’s problem has been already investigated by Xiang et al. [40] from an Eringen’s nonlocal
beam model. Xiang et al. [40] showed the softening effect of the small length terms on the flutter load.
Lazopoulos and Lazopoulos [27] investigated the flutter behaviour of a gradient elasticity Beck column and
highlighted the stiffening effect of the small length scale terms.More recently,Atanackovic et al. [4] investigated
the flutter load of nonlocal viscoelastic beam on elastic foundation. They showed that the flutter load is affected
by the small length scale terms (which tend to reduce the flutter load), even if the flutter load surprisingly does
not depend on the foundationmodulus. This paradoxical insensitivity is known as theHermann–Smith paradox,
which can be removed by introducing the viscoelastic dependence of the beam. The nonlocality considered
by Xiang et al. [40] or by Atanackovic et al. [4], based on Eringen’s differential law, was assumed from
a phenomenological nonlocal model. However, the source of nonlocality from the discrete analogy of the
structural system was not discussed in these studies. This paper focuses on the definition of a nonlocal beam
model that is valid for both conservative and nonconservative loadings and is defined from a microstructured
or a lattice model.

2 Review of Beck’s column

In this part, the review of Beck’s problem is presented. As will be shown later in the paper, equations of local
Beck’s column, discrete Beck’s column or nonlocal Beck’s column have mathematical similarities. The flutter
load of each system is computed for eachmodel from the calculation of a four-dimensional determinant. Beck’s
column is an Euler–Bernoulli beam clamped at one end and free at the other end. The free end (the tip) is
subjected to a follower force: a compressive force P whose line of action is always tangential to the slope of
the deformed column at the tip. By assuming small displacements, initially straight column, linear elasticity,
and neglecting the rotary inertia, the partial differential equation of Beck’s problem is given by [6]:

EI∂4x
�
w(x, t) + P∂2x

�
w(x, t) + μ

�̈
w(x, t) = 0 (1)

Here �
w(x, t) denotes the deflection of the column, EI is its flexural rigidity, P the compressive follower force,

μ the mass per unit length, the superdot denotes differentiation with respect to time t , and the symbol

∂x = ∂

∂x
(2)

By using the dimensionless coordinate ς = x/L , and introducing the deflection as the function of ς , i.e.
w(ς, t) = �

w(Lς, t), in Eq. (1), we have

EI

L4w(4)(ς, t) + P

L2w′′(ς, t) + μẅ(ς, t) = 0 (3)

Here the prime denotes differentiation with respect to ς . The solution for Eq. (3) is assumed in the following
separable form:

w(ς, t) = w(ς) · e jω·t

where j = √−1 is the imaginary unit and ω the circular frequency. If ω is real, then the vibration of the
column is stable (in the Lyapunov sense). In view of the separable form of deflection, Eq. (3) may be re-written
as an ordinary differential equation

w(4) + �w′′ − �2w = 0 (4)

where the load and frequency parameters, � and �, are defined as

� = PL2

EI
and �2 = ω2L4μ

EI
(5)

The solution for Eq. (4) is:

w(ς) = A cosh(
�
s 1ς) + B sinh(

�
s 1ς) + C cos(

�
s 2ς) + D sin(

�
s 2ς) (6)
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Fig. 1 Load–frequency curve of Beck’s column. The flutter load–flutter frequency pair is denoted by a box. Dashed line shows
the flutter load level

where

�
s 1 =

√
√
√
√

√

�2

4
+ �2 − �

2
and

�
s 2 =

√
√
√
√

√

�2

4
+ �2 + �

2
(7)

The boundary conditions of the column are:

w(0) = 0, w′(0) = 0 and w′′(1) = 0, w′′′(1) = 0 (8)

By substituting Eq. (6) into the boundary conditions given by Eq. (8), one obtains an eigenvalue problem.
For a nontrivial solution, the determinant of the frequency matrix has to vanish, i.e.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 1 0
0

�
s 1 0

�
s 2

�
s
2
1 cosh(

�
s 1)

�
s
2
1 sinh(

�
s 1) −�

s
2
2 cos(

�
s 2) −�

s
2
2 sin(

�
s 2)

�
s
3
1 sinh(

�
s 1)

�
s
3
1 cosh(

�
s 1)

�
s
3
2 sin(

�
s 2) −�

s
3
2 cos(

�
s 2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0

The above characteristic equation is a highly nonlinear equation. Onemay solve this characteristic equation for
� and � by using the shooting method, assuming a real frequency parameter �. Solutions are plotted in Fig. 1
in the domain of � ∈ [0, 25],� ∈ [0, 25]. Two roots can be seen for the unloaded column, i.e. for � = 0,
which are the first two nondimensional natural frequency parameters of the clamped column. By increasing
the load, these two roots get closer to each other and coincide at the flutter load parameter �Beck

flut = 20.051
and frequency parameter �Beck

flut = 11.016 [6]. The two roots become complex conjugate at the flutter load
level in which Beck’s column undergoes a dynamic loss of stability.

3 The discrete Beck’s problem

The discrete Beck’s problem is shown in Fig. 2. This microstructured elastic system comprises n cells, as it
is a discretized beam of length L composed of n repetitive cells of size a. In other words, the total length of
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Fig. 2 Discrete Beck’s problem

the structure L is equal to L = n × a, i.e. the number of repetitive cells multiplied by the size of each cell.
The cells are connected by frictionless hinges of mass m and coupled by elastic rotational springs of stiffness
C . The correspondence between the discrete and the continuous systems yields C = EI/a for the spring
stiffness and m = μa for the mass, where EI is the bending stiffness and μ is the mass per unit length of the
continuum. The end inertial mass is half of that in the middle in order to maintain the total mass conservation,
n ×m = μL . One end of the beam is attached to the ground and equipped with a rotational spring of stiffness
C1. The other (free) end is loaded by a follower force denoted by P . The stability of the discrete system
under the nonconservative follower force is studied with the dynamic method under the assumption of small
displacements. Note that the equilibrium method cannot capture dynamic loss of stability of nonconservative
systems, as it was demonstrated on similar discrete models by Kocsis et al. [25], Kocsis [26].

In order to obtain the governing equations of the system, D’Alembert’s principle along with the principle
of virtual displacements is utilized [22]. The virtual work done by the moments in the spring on a virtual
displacement system is given by

δWint = C1
w1(t)

a

δw1

a
+ C

n
∑

i=1

(
wi+1(t) − 2wi (t) + wi−1(t)

a

) (
δwi+1 − 2δwi + δwi−1

a

)

(9)

Here wi (t) = �
w (x = ia, t) is the vertical translation of node i as the function of time, δwi is an arbitrary

virtual displacement of node i , and C1 = 2C is the rotational spring stiffness at the clamped end.
The virtual work done by the follower force is:

δWext = Pa
n
∑

i=1

(
wi (t) − wi−1(t)

a

)(
δwi − δwi−1

a

)

− P

(
wn(t) − wn−1(t)

a

)

δwn (10)

The work done by the fictitious inertial force on a virtual displacement system is:

δW f = −m
n−1
∑

i=1

ẅi (t)δwi − m

2
ẅn(t)δwn (11)
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The total virtual work δW = δWint − δWext − δW f is zero for any virtual displacement system. It yields:

EI
wi+2(t) − 4wi+1(t) + 6wi (t) − 4wi−1(t) + wi−2(t)

a4
+ P

wi+1(t) − 2wi (t) + wi−1(t)

a2
+ μẅi (t) = 0

(12)

for i = 1. . .n − 1, with the following boundary conditions prescribed at the clamped end:

w0 = 0 and w−1 = w1 (13)

The far-end boundary conditions of this non-self-adjoined problem are obtained from the virtual work
theorem for node i = n:

wn+1 − 2wn + wn−1 = 0 and wn+1 − 3 (wn − wn−1) − wn−2 + �

2n4
wn = 0 (14)

Note that the last condition (free-end boundary condition) reduces to the one obtained by Leckie and
Lindberg [28] for a free vibration problem with the finite difference method.

One can immediately recognize that Eq. (12) is the finite difference version of Eq. (1). Hence, the discrete,
microstructured system is mathematically equivalent to the finite difference format of the so-called local
continuum (see the remark of [35], and the debate about the physical interest of Hencky’s bar-chain compared
to the “abstract” numerical-based finite difference method; see more recently [11,12]). The discrete Beck’s
problem, under investigation, is nothing else but the finite difference formulation of the Beck’s continuous
problem governed by Eq. (1):

EIδ40
�
w + Pδ20

�
w + μ

�̈
w = 0 (15)

where

δ40
�
w = wi+2(t) − 4wi+1(t) + 6wi (t) − 4wi−1(t) + wi−2(t)

a4
and δ20

�
w = wi+1(t) − 2wi (t) + wi−1(t)

a2

Here δ0 is the first-order central difference. This linear finite difference equation can be solved exactly.
First, the nodal displacement is written in the form of

wi (t) = wi · e jω·t (16)

with j being the imaginary unit, ω being the vibration frequency of the beam, andwi being the nodal displace-
ment amplitude. It is substituted in Eq. (15), leading to the time-independent difference equation:

Hi + �

n2
Gi − �2

n4
wi = 0 (i ∈ [1, n − 1]) (17)

where

Hi = wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2 (18a)

Gi = wi+1 − 2wi + wi−1 (18b)

and � and � are given by Eq. (5). Now � and � denote nondimensional load and vibration frequency
parameters, respectively, of the microstructured model. The boundary conditions for Eq. (17) are given by
Eqs. (13) and (14).

Next, the fourth-order finite difference equation is exactly solved, following the procedure described in
Santoro and Elishakoff [34], Challamel et al. [11–13] or Zhang et al. [42]. The discrete displacement field of
the microstructured beam model can be assumed as

wi = Bγ i (19)

where B is a constant. Therefore, Eq. (17) may be written as


2 − (4 − A1)
 + 4 − 2A1 + A2 = 0 (20)
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where


 = γ + 1

γ
, A1 = �

n2
, A2 = − �

n4
.

By solving Eq. (20), one obtains


1,2 = 2 − �

2n2
∓

√
�2 + 4�

2n2
(21)

Therefore

γ1,2 = 1 − 1

4n2

[

� +
√

�2 + 4�
]

∓ j

√

1 −
[

1 − �

4n2
− 1

4n2

√

�2 + 4�

]2

(22a)

γ3,4 = 1 − 1

4n2

[

� −
√

�2 + 4�
]

∓
√
[

1 − �

4n2
+ 1

4n2

√

�2 + 4�

]2

− 1 (22b)

where j = √−1 is the imaginary unit. From Eq. (22), one can assume that

cosφ = 1 − �

4n2
− 1

4n2

√

�2 + 4� (23a)

cosh ϑ = 1 − �

4n2
+ 1

4n2

√

�2 + 4� (23b)

Therefore

γ1,2 = cosφ ∓ j · sin φ (24a)

γ3,4 = cosh ϑ ∓ sinh ϑ (24b)

In view of Eq. (24), the general solution for wi can be represented as

wi = A1 cos (iφ) + A2 sin (iφ) + A3 cosh (iϑ) + A4 sinh (iϑ) (25)

In view of the boundary conditions of Eqs. (13) and (14), the load–frequency relationship can be obtained
from the following characteristic equation:
∣
∣
∣
∣
∣
∣
∣

1 0 1 0
0 sin φ 0 sinh ϑ

cos(nφ) (cosφ − 1) sin(nφ) (cosφ − 1) cosh(nϑ) (cosh ϑ − 1) sinh(nϑ) (cosh ϑ − 1)
F1 F2 F3 F4

∣
∣
∣
∣
∣
∣
∣

= 0 (26)

where

F1 =
[

�

2n4
− 2(cosφ − 1)2

]

cos(nφ) − [2(cosφ − 1)] sin(nφ) sin φ (27a)

F2 =
[

�

2n4
− 2(cosφ − 1)2

]

sin(nφ) + [2(cosφ − 1)] cos(nφ) sin φ (27b)

F3 = (4 − 2 cosh ϑ) cosh(nϑ) cosh ϑ − (2 − 2 cosh ϑ) sinh(nϑ) sinh ϑ −
(

2 − �

2n4

)

cosh(nϑ) (27c)

F4 = (4 − 2 cosh ϑ) sinh(nϑ) cosh ϑ − (2 − 2 cosh ϑ) cosh(nϑ) sinh ϑ −
(

2 − �

2n4

)

sinh(nϑ) (27d)

The flutter load,�disc,n
f lut , and flutter frequency,�disc,n

f lut , can be computed fromEq. (26) for a given number of
cells n. The roots of Eq. (26) for zero load� = 0 yield the natural vibration frequencies of the microstructured
model.

The flutter load for the two-degree-of-freedom Ziegler’s type system, n = 2, is �
disc,2
flut = 8. This value can

be numerically obtained from the load–frequency relationship Eq. (26), or analytically obtained, as detailed
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Fig. 3 Comparison of load–frequency curve of the microstructured model for different values of n; n = 4 (cyan dashed line);
n = 10 (blue dash-dot line) and n = 100 (red solid line). The flutter load–flutter frequency pair is denoted by a box. Horizontal
dashed line shows the flutter load level of the local continuum (Beck’s solution). (Color figure online)
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Fig. 4 Flutter load of the discrete model versus the number of cells n. Dashed line shows the flutter load level of Beck’s column

in “Appendix 1". A closed-form equation of the flutter load can be also obtained for n = 3, leading to
�

disc,3
flut ≈ 12.4023, as shown in “Appendix 2". The nondimensional flutter load parameter increases with the

number of cells n. For larger values of n, the flutter load and the flutter frequency parameters can be obtained
numerically, by using the shooting method.

Figure 3 shows the load–frequency curve, f (�, �) = 0, for different values of n cells in the domain
of � ∈ [0, 25],� ∈ [0, 25]. The flutter load and flutter frequency parameters are: �

disc,4
flut = 15.0834 and
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Fig. 5 Flutter frequency of the discrete model versus the number of cells n. Dashed line shows the flutter frequency of Beck’s
column

�
disc,4
flut = 9.011, respectively, for n = 4. The first natural frequency is �

disc,4
free = 3.342. The same curve is

plotted for n = 10 cells. The flutter load and flutter frequency parameters in this case are: �disc,10
flut = 19.1175

and �
disc,10
flut = 10.653, respectively. The first natural frequency is �

disc,10
free = 3.487. The case of n = 100 cells

almost corresponds to the so-called local Beck’s column (without scale effects). The flutter load and flutter
frequency parameters in this case are: �

disc,100
flut = 20.0413 and �

disc,100
flut = 11.012, respectively. The first

natural frequency is �
disc,100
free = 3.516. Figure 4 shows the flutter load versus the number of cells n. Figure 5

shows the flutter frequency versus the number of cells n. All of these values tend to Beck’s solution as n
increases. As classically observed for these lattice-type systems (see [12]), the microstructure effect tends to
soften the lattice system when compared to the local continuous one. This softening effect is also confirmed
here for the flutter load dependency to the number of cells n.

4 A nonlocal Beck’s problem by continualization

The discrete equations are extended to an equivalent continuum via a continualization method. The following
relation between the discrete and the equivalent continuous system wi = �

w (x = ia) holds for a sufficiently
smooth deflection function:

�
w (x + a) =

∞
∑

k=0

ak∂kx
k!

�
w (x) = ea∂x �

w (x) (28)

with ∂x given by Eq. (2). One can calculate the generalized Laplacian 
0 = δ20 and its square part 
2
0 = δ40:

δ20 = 4

a2
sinh2

(a

2
∂x

)

, δ40 = 16

a4
sinh4

(a

2
∂x

)

(29)

The pseudo-differential Laplacian operator can be efficiently approximated by the Padé’s approximant (see,
for instance [2,32,33,39] or [3] for axial wave applications):

4

a2
sinh2

(a

2
∂x

)

= ∂2x

1 − l2c ∂
2
x

+ . . . with l2c = a2

12
(30)
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Equation (15) can then be approximated by the continuous analogy:

EI
∂4x

�
w(x)

(

1 − l2c ∂
2
x

)2 + P
∂2x

�
w(x)

(

1 − l2c ∂
2
x

) − μω2 �
w(x) = 0 (31)

or equivalently, if μω2l4c ∂
4
x

�
w(x) is neglected:

(

EI − Pl2c
)

∂4x
�
w(x) + (P + 2μω2l2c

)

∂2x
�
w(x) − μω2 �

w(x) = 0 with l2c = a2

12
(32)

By using ς = x/L and w(ς) = �
w(Lς), Eq. (32) may be written in the following form:

(

EI − Pl2c
)

L4 w(4) +
(

P + 2μω2l2c
)

L2 w′′ − μω2w = 0 with l2c = L2

12n2

By introducing the parameters (p, q) defined as

p = � + �2

6n2

1 − �
12n2

and q2 = �2

1 − �
12n2

(33)

the governing equation of the nonlocal continuumassociatedwith the discreteBeck’s problemcan be compactly
expressed as

w(4) + pw′′ − q2w = 0 (34)

Note that p and q tend to � and �, respectively, and Eq. (34) coincides with Eq. (4) if n → ∞.
The boundary conditions of the nonlocal continuum are given at the clamped end by �

w (0) = 0 and
�
w (−a) = �

w (a), which can be presented with w (ς) as:

w (0) = 0 and w

(

−1

n

)

= w

(
1

n

)

(35)

These equivalent kinematic boundary conditions have also been considered by Challamel et al. [12] and are
slightly different from a fully constrained clamped section. Now, the following free-end boundary conditions
may be obtained from variational principles (see [10] as well as [13] for a discussion on the free end conditions
of conservative nonlocal Euler–Bernoulli beam models):

[

EI
�
w′′δ �

w′]L
0

= 0 and
[(

EI
�
w′′′ + 2μl2cω

2 �
w′)δ �

w
]L

0
= 0 (36)

It is assumed that the boundary conditions are not affected at the free end by the presence of the follower
load, leading to:

EI
�
w′′ (L) = 0 and EI

�
w′′′ (L) + 2μl2cω

2 �
w′ (L) = 0 (37)

It can be presented with w(ς) as:

w′′ (1) = 0 and w′′′ (1) + rw′ (1) = 0 with r = �2

6n2
(38)

The general solution of Eq. (34) is:

w (ς) = A cosh (s1ς) + B sinh (s1ς) + C cos (s2ς) + D sin (s2ς)

where

s1 =

√
√
√
√

√

p2

4
+ q2 − p

2
and s2 =

√
√
√
√

√

p2

4
+ q2 + p

2
(39)

Note that Eq. (39) yields Eq. (7) as n → ∞.
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Fig. 6 Comparison of load–frequency curve of the continualized model for different values of n; n = 4 (cyan dashed line);
n = 10 (blue dash-dot line); and n = 100 (red solid line). The flutter load–flutter frequency pair is denoted by a box. Horizontal
dashed line shows Beck’s flutter load. (Color figure online)

In view of the boundary conditions Eq. (35) and Eq. (38), one obtains the determinant equation for the
load–frequency relationship of the equivalent continuum:

∣
∣
∣
∣
∣
∣
∣

1 0 1 0
0 sinh (s1/n) 0 sin (s2/n)

s21 cosh (s1) s21 sinh (s1) −s22 cos (s2) −s22 sin (s2)(

s31 + s1r
)

sinh (s1)
(

s31 + s1r
)

cosh (s1)
(

s32 − s2r
)

sin (s2) − (s32 − s2r
)

cos (s2)

∣
∣
∣
∣
∣
∣
∣

= 0 (40)

Eq. (40) can also be presented equivalently as:

s32
(

s22 − r
)

sinh (s1/n) + s31
(

s21 + r
)

sin (s2/n)

+ s1s2 sin (s2) sinh (s1)
[

s1
(

s22 − r
)

sin (s2/n) − s2
(

s21 + r
)

sinh (s1/n)
]

+ s1s2 cos (s2) cosh (s1)
[

s2
(

s21 + r
)

sin (s2/n) + s1
(

s22 − r
)

sinh (s1/n)
] = 0 (41)

Figure 6 shows the load–frequency curve, f (�, �) = 0, for n = 4, n = 10 and n = 100 in the domain of � ∈
[0, 25],� ∈ [0, 25]. The flutter load and flutter frequency parameters are: �

cont,4
flut = 14.8052 and �

cont,4
flut =

9.316, respectively. The first natural frequency parameter is �
cont,4
free = 3.344. The same curve is plotted for

n = 10. The flutter load and flutter frequency parameters are: �
cont,10
flut = 19.0209 and �

cont,10
flut = 10.698,

respectively. The first natural frequency parameter is �
cont,10
free = 3.487. The case of n = 100 is very close to

the local Beck’s column. The flutter load and flutter frequency parameters in this case are:�cont,100
flut = 20.0402

and �
cont,100
flut = 11.012, respectively. The first natural frequency parameter is �

cont,100
free = 3.516.

Figure 7 shows the flutter load parameter versus n in the case of the continualized model. Figure 8 shows
the flutter frequency parameter versus n. All these values tend to Beck’s solution as n increases. The response
of this continualized nonlocal model is very similar to the one of the discrete Beck’s column; especially, the
softening effect induced by the microstructure is observed, as already detailed for the lattice reference system.
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Fig. 7 Flutter load parameter of the continualized model versus n. Dashed line shows the flutter load of Beck’s column
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Fig. 8 Flutter frequency parameter of the continualizedmodel versus n.Dashed line shows the flutter frequency of Beck’s column

5 Eringen’s nonlocal Beck’s problem

Xiang et al. [40] investigated the stability of a nonlocal elastic column under a follower force, which can be
referred as the nonlocal Beck’s problem, where the bending moment–curvature follows the Eringen’s nonlocal
law (see [21] for the nonlocal stress–strain differential equation):

M − l2c ∂
2
x M = EI∂2x

�
w (42)

12



As shown by Xiang et al. [40], the ordinary differential equation of the deflection for investigating the dynamic
stability of the nonlocal Beck’s column is:

(

EI − Pl2c
)

∂4x
�
w + (P + μω2l2c

)

∂2x
�
w − μω2 �

w = 0 (43)

Note at this stage the fundamental difference betweenEq. (32) andEq. (43). This shows that the continualization
of the discrete problem is different in nature from the nonlocal Eringen’s column. This phenomenon has been
carefully analysed in Challamel et al. [12,13], who showed that the source of discrepancy was linked to the
continualization of the equilibrium equations. It is assumed in this present model that the length scale is fixed,
say l2c = a2/12 or l2c = a2/6. However, it would be also possible to fit the nonlocal model with respect to the
lattice one with a variable size-dependent length scale parameter.

By using ς and w(ς) = �
w(Lς), the governing equation of the nonlocal continuum associated with the

discrete Beck’s problem has a similar fourth-order form as Eq. (34), i.e.

w(4) + p̃w′′ − q̃2w = 0 (44)

The modified nonlocal parameters ( p̃, q̃) are:

p̃ = � + �2

12n2

1 − �
12n2

	= p and q̃2 = �2

1 − �
12n2

= q2 (45)

Note that Eqs. (44) and (45) are the same as Eqs. (4) and (7), respectively, in the limit n → ∞.
The boundary conditions of the Euler–Bernoulli nonlocal beam model are (see [40]):

w (0) = 0, w′ (0) = 0, w′′ (1) + r̃w (1) = 0 and w′′′ (1) + r̃w′ (1) = 0 with r̃ =
�2

12n2

1 − �
12n2

(46)

The general solution of Eq. (44) can be written as:

w (ς) = A cosh (̃s1ς) + B sinh (̃s1ς) + C cos (̃s2ς) + D sin (̃s2ς)

where

s̃1 =

√
√
√
√

√

p̃2

4
+ q̃2 − p̃

2
and s̃2 =

√
√
√
√

√

p̃2

4
+ q̃2 + p̃

2
(47)

In view of the boundary conditions Eq. (46), one obtains the following determinant equation for the load–
frequency relationship of the nonlocal Eringen continuum (see [40]):

∣
∣
∣
∣
∣
∣
∣
∣

1 0 1 0
0 s̃1 0 s̃2(

s̃21 + r̃
)

cosh (̃s1)
(

s̃21 + r̃
)

sinh (̃s1)
(−̃s22 + r̃

)

cos (̃s2)
(−̃s22 + r̃

)

sin (̃s2)(

s̃31 + s̃1̃r
)

sinh (̃s1)
(

s̃31 + s̃1̃r
)

cosh (̃s1)
(

s̃32 − s̃2̃r
)

sin (̃s2) − (s̃32 − s̃2̃r
)

cos (̃s2)

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (48)

Equation (48) can be also presented equivalently as:

s̃1̃s2
(

s̃22 − r̃
)2 + s̃1̃s2

(

s̃21 + r̃
)2 + (s̃22 − s̃21

) (

s̃21 + r̃
) (

s̃22 − r̃
)

sin (̃s2) sinh (̃s1)

+ 2̃s1̃s2
(

s̃21 + r̃
) (

s̃22 − r̃
)

cos (̃s2) cosh (̃s1) = 0 (49)

Figure 9 shows the load–frequency curve, f (�,�) = 0, for n = 4, n = 10 and n = 100 in the domain of� ∈
[0, 25],� ∈ [0, 25]. The flutter load and flutter frequency parameters are: �

nonl,4
flut = 18.2148 and �

nonl,4
flut =

10.063, respectively. The first natural frequency parameter is �
nonl,4
free = 3.524. For n=10, the flutter load and

flutter frequency parameters in this case are:�nonl,10
flut = 19.7335 and�

nonl,10
flut = 10.852, respectively. The first

free vibration frequency is �
nonl,10
free = 3.517. For n = 100, the flutter load and flutter frequency parameters

are: �
nonl,100
flut = 20.0477 and �

nonl,100
flut = 11.014, respectively. The first natural frequency parameter is

�
nonl,100
free = 3.516.
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Fig. 9 Comparison of load–frequency curve of the nonlocal model for different values of n; n = 4 (cyan dashed line); n = 10
(blue dash–dot line); and n = 100 (red solid line). The flutter load–flutter frequency pair is denoted by a box. Horizontal dashed
line shows Beck’s flutter load; l2c = a2/12. (Color figure online)
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Fig. 10 Flutter load parameter of the nonlocal model versus n. Dashed line shows the flutter load of Beck’s column; l2c = a2/12

Figure 10 shows the flutter load parameter versus n in the case of the nonlocalmodel, whereas Fig. 11 shows
the flutter frequency parameter versus n. These results correspond to a fixed length scale, l2c = L2/(12n2).

Figure 12 shows the load–frequency curves of the discrete model, the continualized model with l2c =
L2/(12n2), the nonlocal model with l2c = L2/(12n2) and the nonlocal model with l2c = L2/(6n2), for n = 4.
These curves are shown for n = 10 in Fig. 13. All these results tend to Beck’s solution as n is increased. Even
if the softening microstructural effect is still observed here, the results are not as accurate for the Eringen’s
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Fig. 11 Flutter frequency parameter of the nonlocal model versus n. Dashed line shows the flutter frequency of Beck’s column;
l2c = a2/12
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Fig. 12 Load–frequency curves of the discrete model (cyan dashed line), the continualized model with l2c = L2/(12n2) (blue,
solid internal line), the nonlocal model with l2c = L2/(12n2) (red, solid outer line) and the nonlocal model with l2c = L2/(6n2)
(magenta dash-dot line) with a fixed length scale, n = 4. (Color figure online)

nonlocal approach as for the continualized nonlocal model. In Figs. 14 and 15, the flutter load and the flutter
frequency of the studied models are plotted as a function of n. Again, the results for the lattice and the nonlocal
models are bounded below the results of the local continuum (local Beck’s column—[6]). Surprisingly, the
continualized nonlocal model is efficient in capturing the scale effect induced by the microstructure even for
small values of n. Evolution of the fundamental natural frequency of the unloaded beam is plotted versus the

15
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Fig. 13 Load–frequency curves of the discrete model (cyan dashed line), the continualized model with l2c = L2/(12n2) (blue,
solid internal line), the nonlocal model with l2c = L2/(12n2) (red, solid outer line) and the nonlocal model with l2c = L2/(6n2)
(magenta dash-dot line) with a fixed length scale, n = 10. (Color figure online)
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Fig. 14 Flutter load parameters of the discrete model (cyan circle), the continualized model with l2c = L2/(12n2) (blue plus
sign), the nonlocal model with l2c = L2/(12n2) (red cross) and the nonlocal model with l2c = L2/(6n2) (magenta square) for
various length scale n. Dashed line shows the flutter load of Beck’s column. (Color figure online)

parameter n in Fig. 16. Again, the continualized nonlocal model is shown to fit perfectly the lattice model,
whereas the (Eringen) nonlocal model presents some surprising small scale stiffening effect. As already
analysed by [12], this stiffening effect can be removed from the consideration of a nonlocal-type boundary
condition at the clamped section (or continualized nonlocal boundary conditions).

16



0 1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15
Flutter frequency vs. n

n

Ω
flu

t

Fig. 15 Flutter frequency parameters of the discrete model (cyan circle), the continualized model with l2c = L2/(12n2) (blue
plus sign), the nonlocal model with l2c = L2/(12n2) (red cross) and the nonlocal model with l2c = L2/(6n2) (magenta square)
for various length scale n. Dashed line shows the flutter load of Beck’s column. (Color figure online)
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Fig. 16 First natural frequency parameters of the discrete model (cyan circle), the continualized model with l2c = L2/(12n2)
(blue plus sign), the nonlocal model with l2c = L2/(12n2) (red cross) and the nonlocal model with l2c = L2/(6n2) (magenta
square) for various length scale n. Dashed line shows the flutter load of Beck’s column. (Color figure online)

Tables 1, 2 and 3 compare the flutter loads, the flutter frequencies and the first natural frequencies of the
discrete model, the nonlocal model derived from continualization, and nonlocal model based on Eringen’s
approach with l2c = L2/(12n2) and l2c = L2/(6n2), for various values of n.
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Table 1 Flutter loads of the discrete model (second row), the continualized model with l2c = L2/(12n2)(third row), the nonlocal
model with l2c = L2/(12n2)(fourth row) and the nonlocal model with l2c = L2/(6n2) (fifth row) for various values of n

n 1 2 3 4 5 10 100 1000

�disc
flut – 8.0000 12.4023 15.0834 16.6458 19.1175 20.0413 20.0509

�cont
flut 2.2781 7.7104 12.1184 14.8052 16.4026 19.0209 20.0402 20.0508

�nonl
flut 7.5829 14.2615 16.9985 18.2148 18.8369 19.7335 20.0477 20.0509

�nonl
flut 4.6541 11.0372 14.7374 16.6795 17.7579 19.4256 20.0445 20.0509

The flutter load of Beck’s local column is �Beck
flut = 20.0510

Table 2 Flutter frequencies of the discrete model (second row), the continualized model with l2c = L2/(12n2)(third row), the
nonlocal model with l2c = L2/(12n2)(fourth row) and the nonlocal model with l2c = L2/(6n2) (fifth row) for various values of n

n 1 2 3 4 5 10 100 1000

�disc
flut – 5.657 7.833 9.011 9.663 10.653 11.012 11.016

�cont
flut 3.703 6.654 8.382 9.316 9.846 10.689 11.012 11.016

�nonl
flut 4.331 7.976 9.426 10.063 10.387 10.852 11.014 11.016

�nonl
flut 2.683 6.236 8.230 9.259 9.825 10.692 11.012 11.016

The flutter frequency of Beck’s local column is �Beck
flut = 11.016

Table 3 First natural frequencies of the discrete model (second row), the continualized model with l2c = L2/(12n2)(third row),
the nonlocal model with l2c = L2/(12n2)(fourth row) and the nonlocal model with l2c = L2/(6n2) (fifth row) for various values
of n

n 1 2 3 4 5 10 100 1000

�disc
free 2.000 2.928 3.221 3.342 3.402 3.487 3.516 3.516

�cont
free 2.129 2.948 3.226 3.344 3.403 3.487 3.516 3.516

�nonl
free 3.656 3.548 3.530 3.524 3.521 3.517 3.516 3.516

�nonl
free 3.835 3.582 3.545 3.532 3.526 3.519 3.516 3.516

The first natural frequency of Beck’s local column is �Beck
free = 3.516

Finally, instead of using fixed length scales, l2c = L2/(12n2) or l2c = L2/(6n2), the following variable,
load-dependent length scale parameter is implemented in the nonlocal model:

l2c = L2

b · n2 (50)

Here the value of b is calibrated such that the flutter load of the nonlocal model with a given n should fit the
flutter load of the lattice model with the same n. Figure 17 shows the load–frequency curves of the discrete
model and the nonlocal model with variable length scale parameter Eq. (50) for n = 4, n = 10 and n = 100.
The value of b is plotted on the top of each diagram. It can be seen that for all the studied models, the discrete
model, the nonlocal model obtained by continualization and the nonlocal model based on Eringen’s approach
are able to recover Beck’s solution as n → ∞. Note that n is the number of cells in the discrete problem,
so n → ∞ is the discrete to local continuum limit, while in the case of the nonlocal models, n is inversely
proportional to the characteristic length of the material, and so n → ∞ is the nonlocal continuum to the local
continuum limit.

It has been shown that the continualized nonlocal model is superior to the phenomenological Eringen’s
nonlocal model. The reason is mainly due to the structure of equations of the lattice model (see also the
discussion in Challamel et al. [12]), which can be presented as:

Mi = EI
wi−1 − 2wi + wi+1

a2
(51a)
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Fig. 17 Load–frequency curves of the discrete model (cyan line) and the nonlocal model with variable length scale parameter
l2c = L2/(b · n2) (magenta dashed line). (Color figure online)
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and

Mi−1 − 2Mi + Mi+1

a2
+ P

wi−1 − 2wi + wi+1

a2
+ μẅi = 0 (51b)

By applying the continualization procedure to both the constitutive law and the equilibrium equations, we
obtain

M − l2c M
′′ = EIŵ′′ (52a)

and

M ′′ + Pŵ′′ + μ
( ˆ̈w − l2c ˆ̈w′′) = 0 with l2c = a2

12
(52b)

It can be shown that Eq. (52) is equivalent to Eq. (32) if the terms in l4c are neglected. In that respect, the
continualized nonlocal model appears to be equivalent to Eringen’s nonlocal model coupled with nonlocal
equilibrium equations. In other words, both nonlocal models, the Eringen’s one and the continualized nonlo-
cal one, only differ by the possible nonlocal nature of the equilibrium equations (for comparable boundary
conditions).

6 Conclusions

It has been shown that the discrete Beck’s problem can be approximately studied using a nonlocal equivalent
beam model produced from a continualization procedure. The discrete Beck column behaves as a nonlocal
Beck column, where the nonlocality is found to depend on some length scale factor associated with the finite
microstructure of the lattice. Two nonlocal models are considered, namely the Eringen stress gradient nonlocal
model, which can be labelled as a phenomenological nonlocal model, and a continualized nonlocal model. The
only difference between these two models lies in the equilibrium equations which remain local for the Eringen
nonlocal model, whereas the continualized nonlocal model implicitly assumes a nonlocal effect both for the
constitutive law and for the equilibrium equation (if comparable boundary conditions are chosen). These two
nonlocal models both predict the softening behaviour of the microstructured Beck column when compared to
the asymptotical local Beck problem. However, as anticipated, the continualized model furnishes closer results
with respect to the reference lattice system. Nonlocal Beck’s column is shown to be a transient medium from
Ziegler’s column (two-degree-of-freedom system) to the local continuous Beck’s column (with an infinite
degree of freedom). This paper confirms the capability of nonlocal beam mechanics to predict some scale
effects in lattice bending systems, not only in the presence of conservative loadings, but also in the presence
of nonconservative loadings.
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of Sciences and by OTKA No. PD 100786.

Appendix 1

The flutter load of the two-degree-of-freedom Ziegler’s type system (see Fig. 18) can be analytically obtained.
The internal virtual work of this two-degree-of-freedom system is expressed from Eq. (9) as:

δWint = 2Cθ1δθ1 + C (θ1 − θ2) (δθ1 − δθ2) (53)

The virtual work done by the follower force is:

δWext = Pa (θ1δθ1 + θ2δθ2) − Paθ2 (δθ1 + δθ2) = Pa (θ1 − θ2) δθ1 (54)

The work done by the fictitious inertial force on a virtual displacement system is:

δW f = −ma2

2

(

θ̈1δθ1 + θ̈1δθ2 + θ̈2δθ1 + θ̈2δθ2
)− ma2θ̈1δθ1 (55)
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Fig. 18 Two-degree-of-freedom flutter system (Ziegler’s type system)—n = 2

The total virtual work δW = δWint − δWext − δW f is zero for any virtual displacement system, thus leading
to the vibration equation:

M θ̈ + K θ = 0 with M = ma2

2

(

3 1
1 1

)

, K = C

(

3 − Pa
C −1 + Pa

C−1 1

)

and θ =
(

θ1
θ2

)

(56)

Note that K is not symmetric as it also involves the effect of the nonconservative follower force. The circular
frequency of the forced vibration is calculated from the determinant equation:

det
(

K − ω2M
)

= 0 (57)

which can be equivalently presented using the dimensionless parameters:
∣
∣
∣
∣
∣

3 − �
4 − 3�2

32 −1 + �
4 − �2

32

−1 − �2

32 1 − �2

32

∣
∣
∣
∣
∣
= 0 with � = PL2

EI
= n2

Pa

C
,

�2 = ω2L4

EI
μ = n4

ω2a2m

C
and n = 2 (58)

The quartic frequency equation is obtained from the expansion of this determinant:

�4 + 8�2 (� − 16) + 322 = 0 (59)

The flutter frequency corresponds to the vanishing of the discriminant:


 = 82 (� − 16)2 − 4 × 322 = 0 ⇒ � = 8 (60)

The flutter value �
disc,2
flut = 8 is found for the two-degree-of-freedom Ziegler’s type system n = 2. The flutter

frequency is then obtained from Eq. (59) as:

�
disc,2
flut = 4

√
2 ≈ 5.657 (61)

These values coincide with the numerical results, detailed in Tables 1 and 2. Note that Eq. (59) at� = 0 yields
the nondimensional natural frequencies of the model. The first natural frequency is:

�
disc,2
free =

√

64 − 32
√
3 ≈ 2.928 (62)

It coincides with the corresponding value of Table 3.
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Fig. 19 Three-degree-of-freedom flutter system—n = 3

Appendix 2

The flutter load of the three-degree-of-freedom follower load system (see Fig. 19) can be also analytically
obtained. Following the reasoning already detailed in Appendix 1, and again considering that the total virtual
work δW = δWint − δWext − δW f is zero for any virtual displacement system, leads to the vibration equation:

M θ̈ + K θ = 0 with M = ma2

2

⎛

⎝

5 3 1
3 3 1
1 1 1

⎞

⎠ ,

K = C

⎛

⎝

3 − Pa
C −1 Pa

C−1 2 − Pa
C −1 + Pa

C
0 −1 1

⎞

⎠ and θ =
⎛

⎝

θ1
θ2
θ3

⎞

⎠

(63)

The circular frequency of the forced vibration is calculated from the determinant equation Eq. (57), which can
be equivalently presented using the dimensionless parameters:

det

⎧

⎨

⎩

⎛

⎝

3 − �
9 −1 �

9−1 2 − �
9 −1 + �

9
0 −1 1

⎞

⎠− �2

162

⎛

⎝

5 3 1
3 3 1
1 1 1

⎞

⎠

⎫

⎬

⎭
= 0 with

� = n2
Pa

C
= 9

Pa

C
, �2 = n4

ω2a2m

C
= 81

ω2a2m

C
and n = 3 (64)

Now using the dimensionless variables x = �2/
(

2n4
)

and p = �/n2, the determinant can be reformulated
as:

det

⎛

⎝

3 − p − 5x −1 − 3x p − x
−1 − 3x 2 − p − 3x −1 + p − x

−x −1 − x 1 − x

⎞

⎠ = 0 (65)
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which is equivalently written by:

P (x) = 2 + (−33 + 20p − 3p2
)

x + (28 − 8p) x2 − 4x3 (66)

This cubic equation can be solved using Cardano’s method. Put y = x − 1
3 (7 − 2p), namely x = y +

1
3 (7 − 2p), then x is a root of P (x) = 0 if and only if y is a root of Q (y) = 0, with Q (y) defined by:

Q (y) = 719 − 498p + 123p2 − 10p3 + (873 − 468p + 63p2
)

y − 108y3 = −108
(

y3 + vy + u
)

with u = 719 − 498p + 123p2 − 10p3

−108
and v = 873 − 468p + 63p2

−108
(67)

One recognizes the canonical form of the initial cubic equation (see Cardano’s method). This cubic equation
has multiple root when the discriminant of this cubic equation vanishes, i.e. when


 = 4v3 + 27u2 = 0 ⇒ 9p6 − 192p5 + 1702p4 − 7984p3 + 20725p2 − 27840p + 14656 = 0

(68)

This sixth-order polynomial equation can be numerically solved for the flutter load p = �/n2. The first
positive root of 
 (p) = 0 is p f ≈ 1.3780, yielding the flutter load of the discrete model with n=3 cells:

�
disc,3
f lut = 9 × p f ≈ 12.4023 (69)

which coincides with the corresponding result of Table 1.
When 
 (p) = 0, the corresponding value of the flutter frequency �

disc,3
flut is the double root of the cubic

equation given by:

y f = −3u

2v
=

−3
(

719 − 498p f + 123p2f − 10p3f

)

2
(

873 − 468p f + 63p2f

) ⇒ x f = −1

2

−213 + 206p f − 61p2f + 6p3f
97 − 52p f + 7p2f

(70)

One numerically finds x f ≈ 0.378693, which yields the flutter frequency of the discrete model with n = 3
cells:

�
disc,3
flut = 9

√
2
√
x f ≈ 7.833 (71)

It coincides with the corresponding result of Table 2.
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