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Chapter 5
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Words have often been compared to living organisms. One of the first 
authors to develop this idea was the French linguist Arsène Darmesteter who 
wrote  a  book  entitled  La  vie  des  mots  étudiée  dans  leurs  significations  
(Darmesteter, 1887). He described the evolution of the meanings of words as 
a 'struggle for life'  (concurrence vitale in his own words).  To stay alive, 
words need to occupy as much 'semantic ground' as possible, particularly by 
taking over 'territories' in new semantic domains, creating thus the important 
phenomenon of polysemy (see also Bréal,  1897).  Some words enjoy real 
'success stories', expanding their meanings in many different directions, in a 
rather monopolistic way, while others decline and eventually die. 

Even  though  Darmesteter  was  more  concerned  by  the  analogy  with 
biology rather than with social sciences, it is interesting to notice that his  
conception of interactions between words as a 'struggle for life' could also be 
applied to many social, political and economical human interactions. As a 
matter of fact, words are organized in the lexicon as a complex network of  
evolving semantic relations. It  is not surprising that such a system shares 
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many important properties with complex systems of social relations as well  
as complex systems of biological relations.

In this paper, we focus on the comparison between lexical systems and 
social structures. As we shall see below, it has been discovered very recently 
that several graphs of semantic relationships between words belonged to the 
class  of  what  is  called  'small  world'  graphs,  i.e.  they  first  characterized 
graphs of social relationships. This result opens new perspectives in lexical 
semantics.  It  suggests  that  lexical  graphs  contain  a  rich  amount  of 
information concerning the semantic structure of the lexicon. In particular, 
we can expect that analyzing these graphs will enable a better understanding 
of its hierarchical organisation. 

We present here a mathematical model in which each word is associated 
with a region in a global semantic space. In this representation, polysemy is  
taken into account by the size of the regions:  words with many different 
meanings are represented by very large regions, while words with unique 
precise meaning are represented by very small (point-like) regions.  If the 
regions associated with two words intersect, these two words share one or 
several meanings. Said differently, overlaps of regions in the semantic space 
correspond to (partial) synonymy between words.

Thus  this  model  brings  an  interesting  light  to  the  similarity  between 
graphs of lexical and social relationships. The semantic space plays the same 
role for words that the geographical space does for humans. Words meet in 
the semantic space like people meet in the world. Each meeting between two 
words  means  that  there  is  a  place  in  the  semantic  space,  i.e.  a  precise 
meaning, that is common to both of them, exactly as a meeting between two 
persons shows that there is a place which belongs to the geographical fields  
of activity of both people. 

As we know, fields of activity are not homogenously distributed on the 
map.  There  is  a  scaling  structure  from  big  cities  to  small  villages 
corresponding to a scaling distribution of the density of fields of activity on 
the geographical map. Small world properties of many social networks are 
clearly related to the scaling structure of the underlying geographical space.  
Since lexical graphs are also small world graphs, we assume that the same 
holds for their underlying space. Meanings must have a scaling distribution 
in the semantic space, from places of high density (covered by many words) 
to the equivalent of villages, i.e. meanings that are poorly covered by the 
lexicon. 

To test this hypothesis, we designed several methods to build a semantic 
space from a graph of synonymy. We present here these methods, illustrating 
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them with  the  example  of  the  French verb  lexicon.  As  we  will  see,  the 
different  methods lead to  rather  similar  results,  showing that  they  reveal 
intrinsic properties of the semantic structure of the lexicon.

1. SMALL WORLD GRAPHS

Watts  and  Strogatz  (1998)  defined  small  world  graphs  as  graphs 
combining  two  features:  a  high  'clustering  coefficient'  and  a  short 
'characteristic path length'. 

The clustering coefficient is a measure of how tightly the neighbors of a 
node in the graph are connected to each other. Numerically, it is defined as 
the  proportion  of  pairs  of  nodes  linked  with  one  another  among  all  the 
neighbors  of  a  node1.  In  social  terms,  it  measures  how  many  of  one's 
acquaintances know each other. So, it is not surprising that social networks 
have a high clustering coefficient (most of my friends are friends of each 
other).

The characteristic path length is  a measure of how far  two nodes are 
situated one from the other in the graph. The distance between two nodes is 
defined as the minimum number of edges traversed to get from one of them 
to the other. The characteristic path length is the average of the distance over 
all  pairs of nodes. In the social context,  a short characteristic path length 
means that there is generally a small number of go-betweens in the smallest  
chain which connects two people. This is the popular notion of "6-degrees of  
separation" (Guare 1990) resulting from the famous experiments devised by 
Stanley Milgram who introduced the term of "small world" (Milgram 1967).

A third property of small world graphs was put forward after Watts and 
Strogatz's work. It concerns the distribution of the number of edges among 
the nodes. It was discovered that the degree of a randomly selected node (the 
number of its neighbors) follows a power-law distribution2. The power-law 
was first verified on the Web network, which is also a small world graph 
(Barabási et al. 2000, Huberman & Adamic 1999, Kleinberg et al. 1999), but 
it also holds for social networks (Newman 2001, Barabási  et al. 2002). An 

1  More precisely, it is computed as follows. Let p be a node, k its degree (number of its 
neighbors) and n the number of edges among them. The clustering coefficient at node p is  
c(p) = 2n/k(k-1). It is easy to check that c(p) lies between 0 and 1. It equals 0 if there is no  
edge linking any pair of neighbors of p, and 1 if all neighbors are connected with one  
another.  Then the clustering coefficient C of the graph is the average of c(p) over all  
nodes.

2  The probability P(k) that a randomly selected node has k links follows the law P(k) ~ k –λ 

where λ is a constant for the given graph.
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important  consequence  is  that  small  world  graphs  have  a  "scale-free" 
topology. Roughly speaking, it means that the ratio of very connected nodes 
to the number of nodes in the rest of the network remains constant as the 
network changes in size.

As shown by Ravasz & Barabási (2003), the two features, high clustering 
coefficient  and scale-free  topology,  determine an original  combination of 
modularity and hierarchical organisation. As the authors put it, "we should 
not think of modularity as the coexistence of relatively independent groups 
of  nodes.  Instead,  we  have  many  small  clusters,  which  are  densely 
interconnected.  These  combine  to  form larger,  but  less  cohesive  groups, 
which  combine  again  to  form  even  larger  and  even  less  interconnected 
clusters. This self-similar nesting of different groups or modules into each 
other forces a strict fine structure on real networks". 

So, hierarchy appears as an emergent feature of the network. It is not a 
simple pyramidal organisation. No node can be viewed as dominating other 
nodes. The hierarchy is made of groups of nodes, with small clusters at the 
bottom and very large groups at the top. Moreover, groups of nodes may 
overlap at any level. A group (or a part of a group) of the lower level can be 
included in more than one group at the higher level, since it can belong to  
several  different  groupings  having  approximately  the  same  clustering 
coefficient.

As far as social networks are concerned, such a hierarchical structure can,  
in  many  cases,  be  related  with  the  underlying  geographical  space.  For  
instance,  acquaintance  relationship  is  highly  correlated  with  geographical 
proximity.  So  we  can  expect  a  duality  relation  between  the  hierarchical 
organisation of a graph of acquaintance and the hierarchical structure of the 
geographical  distribution  of  humans.  Each person (node  of  the  graph)  is 
associated with her spatial zone of activity, which may be a very large area  
for some individuals. Then, small clusters of strongly interconnected people 
correspond to relatively small areas where few people often meet, such as 
villages and districts in cities (notice that the same individual can belong to  
several  different  clusters,  corresponding for instance to his home and his  
workplace). As we climb up the hierarchy on the graph by considering larger 
and larger groups (less and less interconnected), we obtain a smaller number 
of  more  densely  occupied  places.  At  the  top  level,  the  largest  groups 
correspond to the centres of the largest cities.

Now if we consider other types of small world graphs, we can assume 
that there is always an underlying space with a dual hierarchical structure, 
even though most of the time the nature of this space is more abstract than a 
geographical map. This is the main idea that we will develop here to study 
the semantic structure of the lexicon. But before focusing on lexical graphs, 
we  have  to  remark  that  the  approach could  be  applied  to  any 'semantic' 
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graph. For instance, let’s consider, in the Internet universe, the small world 
graph whose  nodes  are  all  the  web pages  and whose  edges  indicate  the 
presence of a hypertext link. Clearly the geographical factor is not relevant.  
But  if  we  build  an  abstract  semantic  space  whose  dimensions  are  the 
different topics that a website may deal with, every website can be conceived 
as occupying a region of the space. Generalist sites will be represented by 
rather  large  areas,  whereas  more  specialized  ones  will  occupy  smaller 
regions. We can expect that some places of the space will play the role of big 
cities  in  being  densely  covered  by  many  sites,  and  others  the  role  of 
countryside in being rarely broached on the web. Studying the hierarchical 
organisation of the semantic space and its evolution could bring interesting 
insights of what is going on on the web: what are the hottest topics, which 
ones are growing up and which ones are declining. Of course, the two most 
important problems with this approach is first to design the abstract semantic 
space (how to choose the relevant dimensions and the relevant metric on the  
space), and second to compute automatically the region associated with each 
website. The methods we present here provide the beginnings of a solution 
to  both  problems  since  they  allow  to  derive  the  whole  geometrical 
representation from computations on the initial graph, which is (relatively) 
easy to obtain.

2. LEXICAL GRAPHS

Lexical graphs have been a more and more important topic for the last  
few years,  following the tremendous development  of  electronic  linguistic 
resources  (dictionaries  and  large  corpora).  The  most  famous  example  is 
WordNet,  a  very  rich  lexical  database  for  English  (cf.  Fellbaum  1998) 
comprising more than 150 000 words and many different relations between 
them. There are different types of lexical graphs, depending on the semantic 
relation used to build the graph. This relation can be a paradigmatic one such 
as synonymy, hyperonymy or translation (when more than one language is 
involved). It also can be a syntagmatic one, when, for instance, two words 
are linked if they appear in a same sentence in a given corpus. It can also be  
a  more  general  semantic  proximity  relation,  mixing  syntagmatic  and 
paradigmatic dimensions, as is the case when two words are linked if one 
appears  in  the  definition  of  the  other  in  a  given  general  dictionary  (cf. 
Gaume et al., 2002).

The structures of many lexical graphs of all sorts have been studied (see,  
among  others,  Ferrer  &  Solé  2001,  Sigman  &  Cecchi  2002,  Ravasz  & 
Barabási 2003, Gaume 2003, Gaume et al., 2001). All the studies lead to the 
same conclusion.  It  seems  that  every  lexical  graphs  have  a  small  world 
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structure, whatever the nature of the semantic relation involved. This result 
is important, since it shows that what is at stake is an intrinsic property of the 
semantic organisation of the lexicon in natural languages. It sustains the idea 
of an underlying semantic space whose hierarchical topological organisation 
could explain why different  semantic  relations  share  a  same small  world 
graph structure. 

The graph we worked on for the present study, Synoverbe, is typical of 
these lexical graphs. It is a synonymy graph of French verbs which has been 
extracted  from  a  general  dictionary  of  French  synonyms3 by  one  of  us 
(Bruno Gaume). Synoverbe has roughly 9000 nodes and 50,000 links. It has 
the three characteristic features of small world graphs. Its characteristic path 
length  is  small,  around  4,  which  is  the  order  of  magnitude  that  can  be 
expected from a random graph with the same number of nodes and links. Its 
clustering coefficient is very large, around 0.3, five hundred times higher  
than a random graph4. As shown on figure 1, the distribution of the degrees 
(number of links per node) follows a power-law distribution.

3  The general dictionary of French synonyms is managed by J.L. Manguin at the CRISCO 
research laboratory in linguistics, at the University of Caen. It is available on the Web  
(http://www.crisco.unicaen.fr/). 

4  For a random graph of n nodes and p links, the characteristic path length is L  = log(n)/
(log(p)-log(n)) on average, and the clustering coefficient is C = p/n2 on average. In our 
case (n = 9000, p = 50,000), the computation gives L = 5.31 and C = 0.0006. The precise 
figures for Synoverbe are L = 4.17 and C = 0.318.

http://www.crisco.unicaen.fr/
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Figure  1: Synoverbe : log-log plot of the distribution of the degrees.

A more detailed description would give a more concrete idea of what this 
distribution means. While the average degree is less than 12 among the 9000 
nodes, about 1000 nodes have more than 30 links and about 100 more than 
80 links. Furthermore, nearly 90% of the nodes are directly linked to at least  
one of the 1000 most connected nodes, and nearly 50% are directly linked to 
at  least  one of the 100 most  connected ones.  In  other words,  among the 
nearly 10,000 French verbs, we can extract a subset of 1000 verbs which 
covers virtually all the meanings covered by the entire set, since nearly all  
the French verbs are synonyms of verbs of the subset. Moreover, a subset of 
only a hundred verbs covers half of the verb meanings. These verbs are of 
course the most highly polysemic ones, since each of them has a hundred or 
so synonyms. The most connected ones, like  faire  (translations: make, do 
…)  and prendre (translations:  take,  get  …)  have  even  more  than  200 
synonyms. They have two other interesting properties: (1) they are the most  
frequently used by French speakers, and (2) they are the first to be acquired 
by  children.  No  doubt  that  they  are  the  winners  in  the  'struggle  of  life'  
evoked by Darmesteter ! It is also worth noticing that they are rather tightly 
interconnected.  In  fact,  the  subgraph  composed  by  these  100  verbs  has 
basically the same properties as the whole graph: an average of 6 links by 
node, a characteristic path length of the same order of magnitude as the one 
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of  a  random  graph  of  the  same  size  and  connectivity,  and  a  clustering 
coefficient markedly higher than the one of a random graph.

Thus we can then describe the structure of the French verb lexicon as a 
hierarchical structure with three levels:
• at the top, a first subset of 100 verbs, each with several general meanings.  

It  represents the basic vocabulary for the verb semantic domain. With 
these 100 verbs, one can express most actions and events, but vaguely 
and without accuracy.

• at the second level, a subset of 1000 verbs presenting a rather important  
degree of polysemy (more than 30 synonyms each). It  covers all  verb 
semantics, quite sufficient to describe any action or event in everyday 
life. In fact, the verb lexicon used by most people in production is only a  
part of this subset.

• at the third level, the entire set of nearly 10,000 verbs, permitting very 
precise descriptions, subtle uses of qualifications, and different styles and 
levels of language (formal, technical, poetic, slang, etc.).
Even though it  gives  a  first  idea  of  the  structure  of  the  French verb 

lexicon, the above description is neither accurate nor satisfying enough. The 
problem comes from the arbitrary nature of the choice of our levels. Why 
three levels, rather than four or five? As a matter of fact, the hierarchy is not  
discrete,  with  well  identified  intrinsic  levels:  it  is  a  continuous  scaling. 
Therefore, we need mathematical tools suited to continuous representations 
in order to model the lexical hierarchy in a more appropriate way. Here is the 
main reason why we turned to geometrical tools and quantitative measures  
such as the notion of proxemy, that we introduce in the following section. 

3. PROXEMY: A MEASURE OF SEMANTIC 
NEARNESS

Bruno Gaume defined a new measure of the nearness of nodes in a graph 
that  takes into account the density of the graph along the different  paths 
linking them.  This measure,  that  he called  proxemy (Gaume 2002,  2003, 
2004), is well suited for small world graphs because it relies on the structural  
properties of the graph. We know that somehow two nodes are never far  
from one another in a small world graph, since the characteristic path length 
is  small.  But  for  the  same minimal  path length,  two nodes may be very 
loosely related by only one path linking two separate dense regions clearly 
apart, or they may belong to a same dense region with many different paths  
of minimal length connecting them. Obviously, the nodes must be qualified 
as "closer" in the latter case than in the former one: this is exactly what the 
measure of proxemy does.
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A good idea of the notion of proxemy can be given by considering a 
particle wandering randomly on the graph, going from one node to any of its 
neighbors  with  equal  probability.  Let  the  particle  be  at  node  A  at  the 
beginning of the process. After the first time step, the only nodes that can be 
reached by the particle are the direct neighbors of A5, each with a probability 
of 1/n, where n is the degree of A. After k time steps, any node B located at a 
distance  of  k  links  or  less  can  be  reached,  the  probability  of  this  event 
depending on the number of paths between A and B, and the structure of the 
graph  around  the  intermediary  nodes  along  those  paths.  The  more 
interconnections between these nodes, the higher the probability of reaching 
B from A will be. In other words the probability for a random particle to go 
from A to B is a good candidate for the measure we were looking for: we  
call it the k-proxemy of B with respect to A.

More generally,  we define the  k-proxemy of  a node with respect  to a  
given subset of nodes as the probability for a particle to reach it after k time 
steps if the particle were at time 0 on one of the nodes of the subset (if the 
subset contains p nodes, each of them is endowed with a probability of 1/p to 
be the starting point of the particle)6. When the subset includes all the nodes 
of the graph, we will speak of global k-proxemy. 

It  must  be emphasized that  the value of k plays a crucial  role  in the  
definition of proxemy. For very small k, the k-proxemy fails to catch the 
structural properties of the graph because it is too local: the proxemy of most 
nodes of the graph is zero with respect to any given node. On the other hand,  
if k is too large, the k-proxemy of a given node with respect to any subset  
does not depend on the subset any longer: it tends towards a value that only 
depends on the degree of the given node7. Thus interesting values of k lie 

5  Including A itself: for technical reasons (property of ergodicity, see note 7 below), it is 
preferable to consider that the graph is reflexive, i.e. that each node is its own neighbor.

6  From a  mathematical  point  of  view,  it  is  easy  to  show that  the  random process  we 
described is a markovian process. If we call A = (aij) the matrix of adjacency of the graph 
(aij = 1  if  nodes  i  and  j  are  connected,  else  a ij = 0),  the  markovian  matrix  M =  (mij) 
associated with the random walk of the particle is given by m ij = aij/si where si is the sum of 
the row i of the matrix A. The k-proxemy of a node n with respect to a subset S can be 
computed as follows.  Let U=(ui) be the vector associated with the uniform probability 
density over S (ui=1/s if the node i belongs to S, else ui=0, s being the number of elements 
of S). Then the k-proxemy of n with respect to S is given by the n th component of the 
vector V obtained by applying k times the transformation M to the vector U (in matrix 
notation: V = U.Mk where U and V are row vectors). 

7  When the graph is reflexive, it can be shown (Gaume 2004) that the markovian process is  
ergodic.  Then,  a corollary of the theorem of Perron Froebenius implies that there is a  
unique  stationary  probability  and  that  the  process  converges  towards  this  stationary 
probability  for  any  initial  conditions  (see  for  instance  Semata  1981  and  Bermann  & 
Plemons 1994). In our case, it is easy to verify that the stationary probability is the vector  
W = (di/2p) where di where di is the degree of the node i and p is the number of links in the 
whole graph.



10 Chapter 5

between the two extremes.  Empirically,  it  seems that  the best  results  are 
obtained  with  values  belonging  to  the  interval  (L,  2L)  where  L  is  the 
characteristic path length of the graph. For instance, in the case of Synoverbe 
(L = 4.17), the value k = 6 proved to be the best one. From now on, we drop 
the "k" prefix in the term k-proxemy, assuming a choice of k in the right 
interval (and a value of 6 for the examples from Synoverbe).

Using proxemy, a geometrical representation of the graph can be built, 
which preserves its structural properties (Gaume 2004). To each node A of 
the  graph  is  associated  its  proxemic  representation,  a  vector  whose  nth 

component is the proxemy of the n th node of the graph with respect to the 
node A. In other words,  the proxemic representation of a node gives the 
probability  distribution  over  the  whole  graph  for  the  random  walk  of  a 
particle  originating  from  this  node8.  This  means  that  the  proxemic 
representation takes into account the relations of a node with all the others: it 
is characteristic of the structural position of the node in the whole graph. 

When dealing with a lexical graph, the proxemic representation could be 
qualified as 'Saussurian', since it fits exactly Saussure's structuralist theory 
according to which the semantic value of a lexical unit cannot be defined in 
absolute terms, but only by its relative position in the entire system. As a 
matter  of  fact,  Karine  Duvignau  and  Bruno  Gaume  have  shown  that 
proxemy is also relevant for psycholinguistic considerations, in particular in 
studying  lexical  acquisition  and  children  production  (Duvignau  2002, 
Duvignau & Gaume 2003,  2004) as  well  as  in  modeling disambiguation 
processing. 

Here we will focus on the use of proxemy for visualizing the hierarchical 
organisation of the lexicon. To begin with, we must notice that the global 
proxemy of a node (its proxemy with respect to the entire set of nodes) is a 
better indicator of its semantic extent than its degree. Whereas the degree of 
a node only indicates the number of its synonyms, its global proxemy gives 
more precise information about the more or less central role played by the 
node in the whole graph. Moreover, the nodes can be located in the same 
geometrical  space thanks to their  proxemic representation.  Of course,  the 
geometrical  space  cannot  be  faithfully  visualized  because  of  its  high 
dimensionality,  but  the  use of a classical  method of dimension reduction 
(principal component analysis) allows to obtain a two or three dimensional 
representation preserving the main geometrical relations between the nodes 
we choose to visualize. We show on figure 2 the proxemic representation of 
the  200  highest-ranked  French  verbs  according  to  their  global  proxemy 
(computed from Synoverbe)9. Each verb is represented by a sphere. As can 
8  Computationally speaking, the proxemic representation of the node i is the i th row of the 

matrix Mk, where M is the Markovian matrix defined above (see note 6). 
9  Proxemic  representations  of  different  lexical  graphs  are  available  on  the  Web: 

http://dilan.irit.fr/.
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be  seen  on  the  figure,  the  most  general  French  verbs  (the  top  of  the 
hierarchy)  are  organized  along  four  semantic  axes  structuring  the  whole 
lexicon. As can be seen on the figure, the most general French verbs (the top 
of  the  hierarchy)  are  organized  along  four  semantic  axes  structuring  the 
whole lexicon as a sort of conceptual tetrahedron. Around the first vertex 
(labeled  A  on  the  figure)  can  be  found  verbs  expressing  escaping  and 
rejecting  actions  (partir,  fuir,  disparaître,  abandonner,  sortir… 
Interestingly,  quitter is located between disparaître and abandonner).  The 
zone  around  vertex  B  is  composed  by  verbs  expressing  productive  and 
enhancing  actions  like  exciter,  enflammer,  exalter,  animer,  soulever,  
transporter, soulever, provoquer, agiter, augmenter (and entraîner between 
attirer  and provoquer). The third vertex C is characterized by the ideas of 
connecting and communicating (assembler, joindre, accorder, fixer, établir,  
indiquer,  montrer,  exposer,  marquer,  dire,  composer…, réunir  between 
attacher and joindre,  and révéler between montrer and indiquer).  At last, 
vertex D corresponds to destructive and damaging actions such as  briser,  
détruire,  anéantir,  abattre,  affaiblir,  ruiner,  épuiser,  écraser,  casser,  
dégrader…  The verb  tuer is  located there,  between  altérer,  dégrader and 
supprimer.

It must be noticed that we can observe gradual semantic changes as we 
move from one vertex to another. For instance, moving from A to B we find 
successively  s’enfuir,  fuir,  partir,  sortir,  passer,  courir,  venir,  marcher,  
aller, suivre, avancer, revenir, introduire, faire. From A to D the gradation 
involves  s’enfuir,  fuir,  disparaître,  quitter,  abandonner,  mourir,  cesser,  
perdre, diminuer, supprimer, casser, anéantir, détruire.  Between B and D 
can  be  found the  series  exciter,  enflammer,  agiter,  tourmenter,  troubler,  
ennuyer,  bouleverser,  fatiguer,  ruiner,  détruire,  anéantir,  briser,  whereas 
one  passes  from  B  to  C  through  exciter,  exalter,  animer,  soulever,  
provoquer,  entraîner,  augmenter,  élever,  conduire,  déterminer,  produire,  
former, dire, établir, exposer, indiquer, montrer, révéler. Last example, here 
is  the  series  from  C  to  D:  fixer,  assembler,  joindre,  réunir,  arranger,  
attacher, retenir, serrer, fermer, arrêter, cesser, rompre, séparer, couper,  
étouffer, supprimer, diminuer, casser, affaiblir, abattre, anéantir, briser.
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Figure 2:  Representation of the first 200 French verbs with highest global proxemy

Three important comments are worth emphazising:
• First,  as  shown by  these  examples,  the  geometrical  distance  between 

spheres  presents  a  very  good  correlation  with  the  semantic  distance 
between lexical units: close verbs on the figure are also close by their  
meanings.  This  proves  that  proxemic  representation  actually  catches 
semantic properties of the lexical units. 

• Second, the global structure, sort of tetrahedron with its four vertices, is 
relatively independent of the precise number of top-ranked verbs used to 
build it: a very similar form is obtained with the first 100 or 300 verbs 
instead of the first 200. This means that the method is well suited to the 

A

B

C

D
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continuous aspect of the hierarchical structure of the lexicon. Thanks to 
our geometrical representation, we do not need to define any 'levels' of 
hierarchy. The choice of the number of verbs taken into account is not a 
crucial decision, but a question of convenience: taking more verbs leads 
to a more accurate representation, but at the same time a less readable 
figure. 

• The third remark is also a consequence of the continuous aspect of the 
geometrical tools.  Once the representation has been built  with a small 
number of top-ranked node, we can represent any of the remaining nodes 
in the same figure. In other words, the geometrical representation is a 
global referential frame in which we can locate all the nodes of the graph. 
As regards our example of Synoverbe, it follows that any French verb 
can be characterized by its location in the tetrahedron. For instance, if we 
add the verb accabler, which is not among the 200 top-ranked nodes, to 
the representation, we find that  it  is  located in the D region, between 
écraser, fatiguer and bouleverser, as could be expected from its meaning. 
Far from being restricted to the 200 verbs used to build them, the four 
vertices  correspond  to  four  semantic  dimensions  whose  relevance  is 
general all over the French verb lexicon10.
We can also use the proxemic representation of the nodes to visualize 

more local parts of the graph. Instead of using global proxemy to choose the 
nodes to  be represented,  we can choose to  study any subset  of  nodes of 
particular interest by representing the verbs having the highest proxemy with 
respect to the selected subset. We will call such a representation a proxemic 
zoom onto the given subset. Actually, since all the nodes can theoretically be 
represented in the same high dimensional space, we can consider that we 
really zoom into a part of this representation when we select some nodes to 
visualize the relative positions of these nodes in the high dimensional space. 
Of course, we practically need to use principal component analysis to reduce 
the dimensionality of the space, exactly as we proceeded when we visualized 
the global structure. 

Figures 3 to 5 show such proxemic zooms. In each case, we have chosen 
a couple of antonyms as subsets defining the proxemy: {monter, descendre}, 
{commencer,  finir}  and  {aimer,  haïr}  (respectively  go up/go down, 
begin/end and love/hate). Each time, one of the two verbs is on the 'positive' 
axis  and  the  other  on  the  'negative'  one.  It  is  interesting to  see  how the 
antonyms are  connected  by  relatively  short  paths  through their  semantic 
domain, with semantically very relevant intermediary verbs: sauter (to jump) 
between  monter  and  descendre,  partir  (to depart) between  commencer  and 
finir, envier (to envy) between aimer et haïr.

10  An important question is whether these dimensions are universal, i.e. shared by all human 
languages. This is one of the issues that we intend to explore in the near future.
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Figure 3 : Proxemic zoom onto {monter, descendre}
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Figure 4 : Proxemic zoom onto {commencer, finir}

Figure 5 : Proxemic zoom onto {aimer, haïr}

Proxemic zooms can also be used to study the polysemic organisation of 
a single verb. We just have to zoom with respect to the subset reduced to this 
verb. For instance, figure 6 shows the representation around the verb jouer 
(to play). As can be seen on the figure, four specific meanings of the verb 
emerge: s'amuser (have fun), risquer (jouer de l'argent: to gamble), tromper  
(se jouer de quelqu'un: to deceive somebody), and imiter (jouer les victimes: 
to  play the victim),  the  center  of  the  representation corresponding to  the 
more general meaning  pratiquer (jouer aux cartes, au tennis, du piano: to 
play cards, tennis, piano). 
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Figure 6 : Proxemic zoom onto jouer

Thus, proxemy offers an interesting method to study a lexical graph at 
different scales, from the most global structure to the most detailed meanings 
of a word.

4. SEMANTIC SPACES

Can the geometrical figure obtained by the proxemic method be considered 
as  the  abstract  semantic  space  we  were  looking  for?  As  we  said  at  the  
beginning of the paper, lexical units must be represented by regions rather 
than  points  in  the  semantic  space,  if  we  want  to  take  into  account  their  
polysemy  and  the  overlap  of  meanings  characterizing  partial  synonymy 
between several units. In order to maintain coherence in our model, we must  
consider that the different meanings of a lexical unit are scattered over an 
area surrounding the proxemic vector representing the unit. As a matter of 
fact, this is exactly what we just did when we looked at the proxemic zoom 
onto the verb jouer. In the figure 6, the sphere labeled by jouer is located in 
the middle of the representation, where we found the more general meaning 

 



18 Chapter 5

pratiquer, but all the other meanings are spread and situated relatively far 
from the sphere of  jouer, which plays a role similar to a center of gravity. 
This can be better visualized in the figure 7, where  jouer  and its proxemic 
neighbors are represented in the global conceptual tetrahedron of the French 
verbs.

Figure 7 : Localisation of jouer and its proxemic neighbors in the global representation of 
French verbs (hue indicates the proxemy with respect to jouer)

Therefore, we will define the semantic area associated with a given unit  
as the region containing all the units having a high proxemy with respect to 
it. With this definition, we can assume that proxemic representation gives a 
good approximation of the semantic space needed in our model.

In order to check this assumption, we used a completely different method 
of construction of a global semantic space. This method has been used for 
several years by one of us, Bernard Victorri, to build local semantic spaces 
associated with polysemic lexical  units  (Ploux & Victorri1998).  Fabienne 
Venant (2004) and Nabil Abdellaoui (2004) have extended very recently this 
method so as to apply it to the building of global semantic spaces. 

The  main  idea  of  the  method  consists  in  associating  points  of  the 
semantic space with the cliques of the lexical graph. The cliques of a graph 
are its maximal completely interconnected subsets of nodes, i.e., in our case, 
maximal sets  of  lexical  units  that  are  all  synonyms for  one another.  The 
cliques  define  very  precise  meanings  that  can  be  considered  as  the 
intersection of the meanings of all the units belonging to the clique11. It is 
worth noticing that the “synsets” of WordNet (Fellbaum 1998) are analogous 
to the cliques in that they are also sets of words designed to represent the  
different meanings of a lexical unit.

Let us take an example to illustrate this point. As we saw, the French 
verb  jouer displays  a  rather  extended polysemy,  with a  large number  of 
synonyms (precisely 94). Of course, most of its synonyms are far from being 
synonyms for one another. For instance, if we look at the synonyms that we 
presented above to characterize the different parts of the proxemic zoom of 
figure 6 (s'amuser,  risquer,  tromper, imiter, pratiquer),  they convey very 
different meanings. On the opposite, the cliques containing  jouer evoke a 
unique nuance of meaning of jouer. For instance, we find, among others, the 
three following cliques:

{jouer, aventurer, compromettre, exposer, hasarder, risquer}
{jouer, miser, boursicoter}

11  The algorithm used to compute the cliques can be found in Reingold et al., 1977. For a 
similar approach using also a graph of synonymy, see Warnesson, 1985. 

tromperrouler

jouer 

abuser

exposer
user

agir

monter

remuer

passer

 marcher

faire

prendre

enlever

tourner



5. Hierarchy in lexical organisation of natural languages 19

{jouer, miser, parier, ponter}
All of them can be considered as instances of the 'risquer' meaning of 

jouer,  but each of them enhances a precise determination of this meaning 
(the first one evokes venturing and hazarding, the second speculating, and 
the third gambling and betting). It is then sensible to assume that each clique 
has to be represented by a point in the semantic space. As the number of  
cliques containing jouer is also rather large (precisely 98), we have enough 
points to design what we called the semantic space associated to jouer 

In  order  to  build  the  semantic  space  of  a  given  unit,  we  compute  a 
distance  between  the  cliques  containing  the  unit.  We  use  the  chi-square 
distance12, a metric which is well known in statistical analysis, intensely used 
to compute correspondences between subsets of individuals and subsets of 
qualitative characteristics. As usual, principal component analysis is applied 
to reduce the dimensionality of the space (for all the technical details and a 
thorough discussion of the model, see Ploux & Victorri 1998).

As can be seen in figure 8, the semantic space of jouer obtained by this 
method is strikingly similar to the proxemic zoom we presented above, as far 
as  structure  is  concerned:  four  branches  for  the  same  specific  meanings 
(s'amuser, risquer, tromper, imiter), with the general 'pratiquer' meaning in 
the center. It must be emphasized that a synonym can appear in different  
regions of the semantic space. For instance, one can see figure 8 that the 
verb rouler, a highly polysemic French verb, is present in two regions: in the 
center, with the meaning ‘to swing’, ‘to oscillate’, and in the tromper branch, 
with the meaning ‘to deceive’, ‘to trick’. This is one of the main qualities of 

12  More precisely, let u1, u2, …, un be the synonyms of the given unit, c1, c2, …, cp the cliques 
containing the unit, and xki the coordinates of the cliques over the synonyms: xki = 1 if ui ∈ 
ck and xki = 0 si ui ∉ ck. Then the distance d(ck, cl) between two cliques is given by the 
following formula :
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the model: as expected (cf. introduction), words meet in the semantic space 
at different places, each place corresponding to a precise meaning.

Figure 8: The semantic space associated with jouer

Thus, it is interesting to see if this method also gives the same general 
semantic dimensions as the proxemy method,  when applied at  the global 
level. We can obtain all the cliques of the complete graph Synoverbe (there 
are more than 25,000 cliques for less than 10,000 nodes) and compute the 
distance between any couple of them. Obviously, we cannot visualize a so 
large semantic space with the simple technique we used for local semantic 
spaces. 

To  solve  this  problem,  we  first  build  all  the  balls  of  a  given  radius 
centered on a  clique,  and we select  the  first  hundred ones  that  have the 
highest  density.  In  other  words,  we  select  the  largest  groups  of  strongly 
interconnected units, analogically corresponding to the centers of the largest 
cities (see the first part of this paper). Each high-density ball is assimilated to 
its center, which is associated with the whole set of synonyms corresponding 
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to the union of the cliques included in the ball. Principal component analysis 
is then applied to the centers.

The results can be visualized on figure 9 and figure 10. Once again, the 
similarity  with  the  results  obtained  with  global  proxemy is  striking.  We 
observe  the  same  four  main  semantic  axes  structuring  the  meanings  of 
French verbs. Figure 9 shows the projection of the global semantic space 
onto the first two dimensions. Three semantic zones appear, corresponding 
to  three  semantic  axes  that  can  be  called 'positive'  (exciter,  provoquer,  
produire),  'negative'  (détruire,  enlever,  affaiblir),  and  'expressive'  (dire,  
montrer). Figure 10 is a three-dimensional representation of the same space. 
It reveals the fourth semantic axis, which we called 'repulsive' (disparaître,  
quitter, partir, sortir). 

On each figure, some information is given for a few representative balls,  
namely the content of the clique which is at the center of the ball, and the 
number of cliques and synonyms belonging to the ball. It can be observed 
that high density of cliques is not necessarily correlated with high density of  
synonyms.  It  means  that  this  method actually  brings  out  semantic  zones 
where lexical units are highly interconnected. Moreover, as we already saw 
for the local semantic space of jouer, highly polysemic units cover very large 
regions of the global space. For instance the verb sortir extends over a large 
part of the ‘expressive’ zone and a large part of the ‘repulsive’ zone. Thus, 
this model gives a method to classify polysemic units, depending on the size 
of  the  associated  region  in  the  global  representation:  the  most  highly 
polysemic unit is not the most connected one (i.e. the node of highest degree 
in the graph), but rather the most extended one in the global semantic space.
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Figure 9: Two-dimensional representation of the global semantic space of Synoverbe
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Figure 10: Three-dimensional representation of the global semantic space of Synoverbe

The convergence of two independent methods seems to prove that the 
features  which  are  revealed  by  both  of  them  are  really  intrinsic  to  the 
structural properties of the French verb lexicon. We have then at our disposal 
two tools to explore the hierarchical structure of small world graphs. As we 
said, the construction of 'semantic spaces' is not only interesting for lexical 
systems: it can prove very valuable for other 'semantic' graphs like the Web,  
as well as social graphs where the involved relationship depends more on 
conceptual factors than on geographical ones. 
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