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ON SINGULAR FANO VARIETIES WITH A DIVISOR OF

PICARD NUMBER ONE

Pedro MONTERO

Abstract. — In this paper we study the geometry of mildly singular Fano varieties

on which there is an effective prime divisor of Picard number one. Afterwards, we

address the case of toric varieties. Finally, we treat the lifting of extremal contractions

to universal covering spaces in codimension 1.
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1. Introduction

The aim of this article is to study the geometry of mildly singular Fano varieties
on which there is a prime divisor of Picard number one. Recall that a Fano variety
is a normal complex algebraic variety whose anticanonical divisor has some positive
multiple which is an ample Cartier divisor.

A first related result is given by L. Bonavero, F. Campana and J. A. Wiśniewski
in the sequel of articles [Bon02] and [BCW02], where the authors classified (toric)
Fano varieties of dimension n ≥ 3 on which there is a divisor isomorphic to Pn−1 and
later used these results to study (toric) complex varieties whose blow-up at a point is
Fano. For instance, in the toric case we have the following result.
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Theorem 1.1 ([Bon02, Theorem 2]). — Let X be a smooth toric Fano variety of
dimension n ≥ 3. Then, there exists a toric divisor D of X isomorphic to Pn−1 if
and only if one of the following situations occurs:

1. X ∼= Pn and D is a linear codimension 1 subspace of X.
2. X ∼= P(OP1 ⊕ OP1(1)⊕n−1) ∼= BlPn−2(Pn) and D is a fiber of the projection on

P1.
3. X ∼= P(OPn−1 ⊕ OPn−1(a)), where 0 ≤ a ≤ n − 1, and D is either the divisor

P(OPn−1) or the divisor P(OPn−1(a)).
4. X is isomorphic to the blow-up of P(OPn−1 ⊕OPn−1(a+1)) along a linear Pn−2

contained in the divisor P(OPn−1), where 0 ≤ a ≤ n − 2, and D is either the
strict transform of the divisor P(OPn−1) or the strict transform of the divisor
P(OPn−1(a+ 1)).

In particular, this classification leads ρX ≤ 3. Some years later, T. Tsukioka
in [Tsu06] used some arguments from [And85] and [BCW02] to generalize these
results and proved, more generally, that a smooth Fano variety X of dimension n ≥ 3
containing an effective prime divisor of Picard number one must satisfy ρX ≤ 3.

The bound ρX ≤ 3 was recently proved by G. Della Noce in [DN14, Remark 5.5],
when X is supposed to be a Q-factorial Gorenstein Fano variety of dimension n ≥ 3
with canonical singularities, with at most finitely many non-terminal points, and un-
der the more general assumption of the existence of an effective prime divisor D ⊆ X
such that the real vector space N1(D,X) := Im (N1(D) → N1(X)) of numerical classes
of 1-cycles on X that are equivalent to 1-cycles on D, is one-dimensional.

In the smooth case, C. Casagrande and S. Druel provide in [CD15] a classification
(and examples) of all cases with maximal Picard number ρX = 3.

Theorem 1.2 ([CD15, Theorem 3.8]). — Let X be a Fano manifold of dimension
n ≥ 3 and ρX = 3. Let D ⊆ X be a prime divisor with dimR N1(D,X) = 1. Then
X is isomorphic to the blow-up of a Fano manifold Y ∼= PZ(OZ ⊕ OZ(a)) along an
irreducible subvariety of dimension (n − 2) contained in a section of the P1-bundle
π : Y → Z, where Z is a Fano manifold of dimension (n− 1) and ρZ = 1.

Firstly, we recall in §3 that a mildly singular Fano varietyX always has an extremal
ray R ⊆ NE(X) whose intersection with a given effective divisor is positive. The rest
of §3 is devoted to the study of these extremal contractions in the case that the given
divisor has Picard number one. This allows us to prove the following result in §4.

Theorem A. — Let X be a Q-factorial Gorenstein Fano variety of dimension n ≥ 3
with canonical singularities and with at most finitely many non-terminal points. As-
sume that there exists an effective prime divisor D ⊆ X such that dimR N1(D,X) = 1
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and that ρX = 3. Then, there is a commutative diagram

X

σ̂

����
��
��
��

σ

��
??

??
??

??

ϕ

��

Ŷ

π̂
��
??

??
??

??
Y

π
����
��
��
��

Z

where σ (resp. σ̂) corresponds to a divisorial contraction of an extremal ray

R ⊆ NE(X) (resp. R̂ ⊆ NE(X)) which is the blow-up in codimension two of an
irreducible subvariety of dimension (n− 2), and ϕ is a contraction of fiber type, finite

over D, corresponding to the face R + R̂ ⊆ NE(X). Moreover, D · R > 0, Y and Ŷ
are Q-factorial varieties with canonical singularities and with at most finitely many
non-terminal points, Y is Fano and Z is a Q-factorial Fano variety with rational
singularities.

The results of S. Cutkosky on the contractions of terminal Gorenstein threefolds
[Cut88], together with the previous result imply the following corollary.

Corollary B. — Let X be a Q-factorial Gorenstein Fano threefold with terminal
singularities. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 3. Then, X is factorial and it can be realized as
the blow-up of a smooth Fano threefold Y along a locally complete intersection curve
C ⊆ Y . Moreover, Y is isomorphic to P(OP2 ⊕OP2(a)), where a ≥ 0.

In the case ρX = 2, we obtain in §5 the following extension of [CD15, Remark 3.2
and Proposition 3.3] to mildly singular Fano varieties X with ρX = 2, on which there
is an effective prime divisor of Picard number one.

Theorem C. — Let X be a Q-factorial Gorenstein Fano variety of dimension n ≥ 3
with canonical singularities and with at most finitely many non-terminal points. As-
sume that there exists an effective prime divisor D ⊆ X such that dimR N1(D,X) = 1
and that ρX = 2. There are two possibilities:

1. If D is not nef, then there is an extremal contraction sending D to a point.
2. If D is nef, then S = D⊥ ∩ NE(X) is an extremal ray. One of the following

assertions must hold:
a) contS is of fiber type onto P1, and D is a fiber.
b) contS is a divisorial contraction sending its exceptional divisor G to a

point, and such that G ∩D = ∅.
c) contS is a small contraction and there is a flip X 99K X ′ and a contraction

of fiber type ψ : X ′ → Y ′ such that the general fiber is isomorphic to P1,
with anticanonical degree 2. Moreover, ψ is finite over the strict transform
of D in X ′.

In order to extend the classification results to higher dimensions, we will restrict
ourselves to the case of toric varieties. In that case, the combinatorial description
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of the MMP for toric varieties treated in §6, as well as some particular properties of
them, will allow us to prove the following result in §7.

Theorem D. — Let X be a Q-factorial Gorenstein toric Fano variety of dimen-
sion n ≥ 3 with canonical singularities and with at most finitely many non-terminal
points. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 3. Then, there exist Q-factorial Gorenstein toric
Fano varieties Y and Z, with terminal singularities, such that

1. X ∼= BlA(Y ), the normalized blow-up of an invariant toric subvariety A ⊆ Y of
dimension (n− 2); and

2. Y ∼= PZ(OZ⊕OZ(a)), where a ≥ 0 and OZ(1) is the ample generator of Pic(Z).

In the toric setting, we obtain in §8 results that extend L. Bonavero’s description
of the extremal contractions in the case ρX = 2 to mildly singular toric Fano varieties.
If X is supposed to have isolated canonical singularities then we obtain the following
classification.

Theorem E. — Let X be a Q-factorial Gorenstein toric Fano variety of dimension
n ≥ 3 with isolated canonical singularities. Assume that there exists an effective prime
divisor D ⊆ X such that dimR N1(D,X) = 1 and that ρX = 2. Then, either

1. X ∼= PY (OY ⊕OY (a)) for some toric variety Y . Moreover, Y is a Q-factorial
Gorenstein toric Fano variety of dimension (n − 1) with terminal singularities
and Fano index iY , and 0 ≤ a ≤ iY − 1. In particular, X has only terminal
singularities.

2. X is isomorphic to the blow-up of a toric variety Y along an invariant subvariety
A ⊆ Y of dimension (n− 2), contained in the smooth locus of Y . Moreover, Y
is isomorphic to either

(a) Pn,
(b) P(1n−1, 2, n+ 1) if n is even, or
(c) P(1n−1, a, b), where 1 ≤ a < b ≤ n are two relatively prime integers such

that a|(n− 1 + b) and b|(n− 1 + a).
In particular, Y is a Q-factorial Gorenstein Fano variety with ρY = 1 and it has
at most two singular points. Conversely, the blow-up of any of the listed varieties
Y along an invariant irreducible subvariety A ⊆ Y of dimension (n − 2) and
contained in the smooth locus of Y , leads to a toric variety X satisfying the
hypothesis.

Moreover, in the case of contractions of fiber type we obtain the following result
without the assumption of isolated singularities.

Proposition F. — Let X be a Q-factorial Gorenstein toric Fano variety of di-
mension n ≥ 3 with canonical singularities and with at most finitely many non-
terminal points. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal ray such that
D · R > 0 and assume that the corresponding extremal contraction π : X → Y is of
fiber type. Then, X ∼= PY (OY ⊕ OY (a)). Moreover, Y is a Q-factorial Gorenstein
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Fano variety of dimension (n− 1) with terminal singularities and Fano index iY , and
0 ≤ a ≤ iY − 1. In particular, X has only terminal singularities.

Finally, §9 is devoted to show that the extremal contractions studied in §8 lift to
universal coverings in codimension 1, introduced by W. Buczyńska in [Buc08]. See
Definition 9.8 for the notion of Poly Weighted Space (PWS), introduced by M. Rossi
and L. Terracini in [RT16a] and proved to be universal covering spaces in codimension
1 for Q-factorial toric varieties.

In particular, we obtain the following description of divisorial contractions of toric
mildly Fano varieties with Picard number two. It should be noticed that even if the
combinatorial description of these divisorial contractions is very simple (see Lemma
6.9) and it coincides with the one of the blow-up of a subvariety of dimension (n− 2)
in the smooth case, it may happen that the morphisms are not globally a blow-up
of the coherent sheaf of ideals of a (irreducible and reduced) subvariety but only a
blow-up in codimension two if the singularities are not isolated (see Example 8.2).

Proposition G. — Let X be a Q-factorial Gorenstein toric Fano variety of di-
mension n ≥ 3 with canonical singularities and with at most finitely many non-
terminal points. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal ray such that
D ·R > 0 and let us denote by π : X → Y the corresponding extremal contraction. As-
sume that π is birational. Then there exist weights λ0, . . . , λn ∈ Z>0 and a cartesian
diagram of toric varieties

X̂
π̂ //

πX

��

P(λ0, . . . , λn)

πY

��

X
π // Y

where vertical arrows denote the corresponding canonical universal coverings in

codimension 1, and X̂ is a Gorenstein Fano PWS with canonical singularities
and with at most finitely many non-terminal points such that ρ

X̂
= 2. Moreover,

π̂ : X̂ → P(λ0, . . . , λn) is a divisorial contraction sending its exceptional divisor

Ê ⊆ X̂ onto an invariant subvariety Â ⊆ P(λ0, . . . , λn) of dimension (n− 2).

Acknowledgements. — I would like to thank my supervisors, Stéphane DRUEL
and Catriona MACLEAN, for their unstinting help and their valuable guidance.

2. Notation and preliminary results

Through out this article all varieties will be assumed to be reduced and irreducible
schemes of finite type over the field C of complex numbers. Its smooth locus will be
denoted by Xreg ⊆ X , while Sing(X) = X \Xreg denotes its singular locus.

We will use the notation and results of the Minimal Model Program (MMP for
short) in [KM98].

Let X be a normal projective variety, we consider
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N1(X) =

{∑

finite

aiCi | ai ∈ R, Ci irreducible curve in X

}
/ ≡

where ≡ denotes the numerical equivalence. Let NE(X) ⊆ N1(X) be the convex
cone generated by the classes of effective 1-cycles, i.e., 1−cycles with non-negative
coefficients, and NE(X) be its topological closure. We denote by [C] the class of C
in N1(X).

Let Z ⊆ X be a closed subset and ι : Z → X be the natural inclusion, we define

N1(Z,X) = ι∗ N1(Z) ⊆ N1(X).

For us, a divisor will always be a Weil divisor. Let us denote by KX the class of a
canonical divisor in Cl(X). A complete normal variety X is said to be a Fano variety
if there exists a positive multiple of −KX which is Cartier and ample. A Fano variety
is therefore always projective.

The varietyX is said to be Gorenstein ifKX is a Cartier divisor and its singularities
are Cohen-Macaulay. The property of being Gorenstein is local and open, so the
Gorenstein locus of X is the open subset containing all the Gorenstein points of X
(it contains Xreg, in particular).

We follow the usual convention, and we say that X is a Q-Gorenstein variety if
some positive multiple of KX is a Cartier divisor; we do not require Cohen-Macaulay
singularities. In this case, the Gorenstein index of X is the smallest positive integer
ℓ ∈ Z>0 such that ℓKX is a Cartier divisor.

In the same way as for 1−cycles, we can define N1(X) as the vector space of Q-
Cartier divisors with real coefficients, modulo numerical equivalence ≡. We denote
by [D] the class of D in N1(X).

We have a non-degenerated bilinear form

N1(X)×N1(X) −→ R

([D], [C]) 7−→ D · C

given by the intersection product between curves and divisors in X . Then,
dimR N1(X) = dimR N1(X) =: ρX is called the Picard number of X . It is a
classical fact that dimR N1(X) is finite.

An extremal ray R of NE(X) is a 1-dimensional subcone such that if u, v ∈ NE(X),
u+ v ∈ R imply that u, v ∈ R. We denote

Locus(R) =
⋃

[C]∈R

C ⊆ X.

If D is a Q-Cartier divisor and R ⊆ NE(X) is a extremal ray, then the sign
D · R > 0 (resp. =, <) is well defined. From now on, all the varieties are assumed to
be Q-factorial unless explicitly mentioned.

A contraction of X is a projective surjective morphism ϕ : X → Y with connected
fibers, where Y is a normal projective variety. In particular, ϕ∗OX = OY .

Let us recall the notion of singularities of pairs for Q-factorial varieties (see [KM98,
§2.3] for details).
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Definition 2.1. — Let X be a Q-factorial normal projective variety, and ∆ =∑
ai∆i an effective Q-divisor on X . Let f : Y → X be a log-resolution of the pair

(X,∆), i.e., a birational projective morphism f whose exceptional locus Exc(f) is the
union of the effective prime divisors Ei’s and such that ∆Y +

∑
Ei is a simple normal

crossing divisor, where ∆Y is the strict transform of ∆ in Y by f . Using numerical
equivalence, we have

KY +∆Y
∼= f∗(KX +∆) +

∑

Ei

a(Ei;X,∆)Ei.

The numbers a(Ei;X,∆) ∈ Q are independent of the log-resolution and depend
only on the discrete valuation that corresponds to Ei.
Suppose that all ai ≤ 1 and that f is a log-resolution of (X,∆), we say that the pair
(X,∆) is




terminal

canonical

klt

if

a(Ei;X,∆) > 0 for every exceptional Ei

a(Ei;X,∆) ≥ 0 for every exceptional Ei

a(Ei;X,∆) > −1 for every exceptional Ei and all ai < 1

Here klt means “Kawamata log terminal”. If the conditions above hold for one log-
resolution of (X,∆), then they hold for every log-resolution of (X,∆).
We say that X is terminal (canonical,...) or that it has terminal (canonical,...)
singularities if (X, 0) is a terminal (canonical,...) pair.

From the Cone Theorem (see [KM98, Chapter 3]), ifX is klt then for each extremal
face F ⊆ NE(X) ∩ {−KX > 0} there exists a unique morphism contF : X → XF

with connected fibers, called the extremal contraction of F , from X onto a normal
projective variety XF such that the irreducible curves contracted by contF to points
are exactly the curves whose classes in N1(X) belongs to F .

We denote by Exc(contF ) the exceptional locus of contF , i.e., the subset of X
where contF is not an isomorphism. There are three possibilities:

– dim(XF ) < dim(X); we say that contF is of fiber type.
– contF is birational and its exceptional locus is an effective divisor E (prime if
F is an extremal ray) such that E · R < 0; we say that contF is a divisorial
contraction.

– contF is birational and its exceptional locus has codimension > 1 in X ; we say
that contF is a small contraction.

If X is klt and R ⊆ NE(X) is a KX−negative extremal ray, then there is a short
exact sequence

0 // PicXR

L 7→cont∗R L // PicX
M 7→M·[C]

// Z,

where C ⊆ X is a curve whose numerical class generates the extremal ray R.
In the case when X is a klt Fano variety we have a more precise description: the

Mori cone of X is finite rational polyhedral, generated by classes of rational curves;
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in particular NE(X) = NE(X). Moreover, Kawamata-Viehweg theorem implies that

Hi(X,OX) = {0} for i > 0.
After the works of Birkar, Cascini, Hacon and McKernan, if X is a klt Fano variety,

then X is a Mori Dream Space (see [BCHM10, Corollary 1.3.2] and [HK00]).
For us, a P1−bundle (or fibration in P1) is a smooth morphism all of whose fibers

are isomorphic to P1.
Let E be a vector bundle over a variety X , we denote by PX(E) the scheme

ProjX

(⊕
d≥0 S

d(E)
)
.

Finally, we recall that if λ0, . . . , λn are positive integers with gcd(λ0, . . . , λn) = 1
then we define the associated Weighted Projective Space (WPS) to be

P(λ0, . . . , λn) =
(
Cn+1\{0}

)
/ ∼,

where ∼ is the equivalence relation

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇔ xi = ελiyi, i = 0, . . . , n for some ε ∈ C∗.

Moreover, P(λ0, . . . , λn) is a toric variety with Picard number one and torsion-free
class group. In general, we say that a Q-factorial complete toric variety is a Poly
Weighted Space (PWS) if its class group is torsion-free.

3. Study of the extremal contractions

In this section we study extremal contractions of mildly singular Fano varieties X
that admits an effective prime divisor D ⊆ X such that dimR N1(D,X) = 1.

Firstly, notice that klt Fano varieties always have an extremal ray whose intersec-
tion with a given effective prime divisor is positive (c.f. [BCW02, Lemme 2]).

Lemma 3.1. — Let X be a Q-factorial klt Fano variety and let D ⊆ X be an effective
prime divisor. Then, there exists an extremal ray R ⊆ NE(X) such that D ·R > 0.

Proof. — The Cone Theorem [KM98, Theorem 3.7] implies that NE(X) = NE(X) is
a rational polyhedral cone generated by a finite number of extremal rays R1, . . . , Rs.
Let C ⊆ X be any curve such that D · [C] > 0. Since C is numerically equivalent to
a positive sum of extremal curves, [C] =

∑s
i=1 ai[Ci] with ai ≥ 0 and [Ci] ∈ Ri, we

can pick one such that D · Ri > 0.

Secondly, we have that the contraction of an extremal ray whose intersection with
an effective prime divisor of Picard number one is positive has at most one-dimensional
fibers.

Lemma 3.2. — Let X be a Q-factorial klt variety and D ⊆ X be an effective prime
divisor such that dimR N1(D,X) = 1. Let us suppose that ρX > 1 and that there exists
R ⊆ NE(X) extremal ray such that D · R > 0. Then, R * N1(D,X). In particular,
the extremal contraction contR is finite on D and all the fibers of contR are at most
of dimension 1.
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Proof. — We follow the proof of [CD15, Lemma 3.1]. Assume, to the contrary, that
R ⊆ N1(D,X). The numerical class of every irreducible curve C ⊆ D must belong
to R, since dimR N1(D,X) = 1. Thus, contR sends D to a point and D ⊆ Locus(R).
If contR is birational, then we would have that −D is an effective divisor by the
negativity lemma, a contradiction. The contraction contR is then of fiber type and
Locus(R) = X . As ρX > 1 and contR(D) is a point, there exists a non-trivial fiber of
contR disjoint of D, and then D · R = 0, a contradiction.

As a consequence we have that all the fibers of contR are at most of dimension 1.
In fact, contR |D is a finite morphism: if there exists a curve C ⊆ D contained in a
fiber, we would have that [C] ∈ R and therefore R ⊆ N1(D,X).

We will need the following result.

Proposition 3.3. — Let X be a Q-factorial klt Fano variety of dimension n ≥ 3.
Let us suppose that ρX > 1 and that there exists an effective prime divisor such that
dimR N1(D,X) = 1. Let R ⊆ NE(X) be an extremal ray such that D · R > 0 and let
us denote by ϕR : X → XR the corresponding extremal contraction. Then,

1. If ϕR is of fiber type, then XR is a Q-factorial Fano variety with rational
singularities of dimension (n− 1) such that ρXR

= 1.
2. If ϕR is birational and we suppose that X has Gorenstein canonical singularities

with at most finitely many non-terminal points, then ϕR is a divisorial contrac-
tion and there exists a closed subset S ⊆ XR with codimXR

(S) ≥ 3 such that
XR r S ⊆ XR,reg, codimX ϕ

−1
R (S) ≥ 2, X r ϕ−1(S) ⊆ Xreg and

ϕR|Xrϕ
−1

R
(S) : X r ϕ−1

R (S) −→ XR r S

is the blow-up of a (n−2)-dimensional smooth subvariety in XRrS. Moreover,
XR is a Q-factorial Fano variety with canonical singularities with at most finitely
many non-terminal points. In particular,

KX · [F ] = E · [F ] = −1,

for every irreducible curve F such that [F ] ∈ R, where E = Exc(ϕR) is the
exceptional divisor of ϕR.

Proof. — Let us suppose that ϕR : X → XR is of fiber type. Then, ϕR|D : D → XR is
a finite morphism, by Lemma 3.2, and thus dimCXR = n−1. SinceXR is a Q-factorial
projective variety, the projection formula and the fact that dimR N1(D,X) = 1 imply
that ρXR

= 1. In particular, every big divisor on XR is ample.
Let us prove that XR is a Fano variety in this case. Since X is Fano klt, there

exists an effective Q-divisor ∆XR
on XR such that (XR,∆XR

) is klt and such that
− (KXR

+∆XR
) is ample, by [PS09, Lemma 2.8]. In particular, XR has rational

singularities and −KXR
is a big divisor, and therefore ample.

Let us suppose now that ϕR : X → XR is a birational contraction. Then, it follows
from [DN14, Theorem 2.2] that ϕR is a divisorial contraction given by the blow-up
in codimension two of an irreducible subvariety of dimension (n− 2) on XR, and that
XR is a Q-factorial Fano variety with canonical singularities with at most finitely
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many non-terminal points. Finally, the ampleness of the anticanonical divisor −KXR

follows verbatim the proof in the smooth case given in [CD15, Lemma 3.1].

Remark 3.4. — Let X be a Gorenstein Fano variety of dimension n ≥ 3 with
canonical singularities with at most finitely many non-terminal points, and let D ⊆ X
be an effective prime divisor such that dimR N1(D,X) = 1. Then, ρX ≤ 3, by [DN14,
Remark 5.5].

Remark 3.5. — Let X be a Q-factorial klt variety of dimension n ≥ 3 and let ϕR :
X → XR be a contraction of fiber type, associated to an extremal ray R ⊆ NE(X),
such that all the fibers are one-dimensional. Then [AW97, Corollary 1.9] implies that
all fibers of ϕR are connected and their irreducible components are smooth rational
curves.

Let us denote by [Fx] the numerical class of the funtamental 1-cycle associated

to the scheme theoretic fiber ϕ−1
R (x) over the point x ∈ XR, and by [ϕ

[−1]
R (x)] the

numerical class of the cycle theoretic fiber over x ∈ XR in the sense of J. Kollár
[Kol96, §I.3].

Since X is Q-Gorenstein, the intersection number KX · [ϕ
[−1]
R (x)] is independent

of the closed point x ∈ XR, by [Kol96, Proposition I.3.12]. In our context (terminal
Gorenstein threefolds or toric varieties), ϕR : X → XR will be additionally flat and
hence the cycle theoretic fiber will coincide with the fundamental class of the scheme
theoretic fiber (see [Kol96, Definition I.3.9 and Corollary I.3.15]).

Under the flatness hypothesis, if we suppose moreover that KX is a Cartier divisor
then we will have that −KX · [Fx] = 2 for all x ∈ XR, by generic smoothness. We
have therefore three possibilities in that case:

1. Fx is an irreducible and generically reduced rational curve such that (Fx)red ∼=
P1 and that −KX · [Fx] = 2.

2. [Fx] = 2[C] as 1-cycles, where C is an irreducible and generically reduced
rational curve such that Cred

∼= P1 and that −KX · [C] = 1.
3. Fx = C ∪ C′, with C 6= C′ irreducible and generically reduced rational curves

such that Cred
∼= C′

red
∼= P1 and that −KX · [C] = −KX · [C′] = 1.

Let us finish the section with two results concerning birational extremal contrac-
tions.

Theorem 3.6 ([DN14, Theorem 3.1]). — Let X be a Q-factorial Fano variety with
canonical singularities. Then, for any prime divisor D ⊆ X, there exists a finite
sequence (called a special Mori program for the divisor −D)

X = X0
σ0

99K X1 99K · · · 99K Xk−1

σk−1

99K Xk
ψ
→ Y

such that, if Di ⊆ Xi is the transform of D for i = 1, . . . , k and D0 := D, the following
hold:

1. X1, . . . , Xk and Y are Q-factorial projective varieties and X1, . . . , Xk have
canonical singularities.

2. for every i = 0, . . . , k, there exists an extremal ray Qi of Xi with Di · Qi > 0
and −KXi

·Qi > 0 such that:
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(a) for i = 1, . . . , k − 1, Locus(Qi) ( Xi, and σi is either the contraction of
Qi (if Qi is divisorial), or its flip (if Qi is small);

(b) the morphism ψ : Xk → Y is the contraction of Qk and ψ is a fiber type
contraction.

The following result is a particular case of [DN14, Lemma 3.3]. We include the
statement with our notation for completeness.

Lemma 3.7. — Let X0 be a Q-factorial Gorenstein Fano variety of dimension n ≥ 3
with canonical singularities and with at most finitely many non-terminal points. Let
D0 ⊆ X0 be an effective prime divisor and let us suppose that there is a diagram

X0
σ0

99K X1
σ1

99K X2,

where σi is the birational map associated to the contraction of an extremal ray Qi ⊆
NE(Xi) such that Di ·Qi > 0, for i = 0, 1, 2; as in Theorem 3.6. If Qi 6⊆ N1(Di, Xi)
for i = 0, 1, then both σ0 and σ1 are divisorial contractions, Exc(σi) is contained in
the Gorenstein locus of Xi and Exc(σ0) is disjoint from the transform of Exc(σ1) in
X0.

4. The extremal case ρX = 3

In this section we study the extremal contractions of mildly singular Fano varieties
X on which there is an effective prime divisor of Picard number one and such that
ρX = 3. As we pointed out in Remark 3.4, this is the largest possible Picard number
for such varieties. Compare with the smooth case [CD15, Lemma 3.1 and Theorem
3.8].

Proof of Theorem A. — SinceX is a Q-factorial klt Fano variety, there is an extremal
ray R ⊆ NE(X) such that D ·R > 0, by Lemma 3.1. We denote by σ := ϕR : X → Y
the associated extremal contraction. We note that Proposition 3.3 implies that σ is a
divisorial contraction sending the effective prime divisor E = Exc(σ) onto a subvariety
A ⊆ Y of dimension (n−2). Moreover, Y is a Fano variety with canonical singularities
and with at most finitely many non-terminal points, such that if we denote by DY

the image of D by σ, then we have that A ⊆ DY and that dimR N1(D,X) = 1.
Since Y is Q-factorial klt Fano variety, there is an extremal ray Q ⊆ NE(Y ) such

that DY · Q > 0, by Lemma 3.1. We denote by π := ϕQ : Y → Z the associated
extremal contraction. Let us prove that π is of fiber type. Assume, to the contrary,
that π is a birational contraction. Hence, Lemma 3.7 implies that both π and ϕ = π◦σ
are divisorial contractions, and that the exceptional locus Exc(ϕ) consists of two
disjoint effective prime divisors. Since DY · Q > 0 we have that Exc(π) · [C] > 0 for
every irreducible curve C ⊆ DY . In particular, Exc(π)∩A 6= ∅, as dimCA = n−2 ≥ 1,
contradicting the fact that the exceptional divisors are disjoint.

Let R̂ ⊆ NE(X) be the extremal ray such that cont
R+R̂ = ϕ. Then, ϕ can be

factorized as ϕ = π̂ ◦ σ̂, where σ̂ := cont
R̂

: X → Ŷ and π̂ := contπ̂(R) : Ŷ → Z.
Since ϕ has fibers of dimension 1, both contractions must have fibers of dimension at
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most 1. Notice that the general fiber of ϕ is not contracted by σ̂, hence σ̂ must be
divisorial and π̂ a contraction of fiber type, by the same arguments as above.

The results of S. Cutkosky on the contractions of terminal Gorenstein threefolds
and Theorem A above lead to Corollary B.

Proof of Corollary B. — By Theorem A, there is a diagram

X
σ //

ϕ

77Y
π // Z ,

where σ : X → Y is a divisorial contraction sending a prime divisor E = Exc(σ) ⊆ X
onto a curve C ⊆ Y , and π and ϕ are both extremal contractions of fiber type whose
fibers are of dimension 1. All these varieties are Q-factorial Fano varieties, and Y has
terminal singularities. Moreover, X is factorial by [Cut88, Lemma 2].

By [Cut88, Lemma 3 and Theorem 4], C ⊆ Y is an irreducible reduced curve
which is a locally complete intersection, Y is a factorial threefold which is smooth
near the curve C, and σ : X → Y is the blow-up of the ideal sheaf IC . In particular,
Y is a Gorenstein Fano threefold with terminal singularities and therefore [Cut88,
Theorem 7] implies that Z is a smooth del Pezzo surface and π : Y → Z is a (possibly
singular) conic bundle over Z. We note that ρZ = 1 and hence Z ∼= P2.

Let H = σ(C) ⊆ Z. Since π is finite on DY = σ(D) and C ⊆ DY , we have that
H is an effective prime divisor on P2, which is therefore ample. Let us denote by
Sπ the locus of points of P2 over which π is not a smooth morphism. By [Gro71,
Proposition II.1.1], is a closed subset of P2. Then, Sπ has pure codimension 1 on P2

or Sπ = ∅, by [ArRM, Theorem 3].
Let us suppose that Sπ is not empty. If we take z ∈ H ∩ Sπ and we denote by

Fz ⊆ Y its fiber by π, then we have that Fz ∩C 6= ∅ (as z ∈ H) and that the 1-cycle
on Y associated to Fz is of the form [Fz ] = [C] + [C′], where C and C′ are (possibly
equal) irreducible and generically reduced rational curves such that Cred

∼= C′
red

∼= P1

(as z ∈ Sπ), by Remark 3.5. Thus, if we denote by F̃z ⊆ X the strict transform of Fz
on X by σ, we will have −KX · [F̃z ] ≥ 3, contradicting the fact that the anticanonical
degree of every fiber of ϕ = π ◦σ is 2 (see Remark 3.5). We conclude in this way that
π : Y → P2 is a P1-bundle, and then Y is an smooth threefold by [ArRM, Theorem
5].

Finally, let us notice that if DY is not nef then there is a birational contraction
Y → Y0 sending DY to a point, by [CD15, Remark 3.2], and hence [CD15, Lemma
3.9] implies that Y ∼= P(OP2 ⊕OP2(a)), with a ≥ 0. On the other hand, if DY is nef
then we apply [CD15, Proposition 3.3] to conclude that either there is a divisorial
contraction Y → Y0 sending an effective prime divisor GY ⊆ Y to a point, or there is
a contraction of fiber type Y → P1; small contractions are excluded since X is a Fano
variety, by the same argument (3.3.8) in [CD15]. In the first case [CD15, Lemma
3.9] allows us to conclude, while in the second case we have that Y ∼= P2 × P1, by
[Cas09, Lemma 4.9].
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5. The case ρX = 2

In the case ρX = 2 we can describe the extremal contraction associated to the
other extremal ray in the Mori cone of X (compare with [CD15, Proposition 3.3]).
We will need the following result of G. V. Ravindra and V. Srinivas (see [RS06]).

Theorem 5.1. — Let X be a complex projective variety, smooth in codimension 1
and let L be a ample line bundle over X. If V ⊆ H0(X,L) is a linear subspace which
gives a base point free linear system |V | on X, then there is a dense Zariski open set
of divisors E ∈ |V | such that the restriction map

Cl(X) → Cl(E)

is an isomorphism, if dimCX ≥ 4, and is injective, with finitely generated cokernel,
if dimCX = 3.

Corollary 5.2. — Let X be a Q-factorial Fano variety of dimension n ≥ 3
with klt singularities. If ρX > 1 and D is an effective prime divisor such that
dimR N1(D,X) = 1, then D is not an ample Q-divisor.

Proof. — Assume, to the contrary, that D is an ample Q-divisor. Let m ∈ Z>0 such
that mD is a very ample Cartier divisor on X and use the complete linear system
|mD| to embed X →֒ P(V ). Let us define the projective incidence variety

D = {(x, [E]) ∈ X × P(V ) | x ∈ E} ⊆ X × P(V ),

and let π : D → P(V ) be the second projection.
Let H be the relative Hilbert scheme of curves associated to the morphism π : D →

P(V ), which is a projective scheme with countably many irreducible components. Let
us denote by Zi ⊆ P(V ) the image of the components of H that do not dominate
P(V ). They are closed subsets of P(V ).

Thus, if we take [E] ∈ P(V )− ∪Zi (a very general point on P(V )), then for every
curve CE on E there is a dominant component of H such that CE is one the curves
parametrized by this component. Since the image of this dominant component is
in fact the whole projective space P(V ), then we have that there is a curve CD on
D which is also parametrized for this component. In particular, CE and CD are
numerically equivalent. But, since there is only one curve on D up to numerical
equivalence, we will have dimR N1(E,X) = 1.

On the other hand, Theorem 5.1 implies that we can also suppose that this very
general divisor E ∈ |D| is chosen in such a way the restriction

Cl(X) → Cl(E)

is injective. Since ρX > 1 and dimR N1(E,X) = 1, we have that the inclusion
N1(E) → N1(X) is not surjective. Therefore, the induced map on the dual spaces
obtained by restriction N1(X) → N1(E) is not injective.
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Since X is a Q-factorial klt Fano variety, we have that numerical and linear
equivalence coincide, by [AD14, Lemma 2.5]. Hence, we have the following diagram

Cl(X)⊗Z R
� _

��

Pic(X)⊗Z R? _
∼=oo

∼= // //
� _

��

N1(X)

����

Cl(E)⊗Z R Pic(E)⊗Z R? _oo // // N1(E)

Therefore, N1(X) → N1(E) is not injective if and only if Pic(E) ⊗Z R → N1(E) is
not injective.

Let us consider a line bundle L on E such that L ≡ 0. Notice that E has klt
singularities since it is a general member of the ample linear system |mD|, by [KM98,
Lemma 5.17]. In particular, E has rational singularities and thus if we consider a

resolution of singularities ε : Ẽ → E, then the Leray spectral sequence leads to

hi(Ẽ,O
Ẽ
) = hi(E,OE) and hi(E,L) = hi(Ẽ, ε∗L) for all i ≥ 0. On the other hand,

the short exact sequence of sheaves

0 → OX(−E) → OX → OE → 0

and the vanishing hi(X,OX) = 0 for i ≥ 1, give us h1(E,OE) = h2(X,OX(−E)).
Since X is a normal variety with Cohen-Macaulay singularities, Serre’s duality implies

H2(X,OX(−E)) ∼= H2(X,OX(−mD)) ∼= Hn−2(X,OX(KX +mD))∨.

So, by taking m large enough at the beginning if necessary, we can suppose that
h1(E,OE) = 0 by the Kawamata-Viehweg vanishing theorem.

We get that h1(Ẽ,O
Ẽ
) = 0 and hence an inclusion Pic(Ẽ) →֒ H2(Ẽ,Z). Clearly

ε∗L ≡ 0 and thus ε∗L ∼= O
Ẽ

. By the projection formula, L ∼= OE , a contradiction.

We end this section by proving Theorem C.

Proof of Theorem C. — If D is not nef, then there exists an extremal ray R ⊆ NE(X)
such that D · R < 0, and therefore Exc(contR) ⊆ D. Since dimR N1(D,X) = 1 we
must have that Exc(contR) = D and that contR(D) is a point.

If D is nef, then it is not ample by Corollary 5.2, and thus S = D⊥ ∩ NE(X) is
an extremal ray, as ρX = 2. If we denote G = Locus(S) ⊆ X , the proof follows
almost verbatim the proof in the smooth case given in [CD15, Proposition 3.3], up
to modify the argument (3.3.6) in [CD15] by using Lemma 3.7 to get a contradiction
if we suppose that ψ is a birational contraction.

6. The toric MMP

We will analyze now the toric case. We may refer the reader to [CLS] for the
general theory of toric varieties and to [Mat02] for details of the toric MMP. We will
keep the same notation as [CLS].

Let N ∼= Zn be a lattice, M = HomZ(N,Z) its dual lattice and let NR (resp. NQ)
and MR (resp. MQ) be their real scalar (resp. rational scalar) extensions. Let us
denote by 〈·, ·〉 :MR ×NR → R the natural R−bilinear pairing.
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Let ∆X ⊆ NR
∼= Rn be a fan. As we will see, most of the properties of our

interest in the context of the MMP of the associated toric variety X = X(∆X), can
be translated into combinatorial properties of the fan ∆X .

Sometimes we will write NX instead of N in order to emphasize the dependence
of X(∆X) on the lattice where primitive generators of ∆X belong.

Let ∆X(k) be the set of k dimensional cones in ∆X . In the same way, if σ ∈ ∆X

is a cone, we will denote by σ(k) the set of its k−dimensional faces. Usually, we
will not distinguish between 1−dimensional cones ρ ∈ ∆X(1) (or 1−dimensional faces
ρ ∈ σ(1)) and the primitive vector uρ ∈ N generating them.

If σ ∈ ∆X(k) we will denote by Uσ the associated affine toric variety, and by
V (σ) ⊆ X(∆X) the closed invariant subvariety of codimension k. In particular, each
ρ ∈ ∆X(1) corresponds to an invariant Weil divisor V (ρ) on X ; such a cone is called a
ray. Similarly, each cone of codimension 1 ω ∈ ∆X(n−1) corresponds to an invariant
rational curve on X ; such a cone is called a wall.

It is a classical fact that every Weil divisor on a toric varietyX is linearly equivalent
to an invariant toric divisor (see [CLS, Theorem 4.1.3]). The same holds for effective
curves on complete toric varieties.

Theorem 6.1 ([Rei83, Proposition 1.6]). — Let X = X(∆X) be a complete toric
variety of dimension n. Then

NE(X) =
∑

ω∈∆X(n−1)

R≥0[V (ω)].

In particular, NE(X) is a closed rational polyhedral cone and it is strictly convex if
and only if X is a projective variety.

All affine toric varieties associated to strongly convex rational polyhedral cones are
normal (see [CLS, Theorem 1.3.5]). Thus, a toric variety X associated to a fan ∆X

is also normal. Moreover, we can check if a toric variety associated to a fan ∆X is
smooth or not by looking at all the cones σ ∈ ∆X . In fact, if we say that a cone
σ ∈ ∆X is smooth if and only if the associated affine toric variety Uσ is smooth, then
we have the following result.

Proposition 6.2 ([CLS, Proposition 11.1.2 and Proposition 11.1.8])
Let X be the toric variety associated to the fan ∆X . Then,

Sing(X) =
⋃

σ not smooth

V (σ)

and
Xreg =

⋃

σ smooth

Uσ.

Moreover, given a d−dimensional simplicial cone σ ⊆ NR with generators u1, . . . , ud ∈
N , let Nσ = Span(σ) ∩N and define the multiplicity of σ by

mult(σ) = [Nσ : Zu1 + · · ·+ Zud].

Then,

1. σ is smooth if and only if mult(σ) = 1.
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2. Let e1, . . . , ed be a basis of Nσ and write ui =
∑d

i=1 aijej. Then,

mult(σ) = |det(aij)| .

3. If τ � σ is a face of σ, then

mult(σ) = mult(τ)[Nσ : Nτ + Zu1 + · · ·+ Zud].

In particular, mult(τ) ≤ mult(σ) whenever τ � σ.

Remark 6.3. — Let X be a n−dimensional toric variety associated to a simplicial
fan ∆X , i.e., a fan whose cones are all simplicial, on which there is a cone σ of full
dimension n. If X is smooth in codimension k, namely the closed invariant subset
Sing(X) ⊆ X is such that codimX Sing(X) ≥ k + 1, then we can choose a basis of
Zn ∼= N in such a way the first k generators of the cone σ corresponds to the first k
elements of the canonical basis of Zn.

In general, most of the interesting kind of singularities can also be characterized
by looking at the (maximal) cones belonging to the fan.

Theorem 6.4. — Let σ be a strongly convex rational polyhedral cone and let Uσ be
the corresponding affine toric variety, then the following hold.

1. Uσ is Cohen-Macaulay.
2. Uσ is Q-factorial if and only if σ is simplicial.
3. Uσ is Q-Gorenstein if and only if there exists mσ ∈MQ such that 〈mσ, ρ〉 = 1,

for every ray ρ ∈ σ(1). In this case, the Gorenstein index of Uσ is the smallest
positive integer ℓ ∈ Z>0 such that ℓmσ ∈M .

4. If Uσ is Q-Gorenstein then Uσ has klt singularities.
5. If Uσ is Q-Gorenstein then Uσ has terminal singularities of Gorenstein index ℓ

if and only if exists mσ ∈M such that

〈mσ, uρ〉 = ℓ for all uρ ∈ Gen(σ) and

〈mσ, uρ〉 > ℓ for all uρ ∈ σ ∩N \ ({0} ∪Gen(σ)).

The element mσ is uniquely determined whenever σ is of maximal dimension in
the fan.

6. If Uσ is Q-Gorenstein then Uσ has canonical singularities of Gorenstein index
ℓ if and only if exists mσ ∈M such that

〈mσ, uρ〉 = ℓ for all uρ ∈ Gen(σ) and

〈mσ, uρ〉 ≥ ℓ for all uρ ∈ σ ∩N \ ({0} ∪Gen(σ)).

The element mσ is uniquely determined whenever σ is of maximal dimension in
the fan.

7. If Uσ is Gorenstein then Uσ has canonical singularities.

Here, Gen(σ) denotes the set of primitive vectors uρ generating all the rays ρ =
{λuρ | λ ≥ 0} ∈ σ(1)

Proof. — We may refer the reader to the survey [Dai02] for proofs or references to
proofs.
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Remark 6.5. — By Theorem 6.4 above, if X is a Q-factorial toric variety with
canonical singularities then we have the decomposition

Sing(X) =
⋃

σ canonical

non-terminal

V (σ) ∪
⋃

σ terminal

non-smooth

V (σ).

Therefore, if X is a Q-factorial toric variety with canonical singularities and with at
most finitely many non-terminal points, then the (finite) set of canonical points is
made up by some invariant points V (σ), where σ are of maximal dimension in the
fan.

Let us introduce now the necessary elements to run the Toric MMP.

Definition 6.6. — Let U ⊆ NR be a rational vector subspace; a collection of cones
∆∗ is a degenerate fan with vertex U if it satisfies the usual conditions of a fan with
strict convexity of cones replaced by

∀σ ∈ ∆∗, σ ∩ −σ = U.

This coincides with the usual notion of a fan ∆ = ∆∗/U in the quotient space NR/U .

In our setting, we will always deal with Q-factorial complete toric varieties, i.e.,
toric varieties having a simplicial fan whose support is the whole space NR, by
Theorem 6.4 above and [CLS, Theorem 3.4.1]. In the toric case, every extremal
ray R ⊆ NE(X) of such a variety will correspond to a invariant curve Cω such that
R = R≥0[Cω ] or, equivalently, to a wall ω ∈ ∆X(n− 1).

Let us suppose that ω = cone(u1, . . . , un−1), where ui are primitive vectors. Since
∆X is a simplicial fan, ω separates two maximal cones σ = cone(u1, . . . , un−1, un) and
σ′ = cone(u1, . . . , un−1, un+1), where un and un+1 are primitive on rays on opposite
sides of ω. The n+1 vectors u1, . . . , un+1 are linearly dependent. Hence, they satisfy
a so called wall relation:

bnun +
n−1∑

i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z for i = 1, . . . , n− 1. By reordering if necessary, we
can assume that

bi < 0 for 1 ≤ i ≤ α

bi = 0 for α+ 1 ≤ i ≤ β

bi > 0 for β + 1 ≤ i ≤ n+ 1.

Let us introduce the notation

∆(ω) = σ + σ′ = cone(u1, . . . , un+1)

and
U(ω) = cone(u1, . . . , uα, uβ+1, . . . , un+1).

This wall relation and the signs of the coefficients involved allow us to describe the
nature of the associated contraction.
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Theorem 6.7 ([Rei83, Theorem 2.4 and Corollary 2.5])
Let X be a Q-factorial complete toric variety of dimension n associated to the

fan ∆X ⊆ NR, and suppose that R ⊆ NE(X) is an extremal ray of X. Let us remove
from ∆X(n−1) all the walls ω associated to curves from R and for each such ω replace
the two adjacent maximal cones σ and σ′ from ∆X(n) by the cone ∆(ω). Then, α, β
and UR = U(ω) are independent of ω and, by taking respectively their faces in ∆X(i),
where i ≤ n− 2, we get a complete fan ∆∗

R ⊆ NR, degenerate with vertex UR if α = 0,
non-degenerate if α > 0. Moreover, if α = 0 then ∆R := ∆∗

R/UR is a complete
simplicial fan. If α = 1, then ∆R := ∆∗

R is simplicial.
Furthermore, in this case the induced morphism of toric varieties ϕR : X =

X(∆X) → XR = X(∆R) is the contraction of the extremal ray R in the sense of Mori
theory. Moreover, the exceptional locus of ϕR corresponds to the irreducible closed
invariant subvariety A ⊆ X associated to the cone cone(u1, . . . , uα) ∈ ∆X(α), which
is contracted onto the irreducible closed invariant subvariety B ⊆ XR corresponding
to the cone UR ∈ ∆∗

X(n−β) (if α = 0 then both are equal to the whole variety X and
XR, respectively). Therefore, dimCA = n− α, dimCB = β, and ϕR|A : A → B is a
flat morphism, all whose fibers are (possibly non-reduced) projective toric varieties of
Picard number 1 and dimension n− α− β.

In general, if ω ∈ ∆X(n−1) is any wall of ∆X (not necessarily corresponding to an
extremal ray), we will also have a wall relation allowing us to compute the intersection
number of the curve Cω with every invariant divisor Dρ, ρ ∈ ∆X(1).

Proposition 6.8 ([CLS, Proposition 6.4.4]). — Let ∆X be a simplicial fan in NR
∼=

Rn and ω = cone(u1, . . . , un−1) ∈ ∆X(n − 1) be a wall, separating the two maximal
cones σ = cone(u1, . . . , un−1, un) and σ′ = cone(u1, . . . , un−1, un+1), satisfying the
wall relation

bnun +

n−1∑

i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z for i = 1, . . . , n − 1. Then, if we denote by
V (uρ) := V (ρ) the invariant Weil divisor associated to the primitive vector uρ ∈ N
corresponding to ρ ∈ ∆X(1) and by C the invariant curve associated to the wall ω,
we have that

1. V (u) · [C] = 0 for all uρ 6∈ {u1, . . . , un, un+1}.

2. V (un) · [C] =
mult(ω)

mult(σ)
and V (un+1) · [C] =

mult(ω)

mult(σ′)
.

3. V (ui) · [C] =
bimult(ω)

bnmult(σ)
=

bimult(ω)

bn+1 mult(σ′)
for i ∈ {2, . . . , n− 1}.

In the setting of toric varieties, we will be interested in analyzing the extremal
contractions appearing in §3 in terms of the description given by Theorem 6.7. Let
us begin by the birational case.

Lemma 6.9. — Let X = X(∆X) be a Q-factorial Gorenstein toric variety of
dimension n ≥ 3. Let ϕR : X → XR be a divisorial contraction such that

1. Exc(ϕR) = E is an invariant prime divisor on X.
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2. A = ϕR(E) is an invariant subvariety of codimension two.
3. E · [F ] = KX · [F ] = −1 for every non-trivial fiber F of ϕR.

Let us suppose that ϕR : X → XR is defined by the contraction of the wall ω =
cone(u1, . . . , un−1) that separates the maximal cones σ = cone(u1, . . . , un−1, un) and
σ′ = cone(u1, . . . , un−1, un+1). Then, up to reordering if necessary, the wall relation
satisfied by these cones is of the form

un + un+1 = u1.

Proof. — By Theorem 6.7, up to reordering if necessary, we can suppose that ϕR :
X → XR is defined by the relation

(1) αun + λu1 + βun+1 = 0,

where α, β ∈ Z>0, λ ∈ Z<0 and E = V (u1). Let us denote by C = V (ω) the invariant
curve associated to the wall ω.

By Proposition 6.8, V (u) · [C] = 0 for u 6∈ {u1, . . . , un+1}. Moreover, the wall
relation gives us V (ui) · [C] = 0 for i ∈ {2, . . . , n− 1} and

V (u1) · [C] =
λ

α
V (un) · [C] =

λ

β
V (un+1) · [C].

By hypothesis, V (u1) · [C] = −1 and thus V (un) · [C] = −α
λ

and V (un+1) · [C] = −β
λ
.

It is well know that for a toric variety X = X(∆X), KX = −
∑
ρ∈∆X(1) V (ρ) is a

invariant canonical divisor on X (see [CLS, Theorem 8.2.3]), and thus the condition
−KX · [C] = 1 can be translated into

(2) −1 +
(
−
α

λ

)
+

(
−
β

λ

)
= 1 ⇔ α+ β = −2λ.

On the other hand, we should notice that we can suppose that gcd(λ, α) = gcd(λ, β) =
gcd(α, β) = 1. In fact, if gcd(α, β) = d > 1, then the equation (1) implies d|λ, as u1
is a primitive vector. The same argument applies to the other two pairs.

By assumption, KX = −
∑
ρ∈∆X(1) V (ρ) is a Cartier divisor, i.e., for each maximal

cone σ ∈ ∆X(n), there is mσ ∈M with 〈mσ, uρ〉 = 1 for all ρ ∈ σ(1). In our setting,
this condition applied to the two maximal cones σ and σ′ tells us that there exists
two elements m,m′ ∈M such that

〈m,ui〉 = 1 for i ∈ {1, . . . , n},

〈m′, ui〉 = 1 for i ∈ {1, . . . , n− 1, n+ 1}.

From the equation (1) we obtain

(3) α+ λ+ β〈m,un+1〉 = 0, and

(4) α〈m′, un〉+ λ+ β = 0
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By using the equation (2) and (3) we obtain that λ = β(〈m,un+1〉 − 1) and thus
β = 1, as β ∈ Z>0 and gcd(λ, β) = 1. In the same way, by using the equation (2) and
(4), we deduce that α = 1 and hence λ = −1. Finally, we get the relation

un + un+1 = u1,

and 〈m,un+1〉 = 〈m′, un〉 = 0.

Let us consider now the case when ϕR : X → XR is a contraction of fiber type.

Remark 6.10. — Let X = X(∆X) be a Q-factorial toric variety of dimension n ≥ 3
and let ϕR : X → XR be an extremal contraction such that dimCXR = n− 1. Then,
ϕR is a flat morphism whose generic fiber is isomorphic to P1. Let us denote by SϕR

the locus of points of XR over which ϕR is not smooth. Then, [ArRM, Theorem
3] implies that either SϕR

is empty or of pure codimension 1 in XR, as Q-factorial
toric varieties have locally quotient singularities at every point (see [CLS, Theorem
11.4.8]).

As a consequence we have the following description for contractions of fiber type.

Lemma 6.11. — Let X be a Q-factorial projective toric variety of dimension n ≥ 3.
Let us suppose that X is smooth in codimension two and that there is an extremal
contraction ϕR : X → XR of fiber type onto a Q-factorial projective toric variety of
dimension (n− 1). Then ϕR is a P1−bundle. Moreover, there is a split vector bundle
E of rank 2 on XR and an isomorphism X ∼= PXR

(E) over XR.

Proof. — Since codimX Sing(X) ≥ 3 and codimXR
Sing(XR) ≥ 2, we can take n− 2

general hyperplane sections in XR in order to obtain a smooth surface S ⊆ X such
that B := ϕR(S) is a smooth curve. Hence ϕR|S : S → B will be a morphism from a
smooth projective surface onto a smooth projective curve such that its generic fiber
is isomorphic to P1. The Tsen’s theorem implies that ϕR|S admits a section and
therefore the fibers of ϕR|S are generically reduced. Thus, outside a codimension
two closed subset of XR, the fibers of ϕR are generically reduced. Then, ϕR is a
smooth morphism outside a codimension two closed subset of XR. We conclude by
the Remark 6.10 that ϕR is a smooth morphism. Finally, since ϕR : X → XR is a
toric morphism between toric varieties of relative dimension 1, it admits two disjoint
invariant sections s0 : XR → X and s∞ : XR → X passing through the two invariant
points of all the fibers of ϕ. Hence, [ArRM, Remark 8] implies that there exists a
rank 2 split vector bundle E such that X ∼= PXR

(E).

7. The extremal case ρX = 3 for toric varieties

We are now able to prove the structure theorem for toric varieties with Picard
number 3.

Proof of Theorem D. — By Theorem A, we obtain a diagram

X
σ //

ϕ

77Y
π // Z ,
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where σ : X → Y is a divisorial contraction sending a toric prime divisor E onto
an invariant subvariety A of codimension two on Y , and π and ϕ are both extremal
contractions of fiber type whose fibers are of dimension 1. All these varieties are
Q-factorial toric Fano varieties.

By Lemma 6.11, π : Y → Z is a P1−bundle isomorphic to the projectivization of
the rank 2 split vector bundle E = L′⊕L. As PZ(E) ∼= PZ(E ⊗M) for any line bundle
M ∈ Pic(Z), we can suppose that L′ ∼= OZ . On the other hand, since Pic(Z) is
isomorphic to Z, we can consider an ample generator OZ(1) of Pic(Z) and an integer
a ∈ Z such that L ∼= OZ(a). Up to tensor by L∨, we can always suppose that a ≥ 0.
In particular, both Y and Z must have at most terminal singularities, since Y has a
most a finite number of canonical singularities and π is locally trivial.

It should be noticed that in this case A ⊆ Y is contained in one of the two disjoint
invariant sections associated to the P1−bundle π : Y → Z. In fact, by Theorem 6.7
(taking α = 0 and β = n− 1) we have that π : Y → Z is defined by a wall relation of
the form

bnun +

n−1∑

i=1

0 · ui + bn+1un+1 = 0,

where ω = cone(u1, . . . , un−1) is a wall generating the extremal ray associated to this
contraction, which separates the two maximal cones σ = cone(u1, . . . , un−1, un) and
σ′ = cone(u1, . . . , un−1, un+1).

Thus U(ω) = cone(un, un+1) = Span(un) = Span(un+1) ∼= R and π : Y → Z is
induced by the quotient NR → NR/U(ω). Since A ⊆ DY = σ(D) and π|DY

is a finite
morphism, A is sent onto an invariant subvariety of dimension n− 2, a divisor on Z.
Thus, A ⊆ D(un) := D0 or A ⊆ D(un+1) := D∞, otherwise it will be sent onto a
subvariety of dimension n− 3.

If we suppose that A ⊆ D∞, where D∞
∼= Z ⊆ Y is one of these disjoint invariant

sections, then for any invariant affine open subset U ⊆ Z such that π−1(U) ∼= U ×P1

we will have
π−1(U) \ (π−1(U) ∩D∞) ∼= U × A1.

The open set U × A1 is therefore isomorphic to an open set on Y contained in the
locus where σ−1 : Y 99K X is an isomorphism. In particular, U × A1 is an affine
Gorenstein toric variety and thus U is also Gorenstein. We conclude in this way that
both Y and Z are Gorenstein varieties.

As a consequence of the formula KX = σ∗(KY ) + E we have that E = Exc(σ)
is a Cartier divisor. Let us prove that X → Y verifies the universal property of the
blow-up. The short exact sequence of sheaves

0 → OX(−E) → OX → OE → 0

gives
0 → σ∗OX(−E) → σ∗OX → (σ|E)∗OE → R1 σ∗OX(−E) → · · · ,

where σ∗OX = OY since σ : X → Y is a contraction.
Notice that σ|E : E → A is a P1−bundle. In fact, since KX is a Cartier divisor and

−KX ·[F ] = 1 for any non-trivial fiber F of σ, it follows that the scheme theoretic fiber
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F is an irreducible and generically reduced rational curve on X . Then, by [Kol96,
Theorem II.2.8], σ|E : E → A is a P1−bundle and thus (σ|E)∗OE = OA.

On the other hand, the Cartier divisor −(KX + E) is σ-ample and therefore
Ri σ∗OX(−E) = 0 for i > 0, by [AW97, Vanishing Theorem 1.1]. Hence, the above
long exact sequence becomes

0 → σ∗OX(−E) → OY → OA → 0,

and thus IA ∼= σ∗OX(−E).
Let us follow [AW93] and notice that σ : X → Y is a local contraction supported

by the Cartier divisor KX−E. Let F be any non-trivial fiber of σ. Then, by [AW93,
Theorem 5.1], the evaluation morphism

σ∗σ∗OX(−E) → OX(−E)

is surjective at every point of F . On the other hand, σ∗OX(−E) ∼= IA and σ−1IA ·OX

is defined to be the image of σ∗IA → OX(−E). Thus, σ−1IA ∼= OX(−E) is an
invertible sheaf.

Then, by the universal property of the normalized blow-up, σ factorizes as

X
τ //

σ

66BlA(Y )
ν◦ε // Y ,

where ε : BlA(Y ) → Y is the blow-up of the coherent sheaf of ideals IA and

ν : BlA(Y ) → BlA(Y ) its normalization.
Since σ contracts only the irreducible divisor E, τ contracts no divisor. If τ is

not finite, it is a small contraction sending a curve C ⊆ E to a point. The rigidity
lemma [KM98, Lemma 1.6] applied to the P1-bundle E → A and the morphism
τ(E) → A implies that τ contracts the divisor E, a contradiction. Hence τ is a finite
and birational morphism onto a normal variety, and therefore τ is an isomorphism by
Zariski’s Main Theorem.

Remark 7.1. — By [CLS, Proposition 11.4.22], if X = X(∆X) is a Q-factorial toric
variety with Gorenstein terminal singularities, then codimX Sing(X) ≥ 4. Therefore,
if we start with a toric variety X of dimension 3 or 4 satisfying the hypothesis of
Theorem D, we will obtain that Z is a smooth toric variety, implying that Y and X
must be both smooth toric varieties too.

8. The case ρX = 2 for toric varieties

In this section we study the extremal contractions described in §3 for toric toric
varieties with Picard number 2. Let us begin with the proof of Proposition F.

Proof of Proposition F. — The isomorphism X ∼= PY (OY ⊕ OY (a)), with a ≥ 0,
follows from Lemma 6.11 and the fact that ρY = 1. On the other hand, the condition
0 ≤ a ≤ iY is in fact equivalent to the condition of X being Fano. To see this, let
us recall that the adjunction formula for projectivized vector bundles [BS95, §1.1.7]
gives

KX = π∗OY (a− iY )− 2ξ,
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where ξ is the tautological divisor on PY (OY ⊕ OY (a)) and iY is defined in such a
way OY (−KY ) ∼= OY (iY ). Now, we notice that if F is any fiber π, then

−KX · [F ] = 2ξ · [F ] = 2 > 0.

On the other hand, if C ⊆ Y is an irreducible reduced curve and CX ⊆ X is the
image of C by the section associated to the quotient OY ⊕OY (a) → OY , then

−KX · [CX ] = deg(C) · (iY − a).

Hence, X is Fano if and only if 0 ≤ a ≤ iY − 1, since the numerical classes of these
curves above generates the Mori cone of X .

Let us prove now Theorem E.

Proof of Theorem E. — Let R ⊆ NE(X) be an extremal ray such that D ·R > 0 and
let π : X → Y be the corresponding extremal contraction. If π is of fiber type then
Proposition F leads us to the first case.

Let us suppose that π : X → Y is a birational contraction. Since Y is a complete
and simplicial toric variety of dimension n and Picard number one, the fan of Y
contains exactly n+ 1 rays. Let us denote by u1, . . . , un+1 ∈ N the primitive lattice
vectors generating these rays.

By Proposition 3.3, π : X → Y is a divisorial contraction sending an irreducible
invariant divisor E = V (uE) onto a codimension two subvariety A ⊆ Y , and Y
is a Q-factorial toric Fano variety with isolated canonical singularities. Moreover,
E · [F ] = KX · [F ] = −1 for every non-trivial fiber F of π.

Notice that the fan of X contains exactly n + 2 rays, generated by the primitive
lattice vectors u1, . . . , un+1, uE ∈ N . Now, Lemma 6.9 implies that, up to reordering
if necessary, π is induced by the wall relation

u1 + (−1)uE + u2 = 0.

There are exactly n− 1 walls satisfying this relation (corresponding to the fibers over
the n− 1 invariants points of A). Namely, the walls

ωi = cone(uE , u3, . . . , ûi, . . . , un+1) with i ∈ {3, . . . , n+ 1},

separating the two maximal cones σi = cone(uE , u3, . . . , ûi, . . . , un+1, u1) and σ′
i =

cone(uE , u3, . . . , ûi, . . . , un+1, u2).
From this relation and Proposition 6.8, we can compute:

V (uE) · [Cωi
] = −

mult(ωi)

mult(σi)
= −

mult(ωi)

mult(σ′
i)

= −1,

and

−KX · [Cωi
] =

mult(ωi)

mult(σi)
=

mult(ωi)

mult(σ′
i)

= 1.

Therefore, mult(ωi) = mult(σi) = mult(σ′
i).

On the other hand, Remark 6.3 implies that mult(ωi) = 1 since X has isolated
singularities. Hence, both σi and σ′

i are smooth cones.
We get that τi = cone(u1, u2, u3, . . . , ûi, . . . , un+1) ∈ ∆Y (n) is a smooth cone for

i ∈ {3, . . . , n + 1}. Thus, A = V (u1, u2) is contained in the smooth locus of Y . The
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isomorphism X ∼= BlA(Y ) follows from the description of the blow-up of a smooth
toric variety along an irreducible invariant (smooth) subvariety (see [CLS, Definition
3.3.17]).

Since Y has n− 1 smooth maximal cones and a complete simplicial toric variety of
dimension n and Picard number one has exactly n+1 maximal cones (corresponding
to n+1 invariant points), Y has at most 2 singular points and they are outside A ⊆ Y .
In particular, Y is a Q-factorial Gorenstein toric Fano variety with ρY = 1.

Let us prove that Y is isomorphic to one of the listed varieties. Since the fan
of Y contains a smooth maximal cone, we can suppose that the vectors u1, . . . , un
correspond to the first n elements of the canonical basis of Zn, by Remark 6.3.

Let us write un+1 = (−a1, . . . ,−an), with ai ∈ Z>0 for i ∈ {1, . . . , n}. For each
i ∈ {3, . . . , n + 1} we have that mult(σi) = 1. Therefore, Proposition 6.2 leads
mult(σi) = | det(e1, e1 + e2, e3, . . . , êi, . . . , en, un+1)| = ai = 1, for i ∈ {3, . . . , n}.
Hence, we can write un+1 = (−a,−b,−1, . . . ,−1), with a, b ∈ Z>0. It should be
noticed that Y has isolated singularities if and only if gcd(a, b) = 1.

Thus, Y ∼= P(1n−1, a, b) with a, b ∈ Z>0 relatively prime integers. Now, Y is a
Gorenstein Weighted Projective Space if and only if a|(n−1+a+b) and b|(n−1+a+b),
by [CK99, Lemma 3.5.6]. Equivalently, a|(n− 1 + b) and b|(n− 1 + a). If a = b the
only possibility is a = b = 1, leading to (a): Y ∼= Pn.

Let us suppose that 1 ≤ a < b and notice that ab|(n−1+a+ b) since gcd(a, b) = 1.
On the other hand,

n− 1 + a+ b

ab
= 1 ⇔

n− 1 + a+ b

ab
< 2

⇔ (2b− 1)

(
a−

1

2

)
− n+

1

2
> 0.

Since a ≥ 1, this condition is fulfilled when (2b− 1) · 1
2 − n+ 1

2 > 0 ⇔ b > n.
Therefore, b ≥ n+1 implies that n−1+a+b = ab or, equivalently, n = (a−1)(b−1).

This leads to a = 2, b = n+1 and hence to (b): Y ∼= P(1n−1, 2, n+1) and n must be
even. Finally, if 1 ≤ a < b ≤ n we get the last case (c): Y ∼= P(1n−1, a, b).

Conversely, given one of these listed varieties Y with their fans as above and
considering X to be the blow-up of Y along A = V (e1, e2), we obtain a projective
toric variety satisfying the hypothesis.

In fact, since A is contained in the smooth locus of Y we obtain that X is a
Q-factorial Gorenstein toric variety with isolated canonical singularities. In order
to prove that X is Fano we need to analyze the second extremal contraction that
corresponds to the wall relation on X given by

buE + (a− b)e1 + e3 + · · ·+ en + un+1 = 0.

In any of the three listed cases we will obtain

−KX · [Cω] =
n− 1 + a

b
∈ Z>0,

proving that X is a Fano variety, by the Cone Theorem and Kleiman’s criterion of
ampleness.
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As a consequence we obtain the following list of possible admissible weights (a, b) ∈
Z2
>0 that corresponds to varieties Y ∼= P(1n−1, a, b) as in Theorem E.2. Compare with

[Kas13] and [Mir85].

Table 1. Admissible Y ∼= P(1n−1, a, b) as in Theorem E.2

n Weights (a, b) ∈ Z2
>0

3 (1, 1), (1, 3)

4 (1, 1), (1, 2), (1, 4), (2, 5)

5 (1, 1), (1, 5)

6 (1, 1), (1, 3), (1, 6), (2, 7), (3, 4)

7 (1, 1), (1, 7)

8 (1, 1), (1, 2), (1, 4), (1, 8), (2, 3), (2, 9), (3, 5)

9 (1, 1), (1, 3), (1, 9)

10 (1, 1), (1, 2), (1, 5), (1, 10), (2, 11)

Remark 8.1. — From the wall relation

buE + (a− b)e1 + e3 + · · ·+ en + un+1 = 0

we can deduce the nature of the second extremal contraction ϕ : X → W . In the
smooth case it is a contraction of fiber type onto W ∼= P1. In the singular case,
it is a divisorial contraction sending its exceptional locus onto a point. Moreover,
W ∼= P(1n−1, a, b− a) since

auE + (b− a)e2 + e3 + · · ·+ en + un+1 = 0.

We conclude with an example showing that is the hypothesis of isolated singu-
larities in Theorem E.2 cannot be dropped. We exhibit an example of a Q-factorial
Gorenstein toric Fano fivefold X with terminal singularities, whose singular locus
is one-dimensional and that admits a birational extremal contraction π : X → Y
which is not a blow-up, but only a blow-up in codimension two, and where Y is a
non-Gorenstein Q-factorial toric Fano fivefold.

Example 8.2. — Let us consider the fan ∆X ⊆ R5 generated by the vectors

e1, e2, e3, e4, e5, u6, uE,

where {e1, . . . , e5} is the canonical basis of R5, u6 = (−1,−1,−1,−2,−3) and uE =
(−1,−1,−1,−2,−2).

It can be checked by using [Macaulay2] that X is a Q-factorial Gorenstein
Fano fivefold. Moreover, it can be checked by hand that its singular locus is one-
dimensional, consisting only of terminal points, and given by

Sing(X) = V (e1, e2, e3, uE) ∪ V (e1, e2, e3, e4, u6).
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The wall relation e5 + (−1)uE + u6 = 0 determines an extremal contraction
π : X → Y sending the Weil divisor V (uE) ⊆ X (which is not Cartier) onto
A = V (e5, u6) ⊆ Y . Finally, the relation

e1 + e2 + e3 + 2e4 + 3e5 + u6 = 0

implies that Y ∼= P(14, 2, 3), which is not Gorenstein, by [CK99, Lemma 3.5.6].

9. Toric universal coverings in codimension 1

The aim of this section is to describe the contraction of extremal rays appearing
in the previous sections by using universal coverings in codimension 1.

Let us recall some of the results and definitions introduced in [Buc08]. We will
focus on the case of complex normal varieties.

Definition 9.1. — Let X be a complex normal algebraic variety. A covering in
codimension 1 is a finite surjective morphism ϕ : Y → X which is unramified in
codimension 1. Namely, there exists a subvariety V ⊆ X such that

1. codimX(V ) ≥ 2.
2. ϕ|ϕ−1(X\V ) : ϕ

−1(X \ V ) → X \ V is a topological covering.

Moreover, a universal covering in codimension 1 is a covering in codimension 1 which
is universal in the sense that for any covering in codimension 1 f : Z → X there exists
a (not necessarily unique) covering in codimension 1, g : Y → Z, such that ϕ = f ◦ g.

Proposition 9.2 ([Buc08, Corollary 3.10 and Remark 3.14])
A covering in codimension 1, ϕ : Y → X, is universal if and only if π1(Yreg)

is trivial.

Proposition 9.3. — Let X and Y be normal projective varieties and ϕ : Y → X be
a covering in codimension 1. Then,

1. If KX is a Cartier divisor, then KY is a Cartier divisor.
2. If X is a Fano variety, then Y is a Fano variety.
3. If X has terminal (resp. canonical) singularities, then Y also has terminal (resp.

canonical) singularities.

Proof. — As ϕ : Y → X is unramified in codimension 1, there is no ramification
divisor and hence ϕ∗KX = KY , implying (1). The point (2) follows from [EGAII,
Proposition 5.1.12], while (3) follows from [Kol97, Proposition 3.16].

In the case of toric varieties we can describe the ramification divisor of a toric finite
surjective morphism.

Lemma 9.4 ([AP13, Lemma 3.3]). — Let ϕ : Y → X be a finite morphism of
toric varieties corresponding to the map of fans Φ : (NY ,∆Y ) → (NX ,∆X) given by
the inclusion of lattices NY ⊆ NX of finite index, so that NX ⊗Z R = NY ⊗Z R and
∆X = ∆Y . Then,

1. ϕ is equivariant with respect to the homomorphism of tori TY → TX.
2. ϕ is an abelian cover with Galois group G = ker (TY → TX) ∼= NX/NY .
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3. The ramification divisor Ram(ϕ) is supported on the torus invariant divisors
V (ρ), with multiplicities dρ ≥ 1 defined by the condition that the integral gener-
ator of NY ∩ R≥0uρ is dρuρ, for every ray ρ = R≥0uρ ∈ ∆X(1).

Moreover, we have the following theorem characterizing the fundamental group of
the smooth locus for Q-factorial toric varieties.

Theorem 9.5 ([Buc08, Corollary 3.10 and Theorem 4.8] and [RT16a, Theorem
2.4])

Let X be a Q-factorial toric variety defined by the fan ∆X ⊆ NR and let
N∆X(1) ⊆ N be the sublattice of N generated by the primitive lattice generators uρ ∈ N
of all the rays ρ ∈ ∆X(1). Then,

π1(Xreg) ∼= N/N∆X(1)
∼= Tors(Cl(X)).

Example 9.6. — Let X = X(∆X) be a complete Q-factorial toric variety of dimen-
sion n such that ρX = 1. Then, we will say that X is a Fake Weighted Projective
Space.

This name comes from the following observation: the fan ∆X has cone generators
u0, . . . , un ∈ ∆X(1), and the maximal cones of ∆X are generated by the n-element
subsets of {u0, . . . , un} ⊆ N ∼= Zn. As they are linearly dependent,

n∑

i=0

λiui = 0,

for some λ0, . . . , λn ∈ Z≥1. Therefore, π1(Xreg) = {0} if and only if the primitive
lattice vectors u0, . . . , un ∈ N generate the lattice N . If it is the case we will have
that X ∼= P(λ0, . . . , λn), by [CLS, Example 5.1.14].

From Lemma 9.4 and Theorem 9.5 we can deduce the following structure theorem
for Q-factorial toric complete varieties of Picard number one.

Theorem 9.7 ([Buc08, Theorem 6.4]). — Let X be a Fake Weighted Projective
Space of dimension n. There exists a unique universal covering in codimension 1
ϕ : P(λ0, . . . , λn) → X, canonically identifying X as a finite geometric quotient of
P(λ0, . . . , λn) by the torus-equivariant action of π1(Xreg) ∼= Tors(Cl(X)).

Following [RT16a] and [RT16b], it is natural to consider Q-factorial complete
toric varieties with torsion-free class group as analogs of Weighted Projective Spaces.

Definition 9.8. — Let X = X(∆X) be a Q-factorial complete toric variety of
dimension n. We define the canonical universal covering in codimension 1 of X to be

the covering in codimension 1 πX : X̂ → X corresponding to the map of fans

ΠX : (N∆X(1),∆X) → (NX ,∆X).

Moreover, we say that X is a Poly Weighted Space (PWS) if

π1(Xreg) ∼= N/N∆X(1)
∼= Tors(Cl(X)) ∼= {0}.
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After the recent works of M. Rossi and L. Terracini, there is an explicit combinato-
rial construction (via Gale duality) of the canonical universal covering in codimension
1 of any Q-factorial complete toric variety. This extends Theorem 9.7 to higher class
group rank varieties (see [RT16b, Theorem 2.2] for details).

The remaining of the section will be devoted to study contractions X → Y of
extremal rays as in the previous section via universal coverings in codimension 1, and
without the assumption of isolated singularities in the divisorial case.

The case of extremal contraction of fiber type was studied by Y. Kawamata in
[Kaw06, Lemma 4.1].

Let X be a Q-factorial projective toric variety and let R = R≥0[Cω ] ⊆ NE(X)
be an extremal ray defining a contraction of fiber type ϕR : X → XR, where
Cω = V (u1, . . . , un−1) is an invariant curve contracted by ϕR. Then, the wall
ω = cone(u1, . . . , un−1) separates two maximal cones σ = cone(u1, . . . , un−1, un) and
σ′ = cone(u1, . . . , un−1, un+1).

Following the same notation as in Theorem 6.7, we have that (up to reordering, if
necessary) the contraction of R is defined by the projection

N := NX
Φ // NXR

:= NX/ (Span(uβ+1, . . . , un+1) ∩NX) .

Write Φ(ui) = diui for primitive vectors ui in NXR
and positive integers di, where

1 ≤ i ≤ β. Then, this ui define a β-dimensional cone σ0 ∈ ∆XR
which is of maximal

dimension by Theorem 6.7 and hence it corresponds to an invariant open affine subset
XR,0 of XR.

In this setting, we have that the contraction of fiber type ϕR : X → XR be-
comes (locally) trivial over the invariant open affine subset XR,0 ⊆ XR after a finite
morphism of toric varieties (possibly ramified in codimension 1).

Lemma 9.9 ([Kaw06, Lemma 4.1]). — Let XR,0 ⊆ XR be an invariant open affine

subset and let X0 = ϕ−1
R (XR,0) ⊆ X. Then, there is a commutative diagram of toric

morphisms

X̂0
ϕ̂R

//

πX0

��

X̃R,0

µ

!!D
DD

DD
DD

D

X̂R,0

πXR,0
||yy
yy
yy
yy
y

X0
ϕR

// XR,0

that satisfies the following conditions:

(a) πX0
and πXR,0

are the corresponding canonical universal coverings in codimen-
sion 1.

(b) µ is a finite surjective morphism such that πXR,0
◦ µ has ramification order di

over V (ui) ⊆ XR,0.
(c) ϕ̂R is a trivial fibration, whose fiber is a WPS.
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Remark 9.10. — If ϕR : X → XR is a toric extremal contraction of fiber type, then
ϕR is not necessarily locally trivial, as there may be some multiple fibers. However,
we have the following combinatorial criterion to decide whether is locally trivial over
an invariant open affine subset of XR (see [CaDR08, Remark 3.3 and Remark 3.8]).

Let ω = cone(u1, . . . , un−1) ∈ ∆X(n − 1) be a wall defining the contraction and
U(ω) = UR as in Theorem 6.7. Then,

∆F := {σ ∈ ∆X | σ ⊆ UR}

can be seen as a fan in the real vector space UR, defining a toric variety F . Moreover,
we have that ϕ−1(x)red ∼= F for all x ∈ XR.

In this setting, invariant fibers of ϕR are given by V (τ) with τ ∈ ∆X such that
dim τ = dimXR and τ ∩UR = {0}. Let p = V (σ0) be a fixed point of the torus action
and V (τ) the fiber of ϕR over p. Then, the following are equivalent:

1. The scheme theoretic fiber of ϕR over p is reduced.
2. ϕ−1

R (Uσ0
) ∼= Uσ0

× F .
3. N = (UR ∩N)⊕ (Span(τ) ∩N).

Proposition 9.11. — Let X be a Q-factorial Gorenstein toric Fano variety of
dimension n ≥ 3 with canonical singularities and with at most finitely many non-
terminal points. Assume that there exists an effective prime divisor D ⊆ X such that
dimR N1(D,X) = 1 and that ρX = 2. Let R ⊆ NE(X) be an extremal ray such that
D · R > 0 and let us denote by π : X → Y the corresponding extremal contraction.
Assume that π is of fiber type. Then there exist weights λ0, . . . , λn−1 ∈ Z>0 and a
cartesian diagram of toric varieties

X̂
π̂ //

πX

��

P(λ0, . . . , λn−1)

πY

��

X
π // Y

where vertical arrows denote the corresponding universal covering in codimension 1,

and X̂ is a Gorenstein Fano PWS with terminal singularities such that ρ
X̂

= 2.

Moreover, π̂ : X̂ → P(λ0, . . . , λn−1) leads to an isomorphism

X̂ ∼= P(OP(λ0,...,λn−1) ⊕OP(λ0,...,λn−1)(a)).

Proof. — By Proposition F, π : X → Y is a P1−bundle and X is isomorphic to
PY (OY ⊕ OY (a)), where Y is a Q-factorial Gorenstein Fano variety with terminal
singularities. In particular, if Uσ0

is an invariant open affine subset of Y with fixed
point p = V (σ0) and V (τ) is the fiber of π over p, then π is a locally trivial fibration
over Uσ0

and hence
N = (UR ∩N)⊕ (Span(τ) ∩N),

by Remark 9.10 above. Thus, the contraction is defined by the projection

NX
pr

2 // Span(τ) ∩NX ∼= NY .
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This implies that all the ramification orders di appearing in Lemma 9.9 are equal to
1.

This holds for every invariant open affine open subset of Y and hence it follows that

the induced morphism between the universal coverings in codimension 1, π̂ : X̂ → Ŷ ,
is a locally trivial fibration all whose fibers are isomorphic to P1. Moreover, this
commutative diagram is cartesian in the category of schemes by [Mol16, Lemma
2.2.7].

Since ρY = 1, it follows that Ŷ ∼= P(λ0, . . . , λn−1) for some weights λ0, . . . , λn−1 ∈
Z>0, by Example 9.6.

Finally, we have that both X̂ and Ŷ are Fano Gorenstein varieties with terminal
singularities, by Proposition 9.3.

Example 9.12. — Let X as in Proposition 9.11 and suppose that Tors(Cl(X)) ∼=
{0}, i.e., that X ∼= X̂. The extremal contraction of fiber type

X → P(λ0, . . . , λn−1)

leads to an isomorphism X ∼= P(OP(λ0,...,λn−1) ⊕OP(λ0,...,λn−1)(a)). Then,

(a) X is Gorenstein ⇔ P(λ0, . . . , λn−1) is Gorenstein ⇔ λi|h for every i ∈ {0, . . . , n−
1}, by [CK99, Lemma 3.5.6].

(b) X is terminal ⇔ P(λ0, . . . , λn−1) is terminal ⇔
∑n

i=0 {λiκ/h} ∈ {2, . . . , n− 1}
for each κ ∈ {2, . . . , h− 2}, by [Kas13, Proposition 2.3].

(c) X is Fano ⇔ 0 ≤ a ≤ iP(λ0,...,λn−1)−1 = h−1, by Proposition F and the formula
[Mor75, Proposition 2.3] for the canonical divisor of P(λ0, . . . , λn−1).

Here, h =
∑n−1
i=0 λi and {x} denotes the fractional part of x ∈ R.

The case of divisorial extremal contractions follows in a similar way.

Lemma 9.13. — Let X be a Q-factorial projective toric variety and R ⊆ NE(X)
an extremal ray defining a divisorial contraction ϕR : X → XR. Then, there is a
commutative diagram of toric morphisms

X̂
ϕ̂R

//

πX

��

X̃R

µ

  
AA

AA
AA

AA

X̂R

πXR
}}||
||
||
||

X
ϕR

// XR

that satisfies the following conditions:

(a) πX and πXR
are the corresponding canonical universal coverings in codimension

1.
(b) µ is a finite surjective morphism unramified in codimension 1 and given by the

inclusion of lattices N∆XR
(1) ⊆ N∆X(1) of index dE ≥ 1, defined by the condition
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that the integral generator of R≥0uE ∩ N∆XR
(1) is dEuE, where V (uE) is the

exceptional divisor of ϕR.

Moreover,

(c) ϕ̂R : X̂ → X̃R is a divisorial contraction with (πX)∗ Exc(ϕ̂R) = Exc(ϕR) and
(πXR

◦ µ)∗ϕ̂R(Exc(ϕ̂R)) = ϕR(Exc(ϕR)).

(d) If X (resp. XR) is a Fano variety then X̂ (resp. X̂R and X̃R) is.

(e) If X (resp. XR) has Gorenstein singularities then X̂ (resp. X̂R and X̃R) does.
(f) If X has terminal (resp. canonical) singularities, then all varieties in the

diagram have terminal (resp. canonical) singularities.

Proof. — Let us suppose that ϕR : X → XR is given by the contraction of the wall
ω = cone(u1, . . . , un−1) separating the maximal cones σ = cone(u1, . . . , un−1, un)
and σ′ = cone(u1, . . . , un−1, un+1). Then, the wall relation satisfied by these cones
(defining the contraction) is given by

buun +

n−1∑

i=1

biui + bn+1un+1 = 0,

where bn, bn+1 ∈ Z>0 and bi ∈ Z.
Since ϕR is a divisorial contraction we can suppose that (up to reordering, if

necessary) b1 < 0 and b2, . . . , bn−1 ≥ 0, by Theorem 6.7. Thus, E = Exc(ϕR) = V (u1)
and the contraction corresponds to the stellar subdivision of the cone

σ = cone(u2, . . . , un, un+1) ∈ ∆XR
(n)

with respect to the primitive lattice vector u1 satisfying the wall relation above.
The canonical universal covering in codimension 1 of X (resp. XR) is given by the

fan ∆X (resp. ∆XR
) but seen in the sublattice N∆X(1) (resp. N∆XR

(1)) of N .
Clearly we have the inclusion of lattices N∆XR

(1) ⊆ N∆X(1), which is of finite

index since (−b1)u1 ∈ N∆XR
(1), by the wall relation above. Hence, we obtain an

induced finite surjective morphism of toric varieties µ : X̃R → X̂R that is unramified
in codimension 1, by Lemma 9.4.

Now, the fan of X̂ is obtained by the stellar subdivision of the fan of X̃R with
respect to the primitive vector u1 satisfying the wall relation above, obtaining the
desired commutative diagram that satisfies (a), (b) and (c) by construction.

Finally, the last three assertions follows from Proposition 9.3 together with [KM98,
Corollary 3.43].

We can now prove Proposition G.
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Proof of Proposition G. — By Lemma 9.13 there is a commutative diagram of toric
morphisms

X̂
π̂ //

πX

��

Ỹ

µ

��
>>

>>
>>

>>

Ŷ

πY
����
��
��
��

X
π // Y

where πX and πY are the corresponding canonical universal coverings in codimension

1 and µ : Ỹ → Ŷ is a finite surjective morphism defined by the inclusion of lattices
N∆Y (1) ⊆ N∆X(1).

It should be noticed that under the hypothesis of the statement, Lemma 6.9 implies

that N∆Y (1) = N∆X(1) and hence Ỹ ∼= Ŷ . Moreover, this commutative diagram is
cartesian in the category of schemes by [Mol16, Lemma 2.2.7].

Finally, we have that Ŷ ∼= P(λ0, . . . , λn) for some weights λ0, . . . , λn ∈ Z>0, by
Example 9.6. The result follows now directly from Lemma 9.13.

Example 9.14. — Let X as in Proposition G and suppose that Tors(Cl(X)) ∼= {0},

i.e., that X ∼= X̂ . The extremal divisorial contraction

π : X → P(λ0, . . . , λn)

determines the shape of the fan of X in terms of the fan of P(λ0, . . . , λn) (which is
well known):

The fan of P(λ0, . . . , λn) is given by n+ 1 lattice primitive vectors u0, . . . , un that
generates the lattice N and that satisfy the relation

n∑

i=0

λiui = 0.

Let us suppose that π contracts E = V (uE) ⊆ X onto the invariant subvariety
A = V (ui, uj) ⊆ P(λ0, . . . , λn), of codimension two. Then, uE = ui + uj, by Lemma
6.9.

In particular, the same computation used to prove [CK99, Lemma 3.5.6] shows
thatX is a Fano Gorenstein variety if and only if λi|h, λj |h, λk|(h−λi) and λk|(h−λj)
for every k 6= i, j, where h =

∑n
i=0 λi.

However, to the best of the author’s knowledge, the characterization such X having
terminal singularities is more subtle. Indeed, if X is a Q-factorial Fano Gorenstein
toric variety then it corresponds to a simplicial reflexive lattice polytope P ⊆ NR

(see [Bat94] for details). In [Nil05, Corollary 3.7], B. Nill characterizes all polytopes
among these ones that correspond to varieties with only terminal singularities, but it
does not seem easy to translate this characterization into a function of the weights
λ0, . . . , λn.

Finally, it should be noticed that if one of the weights is equal to 1, say λ0 = 1,
then we have a coordinate-wise description of the primitive vectors defining the fan
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of P(1, λ1, . . . , λn). Namely, the canonical basis of Zn together with the vector
(−λ1, . . . ,−λn) ∈ Zn. In this case, we can explicitly compute the Cartier data
{mσ}σ∈∆X(n) ⊆ M of KX , allowing us to decide whether the singularities of X
are terminal or not.

In particular, we compute that X has only Gorenstein terminal singularities if all
the integers

h

λi
,
h

λj
,
h− λi
λk

,
h− λj
λk

considered before, are equal or greater than 3. The variety defined in Example 8.2
satisfy this condition.
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