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Abstract

La plupart des graphes de terrain représentant des phénomènes du
monde réel partagent des propriétés similaires de connectivité et de
distribution des degrés, cependant, la génération artificielle de graphes
possédant ces propriétés reste encore une question difficile.
Dans cet article, nous proposons d’utiliser des marches aléatoires sur
des graphes aléatoires pour créer des graphes dont la connectivité et
la distribution des degrés sont semblables aux graphes de terrain.

Mots-clés : graphe, graphe de terrain, réseau petit monde, chaı̂ne de
Markov, graphe aléatoire

Abstract

While most real-world graphs are known to share similar properties
with respect to connectivity or degree distribution, generating artificial
graphs with those properties is still a challenging issue.
In this paper, we propose to use random walks on random graphs to
create graphs similar to real-world ones.

Key-words: graph, real-world complex network, small world, Markov
chain, random graph

1 INTRODUCTION

In 1998, Watts and Strogatz showed that many real networks are character-
ized by a high clustering coefficient (their number of edges is sparse, yet thay
contain a lot of triangles) and a short average path length, similar to the one
of random graphs [38]. Another frequently encoutered characteristic is the
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heavy-tail degree distribution: while most nodes have a degree close to the
average degree, there are a few nodes of very high degree.

The fact that graphs built on real data from different domains share com-
mon properties has been confirmed by many studies [3, 27, 10, 1, 15, 20, 6,
32, 5, 31, 16, 4]. The concerned areas include, but are not limited to: epi-
demiology (contact graphs), economy (exchange graphs), sociology (knowl-
edge graphs), linguistic (lexical networks), psychology (semantic association
graphs), biology (neural networks, proteinic interactions graphs), IT (Inter-
net, Web). We call such graphs Real-World Complex Networks (RWCNs).

So RWCNs are (1) globally sparse but (2) locally dense, with (3) a short
average path length (APL), and (4) a heavy-tailed degree distribution. The
combination of these four properties is very unlikely in random graphs, ex-
plaining the interest that those networks have raised in various scientific com-
munities.

In this article, we propose a method to artificialy generate RWCN-like
graphs. This method, which is based on random walks on random graphs,
may help to better understand how RWCNs from various origins can share
similar structures.

In Section 2, we formally introduce the characteristics of RWCNs. Sec-
tion 3 surveys the different existing methods to generate complex networks.
We analyze the dynamics of random walks in a graph in Section 4. In Sec-
tion 5, we introduce a first version of our algorithm. In Section 6 we propose
some improvements to reduce the length of the used random walks and there-
fore to speed up our method. In Section 7 we focus on the importance of the
size of the initial random graphs on the properties of the final graphs. Lastly,
section 8 concludes.

2 PROPERTIES OF REAL-WORLD COMPLEX NET-
WORKS

Let G = (V,E) be a reflexive, symmetric graph:
V is the set of vertices, and E ⊂ V × V is the set of edges;
n = |V | is the order of G (its number of nodes);
m = |E| its size (its number of edges, with multiplicity);
deg(u) = |{v ∈ V/(u, v) ∈ E}| is the degree of the node u;
d = m

n is the average degree;

The four main properties of RWCNs are the following:

Edge sparsity Most of known RWCNs are sparse in edges, and the average
degree stays low, it does not grow more than logarithmically with n:
m = O(n log(n)).

Short paths The APL, denoted L, is close to the APL Lrand in the main
connected component of a random reflexive symmetric Erdős-Rényi



graph G(n, p) with same order and expected size (each symmetric edge
between two distinct nodes exist with probability p; for the random
graph to have the same expected size, we need to choose p = m−n

n(n−1) ).

According to [14], for p ≥ (1 + ε) log(n)n , G(n, p) is almost surely
connected, and Lrand ≈ log(n)

log(m)−log(n) (Lrand = O(log(n))).

High clustering The clustering coefficient, denoted C, that expresses the
probability that two distinct nodes adjacent to a given third node are
adjacent, is an order of magnitude higher than for Erdős-Rényi graphs:
C >> Crand = p = m−n

n(n−1) . This indicates that the graph is locally
dense (there are a lot of triangles), although it is globally sparse (in
terms of edges).

Heavy-tailed degree distribution Most RWCNs are heavy-tailed, having a
few nodes with a very high degree. One frequently proposed model
for such distribution is the power law, the probability for a given node
to have degree k being proportional to k−λ for some constant λ.

Example:

To illustrate how those properties appear in a RWCN, we propose to consider
the graph DicoSyn.Verb4 It is a reflexive symmetric graph with 9147 nodes
and 111993 edges. For the sake of convenience, we only consider the largest
connected component Gc of DicoSyn.Verb, which admits 8993 nodes and
111659 edges. With an average degree of 12.4, Gc is sparse. Other parame-
ters of Gc are L ≈ 4.19 (to be compared with Lrand = 3.71) and C ≈ 0.14
(to compare with Crand = p = 0.0013). The degree distribution is plot on
log-log scale in Figure 1(a), it is clearly an heavy-tailed distribution.

Note, that the degree distribution for random Erdős-Rényi graphs is far
from being heavy-tailed. It is in fact a kind of Poisson distribution : the
probability that a node of a G(n, p) graph has degree k is p(k) = pk(1 −
p)n−1−k

(
n−1
k

)
. Figure 1(b) give the degree distribution of an Erdős-Rényi

graph with same number of nodes and average degree than Gc.
To sum up, compared to Erdős-Rényi graph, RWCNs have the same spar-

sity (by construction), a similar short characteristic path lengths, but a higher
clustering, and a heavy-tailed degree distribution (instead of Poisson distri-
bution).

4DicoSyn is a french synonyms dictionnary built from seven canonical french dictionnaries
(Bailly, Benac, Du Chazaud, Guizot, Lafaye, Larousse et Robert). The ATILF (http://www.
atilf.fr/) extracted the synonyms, and the CRISCO (http://elsap1.unicaen.
fr/) consolidated the results. DicoSyn.Verb is the subgraph induced by the verbs of Dicosyn:
an edge exists between two verbs a and b iff DicoSyn tells a and b are synonyms. Therefore
DicoSyn.Verb is a symmetric graph, made reflexive for convenience. A visual representation
based on random walks [18] can be consulted on http://Prox.irit.fr.

http://www.atilf.fr/
http://www.atilf.fr/
http://elsap1.unicaen.fr/
http://elsap1.unicaen.fr/
http://Prox.irit.fr
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(a) DicoSyn.Verb: Verbs synonymy graph
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(b) Erdős-Rényi graph of the same size

Figure 1: Degree distribution of a typical real world complex network (a) and of a
random Erdős-Rényi graph having same number of veritces and edges (b). Plots are on
a log-log scale. The red curves indicate the power-law model (ie. linear model on log-log scale)
found by least-square fitting. λ give the slope of this curve, r2 is the correlation coefficient of
this model.

3 MODELING REAL-WORLD COMPLEX NETWORKS:
STATE OF ART

Since the paper of Watts and Strogatz [38], RWCNs have been studied in-
tensely. In particular, a lot of work has been done in order to be able to
generate artificial networks having RWCN’s characteristics.

3.1 Small-world networks

By analogy with the small-world phenomenon5 [29], Watts and Strogatz
called “small-worlds” networks, networks having both a high clustering co-
efficient and a short characteristic path lengths [38]. For modeling such
small-worlds networks, Watts and Strogatz alter a regular ring lattice by ran-
domly rewiring some links. Another model was proposed by Kleinberg [25]:
a d-dimensional grid is extended by adding extra-links which range follows
a d-harmonic distribution.

Note, that both models fail to capture the heavy-tail property met in RWCNs
(they are almost regular).

3.2 Heavy-tail property

There is a lot of research devoted to the production of random graphs that fol-
low a given degree distribution [8, 28, 30, 33]. Such generic models easily

5This phenomenon is popularly known as six degrees of separation [21]



produce heavy-tailed random graphs if we give them a power-law distribu-
tion.

As for the models specifically designed to produce heavy-tailed distribu-
tions, Barabasi and Albert proposed the preferential attachment model [6],
where new nodes are added one by one, and where the probability that an
existing node receives a new link from the new node is proportional to the
degree of the existing nodes. A more flexible version of the preferential at-
tachment’s model is the fitness model [1, 7], where a pre-determined fitness
value is used in the process of link creation. Lastly, Aiello et al. proposed
a model called α, β graphs [2], that encompasses the class of power law
graphs.

Note, that these models fail to capture the high clustering property met in
RWCNs.

3.3 Others models

Many variants of the model from Barabasi and Albert (BA model) have been
proposed in order to provide a high clustering as well. In [23, 12, 24, 17],
explicit phases of triangles construction are suggested. In [37], at each step
of the graph construction, an edge is selected at random and a new vertex
is added and connected to both sides of that edge. In [36], a small clique
is created at each iteration instead of a single vertex. In [26, 11], vertices
are divided into different potential clusters, and the edge creation processes
inside or between clusters are handled separately.

Guillaume and Latapy proposed a different approach based on bipartite
graphs [22]. The basic idea is that the unipartite projection of a random bi-
partite graph is a natural candidate for all RWCNs properties but the degree
distribution. The power law distribution can be enforced for one class of ver-
tices in the random bipartite graph, for instance by adapting the BA model.

Compared to the approaches previously proposed, the specificity of our
solution is that we start from a fully grown random graph, which we turn
into a graph having desired properties. It differs from BA variants, which
construct a new graph from zero, and it can be viewed as the dual of Watts
and Strogatz’s small-worlds model: instead of adding random links to a reg-
ular structure, we propose to add “regular” links (i.e. local, with some kind
of preferential attachment) to a random structure.

4 CONFLUENCE & RANDOM WALK IN NETWORKS

4.1 Random Walk in Networks

We assume that a particle wanders randomly on the graph G if:

• At any time t ∈ N the particle is on a node u(t) ∈ V ;



• At time t+1, the particle reaches a uniformly randomly selected neigh-
bor of u(t).

This process is a simple random walk (SRW) on G [9] which can be defined
by a Markov chain on V with the n × n transition probability matrix [G]
defined as follow:

[G] = (gu,v)u,v∈V , with gu,v =


1

deg(u)
if (u, v) ∈ E,

0 otherwise.
(1)

As G is reflexive no node has null degree, so [G] is well defined. Moreover,
it is a stochastic matrix by construction: ∀u ∈ V,

∑
v∈V gu,v = 1.

For any initial probability distribution P0 on V and any given integer t,
P0[G]

t is the result of the random walk of length t starting from P0 whose
transitions are defined by [G]. As a special case, for any u, v in V , the
probability Pt of being in v after a random walk of length t starting from
u is equal to (δu[G]

t)v = ([G]t)u,v , where δu is the certitude of being in u.
Using the Perron-Frobenius theorem [35], it can be shown that ifG = (V,E)
is a connected, reflexive and symmetric graph, then:

∀u, v ∈ V, lim
t→∞

(δu[G]
t)v = lim

t→∞
([G]t)u,v =

deg(v)∑
x∈V deg(x)

(2)

In other words, as t goes to infinity, the probability of being on node v at
time t no longer depends on the departure node u, and is simply proportional
to the degree of v.

4.2 Confluence in Networks
Equation (2) tells that the only information retained after an infinite random
walk is the degree of the nodes. However, some information can be extracted
from transitional states. Indeed, the dynamics of the particle’s trajectory on
its random walk is completely determined by the graph’s topological struc-
ture: after t steps, every node v at a distance of t edges or less6 from the
initial vertex u can be reached. Furthemore when t remains small, the prob-
ability of reaching a vertex at the tth step depends on the number of paths
between the initial vertex u and the vertex v, on their length and on the degree
of nodes along these paths: the more paths there are, the shorter the paths,
and the weaker the degree of the intermediary nodes, then the probability of
reaching v from the initial vertex u at the tth step is higher7. For instance,
assume the existence of three nodes u, v1 and v2 such that :

6Thanks to the reflexivity of the graph.
7Note that it is not only the length of the shortest path between u and v (ie. classical distance

between graph vertices) whith is taken into account. This is an important point since this shortest
path length is always short (cf. Section 2).



• u, v1 and v2 belong to the same connected component,

• v1 and v2 have the same degree,

• v1 is close from u, in the sense that many short paths exist between u
and v1,

• v2 is distant from u, in the sense that few short paths exist between u
and v2.

From Eq. (2), we know that the sequences (([G]t)u,v1)1≤t and (([G]t)u,v2)1≤t
share the same limit deg(v1)/

∑
x∈V deg(x) = deg(v2)/

∑
x∈V deg(x).

However these two sequences are not identical: after a limited amount of
steps t, one should expect a greater value for ([G]t)u,v1 than for ([G]t)u,v2
because v1 is closer from u than v2.

This can be illustraded on the synonymy graph of french verbs Gc (Graph
introduced in Section 2), with :

• u = déshabiller (“to undress”);

• v1 = effeuiller (“to thin out”);

• v2 = rugir (“to roar”);

The nodes effeuiller and rugir have the same degree: deg(effeuiller) =
deg(rugir) = 11, and intuitively, effeuiller should be closer (in Gc) to
déshabiller than rugir, because this is the case semantically.

0 10 20 30 40 50
t

10-6
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10-4

10-3

10-2

[G]tu,v1
 (strong confluence)

[G]tu,v2
 (weak confluence)

Common asymptotical value

(a) French verbs graph Gc

Figure 2: ([G]t)u,v1 and ([G]t)u,v2 for Gc and a random graph

The values of ([G]t)u,v1 and ([G]t)u,v2 with respect to t are shown in Fig-
ure 2(a), along with the common asymptotic value 11∑

x∈V deg(x) . One can



observe that, after a few steps, ([G]t)u,v1 is above the asymptotic value. We
claim that this is typical of nodes that are close to each other, and call this
phenomenum strong confluence. On the other hand, ([G]t)u,v2 is always
below the asymptotic value (weak confluence).

This phenomenum of strong and weak confluences is particulary clear in
real graph thanks to their structure. Indeed it is quite easy to find some
vertices connected by more and shorter path than others (typicaly vertices in
a same “cluster” vs. vertices in different ones). However, strong and weak
confluences also occur in Erdős-Rényi random graphs. Indeed such graphs
are not completly uniform, they present an “embryo” of structure (at least, as
graphs are sparces, some vertices are neighbors some are not). This can be
illustraded by the Figure ??, it shows ([G]t)u,v1 and ([G]t)u,v2 for three nodes
u, v1 and v2 carefully selected in G an Erdős-Rényi graph with same number
of nodes and average degree than Gc, there is clearly a strong confluence
between u and v1 and a weak confluence between u and v2.

In the following Section, we will use this to detect and amplify this “em-
bryo” of structure present in random graph in order to turn it into graphs
having properties of RWCNs.

5 FROM RANDOM GRAPHS TO shaped-like REAL-
WORLD COMPLEX NETWORKS

To generate graphs of small-world type, Watts and Strogatz [38] add random
links in a locally linked graph. We propose here a dual approach by adding
local links in a random graph. In order to provide a way for measuring
locality of a possibly added link, we introduce the mutual confluence conf
between two nodes of a graph G at a time t:

confG(u, v, t) = max([G]tu,v, [G]
t
v,u) (3)

For not too large values of t, a strong mutual confluence between two
nodes may indicate a local link for adding. We claim that a good way to
obtain a shaped-like RWCNs from a random graph is to set links between
the pairs of nodes with the highest confluence.

5.1 Extracting the confluence graph
Given an input graphGin = (V,Ein), symmetric and reflexive, with n nodes
and min edges, a time parameter t and a target number of edges m, one can
extract a strong confluence graph G = scg(Gin, t,m) such that:

• G a symmetric, reflexive graph with the same nodes thanGin and with
m edges,

• ∀r 6= s, u 6= v ∈ V , if (r, s) ∈ E and (u, v) /∈ E, then confGin
(r, s, t) ≥

confGin(u, v, t).



Algorithm 1: scg (strong confluence graph), extract highest confluences
Input: An undirected graph Gin = (V,Ein), with n nodes and min

edges
A walk length t ∈ N∗
A target number of edges m ∈ [n, n2]
Output: A graph G = (V,E), with n nodes and m edges
begin

E ←− ∅
for i← 1 to n do

E ←− E ∪ {(i, i)} /* Make G reflexive */
end
while |E| < m do /* Is there unset edges? */

(a) (r, s)←− argmax(u,v)/∈E([Gin]
t
u,v)

(b) E ←− E ∪ {(r, s)}
(c) E ←− E ∪ {(s, r)} /* Stay symmetric */

end
end

Algorithm 1 proposes a way to construct scg(G, t,m). Note, that because
of possible confluences with same values, line (a) is not deterministic. Fur-
thermore, there is no guarantee that the strong confluence graph is unique,
but the possible graphs can only differ by their (few) edges of lowest conflu-
ence. In practice, confluences are distinct most of the time 8

5.2 Making shaped-like real-world complex networks

We propose to construct graphs with the properties of RWCNs by extracting
the confluences of Erdős-Rényi graphs, as described in Algorithm 2. Note,
that the confluence extraction may produce disconnected graphs. Therefore
we have to select the main connected component if we want to study prop-
erties like the average path length. However, our experiments show that the
size of the main connected component is always more than 80%, which ap-
pears to be a fair proportion.

5.3 Focus on the parameter t

In order to obtain a good graph, with the properties of RWCNs, the values of
min and t must be carefully selected (for a given n and m). In the following,
we set n = 1000, min = 4000, and m = 10000, and we focus on the
importance of the parameter t.

8If uniqueness really matters, it suffices to use a total order on the pairs of V in order to
break ties in line (a).



Algorithm 2: makesl, Making a shaped-like real-world complex net-
works
Input: A target number of nodes for the output graph n ∈ N
A target number of edges for the random graph min ∈ N
A walk length t ∈ N∗
A target number of edges m ∈ N
Output: A graph G = (V,E), with n nodes and m edges
begin

Gin ←− a symmetric, reflexive, Erdős-Rényi Random Graph with n
nodes and min edges
G←− scg(Gin, t,m)
G←− largest connected component of G

end

Like stated in Section 2, there is no strict definition of RWCNs properties,
but typical values of average path length, clustering coefficient and degree
distribution. We arbitrary propose to say that G = makesl(n,min, t,m) is
shaped like RWCNs if it satisfies:

• m ≤ 10n log(n) (satisfied for n = 1000, m = 10000),

• Clustering coefficient CG is greater than 10m
n2 ,

• Average path length is shorter than 3 log(n),

• A least square fitting on the degree log-log distribution gives a negative
slope of absolute value λ greater than 1, with a correlation coefficient
r2 grater than 0.8.

These constraints are certainly too strong (for instance one could be more
flexible with the correlation coefficient r2), but they guarantee that a graph
within these constraints has RWCN-like properties.

Remark

The power law estimation we give is not very accurate (see for instance [34])
However, giving a correct estimation of the odds that a given discrete distri-
bution is heavy-tailed is a difficult issue ([19, 13]), and refining the power-
law estimation is beyond the scope of this paper.

It is easy to verify that with those requirements, a random Erdős-Rényi
graph with 1000 nodes and 10000 edges is not shaped like RWCNs with high
probability (for instance because of the clustering coefficient). On the other
hand, G = makesl(n,min, t,m) satisfies the four properties of RWCNs for
some values of t, as shown in Figure 3:

• The upper curve shows the number of nodes of the giant component
of the result graph,



• The next curve shows the average path length L (remember that we
only consider the main connected component, therefore the average
path length is always well defined). The average path length L is al-
ways low and consistent with a RWCNs structure.

• The next curves indicates the clustering coefficientC. For 2 ≤ t ≤ 40,
C is very high. It drops after 40, as the confluences converge to the
nodes’ degrees, meaning that most of the edges come from the highest
degree nodes of the input graph. This leads to star-like structures, that
explain the poor clustering coefficient.

• The two next curves indicates that the degree distribution may be a
power-law, with a relatively high confidence, for 34 ≤ t ≤ 45.

• Lastly, the lower curve summarizes the values of t that satisfy the
shaped-like RWCNs requirements (mainly 34 ≤ t ≤ 45).
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Figure 3: Properties of G = makesl(n,min, t,m) with respect to t.

As shown Figure 3, all RWCNs properties are achieved quickly except the
heavy-tailed degree distribution. We note that this distribution tends to fit a
power-law just when confluences converge to the nodes’ degrees (t ≈ 40 in
this example). After this point for all nodes u, v, ([G]t)u,v is proportional
to deg(v). Therefore, as already said, it produces a star-like structure where



each vertex is link to vertices of higher degree (in the initial graph)9. Never-
theless before this critical point, confluence is already strongly influenced by
vertex degrees. That is certainly why heavy-tailed distribution appears here,
by a phenomenon close to preferential attachment [6].

6 HEAVY-TAILED DISTRIBUTION WITH SMALLER
WALKS

We present in this section two variants of the previous algorithm which sig-
nificantly reduce the required walk length. Besides the computational cost10,
having walks of length greater than the average path length L is not com-
pletely satisfactory, as one would like the RWCN properties to emerge from
“local” interactions, i.e. walks of very short length.

To reduce walk length, we propose to enforce some preferential attachment
in edge selection phase (strong confluence extraction algorithm), and then to
apply the strong confluence extraction algorithm iteratively. We show that
the last method produces RWCN-like graphs after solely two iterations of
two steps long random walks.

6.1 preferential attachment
In order to speed up the apparition of a heavy-tailed distribution, we pro-
pose to balance the edge selection with the degree of vertices in the strong
confluence extraction algorithm. Therefore, edges are created preferentially
between vertices having already a strong degree, like for the BA model [6].
As our algorithm consist in selecting edges instead of vertices, two potential
vertices may be used in our preferential attachment: the source or the target.

If we consider the target only, the line (a) of Algorithm 1 should be re-
placed by:

(r, s)←− arg max
(u,v)/∈E

([Gin]
t
u,v ∗ deg(v)) (4)

The replacement for source weighting 11 should be:

(r, s)←− arg max
(u,v)/∈E

([Gin]
t
u,v ∗ deg(u)) (5)

Lastly, for taking both sides into account, we propose to replace line (a)
by:

(r, s)←− arg max
(u,v)/∈E

([Gin]
t
u,v ∗ deg(v) ∗ deg(u)) (6)

9In experiments a different random graph is use for each t, that explains fluctuations in the
curves after this point.

10[G]t is no more sparse when t grows. For t greater than the diameter, all entries of [G]t are
non null.

11Note that the matrix [Gin]
t is not symmetric, hence these two replacements are not equiv-

alent.



6.1.1 Results

We employ the same validation process than in Section 5.3, with n = 1000,
min = 4000, and m = 10000. Figure 4 shows that preferential attachment
is effective for speeding up the heavy-tailed distribution.
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(a) without preferential attachment
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(b) using Equation (4)
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(c) using Equation (5)
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Figure 4: Properties of G = makesl(n,min, t,m) with respect to t.

The drawback is that the clustering coefficient is lowered. With the double-
weight method, it decreases down to 0.2, that is about half the clustering ob-
served without preferential attachment. However, it is still much higher than
for an equivalent random graph, so the resulting graph can be considered as
RWCN-like nevertheless. Intuitively, preferential attachment creates highly
connected nodes, which can be seen as bridges between clusters. The price
for these bridges is that they may have a low clustering themselves as a con-
sequence. That can be an explanation of this trade-off between heavy-tailed
distribution and strong clustering.

6.2 Iterative algorithm
Until now, the confluence was only computed once, in the input random
graph. We propose to iterate the process as shown in Algorithm 3, extracting



iteratively several stronger confluence graphs.

Algorithm 3: makesliter, Making a shaped-like real-world complex net-
work iteratively
Input: A target number of nodes for the output graph n ∈ N
A target number of edges for the random graph min ∈ N
A walk length t ∈ N∗
A number of iteration k ∈ N∗
A target number of edges m ∈ N
Output: A graph G = (V,E), with n nodes and m edges
begin

G←− Erdős-Rényi Random Graph (n nodes, min edges,
symmetric, reflexive)
for i← 1 to k do

G←− scg(G, t,m)
end
G←− largest connected component of G

end

The underlying idea is that even if a short length walk does not produce
a truly RWCN-like graph, the output is somehow “closer” to a RWCN than
the original input, and should be a more promising input itself.

6.2.1 Results

Figure 5 presents the results for preferential attachment as defined by Equa-
tion (6)12 for several values of k and t. The other parameters are the same
as for the other experiments (Erdős-Rényi initial input graph, n = 1000,
min = 4000, m = 10000).

Under the proposed scenario, the iterative algorithm efficiently builds RWCN-
like graphs while using short walks only. In fact, two iterations of two-steps
walks seem to be enough, which is a great improvement.

7 FOCUS ON THE PARAMETER min

In this section we set n = 9147, m = 111993, (wich are respectively the
number of nodes and edges of DicoSyn.Verb) with t = 2, k = 2, and we
focus on the importance of the parameter min.

Figure 6 presents the results for min ∈ [25000, 100000] by steps of 5000.
When min ∈ [40000, 70000], the output graphs is shaped-like RWCNs.

12The use of Equations (4) or (5) gives less significant performance.
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Figure 5: Properties of graphs given by Algorithm 3

Table 1 gives the properties of graphs generated by the algorithmmakesliter
with n = 9147,m = 111993,min = 40000, t = 2, k = 2, and the proper-
ties of DicoSyn.Verb. One can note that they are very similar.

makesliter DicoSyn.Verb
n 8615 (26.3) 8993
m 111407 (26.3) 111659
L 3.82 (0.02) 4.19
C 0.13 (0.00) 0.14
λ -1.97 (0.03) -1.88
r2 0.88 (0.01) 0.91

Table 1: Properties of graphs generated by the algorithm makesliter with
n = 9147,m = 111993,min = 40000, t = 2, k = 2, compared to Di-
coSyn.Verb properties. makesliter algorithm has been run 20 times, so for
each property the given number corespond to the mean over this 20 graphs,
the standard deviation is given in parenthesis.

8 CONCLUSION

We proposed in this paper to use algorithms based on random walks to turn
random graphs into RWCN-like graphs. Our approach allows to get a graph
with a given number of nodes and edges, having all properties expected from
a RWCN: short average path length, low edge density, high clustering and
heavy-tailed degree distribution.

However, being able to generate artificial RWCN-like graphs is not suffi-
cient to answer one of the most interesting questions about RWCNs, which
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is Why most of real-world complex network have a similar structure, despite
the fact that this structure is very unlikely among possible graphs? In order
to bring a contribution to the answer to that question, a RWCN-like graph
generator should emulate real-world interactions in its algorithms. As real-
world interactions are based on local knowledge, the algorithm should be
able to be decentralized, which is not the case for Algorithm 3.

However, there are simple variants of Algorithm 3 that can be decentral-
ized: for instance, if we introduce a confluence bound s, an algorithm where
each node u decide to connect with any node it can find with a mutual conflu-
ence greater than s would have the same behavior that Algorithm 3, except
that the size m would not be directly tunable anymore. Understanding the
relationship between m and s is part of our future work, which would more
generally aim at providing a better analytical understanding of the reasons
that explain why our solution succeeds in providing graphs shaped like real-
world complex networks.

In this framework, we will have to analyticaly study the relationship be-
tween the properties of the output graphs and the inputs (t, k, n,min and s)
of a decentralized algorithm.
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