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EIGENVARIETIES FOR NON-CUSPIDAL MODULAR FORMS

OVER CERTAIN PEL SHIMURA VARIETIES

RICCARDO BRASCA AND GIOVANNI ROSSO

Abstract. Generalizing the recent method of Andreatta, Iovita, and Pil-
loni for cuspidal forms, we construct eigenvarieties for symplectic and unitary
groups that parametrize systems of eigenvalues of overconvergent and locally
analytic p-adic modular forms of a fixed ‘degree of cuspidality’. The dimension
of our eigenvarieties depends on this degree of cuspidality, it is maximal for
cuspidal forms and it is 1 for forms that are ‘not cuspidal at all’. Studying the

relations between the eigenvarieties we have constructed, we are able to prove
a conjecture of Urban about the dimension of the irreducible components of
Hansen’s eigenvariety in the case of the group GSp

4
over Q.

Introduction

Let p be a fixed prime number. Since the seminal work of Hida on congruences
modulo p between ordinary modular forms, many progress have been made in
the study of p-adic families of automorphic forms. Hida’s techniques have been
successfully adapted in many different settings to construct families of ordinary
automorphic eigenforms. See for example [TU99, Mau04, Hid02].

On the other hand, the theory for forms which are of finite slope for a certain Up-
operator but not ordinary has viewed less advancements since the foundational work
of Coleman [Col97]. Recently, Urban in [Urb11] and Hansen in [Han] (generalizing
ideas of Ash and Stevens in [AS]) have developed a very general theory for families
of eigenforms. Their approach is mainly cohomological.

Contrary to Hida’s theory, there was no ‘coherent’ approach to eigenvarieties
until the recent work of Pilloni [Pil13] and Andreatta, Iovita, and Stevens [AIS14].
Their approach has been generalized first to Siegel modular forms in [AIP15] and
then to general PEL Shimura varieties with non-empty ordinary locus in [Bra15].
In these papers, the authors deal only with eigenvarieties for cuspidal forms and
do not consider families of Eisenstein series. Such families of Eisenstein series have
been proven to be very useful in many arithmetic applications, starting from the
seminal work of Ribet to more recent applications to Iwasawa theory.

In the paper at hand we generalize [AIP15] and [Bra15], constructing eigenvari-
eties for not necessarily cuspidal p-adic modular forms for certain Shimura varieties
of PEL type. The reason why [AIP15] and [Bra15] only deal with cuspidal forms
is that the authors, to build the eigenvariety, use a general construction due to
Buzzard in [Buz07]. This construction has a technical hypothesis (namely the ‘pro-
jectivity’ of the space of forms, see Subsection 3.1 for more details) that is satisfied
by the space of cuspidal forms. We explain that in general the space of all forms
is not projective, so one can not apply Buzzard’s construction directly. What we
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actually prove is that, adding some conditions on the weight, the space of mod-
ular forms of a given ‘degree of cuspidality’ (see below for a precise definition) is
projective, and in particular we can apply Buzzard’s machinery.

Let us now state more precisely the results of this paper. In order to simplify the
notation we consider in this introduction only the Siegel case (i.e. we consider the
symplectic group over Q), but our results hold true also in the Hilbert-Siegel case
and (with some additional assumptions) in the unitary case. Let p > 2 be an odd
prime and let g ≥ 2 be an integer. Let S be the formal Siegel variety of some fixed
level outside p (to be precise we should work with the Shimura variety of Iwahoric
level at p, but we will ignore this issue in the introduction). We write Srig for its
rigid analytic fiber and, if v ∈ Q≥0, we denote by S(v)rig the strict neighborhood of
the ordinary locus defined by the condition that the Hasse invariant has valuation
smaller or equal than v. We denote withWg the weight space, that is a rigid analytic
space isomorphic to a disjoint union of g-dimensional open balls of radius 1. We will
work with certain subspaces W(w)g ⊆ Wg, that parametrize w-analytic weights,
where w is a rational. Let U = Spm(A) ⊂ W(w)g be an affinoid, with associated
universal character χun

U . One of the main results of [AIP15] is the construction of

a sheaf ω
†χun

U
v,w on S(v)rig × U (where v is small enough) that interpolates the usual

modular sheaves given by integral weights in U . The sheaf extends to a (fixed)
toroidal compactification S(v)rig,tor and its global sections MU are by definition
the families of (v-overconvergent and w-locally analytic) Siegel forms of weight χun

U .
There is also a Hecke algebra that acts on MU , including a completely continuous
operator Up.

Unfortunately, it turns out that MU is not projective in Buzzard’s sense, so
one can not apply the abstract machinery of [Buz07] to build the eigenvariety. The
solution of [AIP15] is to consider the space M0

U ⊂ MU of cuspidal forms, i.e. sections

of ω
†χun

U
v,w (−D), where D is the boundary of S(v)rig,tor × U . They are able to prove

that M0
U is projective and hence they obtain a (g-dimensional) eigenvariety. To

generalize this result to the non-cuspidal case we need first of all to understand
why the module MU is not projective. To do this it is convenient to work with the
minimal compactification S(v)rig,∗. Let π : S(v)rig,tor × U → S(v)rig,∗ × U be the
natural morphism and let I0 ⊂ OS(v)rig,∗×U be the sheaf of ideals corresponding to

the boundary of S(v)rig,∗ × U . One can prove that

M0
U = H0(S(v)rig,∗ × U , π∗ω

†χun
U

v,w ⊗ I0).

The boundary of S(v)rig,∗ is given by Siegel varieties of genus smaller than g, and
it has in particular a natural stratification given by the union of the varieties of
genus smaller than g − s, for a given 0 ≤ s ≤ g − 1. Let Is ⊂ OS(v)rig,∗×U be the

corresponding sheaf of ideals. Looking at global sections of ω
†χun

U
v,w ⊗ Is we obtain a

filtration

M0
U ⊂ M1

U ⊂ · · · ⊂ Mg
U = MU .

For example M1
U is the space of forms that are not necessarily cuspidal but vanish

on all the components of the boundary corresponding to Siegel varieties of genus
strictly smaller than g−1. We define the corank of a given form f , denoted cork(f),
by

cork(f) = min{q such that f ∈ Mq
U}.

Let now χ = (χi)
g
i=1 ∈ W(w)g be a p-adic weight. We define the corank of χ,

denoted cork(χ), by

cork(χ) = max{s such that χg = χg−1 = · · · = χg−s+1}.
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We obtain in this way the closed subspace W(w)sg ⊂ W(w)g given by weights of
corank at least s. The interest of the corank is the following theorem, proved in
[Wei83].

Theorem ([Wei83, Satz 2]). Let f 6= 0 be a classical modular forms of integral
weight k. Then we have

cork(f) ≤ cork(k).

For example, this implies that if we have a classical form f 6= 0 that is ‘com-
pletely not cuspidal’, in the sense that f 6∈ Mg−1

U , then the weight of f must be
parallel. Since classical points are dense in the eigenvariety (a fact that follows
from the classicality results of [AIP15] and [Bra15]) we see that we can not have
a g-dimensional eigenvariety for MU and in particular MU can not be a projective
A-module.

Fix now an integer q > 0 and let U = Spm(A) ⊂ W(w)qg be an admissible

open. There are no difficulties to define the sheaf ω
†χun

U
v,w , so we obtain the space

Mq
U of families of modular forms of corank at most q with weights in U . (The case

q = 0 is the case of cuspidal forms and it is done in [AIP15].) Note that U is

now g − q + 1-dimensional so that ω
†χun

U
v,w parametrizes families of modular forms in

g − q + 1 variables). One of our main results is the following:

Theorem. The A-module Mq
U is projective, so we have a g − q + 1-dimensional

eigenvariety for Siegel eigenforms of corank at most q.

The strategy to prove the theorem is to use the Siegel morphism, that we show
to be surjective. The expert reader will recognize that the proof of this theorem
is heavily inspired by Hida’s work, especially [Hid02], and its generalizations to
non-cuspidal setting [SU14, Urb].

We now sketch the strategy of proof; let Srig,∗
g−1 be the minimal compactification

of a component of the boundary of Srig,∗ corresponding to a Siegel variety of genus
g− 1. Let q > 1, let Wg → Wg−1 be the morphism that forgets the last component
of the weight, and V the image of U under this morphism. (Note that as q > 1 we
have that U and V are isomorphic. In the paper we also treat the case q = 1 which

is slightly different). We show that the pullback to S
rig,∗
g−1 of a family of modular

forms with weights in U ⊂ Wq
g and corank at most q is a modular form of weight in

V . This is one of the key arguments in the paper: it is proved via Fourier–Jacobi
expansion and representation theory for the group GLq. We want to stress that
both assumptions, on the weights and on the corank of the forms, are crucial for
this result. Taking the pullback of a form we now get the so-called Siegel morphism,
and we prove that there is an exact sequence

0 → M0
U → Ms

U →
⊕

Ms−1
V → 0

where the direct sum is over all the cusps of genus g − 1. Since we already know
that M0

U is projective, we conclude by induction.
We believe that the surjectivity of the Siegel morphism for families is in itself

a very interesting result, especially because the same is not true in the classical
complex setting. Moreover, as we have already pointed out, this kind of results
have been heavily used in several proofs of Main Conjectures. We believe that our
result is very likely to be useful to prove instances of non-ordinary Main Conjectures
(as stated in [Ben15, Pot13]), generalizing known results in the ordinary setting,
see for example [SU14, Urb].

A natural question that arises is how to glue the different eigenvarieties that we
have constructed. There are several functorial morphisms between them, and we
are able to show that the eigenvarieties agree on closed points, but unfortunately
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it seems difficult to actually glue them, since there can be issues with nilpotent
elements in the Hecke algebra (see Subsection 3.2 for more details).

Even tough we can not glue our eigenvarieties, we know explicitly their dimen-
sion; if one requires the very natural condition that classical points are dense, than
the dimension of our varieties is the maximal that one could allow. Moreover, in
the case of the group GSp4 /Q and full level, we are able to prove (under a mild
hypothesis) a conjecture of Urban ([Urb11, Conjecture 5.7.3]) about the expected
dimension of the irreducible components of the non-equidimensional eigenvarieties
constructed in [Han].

The paper is organized as follows. In Section 1 we study the situation over C.
Even if, strictly speaking, we do not need the results over the complex numbers, we
find it convenient and instructive to analyze the situation. All the basic ideas of the
paper (except one cohomological computation) are already visible in this section.
We introduce the Shimura varieties we will work with and we prove a theorem which
bounds from above the corank of an automorphic form with the corank of its weight,
generalizing the main results of [Wei83] to PEL Shimura varieties. We introduce
in great generality the Fourier–Jacobi expansion which will allows us to study the
Siegel morphism. In Section 2 we develop the theory of p-adic modular forms. We
introduce the spaces of modular forms we are interested in and the p-adic Siegel
morphism, showing that it is surjective. This uses the vanishing of cohomology
of a small Banach sheaf in the sense of [AIP15], see Proposition 2.10, which is an
interesting result on its own. In Section 3 we recall Buzzard’s machinery and we
actually build the eigenvarieties. We finally study the relations between them and
prove Urban’s conjecture for GSp4 /Q.

Acknowledgment. This work began while GR was a PhD students at Université
Paris 13 and KU Leuven to which he is very grateful. The main idea of the paper
originated from the groupe de travail on Hida theory and especially the reading
of [Pil12]; GR would like to thank all its participants and in particular Jacques
Tilouine. RB would like to thank Fabrizio Andreatta, Adrian Iovita, Vincent Pil-
loni, and Benôıt Stroh for several useful conversations. This work has greatly
benefited from an excellent long stay of GR at Columbia University and several
discussions with David Hansen, Zheng Liu and Eric Urban.

1. Analytic section

The aim of this section is the proof of Theorem 1.12 which generalizes a result of
Weissesauer [Wei83] giving necessary conditions on the weight of an automorphic
form for it to be of a given ‘degree of cuspidality’. This result is at the basis of the
philosophy of this paper, which roughly speaking states that non-cuspidal eigen-
varieties must be of smaller dimension than the weight space. The section starts
recalling some notation on Shimura varieties of type A and C and the corresponding
automorphic forms. We conclude studying the Siegel morphism; in particular, we
give a sheaf theoretic version of it (see Proposition 1.14) whose p-adic avatar will
be the key ingredient for the construction of eigenvarieties.

1.1. Symplectic and unitary groups.

1.1.1. Symplectic case. Let F0 be a totally real number field and OF0 its ring of
integers. For an integer a ≥ 1 we let G be the algebraic group over OF0 whose
A-points are

GSp2a/F0
(A) =

{
g ∈ GL2a(A)|

tgιag = ν(g)ιa, ν(g)
}
,



EIGENVARIETIES FOR NON-CUSPIDAL MODULAR FORMS 5

where ιa is the 2a× 2a orthogonal matrix

ιa =

(
0 −wa

wa 0

)
,

being wa the longest Weyl element (i.e. the anti-diagonal matrix of size a× a).
This can be seen as the space of transformation of a rank 2a lattice Λa over OF0

which preserve, up to a scalar, the symplectic form defined by ιa. We shall write
Va for the corresponding vector space over F0 and {e1, . . . , e2a} for the standard
symplectic basis.

We shall call ν the factor of similitude and we shall denote its kernel by Sp2a.
We shall be interested in the maximal parabolic subgroups of GSp2a. For 0 ≤ s ≤

a let Λa,s be the subspace of Λa generated by {e1, . . . , es} (if s = 0, we mean that
the set is empty) and Pa,s the parabolic of GSp2a preserving Λa,s. We have that
the Levi of Pa,s is isomorphic to GSp({es+1, . . . , ea−s, ea+1, . . . , e2a−s})×GL(Λa,s).
Explicitly, we can see this Levi in GSp2a as



g 0 0 0
0 A B 0
0 C D 0
0 0 0 ν(g′)wt

sg
−1ws


 , g′ =

(
A B
C D

)
∈ GSp2a−2s/F0

, g ∈ GLs/F0
.

Let Na,s be the unipotent radical of Pa,s; we shall be interested in its center Z(Na,s)
which can be explicitly written as



1 0 0 n
0 1 0 0
0 0 1 0
0 0 0 1


 , wsnws =

tn, n ∈ Ms.

We have an an action of GLs on Z(Na,s) induced by conjugation inside GSp2a:
g.n = gnwt

sgws.

If we want to specify that we are in the situation considered in this Subsection
we will say ‘in the symplectic case’. It is also called the Hilbert-Siegel case and it
corresponds to case (C) of [Bra15].

We define another group; let G be the algebraic group over Z whose A-point are

G(A) =
{
g ∈ GL2a(A⊗Z OF0)|

tgιag = ν(g)ιa, ν(g) ∈ A
}
.

It differs from ResOF0/ ZGSp2a for the condition on the rational multiplier and it is
important because it is associated with a Shimura variety. Its maximal parabolic
subgroups and their Levi and unipotent are defined as for GSp2a with the extra
condition in the multiplier of the symplectic part of the Levi. By a slight abuse of
notation, we shall denote the corresponding objects by the same symbol.

1.1.2. Unitary case. Let F0 be a totally real number field and F a totally imaginary
quadratic extension of F ; let OF0 (resp. OF0) the ring of integers of F0 (resp. F ).
Take two non-negative integers b ≥ a. We define the matrix

ιa,b =




0 0 −wa

0 ςIdb−a 0
wa 0 0


,

where ς is a totally imaginary element of F .
We consider the unitary group GU(b, a) over OF0 whose A-points are

GU(b, a)(A) =
{
g ∈ GLa+b(A⊗OF0

OF )|g
∗ιb,ag = ν(g)ιb,a, ν(g) ∈ A

}
,

where g∗ = c(gt), for c the complex conjugation of F over F0. It is a smooth
algebraic group over ZN , for a suitable integer N . By a slight abuse of notation, we
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shall sometime call this group GU(b, a)F/F0
. We shall call ν the factor of similitude

and we shall denote its kernel by U(b, a).
Let Ωb−a be a b − a-dimensional lattice over OF corresponding to the skew-

Hermitian matrix ςIdb−a. Denote a integral basis of it by {wi}
b−a
i=1 . Let Ξa and Υa

be two OF lattices with basis {xi}
a
i=1 and {yi}

a
i=1. We let Λa,b = Ξa ⊕ Ωb−a ⊕Υa

and Vb,a = Xa ⊕ Wb−a ⊕ Ya the corresponding F vector space. We now classify
the parabolic of GU(b, a). Let 0 ≤ s ≤ a and let Λb,a,s be the sub-lattice of Λb,a

spanned by {yi}
a
i=a−s+1. (If s = 0, we assume this set to be empty.) We denote

by Pb,a,s the parabolic of GU(b, a) stabilizing Λb,a,s. The Levi subgroup of Pb,a,s

can be identified with GU({x1, . . . , xa−s, w1, . . . , wb−a, y1, . . . , ya−s})×GL(Λb,a,s).
The Levi of Pb,a,s, seen as a subgroup of GU(b, a), can be described as




ν(h)ws(g
−1)∗ws 0 0

0 h 0
0 0 g


 , h ∈ GU(b − s, a− s), g ∈ GLs/F .

Note that Gm(F ) embeds in GU(b, a) and ν(Gm) = NF/F0
. We shall denote by

Na,s the unipotent of Pb,a,s and by Z(Na,s) its center. This center can be explicitly
written as 


1 0 n
0 1 0
0 0 1


 , n = wsn

∗ws, n ∈ Ms.

We have an an action of GLs on Z(Na,s) induced by conjugation inside GU(a, b):
g.n = ws(g

−1)∗wsng
−1.

In this case we denote by G the algebraic group over Z

G(A) = {g ∈ GLa+b(A⊗Z OF )|g
∗ιb,ag = ν(g)ιb,a, ν(g) ∈ A} .

Remark 1.1. We are using a quite uncommon definition of symplectic and unitary
groups (using the longest Weyl element rather than the identity matrix) but this
makes the Hodge-Tate map equivariant for the action of GLb ×GLa.

If we want to specify that we are in the situation considered in this Subsection
we will say ‘in the unitary case’. It corresponds to case (A) of [Bra15].

1.2. Shimura varieties and they compactification. Fix a or a, b and let G
be as in the previous section. For each 0 ≤ s ≤ a we shall write Gs for the
corresponding group associated with GSp2a−2s or GU(b− s, a− s); according if G
is symplectic or unitary. Let H be a compact open subgroup of G(AQ,f ).

Assumption 1.2. We shall assume that H is neat, in the terminology of [Lan13,
1.4.1.8].

Associated with G and H comes a moduli problem for abelian scheme which, un-
der the assumption of neatness, is representable by a quasi projective scheme SG(H)
defined over a number field K. We have a minimal (or Baily–Borel) compactifi-
cation S∗

G(H) and we choose one and for all a smooth toroidal compactification
Stor
G (H) [Lan13]. We shall denote by π the morphism from Stor

G (H) to S∗
G(H). For

0 ≤ s ≤ a we define the set of cusp label of genus s

Cs(H) :=(Gs(AQ,f)×GL(Λb,a,s))Na,s(AQ,f ) \G(AQ,f )/H

(resp. Cs(H) :=(Gs(AQ,f)×GL(Λa,s))Na,s(AQ,f ) \G(AQ,f )/H).

This is a finite set and we shall denote by [γ] a generic element of this double
quotient. We shall write

H[γ] := γHγ−1 ∩Gs(AQ,f)
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where we see Gs as a component of the Levi of the parabolic Pb,a,s (resp. Pa,s) of
G. We can then define a stratification of S∗

G(H) as follows

S∗
G(H) =

a⊔

s=0

⊔

[γ]∈Cs(H)

SGs(H[γ]).

If s = 0, C0 consists of SG(H). For s = a we obtain compact Shimura varieties.

We want to explicit the stalk of the structural sheaf of S∗
G(H). This will be

useful to define the Fourier–Jacobi expansion of automorphic forms.
We begin with the unitary case. We consider the abelian scheme Z[γ] defined

in [Wan15, §2.6]. Let N[γ] := H[γ] ∩ Z(Na,s)(Q); this group can be identified with
a lattice in the group of s × s Hermitian matrices with F coefficients. Indeed,
for each n we can define a unique Hermitian paring (y, y′) 7→ bn(y, y

′) so that
TrF/F0

(bn(y, y
′)) = 〈y(n− 1), y′〉s (where 〈 , 〉s is the Hermitian form on Ys × Ys

defined before) and consequently a unique s× s Hermitian matrix. Similarly in the
symplectic case.
We define S[γ] := HomZ(N[γ],Z) which, under the above identification, is a lattice
in the set of symmetric matrices. To each element h ∈ S[γ] we can associate L(h), a

Gm-torsor on Z[γ]. We shall denote by S+
[γ] the subset of totally non-negative (with

respect to the embeddings of F0 in R) elements.
Let us denote by Γ[γ] := GL(Ys)∩γHγ−1. This group acts on H+

[γ] via the following

formula

g.h = g−1hws(g
−1)∗ws.

We now deal with the symplectic case. We have the abelian scheme Z[γ]. Let
N[γ] := H[γ] ∩ Z(Na,s)(Q); this group can be identified with a lattice in the group
of symmetric s× s matrices with F0 coefficients.
We define S[γ] := HomZ(N[γ],Z) which, under the above identification, is a lattice
in the set of symmetric matrices. To each element h ∈ S[γ] we can associate L(h),

a Gm-torsor on Z[γ]. We shall denote by S+
[γ] the subset of totally non-negative

elements.
Let us denote by Γ[γ] := GL(Ys)∩γHγ−1. This group acts on H+

[γ] via the following

formula

g.h = wt
sgwshg.

Proposition 1.3. Let x be a closed Q-point of SGs(H[γ]). The strict Henselian
completion of the stalk of OS∗

G(H) is isomorphic to




∑

h∈S+
[γ]

a(h)qh | a(h) ∈ H0(Z[γ],x,L(h))





Γ[γ]

,

where Z[γ],x is the fiber of π at x.

Remark 1.4. Note that g ∈ Γ[γ] sends H0(Z[γ],L(h)) into H0(Z[γ],L(g.h)). If

Γ[γ](h) denotes the stabilizer of h in Γ[γ], the action of Γ[γ](h) on H0(Z[γ],L(h)) is
trivial (see [SU14, Lemma 5.1]).

1.3. Algebraic representations of GLa+b. A the beginning of this subsection
we assume for simplicity that F0 = Q. Consider GLb ×GLa /Z with b ≥ a; let
Bb be the Borel subgroup of upper triangular matrices, Tb the split torus and Nb

the unipotent part. Let Bo
a be the Borel subgroup of lower triangular matrices,
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Ta the split torus and No
a the unipotent part. We shall denote by wb,a the ma-

trix

(
wb 0
0 wa

)
which represents the longest Weyl element for GLb ×GLa. Let

k = (k1, . . . , kb, kb+1, . . . , ka+b) be a weight of Tb × Ta and consider the algebraic
induction Lk which, for each Z-algebra R, is

Lk(R) := {f : R[GLb ×GLa] → R|f(gnt) = k(t)f(g)∀t ∈ Tb × Ta, n ∈ Nb ×No
a} ,

where k(t1, . . . , tb, tb+1, . . . , ta+b) = tk1
1 · · · tkb

b t
kb+1

b+1 · · · t
ka+b

a+b . It is a representation

of GLb ×GLa via g.f(g′) = f(g−1g′). We shall sometimes write ρk to denote this
representation.
We say that the weight is dominant (w.r.t. Nb ×No

a ) if k1 ≥ . . . ≥ kb ≥ −kb+1 ≥
. . . ≥ −ka+b.

In the symplectic case, we consider GLa with the Borel Ba subgroup of upper
triangular matrices with its split torus Ta and unipotent radical Na. For any weight
k we define the space

Lk(R) := {f : R[GLa] → R|f(gnt) = k(t)f(g)∀t ∈ Ta, Na} .

A weight is said to be dominant (w.r.t. Na) if k1 ≥ . . . ≥ ka.
One can extend all these definition to the case F0 6= Q just considering the

Weil restriction functor. In particular we have the representation Lk in general.
It is an algebraic representations of ResOF0/Z GLb ×GLa that is dominant w.r.t.

ResOF0/ZNb × No
a . In this context a weight will be an element of Z[Σ]

b+a
, being

Σ = Hom(F0,C).

1.4. Algebraic automorphic forms. Consider G and H as before. We have a
universal abelian variety A = (A, λ, ι, η) with PEL structure and a morphism

ξ : A → SG(H).

We can extend A to a semi-abelian variety G such that ξ too extends to

ξ : G → Stor
G (H).

Let us denote by e the unit section of ξ and by ω the sheaf e∗ΩG/Stor
G (H).

In the symplectic case, we have a decomposition

ω ∼=
⊕

σ∈Σ

ωσ

and we define E to be

E ∼=
⊕

Σ

Isom(Oa
Stor
G (H), ωσ).

This defines an (algebraic) left GLa-torsor, where GLa acts on Oa
Stor
G (H) on the right.

The sheaf of weight k automorphic forms is then

ωk = E
ResOF0

/ ZNa [−wak].

Locally for the Zariski topology, this sheaf is isomorphic to L−wak; indeed we have
also

ωk = E ×
ResOF0

GLa L−wak.

For the unitary case, fix a CM type (Σ,Σc) for (F0, F ); over F we have a decom-
position

ω ∼=
⊕

σ∈Σ

ωσ ⊕ ωcσ
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and we define E = E+ ⊕ E−, where

E+ ∼=
⊕

Σ

Isom(Oa
Stor
G (H), ωσ),

E− ∼=
⊕

Σc

Isom(Ob
Stor
G (H), ωσ).

This defines an (algebraic) GLb ×GLa-torsor. The sheaf of weight k automorphic
forms is then

ωk = E
ResOF0

/ ZNb×No
a [−wb,ak].

Locally for the Zariski topology, this sheaf is isomorphic to Lk and as before we
have

ωk = E ×
ResOF0

GLb ×GLa L−wb,ak.

Definition 1.5. For any Z-algebra R we define the space of weight k modular forms
as

Mk(H, R) := H0(S∗
G(H)/R, π∗ω

k) = H0(Stor
G (H)/R, ω

k).

Remark 1.6. If the boundary of S∗
G(H) is of codimension strictly bigger than one,

than Mk(H, R) = H0(SG(H)/R, ω
k).

We have the following theorem about Fourier–Jacobi expansion [Lan12, Section
5.3];

Theorem 1.7. Let x be a closed Q-point of SGs(H[γ]). The strict Henselian com-

pletion of the stalk of π∗ω
k is isomorphic to





∑

h∈H+
[γ]

a(h)qh | a(h) ∈ H0(Z[γ],x,L(h)⊗ ωk)





Γ[γ]

where invariance by Γ[γ] means a(h) = ρk(γ
−1gγ)a(g.h), the action g.h is the one

defined before Proposition 1.3.

1.5. The Siegel morphism. In this section we shall study under which condition
on the weight k we can have a non-cuspidal form f of that weight. This section is
highly influenced by the work [Wei83].

Let ι[γ] : SGs(H[γ]) → S∗
G(H) be the component of the boundary of the minimal

compactification associated with the cusp label [γ]. We define the Siegel operator

Φ[γ](f) = f|SGs
(H[γ])

∈ H0(SGs(H[γ]), ι
∗
[γ]π∗ω

k).

In the symplectic case, for a weight k = (k1, . . . , ka) we define k′ = (k1, . . . , ka−s),
while in the unitary case, for a weight k = (k1, . . . , kb, kb+1, . . . , ka+b) we define
k′ = (k1, . . . , kb−s, kb+1, . . . , ka+b−s). The following lemma is very important.

Lemma 1.8. Let R be a subfield of C. If f ∈ Mk(H, R) then

Φ[γ](f) ∈ Mk′ (H[γ], R).

Proof. Using the comparison of algebraic and analytic Fourier–Jacobi expansion
[Lan12], we can rephrase the above proof in analytic terms. This has been done, for
example, for Siegel forms in [vdG08, §5] and for unitary forms in [Hsi14, §3.6]. �

We give two key definitions:
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Definition 1.9. In the symplectic case, we say that a weight has corank q if

q = | {1 ≤ i ≤ a|ki = ka} |

and ka is parallel.
In the unitary case, we say that a weight k has corank 1 ≤ q ≤ a if kb − kb+1 is

parallel and

q = | {1 ≤ i ≤ b|ki = kb} | = | {b+ 1 ≤ i ≤ a+ b|ki = kb+1} |.

If there is no q for which k satisfies the above conditions, we say that k has corank
0.

Definition 1.10. We say that 0 6= f ∈ Mk(H, R) has corank q if q is the minimal
integer such that

⊕
[γ]∈Cq+1(H) Φ[γ](f) = 0. (We assume Ca+1 to be empty.)

We shall write Mq
k(H, R) for the subspace of Mk(H, R) of forms of corank at

most q.
We define J q to be the sheaf of ideals associated with

a⊔

s=q+1

⊔

[γ]∈Cs(H)

SGs(H[γ]) →֒ SG(H).

We have the following proposition;

Proposition 1.11. Let x be a closed Q-point of SGs(H[γ]). The strict Henselian

completion of the stalk of π∗ω
k ⊗ J q is isomorphic to

∏

[h]∈H+
[γ]

/Γ[γ],rk(h)≥s−q

H0(Z[γ],x,L(h)⊗ ωk)
Γ[γ](h)

,

where Γ[γ](h) is the subgroup of Γ[γ] which stabilizes h.

Proof. Indeed, the maximal ideal of OS∗
G(H),x is generated by the qh’s and the

elements which generates the ideal J q
xOS∗

G(H),x are exactly the q in the sum above.
Hence

(π∗ω
k ⊗ J q)

∧

x =





∑

h∈H+
[γ]

,rk(h)≥s−q

a(h)qh | a(h) ∈ H0(Z[γ],x,L(h)⊗ ωk)





Γ[γ]

.

�

We can now give the main theorem of this section, which is a generalization of
[Wei83, Satz 2]:

Theorem 1.12. Let R be a subfield of C. If 0 6= f ∈ Mk(H, R) then cork(k) ≥
cork(f).

Proof. If a form has at least corank q than there exists at at least a cusp label [γ] in
Ca(H) (so of minimal genus) such that the Fourier–Jacobi expansion at that cusp
has at least a non zero coefficient a(h), for h a matrix of rank a− q. In particular,

this means that the space of invariants Lk(Q)
Γ[γ](h)

is not zero. Let us calculate
this space.

We know that we can write, in a suitable basis, h =

(
h′ 0
0 0

)
, where h′ is a

matrix of size a− q × a− q and maximal rank. We consider the unitary case now,
the symplectic case being similar and easier. It is immediate to see that all matrices

in GLa(F ) of the form

(
Ida−q m
0 g′

)
, with g′ in GLq(F ) and m ∈ Ma−q,q(F ),

stabilizes h. Let Na,q be the unipotent part of parabolic subgroup of Pb,a,q; the
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Q-points of the Levi of Pb,a,q are (GLq ×GLb−q ×GLa−q ×GLq)(F ).
Using the theory of higher weights (we are over a characteristic zero field), we

have that L
Na,q

−w0k
decomposes, as (GLq ×(GLb−q ×GLa−q) × GLq)(F )-module, as

the irreducible representation

L(−kb,...,−kb−q) ⊗ L(k1,...,kb−q,kb+q+1,...,ka+b) ⊗ L(−kb+1,...,−kb+q).

If we intersect GLq(F )× Ida+b−2q ×GLq(F ) with Γ[γ] and we obtain a subgroup of
finite order in GLq(OF ) (which, we recall, is embedded as the matrices




w0(g
−1)∗w0 0 0
0 1 0
0 0 g




inside G).
This group is not Zariski dense in GLq, due to the fact that it contains only

matrices whose determinant is a unit in OF , but it is not to far from being it.
Indeed, let (−kb, . . . ,−kb−q) × (−kb+1, . . . ,−kb+q) an algebraic characters whose
kernel contains GLq ×GLq(OF0) (so that the space of invariants is not zero). Firstly,
we want the representation to factor through the determinant, hence kb = . . . =
kb−q+1 and kb+1 = . . . = kb+q. Then we are left with the representation of GL1,
explicitly Lkb

⊗ L−kb+1
, hence kb − kb+1 must be a parallel weight in Z[Σ].

These are exactly the condition given by the theorem.

Note that, if not zero, then L−w0k(Q)
Γ[γ]

is isomorphic to the representation
L(k1,...,kb−q,kb+q+1,...,ka+b). �

Remark 1.13. Note that over a general basis (for example in characteristic p)
the theorem is not true (for example, non parallel weight which are parallel modulo
p can admit non-cuspidal forms). This was already known to Hida (see [Hid04,
Remark 4.8]).

We conclude with the following proposition that gives an algebraic description
of Φ[γ]. Its proof is clearly inspired by [SU14, Proposition 5.7] and its version in
families will be a key ingredient in the construction of non-cuspidal families.

Proposition 1.14. Let R be a subfield of C. For a weight k we let k′ be as in the
beginning of the section. Suppose q = cork(k), we have the following exact sequence
of sheaves on S∗

G(H)/R:

0 → π∗ω
k ⊗ J 0 → π∗ω

k ⊗ J q →
⊕

C1

ι[γ],∗π[γ],∗ω
k′

⊗ J q−1
[γ] → 0,

where ι[γ] is the closed inclusion of S∗
G′(H[γ]) into S∗

G(H) and π[γ] (resp. J s−1
[γ] ) is

defined as in 1.2 (resp. before 1.11) for SG′(H[γ]).

Proof. We shall check that the sequence is exact on the stalks using Proposi-
tion 1.11. Fix one cusp label γ ∈ C1 and suppose that we know the isomorphism:

ι∗[γ] Im
∼= π[γ],∗ω

k′

⊗OS∗
Gs

(H[γ])
J q−1
[γ] .

Then it is immediate to see that ι[γ],∗ι
∗
[γ] Im

∼= Im as Supp(Im) ⊂ ⊔
C1
S∗
G1

(H[γ]).

Let x be a point in a cusp label [γ1] ∈ Cs(H), and let [γ2] ∈ Cs−1(H[γ]) be the only
genus s− 1 cusp label to which x belongs. We have

(π∗ωk ⊗ J 0)x =
∏

[h]∈H+
[γ1]

/Γ[γ1],rk(h)≥s

H0(Z[γ1],x,L(h)⊗ ωk)
Γ[γ1](h)

,

(π∗ωk ⊗ J q)x =
∏

[h]∈H+
[γ1]

/Γ[γ1],rk(h)≥s−q

H0(Z[γ1],x,L(h)⊗ ωk)
Γ[γ1](h)

.
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The image is hence
∏

[h]∈H+
[γ1]

/Γ[γ1],s−q≤r(h)<s

H0(Z[γ1],x,L(h)⊗ ωk)
Γ[γ1](h)

.

By construction of the toroidal compactification, the injection H+
[γ2]

→֒ H+
[γ1]

induces an equivalence between H+
[γ2]

/Γ[γ2] and the matrices of rank smaller than

s of H+
[γ1]

/Γ[γ1] of the form h =

(
h′ 0
0 0

)
(in a properly chosen basis, depending

only on the cusp label [γ]). The description of π[γ],∗ωk′ ⊗OS∗
Gs

(H[γ])
J q−1
[γ] given by

Proposition 1.11 tell us that the stalk (π[γ],∗ωk′ ⊗OS∗
Gs

(H[γ])
J q−1
[γ] )

x
is

∏

[h′]∈H+
[γ2]

/Γ[γ2],s−1≥r(h′)≥s−1−(q−1)

H0(Z[γ2],x,L(h
′)⊗ ωk′

)
Γ[γ2](h

′)
.

Let ζ : Z[γ1] → Z[γ2] be the natural projection. The proposition will follow if we
know

ζ∗
(
(L(h′)⊗ ωk′

)
Γ[γ2](h

′)
)

∼= (L(h) ⊗ ωk′

)
Γ[γ1](h)

.

Indeed, if this holds, the projection formula, the equality ζ∗L(h) = L(h′) [SU14,
Lemma 5.1] and the fact that ζ∗OZ[γ1]

= OZ[γ2]
[Lan13, Remark 3.1.2.6] imply then

(L(h′)⊗ ωk′

)
Γ[γ2](h

′) ∼= ζ∗

(
(L(h)⊗ ωk′

)
Γ[γ1](h)

)

and this gives the desired claim on global sections. We deal only with symplectic
case, being the unitary case similar. Unfolding the definitions (in particular, re-
member that we apply the longest element of the Weyl group to our representation)
we see that

Γ[γ1](h) ⊂








g 0 0 0
n 1a−s 0 0
0 0 1a−s n
0 0 0 ν(g′)wt

sg
−1ws


 |g =

(
g′′ 0
n′′ 1s−r(h)

)




.

and similarly for Γ[γ2](h
′). As ωk is étale locally isomorphic to L−w0k, the same

calculation performed in the proof of Theorem 1.12 combined with the corank
condition ensure us that the two space of invariants are the same. This allows us
to conclude. �

Remark 1.15. Note again that over a general basis the proposition is not neces-
sarily true.

In particular, note that we have

Mq
k(H, R) = H0(SG(H)/R, ω

k ⊗ J q).

We conclude observing that all the results of the section can be generalized to
arbitrary Shimura varieties of type A or C, with the only inconvenience of a less
explicit description of the conditions on the weights and more cumbersome notation.

2. p-adic section

Let p > 2 be a rational prime number, fixed from now on. We now move on
to p-adic modular forms. Let Q be the algebraic closure of Q in C and let Qp be

an algebraic closure of Qp. We denote with Cp the completion of Qp. We fix once

and for all an embedding Q →֒ Qp. We assume that p is unramified in F0 and that
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the ordinary locus of our Shimura variety it is not empty (it then automatically
dense and it is always true in the symplectic case). In the unitary case we moreover
assume that each prime above p in OF0 splits completely in OF . We are hence in
a situation considered in [Bra15].

We let K denote a finite extension of Qp, that we assume to be ‘sufficiently big’
(for example it must contain the image of all the embeddings F →֒ Cp). This is in
contrast with the previous notation for K (it was a number field of definition for
the Shimura varieties), but it should not cause any confusion. All our objects will
be defined over K or over OK , even if the notation does not suggest it. We assume
that the compact open subgroup H ⊂ G(AF0,f) is of the form H = HpG(Zp), where

Hp ⊂ G(Ẑp) is a (sufficiently small) compact open subgroup. In this way SG(H)
and his compactifications have a natural model, denoted with the same symbol,
over OK .

Let p =
∏k

i=1 ̟i be the decomposition of p in OF0 and let Oi be the completion
of OF0 with respect to (̟i) (here ̟i is a fixed uniformizer of Oi). We have OF0,p

∼=∏k
i=1 Oi. We set di := [Fi : Qp], where Fi := Frac(Oi). From now on, we assume

that K is big enough to contain the image of all embeddings F →֒ Cp. In this
section A will be an abelian scheme given by the moduli problem associated to Y .
We assume that A is defined over a finite extension of OK , so it comes from a rigid
point of Yrig.

Let Stor
G (H) be the formal completion of Stor

G (H) along its special fiber and let

S
tor,rig
G (H) be the rigid fiber of Stor

G (H). As in [Bra15] we have the Hodge height
function

Hdg : Stor,rig
G (H) → [0, 1]k

x 7→ (Hdg(x)i)i

If v = (vi)i ∈ [0, 1]k we set

S
tor,rig
G (H)(v) :=

{
x ∈ S

tor,rig
G (H) such that Hdg(x)i ≤ vi for all i

}
.

We assume that each vi is small enough in the sequel, as in [Bra15, Section 1]. In
particular we have the tower of formal schemes

Stor
G (Hpn)(v) → Stor

G (Hpn)
Ĩw
(v) → Stor

G (Hpn)Iw(v) → Stor
G (H)(v).

We adapt all the notation of [Bra15], everything should be clear from the context.
For example, we will work with the weight space Wa in the symplectic case and
Wb,a in the unitary case. Recall that it is the rigid analytic space associated to
the completed group algebra OKJTa(Zp)K or OKJTb ×Ta(Zp)K. As in [Bra15, Sec-
tion 2], we have, for any tuple of non-negative rational numbers w, the affinoid
subdomain Wa(w) ⊂ Wa (and Wb,a(w) ⊂ Wb,a). Here w = (w±)ki=1 in the unitary
case and w = (w)ki=1 in the symplectic case. Let U ⊂ Wa or U ⊂ Wb,a be an
affinoid and let χun

U the associated universal character. We will denote the usual
involution on the weight space, defined using the longest element of the Weil group,
by χ 7→ −w0χ

Let w be a tuple of rational numbers such that χun is w-analytic, so U ⊂ Wa(w)
or U ⊂ Wb,a(w). Let v be adapted to w. One of the main construction of [Bra15] is

the sheaf ω
†χun

U
v,w over Stor,rig

G (Hpn)Iw(v)×U whose global sections are by definition
the families of (v-overconvergent and w-analytic) modular forms parametrized by
U , of Iwahoric level. We consider also the rigid spaces Wa(w)

◦ and Wb,a(w)
◦ and

their formal models Wa(w)
◦ and Wb,a(w)

◦ introduced in [Bra15, Section 5.2]. It
is the correct weight space to consider when working with modular forms of level

Hpn. If U ⊂ Wa(w)
◦ or U ⊂ Wb,a(w)

◦ is an affine, we have the sheaf w
†χun

U
v,w over
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Stor
G (Hpn)(v)×U, where n depends on U, and also its rigid fiber ω

†χun
U

v,w . The global

sections of ω
†χun

U
v,w are by definition the families of (v-overconvergent and w-analytic)

modular forms parametrized by U , of level Hpn. Let U be the rigid fiber of U.
If U is the image of a given affinoid V ⊂ Wa(w) under the natural morphism
Wa(w) → Wa(w)

◦ (and similarly in the unitary case), we can recover the sheaf

ω
†χun

V
v,w from ω

†χun
U

v,w . For technical reasons, we will start working with w
†χun

U
v,w and

ω
†χun

U
v,w

1.
We are going to describe the stalks of the projection to the minimal compactifi-

cation of ω†χ
v,w.

2.1. Analytic induction and Fourier expansion. We first of all need to rewrite
Subsection 1.3 in the p-adic setting. Thanks to our assumption that p is unramified
in OF0 we can be completely explicit.

We consider the algebraic group GLO over Zp defined, in the unitary and sym-
plectic case respectively, by

GLO :=

k∏

i=1

ResOi/Zp
(GLb ×GLa) and GLO :=

k∏

i=1

ResOi/ Zp
GLa .

We also have the subgroup TO defined by

TO :=

k∏

i=1

ResOi/ Zp
(Gb

m ×Ga
m) and TO :=

k∏

i=1

ResOi/ Zp
Ga

m.

Over K, we have that TO is a split maximal torus of GLO. We consider the
Borel subgroup BO given, in the unitary case, by couples of matrices whose first
component is upper triangular and whose second component is lower triangular (in

the symplectic case we consider upper triangular matrices). We will write UO for the

unipotent radical of BO. We write BO,op and UO,op for the opposite subgroups of
BO,op and UO,op. Let IO be the Iwahori subgroup of GLO(Zp) given, in the unitary
case, by couples of matrices whose first component has upper triangular reduction
and whose second component has lower triangular reduction (in the symplectic case

we consider matrices with upper triangular reduction). Let NO,op be the subgroup

of UO,op(Zp) given by those matrices that reduce to the identity modulo p. We
have an isomorphism of groups

NO,op×BO(Zp) → IO

given by the Iwahori decomposition.
We use the following identification, in the unitary and symplectic case respec-

tively.

NO,op =

k∏

i=1

(
pO

b(b−1)
2

i × pO
a(a−1)

2

i

)
⊂

k∏

i=1

(
A

b(b−1)
2 ,rig × A

a(a−1)
2 ,rig

)
,

NO,op =

k∏

i=1

pO
a(a−1)

2

i ⊂

k∏

i=1

A
a(a−1)

2 ,rig.

1To be precise the point is that the projection to the minimal compactification of w
†χun

U
v,w is

a formal Banach sheaf in the sense of [AIP15, Appendix], while the same is not true for w
†χun

V
v,w .

This problem is already present in the cuspidal Siegel case considered in [AIP15].
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Given w, a tuple of positive real numbers as in the definition of the weight spaces,
we define in the unitary and symplectic case respectively

NO,op
w :=

⋃

(x±

i )∈NO,op

k∏

i=1

(
B(x+

i , p
−w+

i )×B(x−
i , p

−w−

i )
)
,

NO,op
w :=

⋃

(xi)∈NO,op

k∏

i=1

B(xi, p
−wi),

where B(x, p−w) is the ball of center x and radius p−w inside the relevant affine
rigid space.

We say that a function f : NO,op → K is w-analytic if it is the restriction of
an analytic function f : NO,op

w → K. We write Fw−an(NO,op,K) for the set of

w-analytic functions. If w±
i = 1 for all i and f is w-analytic, we simply say that f

is analytic and we write Fan(NO,op,K) for the set of analytic functions. A function

is locally analytic if it is w-analytic for some w and we write F loc-an(NO,op,K) for
the set of locally analytic functions.

Let now χ be a w-analytic character in Wb,a(w)
◦(K) or Wa(w)

◦(K). We set

Lw−an,◦
χ := {f : IO → K such that f(it) = χ(t)f(i)

for all (i, t) ∈ IO ×TO
w and f|NO,op

w
∈ Fw−an(NO,op,K)},

where TO
w is the torus given by (with the obvious meaning of R/pwR)

TO
w (R) = ker(TO(R) → TO(R/pw)).

The definition of the spaces Lan,◦
χ and Lloc-an,◦

χ is similar. They all are representa-

tions of IO via (i ⋆ f)(x) = f(xi). If χ is a w-analytic character in Wb,a(w)(K) or

Wa(w)(K) we have the spaces L
w−an
χ , Lan

χ , and Lloc-an
χ defined using the action of

the whole TO (or, that is the same, the action of BO).
Let now U = Spm(A) be an open affinoid in Wb,a(w)

◦ or Wa(w)
◦, with universal

character χun
U . We define

L
w−an,◦
χun
U

:= {f : IO → A such that f(it) = χun
U (t)f(i)

for all (i, t) ∈ IO ×TO
w and f|NO,op

w
∈ Fw−an(NO,op, A)},

with the obvious meaning of Fw−an(NO,op, A). All the space defined above have a
relative version over U , and we will use the corresponding notation.

Notation. All our (algebraic) groups have been defined starting with lattices of
rank a or a and b. We can generalize this definition to other ranks. If we want to
stress the ranks we will add certain index. For example GLO,b−1,a−1. These will be
the relevant groups when we will consider the cusps of the minimal compactification
of our Shimura variety.

We have the following

Proposition 2.1. Let χ be a w-analytic character in Wb,a(w)
◦(K) or Wa(w)

◦(K).

Locally for the étale topology on S
tor,rig
G (Hpn)(v) the sheaf ω†χ

v,w is isomorphic to

L
w−an,◦
−w0χ . This isomorphism respects the action of IO. An analogous result holds if χ

is in Wb,a(w)(K) or Wa(w)(K), considering the étale topology on S
tor,rig
G (H)Iw(v).

Similarly, if U is an open affinoid in Wb,a(w)
◦ or Wa(w)

◦, with universal character

χun
U , the sheaf ω

†χun
U

v,w is étale locally isomorphic to L
w−an,◦
−w0χun

U
. Analogously for Wb,a(w)

or Wa(w).
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The Hasse invariants descend to the minimal compactification, allowing us to
define the space S∗

G(H)(v). For any s = 0, . . . , a and for any cusp label [γ] ∈ Cs(H)
we have the cusp SGs(H[γ])(v) of S

∗
G(H)(v).

We still denote with J q the various sheaves of ideals given by the cusps of
S

∗,rig
G (H)(v). After inverting p there is no problem in adapting the definition of

Cs(H), H+
[γ], Γ[γ] etc to the case of level Hpn. Moreover we also have the space

S
∗,rig
G (Hpn)(v), defined using the analytification of the Shimura variety overK, and

a morphism ξ : S∗,rig
G (Hpn)(v) → S

∗,rig
G (H)(v). We write η : Stor,rig

G (Hpn)(v) →

S
∗,rig
G (H)(v) for the morphism induced by ξ. We describe the stalks of the sheaf

η∗ω
†χ
v,w.

Proposition 2.2. Let U be an open affinoid in Wb,a(w)
◦ or Wa(w)

◦, with universal
character χun

U . Let [γ] ∈ Cs(Hpn) be a cusp label (for level Hpn) and let x be a

rigid-point of ξ(Srig
Gs

(Hpn[γ])(v)) defined over Qp. The strict Henselian completion

of the stalk of η∗ω
†χun

U
v,w ⊗J q is isomorphic to a finite product, over the fiber ξ−1(x),

of
∏

[h]∈H+
[γ]

/Γ[γ],rk(h)≥s−q

H0(Z[γ],x,L(h)⊗ ω†χun
U

v,w )
Γ[γ](h)

,

where Γ[γ](h) is the subgroup of Γ[γ] which stabilizes h. An analogous result holds
if U is in Wb,a(w) or Wa(w).

Proof. Taking into account that the morphism ξ : S∗,rig
G (Hpn)(v) → S

∗,rig
G (H)(v)

is finite étale, the proof is the same as for Proposition 1.11. �

Remark 2.3. In the above proposition we have described the stalk of our sheaves
at a geometric rigid-point. In general, the topos of a rigid space X has not enough
points, so we can not check that a given morphism of sheaves f : F → G is an
isomorphism looking at stalks. On the other hand, let us suppose that F and
G are sheaves of OX -modules and that the induced morphism between the stalks
fx : Fx → Gx is an isomorphism for every rigid-point x ∈ X . Then, looking at the
annihilator ideal of the kernel and the cokernel of f it is easy to show that f is
indeed an isomorphism.

2.2. p-adic Siegel morphism. We now study the Siegel morphism for families of
p-adic modular forms.

Let Spm(A) ⊂ Wa(w)
◦ or Spm(A) ⊂ Wb,a(w)

◦ be a fixed affinoid admissible
open of the weight space. Let q = 0, . . . , a be an integer. We have the closed
immersion

a⋃

s=q+1

⋃

[γ]∈Cs

S
rig
Gs

(H[γ])(v)× Spm(A) →֒ S
∗,rig
G (H)(v)× Spm(A).

We will write Iq for the corresponding sheaf of ideals. We have the exact sequence

(2.1) 0 → I0 → Iq →
⊕

[γ]∈C1

ι[γ],∗I
q−1
[γ] → 0

where ι[γ] : S
∗,rig
Gs

(H[γ])(v)× Spm(A) → S
∗,rig
G (H)(v)× Spm(A) is the natural mor-

phism and Iq−1
[γ] has the same definition as Iq−1, but for the Shimura variety

S
∗,rig
Gs

(H[γ])(v).
With a little abuse of notation we write η for the morphism

η : Stor,rig
G (Hpn)(v)× Spm(A) → S

∗,rig
G (H)(v)× Spm(A).
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If q1 and q2 are integers between 0 and a with q2 < q1 and let [γ] ∈ Cq2 . We have
a canonical isomorphism

ι∗[γ]I
q1 ∼= Iq1−q2−1

[γ] .

Definition 2.4. Let U = Spm(A) and q be as above. Let χun
U be the universal

character associated to U . We define

Mq
χun
U
(Hpn,K) = Mq

χun
U
(Hpn,K, v, w) := H0(S∗,rig

G (H)(v)× Spm(A), η∗ω
†χun

U
v,w ⊗ Iq).

Given a modular form f in Ma
χun
U
(Hpn,K) (that is just a global section of ω

†χun
U

v,w )

with f 6= 0, we define its corank cork(f) as the smallest integer q such that f ∈
Mq

χun
U
(Hpn,K).

Remark 2.5. Let U = Spm(A) be as above. We write D for the boundary of

S
tor,rig
G (Hpn)(v) × Spm(A). A calculation using Fourier–Jacobi expansion shows

that

η∗

(
ω†χun

U
v,w (−D)

)
= η∗ω

†χun
U

v,w ⊗ I0,

so M0
χun(Hpn,K) is the usual space of cuspidal forms (of level Hpn).

Given a positive integer s = 1, . . . , a and a weight χ (not necessarily integral)
we define the notion of χ being of corank s in the obvious way, exactly as in the
case of integral weights. This gives us the closed subspaces Wa(w)

◦,s ⊆ Wa(w)
◦

and Wa,b(w)
◦,s ⊆ Wb,a(w)

◦ given by weights of corank at least s. It is convenient
to set Wa(w)

◦,0 = Wa(w)
◦ and Wb,a(w)

◦,0 = Wb,a(w)
◦. If s > 0, we have that

Wa(w)
◦,s and Wb,a(w)

◦,s are weight spaces in d(a − s + 1) variables (recall that
d is the degree of the relevant totally real field). The map k 7→ k′ defined at the
beginning of Subsection 1.5 extends to a morphism ·′ : Wa(w)

◦,s → Wa−1(w)
◦,s−1

or ·′ : Wb,a(w)
◦,s → Wb−1,a−1(w)

◦,s−1. We will use an analogous notation for the
weight spaces Wa(w)

s ⊆ Wa(w) and Wb,a(w)
◦,s ⊆ Wb,a(w) of level H.

Let U = Spm(A) be an affinoid admissible open of Wa(w)
◦,s or Wa,b(w)

◦,s, with

corresponding universal character χun
U . Over S

tor,rig
G (Hpn)(v) × Spm(A) we can

define the sheaf ω
†χun

U
v,w . All the results proved for the modular sheaves stay true for

ω
†χun

U
v,w . In particular we have the formal model w

†χun
U

v,w , where U is a formal model of
U .

Let s = 1, . . . , a be a positive integer and let [γ] ∈ C1 be a cusp label. Let
U = Spm(A) be an affinoid admissible open of Wa(w)

◦,s or Wb,a(w)
◦,s, with cor-

responding universal character χun
U . We write V = Spm(B), with universal char-

acter χun
V , for the affinoid admissible open of Wa−1(w)

◦,s−1 or Wb−1,a−1(w)
◦,s−1

given by the image of U via χ 7→ χ′. We write ι[γ] : S
∗,rig
G1

(H[γ])(v) × Spm(A) →

S
∗,rig
G (H)(v) × Spm(A) for the natural morphism. We let ηA and ηB be the mor-

phisms

ηA : Stor,rig
G (H)(v)× Spm(A) → S

∗,rig
G (H)(v)× Spm(A),

ηB : Stor,rig
G1

(H[γ])(v)× Spm(B) → S
∗,rig
G1

(H[γ])(v)× Spm(B)

2.2.1. Some representation theory. Before proving the key proposition on the over-
convergent Siegel morphism, we need to generalize certain results of representation
theory of GL to analytic representations of the Iwahori subgroup. First of all some
notation.

Let 0 ≤ r ≤ a and define SO,r,op to be, in the unitary case, the set of couples
of matrices in NO,op such that the non-zero elements of the first component are in
the lower left (b− r)× r-block and the non-zero elements of the second component

are in upper right (a− r)× r-block. The definition of SO,r,op in the symplectic case



18 RICCARDO BRASCA AND GIOVANNI ROSSO

is similar considering the lower r × a− r-block. Recall the various notation, as for
example TO,b,a and TO,r, introduced before Proposition 2.1.

Lemma 2.6. Let U = Spm(A). In the unitary case, write χun
U as χ1χ2χ3 according

to the decomposition TO,b,a = TO,r ×TO,b−r,a−r ×TO,r, such that each χi is wi-
analytic in the obvious sense. We have then

(L
w−an,◦
χun
U

)
SO,r,op

= L
w1−an,◦
χ1 ⊗A L

w2−an,◦
χ2 ⊗A L

w3−an,◦
χ3

where the right hand side is a representation of IO,r × IO,b−r,a−r × IO,r,op. In
the symplectic case, write χun

U as χ1χ2 according to the decomposition TO,a =

TO,r ×TO,a−r, we have then

(L
w−an,◦
χun
U

)
SO,r,op

= L
w1−an,◦
χ1 ⊗A L

w2−an,◦
χ2

as a representation of IO,r × IO,a−r.

Proof. Consider a function f ∈ Fw−an(NO,op, A). Begin invariant by SO,r,op means
that n ⋆ f = f . In particular n ⋆ f(1) = f(1n) = f(1). Hence the map

(L
w−an,◦
χun
U

)
SO,r,op

→

Fw1−an(NO,r,op, A)×Fw2−an(NO,b−r,a−r,op, A)×Fw3−an(NO,r, A)

is injective and hence surjective for dimension reasons and it respects the action of
IO,r × IO,b−r,a−r × IO,r,op.

The proof in the symplectic case is similar. �

We are now ready to define an study the Siegel morphism.

Proposition 2.7. Let q = 1, . . . , a be an integer with q ≤ s. If q 6= 1 we have a

natural isomorphism of sheaves on S
∗,rig
G1

(H)(v)× Spm(B)

ι∗[γ]

(
ηA,∗ω

†χun
U

v,w ⊗ Iq
)
∼= ηB,∗ω

†χun
V

v,w ⊗ Iq−1
[γ] .

Moreover, we have a natural isomorphism of sheaves on S
∗,rig
G1

(H)(v)× Spm(B)

ι∗[γ]

(
ηA,∗ω

†χun
U

v,w ⊗ I1
)
∼=

(
ηB,∗ω

†χun
V

v,w ⊗ I0
[γ]

)
⊗OB(0,1)B ,

where B(0, 1)B is the closed unit ball of radius 1 over B.

Proof. Because of Remark 2.3 it is enough to compare the stalks of the two sheaves
at any geometric rigid point. Let x ∈ ξ(Srig

Gs
(Hpn[γ])(v)) be such a point. Using the

description of the Fourier–Jacobi expansion given in Proposition 2.2 we can use the
same argument as in the proof of Proposition 1.14. The only thing to notice is that
for each cusp label [γ1] ∈ Cr(H) and h ∈ H+

[γ1]
(notation as in the proof of loc. cit.)

the group Γ[γ1](h) is dense in SO,r,op, which allows one to use Lemma 2.6. The rest
of the proof is the same.

�

Remark 2.8. The reason for the appearance of the tensor product in the case q = 0 is
intuitively the following. Let us suppose for simplicity the we are in the symplectic
case. A p-adic weight χ is of corank 1 is and only if its last component is parallel
and the morphism χ 7→ χ′ forgets this last component. In particular we can recover
from χ′ all the components of χ but the last one, that is parallel: this gives the
extra variable. If q > 1 then we can recover χ from χ′.
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Using the exact sequence (2.1) and Proposition 2.7, we get a morphism, if q > 1,

ηA,∗ω
†χun

U
v,w ⊗ Iq →

⊕

[γ]∈C1

ηB,∗ω
†χun

V
v,w ⊗ Iq−1

[γ]

and a morphism

ηA,∗ω
†χun

U
v,w ⊗ I1 →

⊕

[γ]∈C1

ηB,∗ω
†χun

V
v,w ⊗ I0

[γ] ⊗OB(0,1)B .

Taking global sections we get morphisms

(2.2) Mq
χun
U
(Hpn,K) →

⊕

[γ]∈C1

Mq−1
χun
V
(H[γ]p

n,K)

and

(2.3) M1
χun
U
(Hpn,K) →

⊕

[γ]∈C1

M0
χun
V
(H[γ]p

n,K)⊗B B〈x〉.

These are the so called p-adic Siegel morphisms. We are going to show that they
are surjective.

Proposition 2.9. Let q, Spm(A), and Spm(B), etc be as above. If q > 1 we have
the following exact sequence of sheaves

0 → ηA,∗ω
†χun

U
v,w ⊗ I0 → ηA,∗ω

†χun
U

v,w ⊗ Iq →
⊕

[γ]∈C1

ηB,∗ω
†χun

V
v,w ⊗ Iq−1

[γ] → 0

induced by (2.1). If q = 1 we have an analogous result taking into account the extra
factor OB(0,1)B in the last morphism.

Proof. Taking into account Remark 2.3, this is a computation using Fourier–Jacobi
expansion similar to the case over the complex numbers. �

Let X be a flat, integral, normal, quasi-projective formal scheme over Spf(OK)
that is topologically of finite type and such that its rigid fiber is an affinoid. In the
appendix of [AIP15] the notion of a formal flat Banach sheaf over X is defined. Let
F be such a sheaf. By [AIP15, Section A.2.2] we can attach to F a Banach sheaf F =
Frig on Xrig. We now prove a general results about the vanishing of the cohomology
of a small, formal, and flat Banach sheaf (see [AIP15, Definition A.1.2.1] for the
definition of a small formal Banach sheaf).

Proposition 2.10. Let X and F be as above and suppose moreover that F is small.
Let X := Xrig and F := Frig. Then

H1(X ,F) = 0.

Proof. Recall that the natural morphism from sheaf cohomology to Čech cohomol-
ogy is always (on any site) an isomorphism in degree 1. In particular it is enough
to prove that

Ȟ
1
(X ,F) = 0.

The open covers of X made by affinoids are a base of the topology, in particular we
can prove that

Ȟ
1
({Ui}i∈I ,F) = 0,

where {Ui}i∈I is an open cover of X and each Ui is an affinoid. By quasi-compactness
of X we can assume I to be finite. Taking a finite number of admissible blow-ups
of X we get a formal schemes X̃ such that the cover {Ui}i∈I comes from a cover
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{Ui}i∈I of X̃ made by affine formal schemes. Note that X̃ satisfies the same proper-

ties of X and X̃rig = X . Since F is a flat formal Banach sheaf, we have, by [AIP15,
Lemma A.2.2.2]

F(Ui) = F(Ui)[1/p]

for all i ∈ I. We conclude since, by [AIP15, Theorem A.1.2.2] the Čech complex
associated to {Ui}i∈I is exact. �

The morphism η extends to a morphism between the formal models, denoted
with the same symbol

η : Stor
G (Hpn)(v) → S∗

G(H)(v).

We write I0 for the ideal corresponding to the boundary of S∗
G(H)(v) × U, where

U is a formal model of U .

Corollary 2.11. The p-adic Siegel morphisms (2.3) and (2.2) are surjective.

Proof. Using Proposition 2.9, it is enough to prove that

H1(S∗,rig
G (H)(v), ηA,∗ω

†χun
U

v,w ⊗ I0) = 0.

We have that S∗
G(H)(v) is a flat, integral, normal, quasi-projective formal scheme

over Spf(OK) that is topologically of finite type and such that its rigid fiber is an

affinoid. Moreover η∗w
†χun

U
v,w ⊗ I0 is a flat formal Banach sheaf over S∗

G(H)(v) that
is small by [AIP15, Section 8 and Appendix]. The corollary follows by Proposi-
tion 2.10. �

Let q, s = 1, . . . , a be integers with q ≤ s. Let Spm(A) be an affinoid admissible
open of Wa(w)

◦,s or Wb,a(w)
◦,s with universal character χun

U . Let Spm(B) = V
be the image of U under ·′ and let χun

V be the universal character of V . We have
proved that there is an exact sequence, if q > 1,

0 → M0
χun
U
(Hpn,K) → Mq

χun
U
(Hpn,K) →

⊕

[γ]∈C1

Mq−1
χun
V
(H[γ]p

n,K) → 0

If q = 1 we have the exact sequence

0 → M0
χun
U
(Hpn,K) → M1

χun
U
(Hpn,K) →

⊕

[γ]∈C1

M0
χun
V
(H[γ]p

n,K)⊗B B〈x〉 → 0

To obtain a similar result for level H (and the weight spaces Wa(w) or Wb,a(w))

it is enough to take invariant for the action of the group BO(Z /pn Z) (this groups
takes into account the difference between level Hpn and H). Indeed, since we are

in characteristic 0, the group BO(Z /pn Z) has no cohomology and we obtain the
following theorem

Theorem 2.12. Let q, s = 1, . . . , a be integers with q ≤ s. Let Spm(A) be an
affinoid admissible open of Wa(w)

s or Wb,a(w)
s with universal character χun

U . Let
Spm(B) = V be the image of U under ·′ and let χun

V be the universal character of
V. If q > 1 there is an exact sequence

(2.4) 0 → M0
χun
U
(H,K) → Mq

χun
U
(H,K) →

⊕

[γ]∈C1

Mq−1
χun
V
(H[γ],K) → 0

If q = 1 we have the exact sequence

(2.5) 0 → M0
χun
U
(H,K) → M1

χun
U
(H,K) →

⊕

[γ]∈C1

M0
χun
V
(H[γ],K)⊗B B〈x〉 → 0
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3. Eigenvarieties for non-cuspidal systems of automorphic forms

In this section H is a compact open subgroup of G(AF0,f ), not necessarily neat
and p satisfies the hypotheses of Setion 2.

3.1. The eigenvariety machinery. We briefly recall Buzzard’s eigenvarieties ma-
chinery [Buz07]. Let A be a Noetherian Banach algebra over Qp and M a Banach
module over A. In particular M is equipped with a norm | |. We say that another
norm | |′ is equivalent to | | if they induce the same topology.

Definition 3.1. We say that M is Pr if there exist a Banach module N and an
equivalent norm on M ⊕N such that

M ⊕N ∼=
⊕̂

I

A

as Banach modules.

The term Pr could remind the reader of projective module. But this is mislead-
ing; even if a Pr module satisfies the universal property of lifting surjective mor-
phism it is not projective. This is because in the category of Banach A-modules
epimorphisms are not surjective morphisms (but morphisms with dense image).

Definition 3.2. Let U be a continuous A-linear operator on M , we say that is
completely continuous (or compact) if U can be written as a limit (for the operator
norm) of continuous operators of finite rank.

We are now ready to recall the eigenvariety machinery. We are given as input:

• a reduced, equidimensional affinoid Spm(A),
• a Pr module M over A,
• a commutative endomorphism algebra T of M over A,
• a compact operator U of T.

With these objects we can define a formal series P (T ) := det(1−TU |M) ∈ A {{T }}.

Definition 3.3. The spectral variety Z associated to (A,M,U) is the closed sub-
space of Spm(A)× A1 defined by P (T ) = 0.

A point (x, λ) belongs to Z if and only if there exists m ∈ M ⊗A κ(x) such that
Um = λ−1m.

To the above data Buzzard associates a rigid analytic space pr : E → Z with an
admissible cover Eα which satisfies the following properties:

• E is equidimensional of dimension dim(A).
• Let κ be the structural morphism E → Spm(A). The space E parametrizes
system of eigenvalues appearing in M ; indeed, each point in κ−1(x) corre-

sponds a system of eigenvalues for T inside M ⊗A κ(x) which is of finite
slope for U .

• The map pr is finite. The map κ is locally finite.
• The module M defines a coherent sheaf M. The fiber M(x,λ) is the gener-

alized eigenspace for λ−1 inside M ⊗A κ(x).
• The image of Eα in Spm(A) is affinoid.
• Over κ(Eα) we have a factorization P (T ) = P1(T )P2(T ) with P1(T ) a
polynomial with constant term 1 and coprime with P2(T ).

• Over κ(Eα) we can decompose M = M1⊕M2. If P
∗
1 (T ) = T deg(P1)P1(T

−1)
then P ∗

1 (U) is zero on M1 and invertible on M2. Moreover rankAM1 =
deg(P1).
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We define several Hecke operators at p. If G = GSp2a we follow the notation
of [Hid02, §3.6]; let p be a prime above p in F0 and p and for 0 ≤ j ≤ a − 1

define matrices αj = diag[1, . . . , 1,

j︷ ︸︸ ︷
p, . . . , p] ∈ GLa(OF0,p). For 1 ≤ j ≤ a we define

βj =

(
αj 0
0 w0p

2α−1
j w0

)
and β0 =

(
α0 0
0 pα0

)
. If Ua,a denotes the unipotent of

the parabolic Pa,a, we define

Up,j =
[Ua,a(OF0,p)βjUa,a(OF0,p)]

pdp(a−j)(a+1)

for dp the degree of the extension F0,p/Qp. We let UG,p =
⊗

p Zp[Up,j]j be the

Hecke algebra generated by these operators and define UG,p =
∏

p

∏a−1
j=0 Up,j .

We define similarly UG,p and UG,p for G unitary following [Hid02, §6].
All these Hecke operators act naturally on the space of families of automorphic

forms, respect the integral structure and the filtration given by the corank. If one
prefers the analytic formulation of Hecke operators, for classical weights κ one have
to multiply the double coset action on forms by κ(αj)

−1. It is well-known that
UG,p is completely continuous on the space of overconvergent forms and families
[Bra15, ]

We define now the Hecke algebra. Let l be a prime ideal of F0 above l 6= p, we
define

TG,l = Zp[G(OF0,l
) \G(F0,l)/G(OF0,l

)].

When G is symplectic, TG,l is generated by the image of diagonal matrices

[̟l, . . . , ̟l, 1, . . . , 1] ∈ GLa(F0,l)

which are embedded in GSp2a as before.
If G is unitary and l is split in F , then G(F0,l) ∼= GLa+b(F0,l)×Gm(Ql) and TG,l

is generated by the same matrices. If l is inert, G(F0,l) is contained in GLa+b(Fl)
and generated by the same diagonal matrices.

Let N be a prime-to-p integer containing all prime numbers which are norms of
prime ramified in F or for which G is not quasi-split. The abstract Hecke algebra
of prime-to-Np level is then

T
(Np)
G = ⊗′

l∤NpTG,l.

It naturally acts on the space of overconvergent forms and families as defined in
[Bra15, §4.1].

Let q ≤ s+ 1. We shall denote by Eq
a,s(v, w) the eigenvariety associated with:

• for U = Spm(A) we choose an open affinoid inside Wa(w)
s or Wb,a(w)

s,
• for M , if H is neat we choose

Mq
a,s := H0(S∗,rig

G (H)(v)× Spm(A), ηA,∗ω
†χun

U
v,w ⊗ Iq).

Otherwise, we choose H′ ⊂ H with H′ neat and we take

Mq
a,s := H0(S∗,rig

G (H′)(v)× Spm(A), ηA,∗ω
†χun

U
v,w ⊗ Iq)

H/H′

.

Note that the notation is slightly different from above, but we prefer to
stress in this section the genus a and the corank s of the weights of our
families of modular forms.

• for T we choose Tq
a,s := Im(T

(Np)
G ⊗ UG,p → EndA(M

q
a,s)),

• U = UG,p.

Before we can use Buzzard’s machinery we need the following proposition;

Proposition 3.4. The module Mq
a,s is Pr over U .
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Proof. If H is neat we can apply [Buz07, Lemma 2.11] to the exact sequences in
Theorem 2.12. Otherwise, it is enough to remark that Mq

a,s is a direct summand of

H0(S∗,rig
G (H′)(v)× Spm(A), ηA,∗ω

†χun
U

v,w ⊗ Iq) (the action of the finite group H/H′

is always diagonalizable in characteristic zero) which is Pr by the same argument
as immediately before. �

For each fixed w, we have the eigenvarieties

Eq
a,s(v, w) → Zq

a,s(v, w)

which are independent of v if v is small enough [Buz07, Lemma 5.6]. Letting w go
to infinity we can glue the different eigenvarieties [Buz07, Lemma 5.5].

Definition 3.5. The eigenvariety Eq
a,s for forms of corank at most q over the weight

space Ws
a or Ws

b,a of weights of corank at least s is defined as

Eq
a,s := lim

−→
v,w

Eq
a,s(v, w).

We say that a point x in Eq
a,s is classical if the system of eigenvalues associated

with x appears in the space of classical Siegel forms Mk(H,Z).

Proposition 3.6. Classical points are Zariski dense in Eq
a,s.

Proof. Indeed from [Bra15, Theorem 6.7] we know that forms of small slope (w.r.t.
the weight) are classical. The points satisfying the condition of loc. cit. are clearly
Zariski dense in Wa; we can then proceed as in [Urb11, Theorem 5.4.4]. �

3.2. Relations between different eigenvarieties. We now want to analyze the
relations between Eq

a,s when varying a, q or s. We begin with a lemma;

Lemma 3.7. Suppose that M is an extension of two potentially ON-module M1

and M2 over A. Suppose that M1 and M2 are U -stable, then

det(1− TU |M) = det(1− TU |M1) det(1− TU |M1).

3.2.1. Changing q and s. We begin by letting q vary. Let q′ < q ≤ s, we have

a natural injection Mq′

a,s → Mq
a,s which induces by restriction a surjective map

Tq
a,s → Tq′

a,s. In particular this gives us a closed immersion Eq′

a,s → Eq
a,s.

We now vary s too. Let s′ < s, U ′ be an open affinoid of Wa(w)
s. The same

exact definitions work for U ′ in Wb,a(w)
s. Let U = U ′×Wa(w)s′ Wa(w)

s and denote

by A resp. A′ the affinoid algebra for U resp. U ′. By definition of the sheaves ω
†χun

U
v,w

and ω
†χun

U′

v,w we have

Mq
a,s′ ⊗A′A = Mq

a,s .

This implies immediately that Eq
a,s′ ×Ws′

a
Ws

a and Eq
a,s have the same closed points.

This also implies that Zq
a,s is the base change of Zq

a,s′ because the characteristic

series for Up is stable under base-change [Buz07, Lemma 2.13]. But this does not
imply that Eq

a,s′ ×Ws′
a
Ws

a and Eq
a,s are isomorphic, as non-reducedness issues could

appear. Still we believe the following:

Conjecture 3.8. For each a, the eigenvarieties Eq
a,q (q = 0, . . . , a) glue to a non-

equidimensional eigenvariety Ea over Wa.
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3.2.2. Changing a. We are now interested in studying the complement of E0
a,s in

Eq
a,q. Recall from Section 2.2 that we have a surjective morphism:

Mq
a,s →

⊕

C1(Hpn)

Mq−1
a−1,s (s > 1);

M1
a,1 →

⊕

C1(Hpn)

M0
a−1,1⊗BA (s = 1).

Proposition 3.9. Let G = GSp2a and G′ = GSp2a−2.The above morphisms induce

a surjective map between T
(Np)
G ⊗Zp

Qp and T
(Np)
G′ ⊗Zp

Qp. A similar result holds
for GUa,b and GUa−1,b−1.

Proof. For GSp2a/Q this is proven in [Kri86, Korollar 1] and for a general totally

real field the proof is exactly the same. For unitary group the proof is similar. �

Proposition 3.10. Let G = GSp2a,/F0
and G′ = GSp2a−2/F0

. The Siegel mor-

phism sends Up,a for G to Up,a−1 for G′ and, for 0 ≤ j ≤ a− 1, Up,j to pdpj Up,j.

Proof. We start with the symplectic case; let m = a − j, Mm×j(OF0,p) the set of
matrices of size m times j with entries in OF0,p and Sa(OF0,p) the set of a times a
matrices with entries in OF0,p such that w0xw0 =t x. These are matrices symmetric
w.r.t. the reflection along the anti-diagonal.

We have an explicit decomposition of the double coset [Hid02, Proposition 3.5]:

Ua,a(OF0,p)βjUa,a(OF0,p) =
⊔

u,x

Ua,a(OF0,p)βjUuUx

where

Ux =

(
1 x
0 1

)
, x ∈ Sa(OF0,p)/pα

−1
j Sa(OF0,p)w0pα

−1
j w0

and Uu =

(
Vu 0
0 w0Vuw0

)
with Vu =

(
1 u
0 1

)
for u ∈ Mm×j(OF0,p/p). Note that

this latter is a set of representatives for UGLa(OF0,p)pα
−1
j UGLa(OF0,p).

As the Siegel morphism is equivariant for the action of Pa,1, we have

Φ


F |




a1 a2 b1 b2
0 a3 b3 b4
0 c3 d3 d2
0 0 0 d1





 = Φ(F )|

(
a3 b3
c3 d3

)
.

We have that βj for G is sent to βj for G′. Every Vu′ =

(
1 u
0 1

)
for u′ ∈

M(m−1)×j(OF0,p/p) has exactly pjdp preimages between the matrices Vu =

(
1 u
0 1

)

with u ∈ Mm×j(OF0,p/p). Each x in the decomposition for G′ has exactly

pdp(2a−j) = pdp(a−j)(a+1)/pdpa(a−1−j)

counterimages which is the factor by which we divide in the definition of Up,j . The
unitary case is similar and left to the reader. �

If F0 = Q, this has been proved in [Dic15, Theorem 1.1].
Summing up; the two previous propositions and Lemma 3.7 allow us to use

[Han, Theorem 5.1.6] to obtain a closed immersion of Eq−1
a,s−1 into Eq

a,s. Note that
UG,p is not sent into UG′,p; for example, in the symplectic case it is mapped to

p
[F0:Q]a(a−1)

2 UG′,p

∏
p Up,a−1.

To conclude, recall that in Proposition 3.4 we have seen that the Siegel morphism
splits as morphism of Banach modules; it is the natural to ask the following.
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Question 3.11. Can one choose this splitting to be Hecke equivariant?

A positive answer would not imply that the eigenvariety is disconnected but
would hint to the fact that one should be able to define directly families of non-
cuspidal forms inducing families of cusp forms from parabolic subgroups of G.
Some instances of this parabolic induction for ordinary forms has been proven by
[SU14] from GL2 to GU(2, 2) but using a pullback from from GU(3, 3). A direct
construction not involving pullback formulas would be more interesting and of much
more general use.

Remark 3.12. We want to point out that for each parabolic P of G we can define
a P -ordinary projector. If M is the Levi of P and π a cuspidal automorphic rep-
resentation of M , there is, for weight big enough, a unique Eisenstein series E(π)
which is P -ordinary.

It is known that for GL2 the critical p-stabilization of a level 1 Eisenstein series
is a p-adic cusp form. A similar phenomenon appears also in higher genus.

An example. We consider now to the case of U(2, 2) for F/Q a CM extension.
We choose f0 ∈ Sk(Γ1(N)) a cusp form which is ordinary at p. Let f be its non-
ordinary p-stabilization. Suppose that f is θ-critical (i.e. it is in the image of the
p-adic Maaß–Shimura operator θk); we suppose that at the point on the eigencurve
C corresponding to f there is a unique family F passing true f . This is the case if
f is CM (which is conjecturally always the case): a deep results of Belläıche [Bel12,
Theorem 2.16] ensure us that the the eigencurve is smooth at f . Note that it is
known that the structural morphism κ : C → W is not étale at this point.

Suppose now that we can define the p-adic Klingen–Eisenstein series E(F ) in-
terpolating the classical Klingen–Eisenstein series as done in the ordinary case
in [SU14, Theorem 12.10]. We know [SU14, (11.64)] that at a classical point x
the constant term at genus one cusp labels is a suitably normalized multiple of
L(fx, k − 1)fx, being fx the form corresponding to x. Hence, the constant term
is divisible by the two-variable p-adic L-function for F evaluated at κ(x) − 1. We
know that Lp(f, j) = 0 for all 0 ≤ j ≤ κ(x) − 1 [Bel12, Theorem 2]. In particu-
lar, the generically non cuspidal E(F ) at the point corresponding to E(f) would
degenerate to a cuspidal form. It is an interesting question to understand how the
geometry of smaller eigenvarieties (in our case, the non-étalness of κ) influences
the geometry of bigger eigenvarieties (in our case, the non-cuspidal eigenvariety for
U(2, 2)).

3.3. On a conjecture of Urban. In [Han], Hansen constructs a non necessar-
ily equidimensional eigenvariety EH starting from the method of Ash–Stevens. A
similar results, using Urban’s construction, has been obtained by [Xia12]. Due to
their construction, it is very hard to know the exact dimension of the different
irreducible components. In [Urb11, Conjecture 5.7.3], Urban made the following
precise conjecture for the dimension of irreducible components.

Conjecture 3.13. Let x be a point belonging to exactly one irreducible component
of EH and let θ be the corresponding system of eigenvalues. Define d to be the
number of consecutive cohomology degrees in which the system θ appears. Then the
image of the irreducible components to which x belongs in the weight space is of
codimension d− 1.

Urban has shown this conjecture for the cuspidal irreducible components. Using
work of Harder [Har12], we want now to calculate this number for GSp4. Under
mild hypothesis on the relation between irreducible components of EH and Es

2,s we
shall be able to prove Urban conjecture.
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Let S be the Siegel variety for GSp4(Z), denote by SBS its Borel–Serre compact-
ification, ι : S → SBS the open immersion and by ∂S the boundary of this map.
Let (k1, k2) be the highest weight of a non zero algebraic representation of Sp4 and
Mk1,k2 the corresponding local system on S. Recall that we have the long exact
sequence of cohomology:

· · · → H•−1(∂S,Mk1,k2)
δ•−1

→

H•
c(S,Mk1,k2)

i•
→ H•(S,Mk1,k2)

r•
→ H•(∂S,Mk1,k2) → · · · ,

where H•
c(S,M) = H•(S, ι!M). The cohomology of the boundary splits as

H•(∂S,Mk1,k2) = r•(H•(S,Mk1,k2))⊕Ker(δ•);

we shall call the first term the Eisenstein cohomology and by the second term the
compactly supported Eisenstein cohomology. We define also the interior cohomology:

H•
! (S,Mk1,k2) = Im(i•).

Faltings–Chai proved an Eichler–Shimura morphism for Siegel forms:

H0(S, ωk1,k2 ⊗ J 0) →֒ H3(S, Symk1−k2(Q2)⊗ det(Q2)k2).

Let x be a system of eigenvalues for the Hecke algebra acting on H•(S,Mk1,k2); we
shall say that x is Eisenstein if x corresponds to a system of eigenvalues in Eq

2,s and

the x-eigenspace H•(∂S,Mk1,k2)[x] 6= 0.
The classification of the boundary cohomology in terms of the weight has been

given in [Har12] using the spectral sequence coming from the stratification of ∂S.
In the notation of [Har12] we have n1 = k1 − k2 and n2 = k2 − 3 and we define
p(k) = † if n2 is odd and p(k) = ⋆ otherwise. From [Har12, page 156] we know in
which degree the cohomology H•(∂S,Mk1,k2) is concentrated:

• if p(k) = † and n1 6= 0, the boundary cohomology vanishes;
• if p(k) = † and n1 = 0 the boundary cohomology is concentrated in degrees
2 and 3;

• if p(k) = ⋆ and k1 > k2 > 0 the boundary cohomology vanishes;
• if p(k) = ⋆ and k1 = k2 6= 0 the boundary cohomology vanishes;
• if p(k) = ⋆ and n2 = 0 but n1 > 0 than we have cohomology in degrees 2
and 3;

• if p(k) = ⋆ and n1 = n2 = 0 the cohomology is in degrees 0, 2, 3, and 5.

Theorem 3.14. Let I be an irreducible component of E2
2,2 or of E1

2,1; suppose there
exists a classical point x ∈ I(Cp) corresponding either to a Klingen Eisenstein
series or a Siegel Eisenstein series of weight different from (3, 3). Then Urban’s
conjecture holds for all components I of EGSp4(Z)

which satisfies Ired ∼= Ired.

Proof. We check case by case the previous list.
Suppose that k1 > k2; our point is then in E1

2,1 and there are no consecutive
cohomology group where this system appears. Urban’s conjecture says that the
irreducible component containing x has the same dimension as the total weight
space, which is indeed the case.

Let now p(k) = †, n1 = 0 and k2 6= 3. We refer to [Har12, §2.5]. We have
boundary cohomology only if k2 is even; in this case all, the filtered pieces of
H2(∂S,Mk1,k2)) corresponds to the H1 with coefficient Symk2−2 (if we are looking

at the Klingen parabolic) or Sym2k2−2 (Siegel parabolic) and the H0 for the same
sheaves (which vanishes).
The filtered pieces of H3(∂S,Mk1,k2)) are the H

1 of the modular curve for forms of
weight k2 (if we are looking at the Klingen parabolic) or 2k2 − 4 (Siegel parabolic)
and the H0 of modular curves with coefficients C and k2 − 3.
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Suppose now that x belongs to E1
2,1 so that it correspond to a system of eigenval-

ues of a cusp form. This case is studied in [Har12, §2.5.1] and the only contribution
to H•

c(S,Mk1,k2) is in degree 3. Then x contributes only to H3(S,Mk1,k2) by
Poincaré duality. The dimension of I is the conjectured one, namely 2.

Suppose now that x belongs to E2
2,2 but not to E1

2,2, so it is a classical parallel
weight Siegel Eisenstein series. Summing up [Har12, §2.5.1-4], as the weight is
not (3, 3), we have contribution in two consecutive degrees (2 and 3). In this case
Urban’s conjecture predicts the codimension to be 1 which is indeed the case. �
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Sup. (4) 37 (2004), no. 2, 171–222. MR 2061780 (2005i:11072)

[Pil12] Vincent Pilloni, Sur la théorie de Hida pour le groupe GSp
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