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NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR THE RECURSIVE

APPROXIMATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION

I. HONORÉ, S. MENOZZI, AND G. PAGÈS

Abstract. We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant
distribution ν of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme
with decreasing time step along a suitable class of (smooth enough) test functions f such that f ´ νpfq is a
coboundary of the infinitesimal generator. We show that these bounds can still be improved when some suitable
squared-norms of the diffusion coefficient also lie in this class. We apply these estimates to design computable
non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive
non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

1. Introduction

1.1. Setting. The aim of this article is to approach the invariant distribution of the solution of the diffusion
equation:

dYt “ bpYtqdt` σpYtqdWt,(1.1)

where pWtqtě0 is a Wiener process of dimension r on a given filtered probability space pΩ,G, pGtqtě0,Pq, b : Rd Ñ
Rd, and σ : Rd Ñ Rd b Rr are assumed to be Lipschitz continuous functions and to satisfy a mean-reverting
assumption in the following sense. If A denotes the infinitesimal generator of the diffusion (1.1), there exists
a twice continuously differentiable Lyapunov function V : Rd Ñ p0,`8q such that lim|x|Ñ`8 V pxq “ `8 and
AV ď β ´ αV where β P R and α ą 0. Such a condition ensures the existence of an invariant distribution. We
will also assume uniqueness of the invariant distribution, denoted from now by ν. We refer to the monographs
by Khasminskii [Kha80] (see also its augmented second edition [KM11]), or Villani [Vil09] and to the survey
paper [Pag01], for in-depth discussions on the conditions yielding such existence and uniqueness results.

We introduce an approximation algorithm based on an Euler like discretization with decreasing time step,
which may use more general innovations than the Brownian increments. Namely, for the step sequence pγkqkě1

and n ě 0, we define:

(S) Xn`1 “ Xn ` γn`1bpXnq `
?
γn`1σpXnqUn`1,

where X0 P L
2pΩ,F0,Pq and pUnqně1 is an i.i.d. sequence of centered random variables matching the moments

of the Gaussian law on Rr up to order three, independent of X0.
We define the empirical (random) occupation measure of the scheme in the following way. For all A P BpRdq

(where BpRdq denotes the Borel σ-field on Rd):

(1.2) νnpAq :“ νnpω,Aq :“

řn
k“1 γkδXk´1pωqpAq

řn
k“1 γk

.

The measure νn is here defined accordingly to the intrinsic time scale of the scheme. Namely, Γn “
řn
k“1 γk

represents the current time associated with the Euler scheme (S) after n iterations. Since we are interested in
long time approximation, we consider steps pγkqkě1 such that Γn :“

řn
k“1 γk Ñn

`8. We also assume γk Ó
k

0.

Observe that, for a bounded ν-a.s. continuous function f , it is proved in [LP02] (see e.g. Theorem 1), that:

(1.3) νnpfq “
1

Γn

n
ÿ

k“1

γkfpXk´1q
a.s.
ÝÑ
n

νpfq “

ż

Rd
fpxqνpdxq,
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or equivalently that νnpω, ¨q
w
ÝÑ
n

ν, Ppdωq´a.s. The above result can be seen as an inhomogeneous counterpart

of stability results discussed for homogeneous Markov chains in Duflo [Duf90]. Intuitively, the decreasing steps
make the approximation more and more accurate in long time and, therefore, the ergodic empirical mean of the
scheme converges to the quantity of interest. Put it differently, there is no bias. This is a significant advantage
w.r.t. a more naive discretization method that would rely on a constant step scheme. Indeed, even if this latter
approach gains in simplicity, taking γk “ h ą 0 in (S) would lead to replace the r.h.s. of (1.3) by the quantity
νhpfq :“

ş

Rd fpxqν
hpdxq, with νh denoting the invariant distribution of the Euler scheme with step h. In such a

case, for the analysis to be complete, one needs to investigate the difference ν ´ νh through the corresponding
continuous and discrete Poisson problems. We refer to Talay et al. [TT90], [Tal02] for a precise presentation of
this approach.

Now, once (1.3) is available, the next question naturally concerns the rate of that convergence. This was
originally investigated by Lamberton and Pagès [LP02] for functions f of the form f ´ νpfq “ Aϕ, i.e. f ´ νpfq
is a coboundary for A. The specific reason for focusing on such a class of functions is that an invariant
distribution ν is characterized as a solution in the distribution sense of the stationary Fokker-Planck equation
A˚ν “ 0 (where A˚ stands for the adjoint of A). Thus, for smooth enough functions ϕ (at least C2pRd,Rq),
one has νpAϕq “

ş

Rd Aϕpxqνpdxq “ 0. The authors then investigate the weak convergence of νnpfq ´ νpfq
once suitably renormalized. However, in these results, the assumptions are made on the function ϕ itself rather
than on f . To overcome this limitation and exploit directly some assumptions on the function f requires
to solve the Poisson equation Aϕ “ f ´ νpfq. This is precisely for this step that some structure conditions
are needed, namely (hypo)ellipticity or confluence conditions. We refer for instance to the work of Pardoux
and Veretennikov [PV01], Rothschield and Stein [RS76] or Villani [Vil09] who discuss the solvability of the
Poisson problem under some ellipticity or hypoellipticity assumptions. We also mention the work of Pagès
and Panloup [PP14] who exploit some confluence conditions allowing to handle for instance the case of an
Ornstein-Uhlenbeck process with degenerate covariance matrix. We refer to Sections 2.2 and 2.3 for precise
assumptions giving the uniqueness of the invariant distribution of (1.1) and the expected smoothness properties
for the associated Poisson problem.

In the current paper, our goal is to establish for this recursive procedure a non-asymptotic Gaussian control
for the deviations of the quantity νnpfq ´ νpfq for possibly unbounded Lipschitz continuous functions f . Such
non-asymptotic bounds are crucial in many applicative fields. Indeed, for specific practical simulations, it
is not always possible to run ergodic means for very large values of n. It will be direct to derive, as a by-
product of our deviations estimates, some computable non-asymptotic confidence intervals. A specific feature
of such non-asymptotic deviation inequalities is that their accuracy depends again on the status of the diffusion
coefficient σ with respect to the Poisson equation. Thus, if }σ}2 ´ νp}σ}2q “ Aϑ is a coboundary (where } ¨ }
denotes a matrix norm), we manage to improve our analysis, to derive better concentration bounds in a certain
deviation range as well as some additional deviation regimes. Also, this additional study seems rather efficient
to capture the numerical behavior of the empirical deviations. We refer to Section 4 and 6.2 for details about
these points. Eventually, our main deviation results allow to provide deviation inequalities for plain Lipschitz
continuous sources f in the ergodic approximation, by using a suitable regularization procedure, as established
in Theorem 7. As expected, dealing with this general class of functions requires more stringent constraints on
the time steps, that must be small enough, and prevents from obtaining the fastest convergence rates (see again
Theorem 7 and Section 5.3).

The main feature of the sequence (1.3) of weighted empirical measures is that it targets the true invariant
distribution ν of the continuous time diffusion. The price to pay is the use of an Euler scheme with decreasing
step which is a non-homogeneous Markov chain. This induces new difficulties compared to the extensive
literature on deviation inequalities for ergodic homogeneous Markov chains. In particular, our approximation
procedure produces some remainder terms that need to be controlled accurately enough in a non-asymptotic
way to produce tractable deviation inequalities asymptotically close to their counterparts for the diffusion itself.
This a major difficulty compared to a CLT where these remainder terms are simply requested to go to 0 fast
enough.

As mentioned above and like for the CLT (see [Bha82] for the diffusion or [LP02] for the weighted empirical
measures νn), these deviation inequalities are naturally established for coboundaries f ´ νpfq “ Apϕq, the
assumptions being made on ϕ. Our second objective in this paper is to state our results so that all assumptions
could be read on the source function f itself. This first requires to solve the Poisson equation in that spirit,
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that means deriving pointwise regularity results on ϕ from those made on f . Again, for Lipschitz sources, this
step will require an appropriate regularization procedure.

In particular, we will not rely on the Sobolev regularity (see e.g. Pardoux and Veretennikov [PV01]) but rather
on some Schauder estimates in line with the works by Krylov and Priola [KP10], which allow to benefit from
the elliptic regularity for operators with unbounded coefficients. For more details, we refer to the introduction
of Section 5.

1.2. Assumptions and Related Asymptotic Results. From now on, we will extensively use the following
notations.

For a given step sequence pγnqně1, we denote:

@` P R, Γp`qn :“
n
ÿ

k“1

γ`k, Γn :“
n
ÿ

k“1

γk “ Γp1qn .

In practice, we will consider time step sequences: γn —
1
nθ

with θ P p0, 1s, where for two sequences punqnPN, pvnqnPN
the notation un — vn means that Dn0 P N, DC ě 1 such that @n ě n0, C

´1vn ď un ď Cvn.

For a vector v P Rk, k P td, ru, we denote by |v| :“ p
řk
j“1 v

2
j q

1
2 its (canonical) Euclidean norm. Also, for a

function ψ : Rq Ñ Rd, we set }ψ}8 :“ supxPRq |ψpxq|.

Hypotheses.

(C1) The random variable X0 is supposed to be sub-Gaussian, i.e. its square is exponentially integrable up to
some threshold. Namely, there exists λ0 P R˚` such that:

@λ ă λ0, E rexppλ|X0|
2qs ă `8.

(GC) The µ-distributed i.i.d. innovation sequence pUnqně1 is such that E rU1s “ 0 and for all pi, j, kq P

t1, ¨ ¨ ¨ , ru3, E rU i1U
j
1 s “ δij , E rU i1U

j
1U

k
1 s “ 0. Also, pUnqně1 and X0 are independent. Eventually, U1 sat-

isfies the following Gaussian concentration property, i.e. for every 1´Lipschitz continuous function g : Rr Ñ R
and every λ ą 0:

E
“

exppλgpU1qq
‰

ď exp

ˆ

λE rgpU1qs `
λ2

2

˙

.

Observe that if U1
plawq
“ N p0, Irq or U1

plawq
“ p1

2pδ1`δ´1qq
br, i.e. for Gaussian or symmetric Bernoulli increments

which are the most commonly used sequences for the innovations, the above identity holds. On the other hand,
what follows can be adapted almost straightforwardly for a wider class of sub-Gaussian distributions satisfying
that for some $ ą 0 and for all λ ą 0:

(1.4) E
“

exppλgpU1qq
‰

ď exp

ˆ

λE rgpU1qs `
$λ2

4

˙

,

which yields that for all r ą 0, Pr|U1| ě rs ď 2 expp´ r2

$ q (sub-Gaussian concentration of the innovation). The
case $ “ 2 corresponds to the standard Gaussian concentration. This is also the constant in the logarithmic
Sobolev inequality fulfilled by the standard Gaussian measure.

(C2) There exists a positive constant κ such that,

sup
xPRd

}σpxq}2 ď κ,

where }σpxq} stands for the operator norm of σpxq, i.e. }σpxq} “ supzPRr,|z|ď1 |σpxqz| (keep in mind that

}σpxq} “ }σ˚pxq} “ }σσ˚pxq}
1
2 ). We then set }σ}8 :“ supxPRd }σpxq}.

(LV) There exists a Lyapunov function V : Rd ÝÑ rv˚,`8r, with v˚ ą 0, satisfying the following conditions:

i) Regularity-Coercivity. V is a C2 function, }D2V }8 ă `8, and lim|x|Ñ8 V pxq “ `8.

ii) Growth control. There exists CV P p0,`8q such that for all x P Rd:

|∇V pxq|2 ` |bpxq|2 ď CV V pxq.
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iii) Stability. Let A be the infinitesimal generator associated with the diffusion Equation (1.1), defined for
all ϕ P C2

0 pRd,Rq and for all x P Rd by:

Aϕpxq “ xbpxq,∇ϕpxqy ` 1

2
Tr
`

ΣpxqD2ϕpxq
˘

, Σpxq :“ σσ˚pxq,

where, for two vectors v1, v2 P Rd, the symbol xv1, v2y stands for the canonical inner product of v1 and
v2 and for M P Rd b Rd, TrpMq denotes the trace of the matrix M .

There exist αV ą 0, βV P R` such that for all x P Rd,

AV pxq ď ´αV V pxq ` βV .

As a consequence of (LV ) i), there exist constants K and c̄ such that for |x| ě K, |V pxq| ď c̄|x|2, which in turn
implies, from (LV ) ii), that |bpxq| ď

a

CV c̄|x|.

(U) There exists a unique invariant distribution, denoted from now on by ν, for Equation (1.1).

(S) For a Lyapunov function V satisfying (LV ), we assume that the step sequence pγkqkě1 satisfies for all
k ě 1, γk ď

1
2 minp 1?

C
V
c̄
,

α
V

C
V
}D2V }8

q.

Condition (S) means that we assume the time steps are sufficiently small w.r.t. the upper bounds of the
coefficients and the Lyapunov function.

Remark 1. We have assumed (U) without imposing some specific non-degeneracy conditions. Observe that
(LV) yields existence of an invariant distribution (see e.g. Chapter 4.9 in [EK86]). Additional structure
conditions on the coefficients ((hypo-)ellipticity [KM11], [PV01], [PV03], [PV05], [Vil09] or confluence [PP14])
then yield uniqueness.

Assumption (S) is a technical condition which is exploited in order to derive the non-asymptotic controls of
Theorem 2 (see especially the proof of Proposition 1 below).

Observe that, as soon as conditions (C2), (LV), (U) are satisfied and E rU1s “ 0,ErUb3
1 s “ 0, the following

Central Limit Theorem (CLT) holds (see Theorems 9, 10 in [LP02]).

Theorem 1 (CLT). Under (C2), (LV), (U), if E rU1s “ 0, E rUb3
1 s “ 0 and ErV pX0qs ă `8, we have the

following results.

paq Fast decreasing step. If limn
Γ
p2q
n?
Γn
“ 0 and E r|U1|

6s ă `8, then, for any Lipschitz continuous function

ϕ in C3pRd,Rq with D2ϕ and D3ϕ bounded, one has (with pLq denoting weak convergence)

a

ΓnνnpAϕq
pLq
ÝÑ N

ˆ

0,

ż

Rd
|σ˚∇ϕ|2dν

˙

.

pbq Critical and slowly decreasing step. If limn
Γ
p2q
n?
Γn
“ rγ Ps0,`8s and if E r|U1|

8s ă `8, then for every

Lipschitz continuous function ϕ PC4pRd,Rq with pDiϕqiPt2,3,4u bounded:

a

ΓnνnpAϕq
pLq
ÝÑ N

ˆ

rγm,

ż

Rd
|σ˚∇ϕ|2dν

˙

if rγ ă `8, pcritical decreasing stepq

Γn

Γ
p2q
n

νnpAϕq
P
ÝÑ m if rγ “ `8, pslowly decreasing stepq,

where m :“ ´

ż

Rd

´1

2
D2ϕpxqbpxqb2 ` Φ4pxq

¯

νpdxq,

with Φ4pxq :“

ż

Rr

´1

2
xD3ϕpxqbpxq, pσpxquqb2y `

1

24
D4ϕpxqpσpxquqb4

¯

µpduq

and µ denotes the distribution of the innovations pUkqkě1. In the above definition of Φ4, the term D3ϕ
stands for the order 3 tensor pB3

xi,xj ,xk
ϕqpi,j,kqPrr1,dss3 and we denote, for all x P Rd, by D3ϕpxqbpxq the

Rd b Rd matrix with entries
`

D3ϕpxqbpxq
˘

ij
“

řd
k“1pD

3ϕpxqqijkbkpxq, pi, jq P rr1, dss
2.
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Remark 2. Let us specify that for a step sequence pγnqnPN such that γn — n´θ, θ P p0, 1s, it is easily checked

that case (a) occurs for θ P p1
3 , 1s for which Γ

p2q
n?
Γn
Ñ
n

0. In case (b), that is for θ P p0, 1
3 s,

Γ
p2q
n?
Γn
Ñ
n
rγ, with rγ ă `8

for θ “ 1
3 and rγ “ `8 for θ P p0, 1

3q.

Let us mention that, when limn
Γ
p3{2q
n?
Γn

ă `8, i.e. γn — n´θ, θ P p1{2, 1s, the CLT of point (a) holds without

the condition E rUb3
1 s “ 0 provided E r|U1|

4s ă `8 (see Theorem 9 in [LP02]). Moreover, the boundedness

condition (C2) can be relaxed to derive the CLT, which holds provided lim|x|Ñ`8
|σ˚∇ϕpxq|2

V pxq “ 0 (strictly

sublinear diffusion) in case (a) and supxPRd
|σ˚∇ϕpxq|2

V pxq ă `8 (sublinear diffusion) in case (b). We refer again to

Theorems 9 and 10 in [LP02] for further considerations.

Remark 3. The reader should have in mind that an ergodic result similar to the one stated in the fast decreasing
step setting holds for the diffusion itself under the same structure assumptions, i.e. (C2), (LV), (U) (see
Bhattacharya [Bha82]). In fact (C2) can be partially relaxed as well, as mentioned above. Precisely,

1
?
t

ż t

0
AϕpYsqds

L
ÝÑ N

´

0,

ż

Rd
|σ˚∇ϕ|2dν

¯

as tÑ `8.

Note that the asymptotic variance corresponds to the usual integral of the “carré du champ” w.r.t. to the
invariant distribution (see again Bhattacharya [Bha82] or the monograph by Bakry et al. [BGL14]), i.e.:

ż

Rd
|σ˚∇ϕpxq|2νpdxq “ ´2

ż

Rd
xAϕ,ϕypxqνpdxq.

In both settings, the normalization is the same:
?
t for the diffusion and

?
Γn for the scheme. Except that, as

emphasized by Theorem 1, for slowly decreasing step – when θ ă 1{3 – the time discretization effect becomes
prominent and “hides” the CLT so that θ “ 1{3 (critical value between “fast” and “slow” settings) yields the
fastest rate with a biased CLT.

Remark 4. We would like to mention that, in the biased case pbq, for steps of the form γk “ γ0k
´1{3, k ě 1,

it is important for a practical implementation to choose γ0 in an appropriate way, namely by minimizing the

function γ0 ÞÑ c1γ0 ` c2γ
´1{2
0 , c1 “ limn

řn
k“1 k

´2{3

p
řn
k“1 k

´1{3q1{2
, c2 “

ş

Rd |σ
˚∇ϕ|2dν, which corresponds to the mean-

variance contribution deriving from the biased limit Theorem. Of course, c2 is usually unknown, and the
concrete optimization has to be performed replacing c2 by a computable estimate, like for instance upper bounds,
i.e. c2 ď }σ}8}∇ϕ}8.

The purpose of this work is to obtain non-asymptotic deviation results which match with the above CLT. In
the current ergodic framework, the very first non-asymptotic results were established for the Euler scheme with
constant time step by Malrieu and Talay in [MT06] when the diffusion coefficient σ in (1.1) is constant. The key
tool in their approach consists in establishing a Log Sobolev inequality, which implies Gaussian concentration,
for the Euler scheme. This approach allows to easily control the invariant distribution associated with the
diffusion process (1.1), see e.g. Ledoux [Led99] or Bakry et al. [BGL14] in a general framework. However Log
Sobolev, and even Poincaré, inequalities turn out to be rather rigid tools and are not very well adapted for
discretization schemes like (S) with or without decreasing steps.

Our approach relies on martingale techniques, which were already a crucial tool to establish the asymptotic
results of [LP02] and have been successfully used in Frikha and Menozzi [FM12] as well to establish non-
asymptotic bounds for the regular Monte Carlo error associated with the Euler discretization of a diffusion over
a finite time interval r0, T s and a class of stochastic algorithms of Robbins-Monro type. Roughly speaking,
for a given n, we decompose the quantity

?
ΓnνnpAϕq as Mn ` Rn where pMkqkě0 is a martingale which has

Gaussian concentration and Rn is a remainder term to be controlled in a non-asymptotic way.
We can as well refer to the recent work by Dedecker and Gouëzel [DG15] who also use a martingale approach

to derive non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov
chains on a general state space.

Let us also mention that many non-asymptotic results have been obtained based on functional inequalities.
Bolley, Guillin and Villani [BGV07] derived non-asymptotic controls for the deviations of the Wasserstein
distance between a reference measure and its empirical counterpart, establishing a non-asymptotic version of
the Sanov theorem. Deviation estimates for sums of weakly dependent random variables (with sub exponential
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mixing rates) have been considered in Merlevède et al. [MPR11]. From a more dynamical viewpoint, let us
mention the work of Joulin and Ollivier [JO10], who introduced for rather general homogeneous Markov chains
a kind of curvature condition to derive a spectral gap for the chain, and therefore an exponential convergence
of the marginal laws towards the stationary distribution. We also mention a work of Blower and Bolley [BB06],
who obtain Gaussian concentration properties for deviations of functional of the path for metric space valued
homogeneous Markov chains or Boissard [Boi11] who established non-asymptotic deviation bounds for the
Wasserstein distance between the marginal distributions and the stationary law, still in the homogeneous case.
The common idea of these works is to prove some contraction properties of the transition kernel of the Markov
chain in Wasserstein metric. However, this usually requires to have some continuity in Wasserstein metric for
the transition law involved, see e.g. condition (ii) in Theorems 1.2 and 2.1 of [BB06]. Checking such continuity
conditions can be difficult in practice. Sufficient conditions, which require absolute continuity and smoothness
of the transition laws are given in Proposition 2.2 of [BB06].

Though potentially less sharp for the derivation of constants, the adopted martingale-based approach in this
work turns out to be rather simple, robust and can be very naturally adapted to both discrete innovations and
inhomogeneous time steps dynamics like the one we currently consider.

It should as well allow to control deviations for functionals of the path, in the spirit of those considered
in [PP12], [PP14]. Also, the approach could possibly extend to diffusions with less stringent Lyapunov con-
ditions, like the weakly mean reverting drifts considered in [LP03], or even to more general ergodic Markov
processes, see e.g. Pagès and Rey [PR17]. These aspects will concern further research.

As an application of our non-asymptotic concentration results, we will discuss two important topics:

– The first one is of numerical interest and deals with non-asymptotic confidence intervals associated with the
estimation of the ergodic mean. Such results can be very useful in practice when the computational resources
are constrained (by time, by the model itself,. . . ). If we assume that ϕ P C3pRd,Rq, Lipschitz continuous with
pDiϕqiPt2,3u bounded, such that the mapping x P Rd ÞÑ xbpxq,∇ϕpxqy and D3ϕ are Lipschitz continuous, we
then establish that there are explicit sequences cn ď 1 ď Cn converging to 1 such that for all n P N, for all
a ą 0 and γk — k´θ, θ P p1

3 , 1s,

(1.5) Pr
a

ΓnνnpAϕq ě as ď Cn exp

ˆ

´cn
a2

2}σ}28}∇ϕ}28

˙

.

When the diffusion coefficient σ is such that }σ}2 ´ νp}σ}2q is itself a coboundary (or its counterpart for any
other norm dominating } ¨ }), the previous bound improves in a certain deviation range for a. Namely, we are
able to replace }σ}28 by νp}σ}2q in (1.5), going thus closer to the theoretical limit variance involving the “carré
du champ”. Moreover, a mixed regime appears in the non-asymptotic deviation bounds which dramatically
improves, from the numerical viewpoint, the general case for a certain deviation range. In particular, the
corresponding variance is closer to the asymptotic one given by the “carré du champ” (see Theorem 8 below).
In accordance with the limit results of Theorem 1, the drifts associated with the fastest convergence rates
can be handled as well. We obtain in full generality, results of type (1.5) under slightly weaker smoothness
assumptions, considering e.g. D3ϕ being β P p0, 1s-Hölder continuous. Eventually, under suitable ellipticity
conditions on σ, we are able to give non-asymptotic deviation bounds for a Lipschitz source f as well as explicit
gradient bounds for the solution ϕ of the corresponding Poisson problem.

– The second one is mainly theoretical and concerns non-asymptotic deviation bounds for the celebrated
almost-sure CLT first established by Brosamler and Schatte (see [Bro88] and [Sch88]) and revisited through the
ergodic discretization schemes viewpoint in [LP02].

Both applications require a careful investigation of the corresponding Poisson equation Aϕ “ f ´ νpfq. We
will in particular prove that some pointwise regularity properties can be transferred from f to ϕ.

The paper is organized as follows. We conclude this section by introducing some notations. Our main
results are presented in Section 2. We first state therein the specific concentration results for functions f
writing f “ Aϕ` νpfq (see Section 2.1). We then proceed with some suitable controls on the Poisson problem
associated with A and f in a confluent framework under the two main cases considered: namely a possibly
degenerate setting, which requires a strong confluence condition and smooth source and coefficients, and a non
degenerate setting, which allows to weaken the confluence condition as well as the smoothness assumptions
on the source and the coefficients since in that case we manage to benefit from an elliptic bootstrap property
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(see Section 2.2). We eventually give in Section 2.3 some practical and tractable deviation bounds and non-
asymptotic confidence intervals, including a Slutsky like result, for a given specific source f under the afore
mentioned conditions on the coefficients of (1.1).

We prove our main concentration result in Section 3. Section 4 is devoted to the case where }σ}2 ´ νp}σ}2q
is a coboundary. We then prove in Section 5 the required controls on the Poisson equation for our deviation
result to hold as well as the practical controls of Section 2.3. Section 6.1 is dedicated to the non-asymptotic
deviation bounds for the almost-sure CLT and Section 6.2 to the numerical illustration of our non-asymptotic
confidence intervals.

1.3. Notations. In the following, we will denote by C a constant that may change from line to line and
depend, uniformly in time, on known parameters appearing in (C1), (GC), (C2), (LV), (S). Other possible
dependencies will be explicitly specified. We will also denote by Rn and en deterministic remainder terms that
respectively converge to 1 and 0 with n. The explicit dependencies of those sequences again appear in the
proofs.

For a function f P CβpRd,Rq, β P p0, 1s, we denote

rf sβ :“ sup
x‰x1

|fpxq ´ fpx1q|

|x´ x1|β
ă `8

its Hölder modulus of continuity. Observe carefully that, when f is additionally bounded, we have that for all
0 ă β1 ă β:

(1.6) rf sβ1 ď rf s
β
β1

β p2}f}8q
1´ β

β1 .

Additionally, for f P CppRd,Rq, p P N, we set for β P p0, 1s:

rf ppqsβ :“ sup
x‰x1,|α|“p

|Dαfpxq ´Dαfpx1q|

|x´ x1|β
ď `8,

where α (viewed as an element of Nd0zt0u with N0 :“ NYt0u) is a multi-index of length p, i.e. |α| :“
řd
i“1 αi “ p.

For notational convenience, we also introduce for k P N0, β P p0, 1s and m P t1, d, dˆ ru the Hölder space

Ck,βpRd,Rmq :“
!

f P CkpRd,Rmq : @α, |α| P rr1, kss, sup
xPRd

|Dαfpxq| ă `8, rf pkqsβ ă `8
)

.

We also denote by Ck,βb the subset of Ck,β for which the functions themselves ares bounded. In particular,

C0,1pRd,Rmq is the space of Lipshitz continuous functions from Rd to Rm and C0,β
b pRd,Rmq denotes the space of

bounded β-Hölder continuous functions. Observe as well that, if f P Ck,β, k ě 1 then f is Lipschitz continuous.
We will as well use the notation rrn, pss, pn, pq P pN0q

2, n ď p, for the set of integers being between n and p.
Also, for a given Borel function f : Rd Ñ E, where E can be R,Rd,Rd b Rq, q P tr, du, we set for k P N0:

fk :“ fpXkq.

Eventually, for k P N0, we denote by Fk :“ σ
`

pXjqjPrr0,kss
˘

.

2. Main results

2.1. Result of non-asymptotic Gaussian concentration. Our main concentration result is given by the
following theorem. In this theorem, we consider a slightly more general situation than for the CLT recalled in
Theorem 1. We only assume ϕ P C3,βpRd,Rq, β P p0, 1s instead of ϕ P C4pRd,Rq with existing bounded partial
derivatives up to order four (which in particular implies that in Theorem 1 ϕ P C3,1pRd,Rq).

Theorem 2. Assume (C1), (GC), (C2), (LV), (U), (S) hold. Consider a Lipschitz continuous (possibly
unbounded) function ϕ P C3,βpRd,Rq for some β P p0, 1s. Let us furthermore suppose that:

(GV) DCV,ϕ ą 0, @x P Rd, |ϕpxq| ď CV,ϕp1`
a

V pxqq.

Let θ P r1{p2` βq, 1s and assume the step sequence pγkqkě1 is of the form γk — k´θ.

paq Unbiased Case (sub-optimal convergence rate): Let θ P p 1
2`β , 1s.
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(i) Assume that the mapping x ÞÑ x∇ϕpxq, bpxqy is Lipschitz continuous.
Then, there exist two explicit monotonic sequences cn ď 1 ď Cn, n ě 1, with limnCn “ limn cn “ 1,
such that for all n ě 1 and for every a ą 0:

P
“

|
a

ΓnνnpAϕq| ě a
‰

ď 2Cn exp

ˆ

´cn
a2

2}σ}28}∇ϕ}28

˙

.

(ii) Suppose that the mapping x ÞÑ x∇ϕpxq, bpxqy is not Lipschitz continuous. The above result still holds

for 0 ă a ď χn
?

Γn

Γ
p2q
n

for a positive sequence χn Ñ
n

0 arbitrarily slowly, so that χn
?

Γn

Γ
p2q
n

Ñ
n
`8. In

particular, for a fixed a ą 0, the above concentration inequality holds for n large enough.

pbq Biased Case (Optimal Convergence Rate): Let θ “ 1
2`β . We set for all pk, t, u, xq P rr1, nssˆr0, 1s2ˆRd:

Λβk´1pt, u, xq :“ E
”

Tr
´

`

D3ϕpx` γkbpxq ` ut
?
γkσpxqUkqσpxqUk

˘`

σpxqUk b Ukσpxq
˚
˘

¯ı

,(2.1)

keeping in mind that, since ϕ P C3,βpRd,Rq, rD3ϕsβ ă `8. We define subsequently:

Eβn :“
1
?

Γn

n
ÿ

k“1

γ
3{2
k

ż 1

0
dt p1´ tqt

ż 1

0
duΛβk´1pt, u,Xk´1q.(2.2)

Set now

Bn,β :“Eβn , if β P p0, 1q,

Bn,β :“Eβn `
1
?

Γn

n
ÿ

k“1

γ2
k

ż 1

0
p1´ tqTr

´

D2ϕpXk´1 ` tγkbk´1qbk´1 b bk´1

¯

dt

`
1

2
?

Γn

n
ÿ

k“1

γkTr
´

`

D2ϕpXk´1 ` γkbk´1q ´D
2ϕpXk´1q

˘

Σk´1

¯

, if β “ 1.

(2.3)

There exist two explicit monotonic sequences cn ď 1 ď Cn, n ě 1, with limnCn “ limn cn “ 1 such that for all
n ě 1 and for every a ą 0:

P
“

|
a

ΓnνnpAϕq ` Bn,β| ě a
‰

ď 2Cn exp

ˆ

´cn
a2

2}σ}28}∇ϕ}28

˙

.

For β P p0, 1q, the random variables |Bn,β| “ |Eβn | ď
rϕp3qsβ}σ}

p3`βq
8 E

“

|U1|
3`β

‰

p1`βqp2`βqp3`βq
Γ
p
3`β

2 q

n?
Γn

ÝÑ
n

aβ,8 ą 0 a.s. Also, for

β “ 1, the pBn,1qně1 are exponentially integrable and if, furthermore, D3ϕ is C1, Bn,1 Ñ
n
´rγm a.s. where rγm is

as in Theorem 1. In any case, a bias appears in our deviation controls when we consider, for a given smoothness
of order β P p0, 1s for D3ϕ, the fastest associated time steps γk — k´θ, θ “ 1

2`β .

Remark 5. Observe that, when β “ 1, the above result provides a non-asymptotic counterpart of the limit
Theorem 1. In particular, the concentration constants appearing in Theorem 2 asymptotically match those of
the centered CLT recalled in Theorem 1, up to a substitution of the asymptotic variance

ş

Rd |σ
˚∇ϕpxq|2νpdxq

by its natural upper bound }σ}28}∇ϕ}28.
Importantly, these bounds do not require “a priori” non-degeneracy conditions and only depend on the dif-

fusion coefficient through the sup-norm of the diffusion matrix Σ, assumption (C2). It will anyhow be very
natural to consider a non-degeneracy condition ([PV01], [RS76], [Vil09]), or a confluence condition ([PP14]),
when investigating the deviations for a given function f , in order to ensure the solvability of the corresponding
Poisson equation Aϕ “ f ´ νpfq and to derive explicit upper bounds for }∇ϕ}8 in terms of the coefficients b, σ
and the source f which turn out to be crucial to design computable non-asymptotic confidence intervals. These
aspects are discussed in Section 2.2 below.

The alternative form of the asymptotic variance (see Remark 3)
ş

Rd |σ
˚∇ϕpxq|2νpdxq “ ´2

ş

Rd fpxqϕpxqνpdxq
suggests that for bounded source terms f , an associated natural variance bound would be 2}f}8}ϕ}8. Such a
control would a priori require less regularity on ϕ than assumed in Theorem 2. One could for instance try
to exploit suitable regularization procedures, like for instance the one proposed in Section 5.3 for the proof of
Theorem 7 below, to establish non-asymptotic deviation results under weaker assumptions. Our main objective
being to capture unbounded Lipschitz functions f , these aspects will concern further research.
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Remark 6 (Smoothness and Convergence Rate). Observe that, in coherence with the asymptotic setting of
the CLT recalled in Theorem 1, for a given ϕ P C3,βpRd,Rq, β P p0, 1s, the fastest convergence rate for the
deviations is attained for θ “ 1

2`β . A bias appears, which can be difficult to estimate in practice since ϕ is

usually unknown.

Remark 7 (On the smoothness property of x ÞÑ xbpxq,∇ϕpxqy). The Lipschitz continuity assumption on the
above mapping appearing in case (i) might seem awkward at first sight. It is non-intrinsic in the sense that it
involves both the drift b of the model and the test function ϕ. However, this condition naturally appears when
ϕ is a smooth solution to the Poisson equation Aϕ “ f ´ νpfq. Indeed, recalling the definition of A in (LV),
iii), we can rewrite:

x∇ϕpxq, bpxqy “ fpxq ´ νpfq ´
1

2
Tr
´

ΣpxqD2ϕpxq
¯

.

Hence, the Lipschitz continuity of the function in the above left hand side readily follows as soon as the source
f is Lipschitz and if D2ϕ is bounded and Lipschitz continuous (since σ is also bounded and Lipschitz). Note
that with the previous notations for function spaces the previous conditions are implied if f P C1,βpRd,Rq Ă
C0,1pRd,Rq, ϕ P C3,βpRd,Rq ñ D2ϕ P C1,β

b pRd,Rd b Rdq Ă C0,1
b pR

d,Rd b Rdq. We refer to Section 5.1.2 for
details.

We now state an improvement of the previous concentration bound when }σ}2´νp}σ}2q is itself a coboundary,
i.e. when the Poisson problem Aϑ “ }σ}2 ´ νp}σ}2q can be solved with ϑ satisfying the assumptions required
for ϕ in Theorem 2. Precisely, we have the following result.

Theorem 3. paq Under the assumptions of Theorem 2 and with the notations introduced therein, provided that ϑ
solution to the Poisson equation Aϑ “ }σ}2´νp}σ}2q satisfies the same smoothness and growth conditions as ϕ,

for β P p0, 1s and θ P p 1
2`β , 1s (unbiased case), there exist two explicit monotonic sequences c̃n ď 1 ď C̃n, n ě 1,

with limn C̃n “ limn c̃n “ 1 such that for all n ě 1 for all 0 ă a ď χn
?

Γn

Γ
p2q
n

for a positive sequence χn Ñ
n

0

arbitrarily slowly, so that χn
?

Γn

Γ
p2q
n

Ñ
n
`8:

(2.4) P
“

|
a

ΓnνnpAϕq| ě a
‰

ď 2 rCn exp

ˆ

´rcn
a2

2νp}σ}2q}∇ϕ}28

˙

.

pbq If ϑ solve the Poisson equation Aϑ “ ~σ~2 ´ νp~σ~2q mutatis mutandis for a matrix norm dominating the
operator norm p~σpxq~ ě }σpxq}), then the above bound (2.4) still holds with νp~σ~2q instead of νp}σ}2q.

Importantly, the above result allows to improve the natural variance bound }∇ϕ}28}σ}28 of Theorem 2 by a
more refined, namely }∇ϕ}28νp}σ}q2. Such a bound can be particularly interesting when the supremum norm of
σ is high but its average w.r.t. the invariant distribution ν significantly lower. We refer to Section 4, Theorem 8
(general form of Theorem 3) and 6.2 (numerical results) for further discussions on that topic.

Of course Claim pbq is less sharp than paq stated with the operator norm } ¨ } but solving the Poisson equation

for }σpxq} seems highly non trivial. By contrast, if ~σpxq~ “ }σpxq}F :“
“

Tr
`

σσ˚pxqq
‰1{2

stands for the

Fröbenius norm, Theorem 4 below yields the expected smoothness properties on }σ}2F ´ νp}σ}2F q that ensure
the existence of a solution to Aϑ “ }σ}2F ´ νp}σ}2F q meeting the required smoothness conditions. The price to
pay with such computable norms being that they usually induce some dependence on the dimension d on the
estimates (observe e.g. for the identity matrix Id of Rd b Rd, }Id}F “ d1{2).

2.2. Uniqueness of the invariant distribution and Regularity issues for the Poisson problem. For
our deviation analysis to work, we need to have the uniqueness of the invariant distribution ν and to establish
some pointwise controls on the solution of the associated Poisson equation. Namely, we need to have quantitative
bounds on its derivatives and the associated Hölder continuity modulus up to order 3.

To do so, additionally to our main assumptions introduced for Theorem 2, we will work in the confluent
setting. In dimension one, any ergodic diffusion is in some sense confluent (see [Kha80], Appendix of the
English translation, Theorem 2.2 p. 308 and its alternative proof in [LPP15] Theorem 2). Here, we will suppose
that the following condition holds:

‚ Confluence Conditions
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(Dp
α) We assume that there exists α ą 0 and p P p1, 2s such that for all x P Rd, ξ P Rd

B

Dbpxq `Dbpxq˚

2
ξ, ξ

F

`
1

2

r
ÿ

j“1

´

pp´ 2q
|xDσ¨jpxqξ, ξy|

2

|ξ|2
` |Dσ¨jξ|

2
¯

ď ´α|ξ|2,

where Db stands here for the Jacobian of b, σ¨j stands for the jth column of the diffusion matrix σ and Dσ¨j
for its Jacobian matrix.

Within the confluent framework, we will consider from now on two kinds of assumptions which first give the
uniqueness of ν and that can lead to the required smoothness and to computable gradient bounds, which are
crucial since they are precisely the quantities appearing in the non-asymptotic Gaussian deviation controls as
emphasized in the statement of Theorem 2.

- Strong Confluence condition and regularity of the coefficients, which means that the drift is sufficiently domi-
nant in the dynamics and the coefficients are smooth (see assumption (CR) below). Note that these conditions
may hold for degenerate diffusion coefficients.

- Non-degeneracy of the diffusion coefficient and mild confluence condition and smoothness on the coefficients
(see assumption (CUE) below).

Under a sufficiently strong confluence condition, i.e. when α is large enough in (Dp
α), and provided that the

coefficients b, σ, f are sufficiently smooth, it is quite direct to derive, through stochastic flow techniques à la
Kunita, the required pointwise bounds for the derivatives of the Feynman-Kac representation of the solution to
the Poisson equation (see [PP14] and Section 5.1).

In the non-degenerate case, the main advantage is that we can alleviate some restrictions on α and the
smoothness assumptions on b, σ, f to benefit from an elliptic regularity bootstrap deriving from suitable Schauder
estimates available in the current setting from the work by Krylov and Priola [KP10].

We now introduce a smoothness assumption on b, σ, f that will be useful in both the considered cases.

‚ Smoothness of the coefficients and the source. For k P t1, 3u and β P p0, 1q define

(Rk,β) The coefficients in equation (1.1) are s.t. b P Ck,βpRd,Rdq, σ P Ck,βb pRd,Rdq. Also, the source f for which

we want to estimate νpfq belong to Ck,βpRd,Rq.
With these assumptions at hand, we now introduce the first setting we consider.

˛ The confluent and regular assumption (CR), holds if (Dp
α), (R3,β), for some β P p0, 1s, are in force and

}Dσ}28 ď
2α

2p3`βq´p where }Dσ}8 :“ supxPRd
´

řd
j“1 }Dσ¨jpxq}

2
¯

1
2

recalling that, for every j P rr1, dss, }Dσ¨jpxq}

stands for the operator norm of Dσ¨jpxq.

In particular, we do not impose in this case any additional structure condition on σ which can degenerate.

In our second main framework, we will assume some uniform ellipticity conditions.

‚ Non-degeneracy Conditions.
(UE) Uniform ellipticity. We assume that w.l.o.g. that r “ d (r ě d could also be considered) in (1.1) and that
the diffusion coefficient σ is such that

Dσ ą 0, @ξ P Rd, xσσ˚pxqξ, ξy ě σ|ξ|2.

We now introduce our second main setting:

˛ The confluent and non-degenerate assumption (CUE), holds if (Dp
α), (R1,β), for some β P p0, 1s, are

in force. If d ą 1, we also assume that }Dσ}28 ď
2α

2p1`βq´p and that the diffusion matrix Σ is such that, for all

pi, jq P rr1, dss2, Σi,jpxq “ Σi,jpxi^j , ¨ ¨ ¨ , xdq.

Theorem 4. Assume that (LV) and either (CR) or (CUE) are in force. Then there exists a unique invariant
distribution for the solution of (1.1), i.e. assumption (U) holds.

The associated Poisson equation

(2.5) @x P Rd, Aϕpxq “ fpxq ´ νpfq,

admits a unique solution ϕ P C3,βpRd,Rq, β P p0, 1q centered w.r.t. ν. Furthermore, the following gradient bound
holds

}∇ϕ}8 ď
rf s1
α
,
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and the mapping x ÞÑ x∇ϕpxq, bpxqy is Lipschitz continuous.

2.2.1. About the regularity of the coefficients. Under (CR), the derivatives can be expressed using iterated
tangent processes and we cannot hope, without a priori any non-degeneracy condition, for a smoothing effect
to hold. To have ϕ P C3,βpRd,Rq, we need to consider a source f P C3,βpRd,Rq and the same smoothness on b, σ
(Assumption (R3,β)). We refer to Section 5.1 for the proof of Theorem 4 under (CR).

In the non-degenerate case, the solvability of the Poisson problem is usually studied in a Sobolev setting, see
e.g. [PV01]. Let us also indicate that pointwise gradient bounds have been obtained by the same authors in
[PV03] for bounded drifts and diffusion coefficients which are additionally supposed to be smooth, i.e. at least

C2,γ
b with the notations introduced in paragraph 1.3. We point out that these estimates do not apply in our

current setting in which the drift has typically linear growth.
We eventually mention the last paper by these authors, namely [PV05]. They derive therein the uniqueness of

the martingale solution to the Poisson equation in a potentially degenerate setting under suitable local Doeblin
conditions. In that framework, pointwise controls are obtained as well for the solution itself but not for its
derivatives.

To obtain the required smoothness, we use here in the non-degenerate framework of (CUE) some Schauder
estimates, deriving from the work of Krylov and Priola [KP10], which allow to benefit from the elliptic regularity.
Namely, to obtain the mentioned smoothness on ϕ solving Aϕ “ f´νpfq, that we expect to be in C3,βpRd,Rq, β P
p0, 1q, we can take a source f P C1,βpRd,Rq and b P C1,βpRd,Rdq, σ P C1,β

b pRd,Rdq.
We would eventually like to emphasize that the structure condition on Σ might seem weird at first sight.

It is actually needed to decouple the PDEs formally satisfied by pBxiϕqiPrr1,dss in order to exploit the a priori
estimates of [KP10] established for scalar valued PDEs. We refer to Section 5.1 for a proof and details.

2.2.2. About the confluence condition and the restrictions on σ. We work here in the confluent setting of (Dp
α).

This assumption will allow, through a pathwise analysis associated with the tangent flow, to derive a pointwise
gradient bound. Another possibility to obtain such a bound is to assume a so-called Bakry and Émery curvature
criterion, see [BE85, BGL14]. Under this condition, the gradient and semi-group commute up to an exponential
multiplicative factor (see equation (2.7) below).

B Bakry and Émery curvature criterion. First, we recall that the “carré du champ” operator Γ of a Markov
process with generator A reads, for every f, g in its domain DpAq

Γpf, gq :“
1

2

´

Apfgq ´ fAg ´ gAf
¯

and Γpfq :“ Γpf, fq.

We also need to define the Γ2 operator

Γ2pfq “
1

2

´

AΓpfq ´ 2Γpf,Afq
¯

.

In our Brownian diffusion setting, we have

@x P Rd, Γpfqpxq “ |σ˚∇fpxq|2.

whereas the computation of Γ2 is significantly more involved. However, if the diffusion matrix Σ “ σσ˚ is
constant then:

Γ2pfqpxq :“ Tr
`

pD2fpxqΣq2
˘

´x∇f,DbΣ∇fypxq.

With these notations at hand, we say that the semi-group pPtqtě0 of A satisfies the Bakry and Émery
curvature criterion with parameter ρ ą 0 if

(BEρ) @ f P DpAq, Γ2pfq ě ρΓpfq.

Observe that for Σ “ Id the condition (BEρ) is actually equivalent to (Dp
α) with α “ ρ (and any p P p1, 2s

since Dσ “ 0) and reads
B

Dbpxq `Dbpxq˚

2
ξ, ξ

F

ď ´ρ|ξ|2.

The computation of the Γ2 for a general non-degenerate diffusion of the form (1.1) is not easy and is discussed
in [ACJ08]. In particular, in whole generality, the computation of the Γ2 requires the coefficients of the operator
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itself to be smooth (i.e. at least C2). We also refer to [AMTU01] if the diffusion matrix is scalar diagonal, i.e.
Σpxq “ ςpxqId, xP Rd, where ς is real valued. In that case, it is then shown that (BEρ) holds if and only if:

´
1

2
xpMpxq `M˚pxqqξ, ξy ď ´ρςpxq|ξ|2,(2.6)

where

Mpxq “
1

2

´

ςpxq∆ςpxq ` xbpxq,∇ςpxqy ´ }∇ςpxq}2
¯

Id `
´1

2
´
d

4

¯

∇ς b∇ςpxq ´ ςpxq2Dbpxq.

An important property when (BEρ) holds, see again [BE85], [BGL14], is that the following commutation
inequality holds:

(2.7) @t ě 0, @x P Rd, ΓpPtfqpxq ď expp´2ρtqPtΓpfq.

To conclude, let us say that the Bakry-Emery curvature condition is a very powerful tool to derive pointwise
gradient bounds. In our framework, this is unfortunately not enough as soon as d ą 1, because additionally to
this kind of bounds we also need, to enter in the framework of Schauder estimates under (CUE), a control of
the β-Hölder modulus of the gradient (see Section 5.1.2). It does not seem that the condition (BEρ) helps to
get such controls. The restrictions on the variations of Dσ appearing in both assumptions (CUE) and (CR)
are precisely needed to derive in the first case the bounds on rDϕsβ and in the second one to prove that the
derivatives exist up to order 3 and that rD3ϕsβ is controlled as well. This explains why the conditions on Dσ
are more stringent in the potentially degenerate setting (CR). In each case, those bounds are obtained through
pathwise analysis and the restrictions on Dσ ensure the time integrability of the iterated tangent flows, see
again Section 5.1.2 and Appendix A in [PP14] for details.

2.3. Practical Deviation Bounds.

2.3.1. A first Non-asymptotic confidence interval result.

Theorem 5 (Non-asymptotic confidence intervals without bias). Let the assumptions of Theorem 4 be in force.
Then, there exists a unique invariant distribution ν for (1.1), i.e. (U) holds. Also, ϕ satisfies (GV) introduced
in Theorem 2 for V pxq — 1` |x|2.

Assume that (C1) (sub-gaussian tails of the innovation) holds and that the step sequence pγkqkě1 is such that
γk — k´θ, θ P p 1

2`β , 1s. Then, for pcnqně1, pCnqně1 like in Theorem 2 with limn cn “ limnCn “ 1, we have that

for all n ě 1 and a ą 0 and for any matrix norm ~ ¨ ~ dominating } ¨ }:

(2.8) P
“

a

Γn|νnpfq ´ νpfq| ą a
‰

ď 2Cn exp
´

´ cn
a2α2

2~σ~2
8rf s

2
1

¯

with ~σ~8 :“ sup
xPRr

~σpxq~,

(2.9) P
„

νpfq P
”

νnpfq ´
a~σ~8rf s1

α
?

Γn
, νnpfq `

a~σ~8rf s1

α
?

Γn

ı



ě 1´ 2Cn exp

ˆ

´cn
a2

2

˙

,

where the parameter α is the same as in the pointwise gradient bound of Theorem 4.

Proof. Equation (2.8) is a direct consequence of Theorem 2 and the gradient bound in Theorem 4. Indeed, the
mean-value Theorem readily yields that (GV) holds. It then suffice to observe that νnpfq´ νpfq “ νnpAϕq. To

prove (2.9), setting aσ,f,α :“ a~σ~8
rf s1
α , it suffices to write:

P
„

νpfq P
”

νnpfq ´
aσ,f,α
?

Γn
, νnpfq `

aσ,f,α
?

Γn

ı



“ 1´ Pr
a

Γn
ˇ

ˇνnpfq ´ νpfq
ˇ

ˇ ě aσ,f,αs

and conclude by (2.8). �

2.3.2. A more refined non-asymptotic confidence interval when ~σ~2 ´ νp~σ~2q is a coboundary. We provide
in Theorem 6 below a kind of Slutsky’s Lemma when, for a matrix norm ~ ¨ ~ dominating }σpxq} ď ~σpxq~, s.t.
~σ~2 ´ νp~σ~2q is a coboundary.

Theorem 6 (Slutsky type concentration result for the coboundary case). Under the assumptions of Theorem 5,
for β P p0, 1s and θ P p 1

2`β , 1s (unbiased case), assuming as well that there is a unique solution ϑ to Aϑ “
~σ~2´νp~σ~2q satisfying the same assumptions as ϕ in Theorem 5, there exist two explicit monotonic sequences
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cn ď 1 ď Cn, n ě 1, with limnCn “ limn cn “ 1 such that for all n ě 1, for all a ą 0, the following bounds
hold: if a?

Γn
Ñ 0 (Gaussian deviations) then,

(2.10) P
“

|
a

Γn
νnpfq ´ νpfq
a

νnp~σ~2q
| ě a

‰

ď 2Cn exp

ˆ

´cn
a2α2

2rf s21

˙

,

(2.11) P

«

νpfq P
”

νnpfq ´
a
a

νnp~σ~2qrf s1

α
?

Γn
, νnpfq `

a
a

νnp~σ~2qrf s1

α
?

Γn

ı

ff

ě 1´ 2Cn exp

ˆ

´cn
a2

2

˙

.

Again, the non-asymptotic confidence interval is explicitly computable in function of the given source f , the
coefficients in the dynamics and the chosen (computable) matrix norm ~ ¨ ~. It is also sharper than the one
in (2.9).

2.3.3. Towards Lipschitz sources in the non-degenerate case. We conclude this section stating a non-asymptotic
deviation result for Lipschitz sources under some non-degeneracy conditions (assumption (CUE) of Theorem 4
replacing the condition stated there for f by a Lipschitz condition).

Theorem 7 (Non-asymptotic concentration bounds for Lipschitz functions). Let the assumptions of Theorem 4
with (CUE) hold except that f is here solely a Lipschitz continuous function. For a time step sequence pγkqkě1 of
the form γk — k´θ, θ P p1{2, 1s, we have that, there exist two explicit monotonic sequences cn ď 1 ď Cn, n ě 1,
with limnCn “ limn cn “ 1 such that for all n ě 1 and for every a ą 0:

P
“

|
a

Γn
`

νnpfq ´ νpfq
˘

| ě a
‰

ď 2Cn exp

ˆ

´cn
a2α2

2}σ}28rf s
2
1

˙

(2.12)

where α is as in Theorem 4.

Such estimates are important since they allow to get rather close to the natural framework which appear
in functional inequalities (that mainly deal with Wasserstein distances and their possible deviations). Indeed,
through the Monge-Kantorovich formulation, the Wasserstein distance involves Lipschitz functions, since it is
precisely achieved taking the minimum over Lipschitz functions for all possible coupling with marginal corre-
sponding to the arguments of the distance (see [BGL14]).

In the literature, some non-asymptotic bounds can be found for the deviations from its mean for the Wasser-
stein distance between the empirical measure of a homogeneous Markov chain and its stationary distribution
(see Boissard [Boi11]). Here, we manage to get directly the non-asymptotic deviation bounds over all possible
Lipschitz functions for the empirical measure of the scheme aiming directly to approximate the target stationary
distribution of the diffusion. Handling the Wasserstein distance in our framework would amount to consider
the supremum over the Lipschitz functions in the probability in (2.12). This will concern further research.

We eventually point out that Theorem 7 is obtained through regularization arguments of the source f
exploiting the previous results of Theorems 2 and 4 (see Section 5.3 for details). This leads to a constraint on
the steps, i.e. γn — n´θ, θ P p1

2 , 1s. This is the price to pay, indeed a bigger θ yields a lower convergence rate, to
handle less regular Lipschitz sources. Also, to perform the approximation procedure we precisely need a kind of
elliptic bootstrap (like in Theorem 4 under (CUE)). This is why we impose the non-degeneracy assumptions.

3. Proof of the concentration results (Theorem 2)

For notational convenience, we say that assumption (A) holds whenever (C1), (GC), (C2), (LV), (U) and
(S) are fulfilled. We assume throughout this section that (A) is in force and that the function ϕ appearing in
the lemmas satisfies the smoothness assumptions of Theorem 2.

3.1. Strategy. To control the deviations of νnpAϕq we first give a decomposition lemma, obtained by a standard
Taylor expansion. The idea is to perform a kind of splitting between the deterministic contributions in the
transitions and the random innovations. Doing so, we manage to prove that the contributions involving the
innovations can be gathered into conditionally Lipschitz continuous functions of the noise, with small Lipschitz
constant (functions pψkpXk´1, ¨qqkPrr1,nss below). These functions precisely give the Gaussian concentration, see
Lemma 2. The other terms, that we will call from now on “remainders”, will be shown to be uniformly controlled
w.r.t. n and do not give any asymptotic contribution in the “fast decreasing” case θ ą 1{p2 ` βq (with the
terminology of Theorem 2), see Lemmas 3, 4 and 5.
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Lemma 1 (Local Decomposition of the empirical measure ). For all n ě 1 and k P rr0, n´ 1ss:

ϕpXkq ´ ϕpXk´1q “ γkAϕpXk´1q `

„

γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt

`
1

2
γk Tr

´

`

D2ϕpXk´1 ` γkbk´1q ´D
2ϕpXk´1q

˘

Σ2
k´1

¯

` ψkpXk´1, Ukq



“: γkApXk´1q `

´

ψkpXk´1, Ukq `R
1
n,kpXk´1q

¯

,(3.13)

where for all k P rr1, nss, conditionally to Fk´1, the mapping u ÞÑ ψkpXk´1, uq is Lipschitz continuous in u with
constant

?
γk}σk´1}}∇ϕ}8.

Introducing for a given k, the mapping u ÞÑ ∆kpXk´1, uq :“ ψkpXk´1, uq ´ E rψkpXk´1, Ukq|Fk´1s, we then
rewrite:

ϕpXkq ´ ϕpXk´1q “ γkAϕpXk´1q `∆kpXk´1, Ukq `Rn,kpXk´1q,

with Rn,kpXk´1q :“ R1
n,kpXk´1q ` E rψkpXk´1, Ukq|Fk´1s. The contribution ∆kpXk´1, Ukq can be viewed as a

martingale increment. Introduce now the associated (true) martingale

(3.14) Mn :“
n
ÿ

k“1

∆kpXk´1, Ukq.

Summing over k yields:

(3.15) ϕpXnq ´ ϕpX0q “ ΓnνnpAϕq `Mn `

n
ÿ

k“1

Rn,kpXk´1q.

Defining Rn :“
řn
k“1Rn,kpXk´1q ` ϕpX0q ´ ϕpXnq we obtain the following decomposition of the empirical

measure:

(3.16) νnpAϕq “ ´
1

Γn
pMn `Rnq.

- Unbiased Case (Sub-Optimal Convergence Rate). This case corresponds to fast decreasing steps of the form
γk — k´θ, θ ą 1{p2 ` βq. To investigate the non-asymptotic deviations of the empirical measure, the idea is
now to write for a, λ ą 0:

P
“

a

ΓnνnpAϕq ě a
‰

ď exp
´

´
aλ
?

Γn

¯

E
„

exp
´

´
λ

Γn
pMn `Rnq

¯



ď exp
´

´
aλ
?

Γn

¯

E
„

exp
´

´
qλ

Γn
Mn

¯

1{q

E
„

exp
´pλ

Γn
|Rn|

¯

1{p

,
1

p
`

1

q
“ 1, p, q ą 1.(3.17)

We actually aim to choose q :“ qpnq Ñ
n

1. For a suitable choice of q satisfying the previous condition, we

manage, in the fast decreasing case, to show that Rn :“ E rexpp pλΓn
|Rn|qs

1{p Ñ
n

1. For the term involving the

martingale Mn we actually use the Gaussian concentration property (GC) of the innovation on its increments
p∆kpXk´1, UkqqkPrr1,nss. Namely, using the control of the Lipschitz constant of ∆kpXk´1, ¨q stated in Lemma 1,
we derive:

E
„

exp
´

´
qλ

Γn
Mn

¯



“ E
„

exp
´

´
qλ

Γn
Mn´1

¯

E
„

exp
´

´
qλ

Γn
∆n´1pXn´1, Unq

¯

ˇ

ˇFn´1



ď E
„

exp
´

´
qλ

Γn
Mn´1

¯



exp

ˆ

λ2q2

2Γ2
n

γn}σ}
2
8}∇ϕ}28

˙

ď exp

ˆ

λ2q2

2Γn
}σ}28}∇ϕ}28

˙

,(3.18)

iterating the procedure to derive the last identity. From (3.17), we thus get:

P
“

a

ΓnνnpAϕq ě a
‰

ď Rn exp
´

´
aλ
?

Γn
`
λ2q

2Γn
}σ}28}∇ϕ}28

¯

.

Keeping in mind that we manage to find q :“ qpnq Ón 1 such that the remainder Rn Ón 1, the result of Theorem 2
in the considered case then follows from a quadratic optimization over the parameter λ.

- Biased Case (Optimal Convergence Rate). This case corresponds to slow decreasing steps of the form γk — k´θ,
θ “ 1{p2`βq. In this setting, some terms of the remainderRn in (3.16) give a non trivial asymptotic contribution.
We choose to substract them before studying the deviation (term Bn,β in (2.3)).
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3.2. Explicit controls on the remainders. Summing the increments appearing in (3.13), we now choose for
the analysis to write for a given n P N the remainder Rn defined after (3.15) as

Rn “
n
ÿ

k“1

Rn,kpXk´1q ` ϕpX0q ´ ϕpXnq “ pD2,b,n `D2,Σ,nq ` Ḡn ´ Ln,

where:

D2,b,n :“
n
ÿ

k“1

γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt

D2,Σ,n :“
1

2

n
ÿ

k“1

γkTr
´

`

D2ϕpXk´1 ` γkbk´1q ´D
2ϕpXk´1q

˘

Σ2
k´1

¯

,

Ḡn :“
n
ÿ

k“1

E rψkpXk´1, Ukq|Fk´1s,

Ln :“ ϕpXnq ´ ϕpX0q.(3.19)

We refer to the proof of Lemma 1 to check that the above definition of Ḡn actually matches the term
?

ΓnE
β
n

introduced in equation (2.2) of Theorem 2. We rewrite from (3.16)

(3.20) νnpAϕq “ ´
1

Γn
pMn `Rnq “ ´

1

Γn

`

Mn ` pD2,b,n `D2,Σ,nq ` Ḡn ´ Ln
˘

.

We now split the analysis according to the cases (a) and (b) introduced in Theorem 2.

(a) θ P p1{p2`βq, 1s, β P p0, 1s. From (3.20), the exponential Tchebychev and Hölder inequalities yield that, for
all λ P R` and all p, q P p1,`8q, 1

p `
1
q “ 1,

P
“

a

ΓnνnpAϕq ě a
‰

ď exp
´

´
aλ
?

Γn

¯

ˆ

E exp
´

´
qλ

Γn
Mn

¯

˙
1
q

ˆ

ˆ

E exp
´2pλ

Γn

`ˇ

ˇLn
ˇ

ˇ`
ˇ

ˇḠn
ˇ

ˇ

˘

¯

˙
1
2p
ˆ

E exp
´4pλ

Γn

ˇ

ˇD2,b,n

ˇ

ˇ

¯

˙
1
4p
ˆ

E exp
´4pλ

Γn

ˇ

ˇD2,Σ,n

ˇ

ˇ

¯

˙
1
4p

.(3.21)

(b) θ “ 1
2`β , β P p0, 1s. If β “ 1, denoting, D2,n :“ D2,b,n `D2,Σ,n, we have from (3.19) and with the notations

of (2.3), pḠn `D2,nq “
?

ΓnBn,1. We study the deviations of:

P
“

a

ΓnνnpAϕq ` Bn,β ě a
‰

“ P
”

νnpAϕq `
Ḡn `D2,n

Γn
ě

a
?

Γn

ı

ď exp
´

´
aλ
?

Γn

¯

ˆ

E exp
´

´
qλ

Γn
Mn

¯

˙
1
q
ˆ

E exp
´pλ

Γn

ˇ

ˇLn
ˇ

ˇ

¯

˙
1
p

.

(3.22)

For β P p0, 1q, the contributions of D2,n do not yield any asymptotic bias. Recalling from (2.3) that Bn,β “
Eβn “

Ḡn?
Γn

, we write:

P
“

a

ΓnνnpAϕq ` Bn,β ě a
‰

“ P
”

νnpAϕq `
Ḡn
Γn

ě
a
?

Γn

ı

ď exp
´

´
aλ
?

Γn

¯

ˆ

E exp
´

´
qλ

Γn
Mn

¯

˙
1
q

ˆ

ˆ

E exp
´2pλ

Γn

ˇ

ˇLn
ˇ

ˇ

¯

˙
1
2p
ˆ

E exp
´4pλ

Γn

ˇ

ˇD2,b,n

ˇ

ˇ

¯

˙
1
4p
ˆ

E exp
´4pλ

Γn

ˇ

ˇD2,Σ,n

ˇ

ˇ

¯

˙
1
4p

.(3.23)

Remark 8. Observe that in case (a), the “small steps” and the corresponding sufficient smoothness of ϕ prevent
from the appearance of a bias. As a result, the concentration bound is, at the non-asymptotic level, the same
as in Theorem 1, up to the additional upper-bound for the variance. In case (b), we subtract the terms Bn,β
that asymptotically give a bias. When β “ 1, this is the case for both terms Ḡn

Γn
,
D2,n

Γn
. Also, for D3ϕ P C1,

Bn,1 “ Ḡn`D2,n?
Γn

Ñ
n
´rγm introduced in Theorem 1. For β P p0, 1q and ϕ P C3pRd,Rq, rϕp3qsβ ă `8, the only

term giving a bias is Bn,β “ Eβn “
Ḡn?
Γn

.
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The lemma below provides the Gaussian contribution to be exploited in inequalities (3.21) - (3.23).

Lemma 2 (Gaussian concentration). For a ą 0, q P p1,`8q, setting

(3.24) λn :“
a

q}σ}28}∇ϕ}28

a

Γn,

we derive:

exp

ˆ

´λn
a
?

Γn

˙ˆ

E exp
´

´
qλn
Γn

Mn

¯

˙
1
q

ď exp

ˆ

´
a2

2q}σ}28}∇ϕ}28

˙

.

Lemma 3 (Bounds for the Conditional Expectations). With the above notations, we have that for β P p0, 1s, θ P
r 1

2`β , 1s:

|Eβn | “
|Ḡn|
?

Γn
ď an :“

rϕp3qsβ
›

›σ
›

›

p3`βq

8
E
“

|U1|
3`β

‰

p1` βqp2` βqp3` βq

Γ
p

3`β
2
q

n
?

Γn
, a.s.

Moreover, an Ñ
n
a8, with a8 “ 0 if θ P p 1

2`β , 1s and a8 ą 0 if θ “ 1
2`β . Also, for β P p0, 1s, θ P p 1

2`β , 1s:

(3.25)

˜

E exp
´2pλn

Γn
|Ḡn|

¯

¸
1
2p

ď exp
´ λn
?

Γn
an

¯

ď exp
´ λ2

n

2Γnp
`
a2
np

2

¯

, @p ą 1.

As indicated before, we now aim at controlling the remainders. In particular, from (3.17) and (3.19), we are
led to handle terms of the form

E exp
´

c
n
ÿ

k“1

γ2
k |bpXk´1q|

2
¯

ď
pLVq

E exp
´

cCV

n
ÿ

k“1

γ2
k |V pXk´1q|

¯

for small enough real constants c ą 0.
To this end, we will thoroughly rely on the following important integrability result for the Lyapunov function.

Proposition 1. Under (A) there is a constant cV :“ cV ppAqq ą 0 such that for all λ P r0, cV s, ξ P r0; 1s:

IξV :“ sup
ně0

E rexppλV ξ
n qs ă `8.

We now have the following results for the terms appearing in (3.19).

Lemma 4 (Initial term). Let q P p1,`8q be fixed and λn be as in (3.24) in Lemma 2. For functions ϕ

satisfying (GV), i.e. there exists CV,ϕ ą 0 such that for all x P Rd, |ϕpxq| ď CV,ϕp1 `
a

V pxqq, for p :“ q
q´1

and j P t1, 2u:
ˆ

E exp
´

jpλn
|Ln|

Γn

¯

˙
1
jp

ď pI1
V q

1
jp exp

˜

pj ` 1qpC2
V,ϕλ

2
n

cV Γ2
n

`
cV
p

¸

“ pI1
V q

1
jp exp

˜

pj ` 1qpC2
V,ϕa

2

cV q2}σ}48}∇ϕ}48Γn
`
cV
p

¸

,

with cV , I
1
V like in Proposition 1.

Lemma 5 (Remainders). Let q P p1,`8q be fixed and λn be as in Lemma 2. Then, there exists C3.26 :“
C3.26ppAq, ϕq such that for p “ q

q´1 :

ˆ

E exp
´4pλn

Γn

ˇ

ˇD2,Σ,n

ˇ

ˇ

¯

˙
1
4p

ď exp

˜

C3.26
pλ2

npΓ
p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p .(3.26)

We also have:

- If the mapping x ÞÑ x∇ϕpxq, bpxqy is Lipschitz continuous, then there exists C3.27 :“ CppAq, ϕq ą 0 such that
ˆ

E exp
´4pλn

Γn

ˇ

ˇD2,b,n

ˇ

ˇ

¯

˙
1
4p

ď exp
´

C3.27
pλ2

npΓ
p2q
n q

2

Γ2
n

¯

pI1
V q

1
4p .(3.27)

- For a ď cvq
4C

V
p
}σ}28}∇ϕ}28
}D2ϕ}28

?
Γn

Γ
p2q
n

, there exists an R`-valued sequence pvnqně1 such that
ˇ

ˇvn
ˇ

ˇ ď C3.28 :“ C3.28ppAq, ϕq

and
ˆ

E exp
´4pλn

Γn

ˇ

ˇD2,b,n

ˇ

ˇ

¯

˙
1
4p

ď pI1
V q

vn .(3.28)
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Also, vn Ñ
n
v8 where v8 “ 0 if θ ą 1{3 and v8 ą 0 for θ “ 1{3.

Proof of Theorem 2. From Lemma 2 we get:

(3.29)

ˆ

E exp
´

´ qλn
Mn

Γn

¯

˙
1
q

exp
´

´
aλn
?

Γn

¯

ď exp

ˆ

´
a2

2q}σ}28}∇ϕ}28

˙

.

(a) We deal with the case β P p0, 1s, θ P p 1
2`β , 1s.

(i) We suppose that the mapping x ÞÑ x∇ϕpxq, bpxqy is Lipschitz continuous. Plugging in (3.21) the controls
from (3.29), Lemma 3 equation (3.25), Lemma 4 (with j “ 2) and Lemma 5 (equations (3.26), (3.27)), we get:

P
„

νnpAϕq ě
a
?

Γn



ď exp

ˆ

´
a2

2q}σ}28}∇ϕ}28

˙

exp
´ λ2

n

2Γnp
`
pa2

n

2

¯

exp

˜

3pC2
V,ϕλ

2
n

cV Γ2
n

`
cV
p

¸

pI1
V q

1
2p

ˆ exp

˜

C3.26
pλ2

npΓ
p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p ˆ exp

˜

C3.27
pλ2

npΓ
p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p

ď pI1
V q

1
p exp

˜

´
a2

2q}σ}28}∇ϕ}28

´

1´
1

q}σ}28}∇ϕ}28

! p

Γn

´6C2
V,ϕ

cV
` 2

“

C3.26 ` C3.27spΓ
p2q
n q

2
¯

`
1

p

)¯

¸

ˆ exp
´cV
p
`
pa2

n

2

¯

.(3.30)

Recall now that for θ ą 1
2`β ě 1{3, Γ

p
3`β

2
q

n {
?

Γn Ñ
n

0, Γ
p2q
n {
?

Γn Ñ
n

0 (see Lemma 3 and Remark 2). We now

take p :“ pn Ñ
n
`8, and therefore q :“ qn Ñ

n
1, such that p

1{2
n

Γ
p
3`β

2 q

n?
Γn

Ñ
n

0 so that from Lemma 3, pna
2
n Ñn

0.

Since Γ
p
3`β

2 q

n?
Γn

ě
Γ
p2q
n?
Γn

this in turn implies:

(3.31) dn :“
1

qn}σ}28}∇ϕ}28

! pn
Γn

´6C2
V,ϕ

cV
`
“

2C3.26 ` 3C3.27

‰

pΓp2qn q
2
¯

`
1

pn

)

Ñ
n

0.

We conclude from (3.30) setting cn “ q´1
n p1´ dnq, Cn :“ pI1

V q
1
pn expp 1

pn
rcV `

C3.27
2 s `

pna2
n

2 q Ñ
n

1. Observe that

taking an increasing sequence ppnqně1 readily yields Cn Ón 1, and qn Ón 1. Also, the sequence ppnqně1 can be
chosen in order to have, for n large enough, dn Ón 0 so that cn Òn 1.

(ii) Assume a ď cV q
4C

V
p
}σ}28}∇ϕ}28
}D2ϕ}28

?
Γn

Γ
p2q
n

. Plugging in (3.21) the controls from (3.29), Lemma 3, equation (3.25) ,

Lemmas 4 (with j “ 2), 5 (equations (3.26), (3.28)) we then derive:

P
”

νnpAϕq ě
a
?

Γn

ı

ď exp

ˆ

´
a2

2q}σ}28}∇ϕ}28

˙

exp
´ λ2

n

2Γnp
`
pa2

n

2

¯

exp

˜

3pC2
V,ϕλ

2
n

cV Γ2
n

`
cV
p

¸

pI1
V q

1
2p

ˆ exp

˜

C3.26
pλ2

npΓ
p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p pI1

V q
vn

ď pI1
V q

vn`
3
4p exp

ˆ

cV
p
`
pa2

n

2

˙

exp

˜

´
a2

2q}σ}28}∇ϕ}28

´

1´
1

q}σ}28}∇ϕ}28

! p

Γn

´6C2
V,ϕ

cV
` 2C3.26pΓ

p2q
n q

2
¯

`
1

p

)¯

¸

.

(3.32)

Since θ ą 1
2`β ě 1{3 (see Remark 2), we again take p :“ pn Òn `8 so that p

1{2
n an Ñ

n
0 which also guarantees:

(3.33) dn :“
1

qn}σ}28}∇ϕ}28

!

pn

´6C2
V,ϕ

cV Γn
`

2C3.26pΓ
p2q
n q

2

Γn

¯

`
1

pn

)

Ñ
n

0.

In this case, we derive the result by setting cn :“ q´1
n p1 ´ dnq Ñ

n
1, Cn :“ pI1

V q
vn`

3
4pn expp cVpn `

pna2
n

2 q Ñ
n

1

(see the limits of vn following equation (3.28) and (3.46)). Again, ppnqně1 can be chosen in order to have the
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stated monotonicity for n large enough. Set now

(3.34) χn :“
cV }σ}

2
8}∇ϕ}28

4CV }D
2ϕ}28

qn
pn
,

so that a ď χn
?

Γn

Γ
p2q
n

. Thus, the slower pn goes to infinity, the wider the domain of validity for the estimate in

the parameter a.
(b) It remains to analyze the case β P p0, 1s, θ “ 1

2`β . Let us deal with β “ 1. From (3.22), the controls of (3.29)

and Lemma 4 (with j “ 1) we get:

P
„

νnpAϕq `
Ḡn `D2,n

Γn
ě

a
?

Γn



ď exp

ˆ

´
a2

2q}σ}28}∇ϕ}28

˙

exp

˜

2pC2
V,ϕλ

2
n

cV Γ2
n

`
cV
p

¸

pI1
V q

1
p .

Recalling the definition of λn in (3.24), we conclude as previously with obvious modifications of pcnqně1, pCnqně1.
The case β P p0, 1q is handled similarly starting from (3.23).

Also, when D3ϕ P C1, we derive similarly to the proof of Theorem 10 in [LP02] that Bn,1 Ñ
n
´rγm.

Eventually, the final control involving the two sided deviation is derived by symmetry. ˝

3.3. Proof of the Technical Lemmas. This section is devoted to the proof of the previously used Lemmas 1–
5 and Proposition 1 which were the key ingredients to derive Theorem 2.

Proof of Lemma 1. For k P rr1, nss, we first write:

ϕpXkq ´ ϕpXk´1q “ pϕpXkq ´ ϕpXk´1 ` γkbk´1qq ` pϕpXk´1 ` γkbk´1q ´ ϕpXk´1qq

“: Tk´1,rpϕq ` Tk´1,dpϕq,
(3.35)

in order to split the random and deterministic contributions in the transitions of the scheme (S).
We then perform a Taylor expansion with integral remainder at order 2 for the function ϕ in the two terms

of the r.h.s. of (3.35). Namely, with the above notations:

Tk´1,dpϕq “ γkbk´1 ¨∇ϕpXk´1q ` γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt,

Tk´1,rpϕq “
?
γkσk´1Uk ¨∇ϕpXk´1 ` γkbk´1q

`γk

ż 1

0
p1´ tqTr

´

D2ϕpXk´1 ` γkbk´1 ` t
?
γkσk´1Ukqσk´1Uk b Ukσ

˚
k´1

¯

dt.

Hence,

ϕpXkq ´ ϕpXk´1q “ γkAϕpXk´1q

`γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt`

?
γkσk´1Uk ¨∇ϕpXk´1 ` γkbk´1q

`γk

ż 1

0
p1´ tqTr

´

D2ϕpXk´1 ` γkbk´1 ` t
?
γkσk´1Ukqσk´1Uk b Ukσ

˚
k´1 ´D

2ϕpXk´1qΣk´1

¯

dt

“ γkAϕpXk´1q ` γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt

`γk

ż 1

0
p1´ tqTr

´

`

D2ϕpXk´1 ` γkbk´1q ´D
2ϕpXk´1q

˘

Σk´1

¯

dt` ψkpXk´1, Ukq

“: γkAϕpXk´1q `D
k
2,b `D

k
2,Σ ` ψkpXk´1, Ukq,(3.36)

where

ψkpXk´1, Ukq “
?
γkσk´1Uk ¨∇ϕpXk´1 ` γkbk´1q

` γk
ş1
0p1´ tqTr

´

D2ϕpXk´1 ` γkbk´1 ` t
?
γkσk´1Ukqσk´1Uk b Ukσ

˚
k´1 ´D

2ϕpXk´1 ` γkbk´1qΣk´1

¯

dt.

(3.37)
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Observe now that, conditionally to Fk´1, the mapping u ÞÑ ψkpXk´1, uq is Lipschitz continuous: indeed, the
innovation Uk does not appear in the other contributions of the right side of (3.36). Consequently, as ϕ is
Lispchitz continuous we derive, for all pu, u1q P pRdq2:

|ψkpXk´1, uq ´ ψkpXk´1, u
1q| ď

?
γk}σk´1} }∇ϕ}8|u´ u1|.

The result is obtained by summing up the previous identities from k “ 1 to n, observing, with the notations
of (3.19), that Ln “

řn
k“1 ϕpXkq´ϕpXk´1q, D2,b,n “

řn
k“1D

k
2,b, D2,Σ,n “

řn
k“1D

k
2,Σ, Gn :“

řn
k“1 ψkpXk´1, Ukq.

˝

Proof of Lemma 2. The idea is to use conditionally and iteratively the Gaussian concentration property
(GC) of the innovation. Let us note that this strategy was already the key ingredient in [FM12]. In the
current framework, we exploit that the functions u ÞÑ ∆kpXk´1, uq :“ ψkpXk´1, uq´E rψkpXk´1, Ukq|Fk´1s are
conditionally independent w.r.t. Fk´1 and Lipschitz continuous with constant

?
γk}σ}8}∇ϕ}8 by Lemma 1.

We thus write:

E exp
´

´
qλ

Γn
Mn

¯

“ E exp

˜

´
qλ

Γn

n
ÿ

k“1

∆kpXk´1, Ukq

¸

“ E
”

exp
´

´
qλ

Γn

n´1
ÿ

k“1

∆kpXk´1, Ukq
¯

E
”

exp
´

´
qλ

Γn
∆npXn´1, Unq

¯

|Fn´1

ıı

ď E
”

exp
´

´
qλ

Γn

n´1
ÿ

k“1

∆kpXk´1, Ukq
¯

exp
´q2λ2

2Γ2
n

γn}σ}
2
8}∇ϕ}28

¯ı

,(3.38)

where we used (GC) in the third line recalling as well that E r∆npXn´1, Unq|Fn´1s “ 0.
Iterating the process over k, we obtain:

ˆ

E exp
´

´
qλ

Γn
Mn

¯

˙
1
q

“

˜

E exp
´

´
qλ

Γn

n
ÿ

k“1

∆kpXk´1, Ukq
¯

¸
1
q

ď exp
´qλ2}σ}28}∇ϕ}28

2Γn

¯

.(3.39)

Finally,

exp
´

´
λa
?

Γn

¯

ˆ

E exp
´

´
qλ

Γn
Mn

¯

˙
1
q

ď exp
´ gpλq
?

Γn

¯

,

where g : R` Ñ R is defined by gpλq “ ´ a?
Γn
λ` qλ2

2Γn
}σ}28}∇ϕ}28. As a ą 0, the function attains its minimum

at λn given in (3.24). This eventually yields the expected bound. ˝

Proof of Lemma 3. From the definition in (3.37) and the Fubini theorem, we have that for all k P rr1, nss:

E rψkpXk´1, Ukq|Fk´1s “ γk
ş1
0p1´ tqTr

´

E
“

D2ϕpXk´1 ` γkbk´1 ` t
?
γkσk´1Ukqσk´1Uk b Ukσ

˚
k´1

´D2ϕpXk´1 ` γkbk´1qΣk´1|Fk´1

‰

¯

dt.(3.40)



NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR ERGODIC APPROXIMATIONS 20

Recalling that Uk has the same moments as the standard Gaussian random variable up to order three (see
(GC)) and is independent of Fk´1, a Taylor expansion yields:

E
”

Tr
´

D2ϕpXk´1 ` γkbk´1 ` t
?
γkσk´1Ukqσk´1Uk b Ukσ

˚
k´1 ´D

2ϕpXk´1 ` γkbk´1qΣk´1

¯ˇ

ˇ

ˇ
Fk´1

ı

“ Tr
´

D2ϕpXk´1 ` γkbk´1qσk´1E rUk b Uksσ˚k´1

¯

`

ż 1

0
E
”

Tr
´

`

D3ϕpXk´1 ` γkbk´1 ` ut
?
γkσk´1Ukqt

?
γkσk´1Uk

˘`

σk´1Uk b Ukσ
˚
k´1

˘

¯ˇ

ˇ

ˇ
Fk´1

ı

du

´Tr
´

D2ϕpXk´1 ` γkbk´1qΣk´1

¯

“ Tr
´

D2ϕpXk´1 ` γkbk´1qσk´1 pE rUk b Uks ´ Iq
loooooooooomoooooooooon

“0

σ˚k´1

¯

`t
?
γk

ż 1

0
E
”

Tr
´

`

rD3ϕpXk´1 ` γkbk´1 ` ut
?
γkσk´1Ukq ´D

3ϕpXk´1 ` γkbk´1qsσk´1Uk
˘

ˆ
`

σk´1Uk b Ukσ
˚
k´1

˘

¯
ˇ

ˇ

ˇ
Fk´1

ı

du,

recalling from (GC) that for all pi, j, lq P rr1, rss, E rU ikU
j
kU

l
k|Fk´1s “ E rU i1U

j
1U

l
1s “ 0 (cancellation argument).

Hence,

|E rψkpXk´1, Ukq|Fk´1s| ď γk

ż 1

0
p1´ tqt1`βrϕp3qsβE

”

γ
1`β

2
k }σk´1}

3`β|Uk|
3`β

ż 1

0
uβdu

ˇ

ˇ

ˇ
Fk´1

ı

dt

“
rϕp3qsβγ

3`β
2

k }σk´1}
3`βE r|Uk|3`βs

p1` βqp2` βqp3` βq
,

recalling that the third derivatives of ϕ are β-Hölder continuous for the first inequality. We thus derive:

|Eβn | “
|Ḡn|
?

Γn
ď

1
?

Γn

n´1
ÿ

k“1

ˇ

ˇE
“

ψkpXk´1, Ukq|Fk´1

‰
ˇ

ˇ ď
rϕp3qsβ}σ}

3`β
8 E r|U1|

3`βs

p1` βqp2` βqp3` βq

Γ
p

3`β
2
q

n
?

Γn
“: an.

Proof of Proposition 1. First of all, let us decompose the Lyapunov function V with a Taylor expansion
like in Lemma 1. We again use a splitting between the deterministic contributions and those involving the
innovation. We write for all n P N:

V pXnq ´ V pXn´1q “ γnAV pXn´1q ` γ
2
n

ż 1

0
p1´ tqTr

´

D2V pXn´1 ` tγnbn´1qbn´1 b bn´1

¯

dt

´
γn
2

Tr
`

D2V pXn´1qqΣn´1

˘

`
?
γnσn´1Un ¨∇V pXn´1 ` γnbn´1q

`γn

ż 1

0
p1´ tqTr

´

D2V pXn´1 ` γnbn´1 ` t
?
γnσn´1Unqσn´1Un b Unσ

˚
n´1

¯

dt

ď ´γnαV V pXn´1q ` γnβV ` CV
γ2
n

2
}D2V }8V pXn´1q

`
γn
2
}D2V }8}σ}

2
8 `

?
γnσn´1Un ¨∇V pXn´1 ` γnbn´1q `

γn
2
}D2V }8}σ}

2
8|Un|

2

ď γn

´

´
αV
2
V pXn´1q ` rc

¯

`
?
γnσn´1Un ¨∇V pXn´1 ` γnbn´1q `

γn
2
}D2V }8}σ}

2
8|Un|

2(3.41)

for a constant rc :“ rcpV, σ, βV q. We have in fact considered the time steps sufficiently small (in (S), we have
chosen for all n P N, γn ă minp 1

2
?
C
V
c̄
,

α
V

2C
V
}D2V }8

q). The two terms involving the innovation Un in the above

decomposition can be controlled thanks to the Gaussian concentration hypothesis (GC). Let us define for all
x P Rd and all γ, λ ą 0 the quantities:

I1pγ, λ, xq :“ E
”

exp
`

λ
?
γσpxqU1 ¨∇V px` γbpxqq

˘

ı

, I2pγ, λq :“ E
”

exp
`

λ
γ

2
}D2V }8}σ}

2
8|U1|

2
˘

ı

.
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The first one is directly controlled owing to hypothesis (GC):

I1pγn, λ, xq ď exp
´λ2γn|σ

˚pxq∇V px` γnbpxqq|2

2

¯

ď
pLVq

exp
´λ2γnCV }σ}

2
8V px` γnbpxqq

2

¯

.(3.42)

Furthermore, under (GC), for all c ă 1
2 , Ic :“ E rexppc|Un|

2qs ă `8. Hence, for all λ ă 2c
}D2V }8}σ}28γ1

,

Jensen’s inequality yields:

I2pγn, λq ď

”

E exp
`

c|Un|
2
˘

ı

λγn}D
2V }8}σ}

2
8

2c
“ exp

´

γn lnpIcq
λ}D2V }8}σ}

2
8

2c

¯

.(3.43)

These controls allow to prove the integrability statement of the proposition by induction. For n “ 0, recalling
from assumption (C1) that for all λ ă λ0,E exppλ|X0|

2q ă `8 and from (LV), i) that V pxq ď c̄|x|2 outside of

a compact set, we derive that for all λ P p0, λ0
c̄ q, there exists C0

V,λ P p1,`8q such that

E exp
`

λV pX0q
˘

ď C0
V,λ.

Set now rβV :“ rc ` lnpIcq
}D2V }8}σ}28

2c and rαV :“ min
`

1
γ1
,
α
V
2 ´ λCV }σ}

2
8p1 ` γ1CV r1 `

γ1}D2V }8
2 sq

˘

P p0, 1
γ1
s,

for λ ă
α
V

2C
V
}σ}28p1`γ1CV r1`

γ1}D
2V }8
2

sq
.

Let us assume that for all λ ă λV :“ min
´

λ0
2c̄ ,

α
V

2C
V
}σ}28p1`γ1CV r1`

γ1}D
2V }8
2

sq
, c
}D2V }8}σ}28γ1

¯

, the property

(Pn´1) @k P rr0, n´ 1ss, E exp
`

λV pXkq
˘

ď CV,λ :“ C0
V,λ _ exp

´λrβV
rαV

¯

,

holds for a fixed n ´ 1 P N0 and let us prove pPnq. By inequalities (3.41), (3.42) and (3.43) and the Cauchy-
Schwarz inequality, we derive that for all λ ă λV ,

E exp
`

λV pXnq
˘

“ E
”

exp
`

λV pXn´1q
˘

E
“

exp
`

λpV pXnq ´ V pXn´1qq
˘
ˇ

ˇFn´1s

ı

ď E
”

exp
`

λrV pXn´1qp1´
αV
2
γnq ` rcγns

˘

I1pγn, 2λ,Xn´1q
1{2I2pγn, 2λq

1{2
ı

“ exp
`

λγnrβV
˘

E
”

exp
´

λ
`

1´
αV
2
γn
˘

V pXn´1q ` λ
2γnCV }σ}

2
8V pXn´1 ` γnbn´1q

¯ı

.

Recall now that V pXn´1` γnbn´1q ď V pXn´1q` γn|∇V pXn´1q||bn´1| `
γ2
n
2 }D

2V }8|bn´1|
2
pLVq,iiq
ď V pXn´1qp1`

γnCV r1`
γn}D2V }8

2 sq. Thus,

E
“

exp
`

λV pXnq
˘‰

ď exp
`

λγnrβV
˘

E
”

exp
`

λ p1´ γnrαV q
looooomooooon

Pr0,1q

V pXn´1q
˘

ı

pJensenq
ď exp

`

λγnrβV
˘

E
“

exp
`

λV pXn´1q
˘

ıp1´γnrαV q
ď exp

`

λγnrβV
˘

C
p1´γnrαV q
V,λ

using (Pn´1) for the last inequality. From the above equation and the previous definition of CV,λ we have:

exp
`

λγnrβV
˘

C
p1´γnrαV q
V,λ ď CV,λ ðñ CV,λ ě exp

´λrβV
rαV

¯

.

Hence, pPnq holds. Taking cV ă λV completes the proof. ˝

Remark 9. Noting that v˚ :“ infxPRd V pxq ą 0, we get that for all pn, ξq P Nˆr0, 1s, and for all λ ă λV pv
˚q1´ξ:

E exppλV ξ
n q “ E exp

´

λpv˚qξ
´Vn
v˚

¯ξ

loomoon

ě1

¯

ď E exp
`

λpv˚qξ´1Vn
˘

ď CV,λpv˚qξ´1 ă `8.

Thus, we readily get as a by-product of Proposition 1 that, for all ξ P r0, 1s, λ ă λV pv
˚q1´ξ , supnPN E exppλV ξ

n q ă

`8. We refer to Lemaire (see e.g. Theorem 17 in [Lem07]) for additional results in that direction.
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Proof of Lemma 4. Recalling from (GV) that there exists CV,ϕ ą 0 such that for all x P Rd, |ϕpxq| ď
CV,ϕ

`

1`
a

V pxq
˘

, we get for j P t1, 2u:

„

E exp
´

jpλn
|ϕpX0q ´ ϕpXnq|

Γn

¯


1
jp

ď

«

E exp
´

jpλn
CV,ϕp2`

a

V pX0q `
a

V pXnqq

Γn

¯

ff
1
jp

ď exp
´

2CV,ϕ
λn
Γn

¯

«

E exp
´

2jpCV,ϕλn

a

V pX0q

Γn

¯

ff
1

2jp
«

E exp
´

2jpCV,ϕλn

a

V pXnq

Γn

¯

ff
1

2jp

.

Write now for i P t0, nu by the Young inequality:

2jpCV,ϕλn

a

V pXiq

Γn
ď cV V pXiq `

pjpq2C2
V,ϕλ

2
n

cV Γ2
n

,

where cV is the positive real constant such that I1
V “ sup

ně0
E rexppcV V pXnqqs ă `8 (see Proposition 1). We

then get
„

E exp
´

jpλn
|ϕpX0q ´ ϕpXnq|

Γn

¯


1
jp

ď exp
´

2CV,ϕ
λn
Γn

¯

exp
´jpC2

V,ϕλ
2
n

cV Γ2
n

¯´

E exppcV V pX0qq

¯
1

2jp
´

E exppcV V pXnqq

¯
1

2jp

ď exp

˜

pj ` 1qpC2
V,ϕλ

2
n

cV Γ2
n

¸

exp

ˆ

cV
p

˙

pI1
V q

1
jp . l

Proof of Lemma 5.

‚ Proof of inequalities (3.27) and (3.28).

- If x ÞÑ x∇ϕpxq, bpxqy is Lipschitz continuous. We first rewrite from the definition of D2,b,n in (3.19):

D2,b,n “

n
ÿ

k“1

γk

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q ´∇ϕpXk´1q, bk´1ydt

“

n
ÿ

k“1

γk

”

ż 1

0
x∇ϕpXk´1 ` tγkbk´1q, bk´1 ´ bpXk´1 ` tγkbk´1qydt

`

ż 1

0

`

x∇ϕ, bypXk´1 ` tγkbk´1q ´ x∇ϕ, bypXk´1q
˘

dt
ı

.

From the boundedness of ∇ϕ, and the Lipschitz property of the mappings x ÞÑ bpxq (which has been assumed
from the very beginning) and x ÞÑ x∇ϕpxq, bpxqy (assumed for the current inequality), recalling that bk´1 “

bpXk´1q, one derives that :

|D2,b,n| ď

n
ÿ

k“1

γ2
k

´

}∇ϕ}8rbs1 ` rx∇ϕ, bys1
¯

|bk´1|

2
ď C

n
ÿ

k“1

γ2
k |bk´1|, C :“ Cpb, ϕq.(3.44)

From this inequality, assumption (LV), ii) and the Jensen inequality (applied to the exponential function for
the measure 1

Γ
p2q
n

řn
k“1 γ

2
kδk), we derive:

ˆ

E exp
´4pλn

Γn
|D2,b,n|

¯

˙
1
4p

ď

˜

1

Γ
p2q
n

n
ÿ

k“1

γ2
kE exp

´4pλnΓ
p2q
n

Γn
C
a

CV
a

Vk´1

¯

¸
1
4p

.

From the Young inequality we obtain:

E exp
´4pλnΓ

p2q
n

Γn
C
a

CV
a

Vk´1

¯

ď exp
´´2

?
2pλnΓ

p2q
n

Γn

C
a

CV
?
cV

¯2¯

E rexppcV Vk´1qs.

We finally derive with the notations of Proposition 1:
ˆ

E exp
´4pλn

Γn
|D2,b,n|

¯

˙
1
4p

ď exp
´2pλ2

npΓ
p2q
n q

2

Γ2
n

pC
a

CV q
2

cV

¯

pI1
V q

1
4p ď exp

´

C3.27
pλ2

npΓ
p2q
n q

2

Γ2
n

¯

pI1
V q

1
4p ,

setting C3.27 :“ 2
pC
?
C
V
q2

cV
with C “ 1

2

`

}∇ϕ}8rbs1 ` rx∇ϕ, bys1
˘

as in (3.44).
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l

- If a ď cV q
4C

V
p
}σ}28}∇ϕ}28
}D2ϕ}28

?
Γn

Γ
p2q
n

“ χn
?

Γn

Γ
p2q
n

with the notation introduced in (3.34). Write first from (3.19) (definition

of D2,b,n), using a Taylor expansion on ∇ϕ:

ˆ

E exp
´4pλn

Γn
|D2,b,n|

¯

˙
1
4p

ď

˜

E exp
´4pλn

Γn

n
ÿ

k“1

γ2
k

ż 1

0
p1´ tq

ˇ

ˇ

ˇ
Tr
´

D2ϕpXk´1 ` tγkbk´1qbk´1 b bk´1

¯ˇ

ˇ

ˇ
dt
¯

¸
1
4p

.

(3.45)

We first easily get from the assumptions on ϕ and point ii) of (LV ) that:

ˆ

E exp
´4pλn

Γn
|D2,b,n|

¯

˙
1
4p

ď

˜

E exp
´2pλn

Γn

n
ÿ

k“1

γ2
kCV Vk´1}D

2ϕ}8

¯

¸
1
4p

.

From the Jensen inequality,we derive:

ˆ

E exp
´4pλn

Γn
|D2,b,n|

¯

˙
1
4p

ď

˜

1

Γ
p2q
n

n
ÿ

k“1

γ2
kE exp

´2pλnΓ
p2q
n

Γn
}D2ϕ}8CV Vk´1

¯

¸
1
4p

.

We then have from the definition of λn in (3.24) that:

v̄n :“
2pλnΓ

p2q
n

Γn
}D2ϕ}8

CV
cV

“
Γ
p2q
n

?
Γn

2CV p

cV q

}D2ϕ}8
}σ}28}∇ϕ}28

a ď 1.

The Jensen inequality for concave functions yields for all k P rr1, nss:

E exp
´2pλnΓ

p2q
n

Γn
}D2ϕ}8CV Vk´1

¯

“ E exp
´

v̄ncV Vk´1

¯

ď

´

E exp
´

cV Vk´1

¯¯v̄n
.

Thus, setting

(3.46) vn :“
v̄n
4p
“
λnΓ

p2q
n

2Γn
}D2ϕ}8

CV
cV

,

we finally derive,

„

E exp
´4pλn

Γn
|D2,b,n|

¯


1
4p

ď

«

1

Γ
p2q
n

n
ÿ

k“1

γ2
k

´

sup
lě1

E
“

exppcV Vl´1q
‰

¯v̄n

ff
1
4p

“ pI1
V q

vn “: Cn,

using again the notations of Proposition 1. This gives (3.28).
‚ Proof of inequality (3.26). We proceed as for the proof of (3.28) and (3.27). Write:

ˆ

E exp
´4pλn

Γn
|D2,Σ,n|

¯

˙
1
4p

ď

˜

E exp
´4pλn

Γn

n
ÿ

k“1

γk
2

ˇ

ˇ

ˇ
Tr
´

`

D2ϕpXk´1 ` γkbk´1q ´D
2ϕpXk´1q

˘

Σk´1

¯ˇ

ˇ

ˇ

¯

¸
1
4p

ď

˜

E exp
´2pλn

Γn
}σ}28rϕ

p2qs1

n
ÿ

k“1

γ2
k |bk´1|

¯

¸
1
4p

ď

˜

E exp
´2pλn

Γn
}σ}28rϕ

p2qs1C
1
2
V

n
ÿ

k“1

γ2
k |Vk´1|

1
2

¯

¸
1
4p

ď

˜

1

Γ
p2q
n

n
ÿ

k“1

γ2
kE exp

´2pλnΓ
p2q
n

Γn
}σ}28rϕ

p2qs1C
1
2
V |Vk´1|

1
2

¯

¸
1
4p

.

Using once again the Young inequality and setting C3.26 :“
}σ}48rϕ

p2qs21
4

C
V
cV

, we obtain:

ˆ

E exp
´4pλn

Γn
|D2,Σ,n|

¯

˙
1
4p

ď exp
´pλ2

n

4

´Γ
p2q
n

Γn

¯2
}σ}48rϕ

p2qs21
CV
cV

¯

pI1
V q

1
4p ď exp

´

C3.26pλ
2
n

´Γ
p2q
n

Γn

¯2¯

pI1
V q

1
4p . l
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4. A refinement when ~σ~2 ´ νp~σ~2q is a Coboundary

We will assume in this section that there exists a solution ϑ of the Poisson problem Aϑ “ ~σ~2 ´ νp~σ~2q,
where ~ ¨ ~ is a matrix norm such that } ¨ } ď ~ ¨ ~, satisfying the assumptions stated for ϕ in Theorem 2. This
is in particular the case for the Fröbenius norm } ¨ }F under the assumptions of the previous Theorem 4.

In this special case, we have a slightly different concentration result improving our previous ones for a certain
deviation range.

Theorem 8. Under the assumptions of Theorem 2 and with the notations introduced therein, we have that:

(a) For (β P p0, 1s and θ P p 1
2`β , 1s), there exist two explicit monotonic sequences c̃n ď 1 ď C̃n, n ě 1, with

limn C̃n “ limn c̃n “ 1 such that for all n ě 1 for all a ą 0:

P
“

|
a

ΓnνnpAϕq| ě a
‰

ď 2 C̃n exp

ˆ

´
c̃n

2νp~σ~2q}∇ϕ}28
Φnpaq

˙

,

Φnpaq :“

»

–

˜

a2
´

1´
2

1`
b

1` 4 c̄3
n

Γn
a2

¯

¸

_

˜

a
4
3 Γ

1
3
n c̄n

˜

1´
2

3
c̄n

ˆ

Γn
a2

˙
1
3

¸

`

¸

fi

fl ,

where x` “ maxpx, 0q and c̄n :“
´

rϕs1
rϑs1

¯2{3
νp~σ~2q~σ~

´2{3
8 čn with čn being an explicit positive sequence s.t.

čn Ón 1.

(b) For β P p0, 1s, θ “ 1
2`β , there exist two explicit monotonic sequences c̃n ď 1 ď C̃n, n ě 1, with limn C̃n “

limn c̃n “ 1 such that for all n ě 1 for all a ą 0:

P
“

|
a

ΓnνnpAϕq ` Bn,β| ě a
‰

ď 2 rCn exp

ˆ

´
rcn

2νp~σ~2q}∇ϕ}28
Φnpaq

˙

.

Remark 10 (About deviation rates). Observe that in order to derive global deviation bounds (valid for every
a ą 0) two concentration regimes appear in the previous bounds. For an arbitrary fixed a ą 0, we have
that for n large enough (depending on a), the Gaussian concentration regime will give the fastest decay, since

2

1`
b

1`4c̄3n
Γn
a2

Ñ
n

0. Also, when a —
?

Γn the two above contributions give a Gaussian bound, with suboptimal

constants. Eventually, when a "
?

Γn, for a fixed n, we have that the first term is “stuck” at the threshold Γn
whatever level a is considered, i.e. a2

`

1´ 2

1`
b

1`4c̄3n
Γn
a2

˘

ÝÑ
aÑ8

c̄3
nΓn whereas the second clearly becomes bigger.

To summarize, when the Gaussian regime prevails (i.e. when a?
Γn

is small), the results of Theorem 2 have

been improved in the sense that the variance in the deviations is a sharper upper bound of the “carré du champ”
ş

Rd |σ
˚∇ϕpxq|2νpdxq appearing in the asymptotic Theorem 1. Indeed, we managed to replace the supremum norm

~σ~2
8 deriving from Theorem 2 and the domination condition on the matrix norms by νp~σ~2q. However, our

martingale approach naturally leads to a bound in }∇ϕ}28.
On the other hand, the global double regime seems to be the price to pay to benefit from the better approximation

of the “carré du champ” in the Gaussian regime.
Eventually, Theorem 3 is a direct consequence of the previous theorem in the Gaussian regime.

Proof. We focus on case (a) for β P p0, 1q, θ P p1{p2` βq, 1s. Case (b) could be derived similarly following the
proof of Theorem 2. We restart from the computations of Section 3.1 that give for all λ ą 0 the control in
equation (3.21). Let us now deal with the term giving the concentration and write for all ρ ą 1:

E exp
´

´
qλ

Γn
Mn

¯

ď

˜

E exp
´

´ ρ
qλ

Γn
Mn ´

ρ2pqλq2rϕs21
2Γ2

n

n
ÿ

k“1

γkAϑpXk´1q

¯

¸
1
ρ

ˆ

˜

E exp
´ρ2pqλq2rϕs21

2pρ´ 1qΓ2
n

n
ÿ

k“1

γkAϑpXk´1q

¯

¸1´ 1
ρ

“: T
1
ρ

1 T
1´ 1

ρ

2 .(4.1)

Since for all x P Rd, Aϑpxq “ ~σpxq~2 ´ νp~σ~2q, we obtain:

T1 “ exp
´ρ2pqλq2rϕs21νp~σ~

2q

2Γn

¯

E exp
´

´ρ
qλ

Γn
Mn ´

ρ2pqλq2rϕs21
2Γ2

n

n
ÿ

k“1

γk~σpXk´1q~
2
¯

.
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The key idea is that we have exploited the Poisson equation solved by ϑ to replace the previous rough control

exp
´

pqλq2rϕs21~σ~
2
8

2Γn

¯

, coming from the martingale increment obtained in equation (3.18) and the domination

condition on the matrix norms, by the above term exp
´

ρ2pqλq2rϕs21νp~σ~
2q

2Γn

¯

. This last contribution will be part

of the optimization procedure over λ. This improvement will be all the more significant that neighborhoods of
the points where the norm of the diffusion coefficient σ attains its supremum are not very much charged by the
invariant distribution. The point for T1 is then to prove that the remaining expectation is less than 1. It will
be shown by exhibiting an appropriate underlying supermartingale.

Set to this end ĂT1 :“ exp
´

´
ρ2pqλq2rϕs21νp~σ~

2q

2Γn

¯

T1. Define now, for a given n P N and m P N0, Sm :“

exp
´

´ρ qλΓn
Mm´

ρ2pqλq2rϕs21
2Γ2
n

řm
k“1 γk~σpXk´1q~

2
¯

. From the definition of the martingale pMkqkě1 in (3.14) and

the controls of the Lipschitz constants of the functions
`

ψkpXk´1, ¨q
˘

kPrr1,nss
in Lemma 1, we get by iterated

conditioning:

ĂT1 ď E
”

Sn´1 exp
´

´
ρ2pqλq2rϕs21

2Γ2
n

γn~σpXn´1q~
2
¯

E
”

exp
´

´ρ
qλ

Γn
pMn ´Mn´1q

¯
ˇ

ˇ

ˇ
Fn´1

ıı

ď
pGCq

E
”

Sn´1 exp
´

´
ρ2pqλq2rϕs21

2Γ2
n

γn~σpXn´1q~
2
¯

expp
ρ2pqλq2

2Γ2
n

γnrϕs
2
1~σpXn´1q~

2q

ı

ď E rSn´1s ď 1.

In other words, pSmqmě0 is a positive supermartingale. We finally get that, for all ρ ą 1:

(4.2) T
1
ρ

1 ď exp
´ρpqλq2rϕs21νp~σ~

2q

2Γn

¯

.

For the term T2, we have that setting µ :“ µpq, n, ρ, λq “
pqλq2ρ2rϕs21
2pρ´1qΓn

,

T2 “ E exp
´ µ

Γn

n
ÿ

k“1

γkAϑpXk´1q

¯

,

so that this contribution can be controlled from the previous expansion of Lemma 1 exploiting the technical
lemmas of Section 3.1 replacing λ by µ and ϕ by ϑ.

In case (a), for θ P p1{p2 ` βq, 1s, β P p0, 1s, the Hölder inequalities yield that for all µ P R` and all
p̄, q̄ P p1,`8q, 1

p̄ `
1
q̄ “ 1, similarly to (3.21),

T2 “ E exp
´ µ

Γn

n
ÿ

k“1

γkAϑpXk´1q

¯

ď

ˆ

E exp
´

´
q̄µ

Γn
Mϑ
n

¯

˙
1
q̄

ˆ

ˆ

E exp
´2p̄µ

Γn
|Lϑn|

¯

˙
1
2p
ˆ

E exp
´4p̄µ

Γn
|Dϑ

2,b,n|

¯

˙
1
4p̄
ˆ

E exp
´4p̄µ

Γn
|Dϑ

2,Σ,n|

¯

˙
1
4p̄

,(4.3)

where the superscripts in ϑ emphasize that the contributions to be analyzed are those associated with the
solution ϑ of the Poisson problem with source ~σ~2 ´ νp~σ~2q.

Still for simplicity, we assume as well (case (i)) that the mapping x ÞÑ xbpxq,∇ϑpxqy is Lipschitz continuous.
Plugging in (4.3) the controls established in Lemma 4 (with j “ 2), Lemma 5 (equations (3.26) and (3.27))
and (3.39), then replacing λn by µ, we get similarly to the first inequality of (3.30) and with the notations of
Lemma 3:

T2 ď exp
´ q̄µ2~σ~2

8rϑs
2
1

2Γn

¯

exp

ˆ

µ2

2Γnp̄
`
p̄a2

n

2

˙

exp

˜

3p̄C2
V,ϑµ

2

cV Γ2
n

`
cV
p̄

¸

pI1
V q

1
2p̄

ˆ exp

˜

C3.26
p̄µ2pΓ

p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p̄ ˆ exp

˜

C3.27

´3p̄µ2pΓ
p2q
n q

2

2Γ2
n

`
1

2p̄

¯

¸

pI1
V q

1
4p̄ .

ď exp
´µ2

Γn

´ q̄~σ~2
8rϑs

2
1

2
` p̄

´

pΓ
p2q
n q

2

Γn
rC3.26 `

3

2
C3.27s `

3C2
V,ϑ

cV Γn

¯

`
1

2p̄

¯¯

exp
´1

p̄

`

cV `
C3.27

2

˘

`
p̄a2

n

2

¯

pI1
V q

1
p̄ .
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Set now

C̄n :“ exp
´1

p̄

`

cV `
C3.27

2

˘

`
p̄a2

n

2

¯

pI1
V q

1
p̄ ,

ēn :“ p̄
´

pΓ
p2q
n q

2

Γn
rC3.26 `

3

2
C3.27s `

3C2
V,ϑ

cV Γn

¯

`
1

2p̄
.(4.4)

In the considered case, the exponent p̄ :“ p̄n can again be taken such that p̄n Ñ
n
`8 and p̄n

pΓ
p2q
n q2

Γn
Ñ
n

0 in order

to have, ēn Ñ
n

0, C̄n Ñ
n

1 with the indicated monotonicity for large enough n.

We derive from the above control and (4.2) that for all q, ρ ą 1:

ˆ

E exp
´

´
λq

Γn
Mn

¯

˙
1
q

ď

´

T
1
ρ

1 T
1´ 1

ρ

2

¯
1
q
ď exp

´ρqλ2rϕs21νp~σ~
2q

2Γn

¯

C̄
ρ´1
ρq
n exp

´ρ´ 1

ρq

µ2

Γn

´ q̄~σ~2
8rϑs

2
1

2
` ēn

¯¯

.

Plugging this bound in (3.21), using again the controls of Lemmas 4 and 5, eventually yields:

P
”

a

ΓnνnpAϕq ě a
ı

ď exp

ˆ

´
aλ
?

Γn

˙

exp
´ λ2

2Γn

`

ρqrϕs21νp~σ~
2q `

1

p

˘

¯

C̄
ρ´1
ρq
n exp

´ρ´ 1

ρq

µ2

Γn

´ q̄~σ~2
8rϑs

2
1

2
` ēn

¯¯

ˆ exp
´λ2

Γn
p
´

pΓ
p2q
n q

2

Γn

`

C3.26 `
3

2
C3.27

˘

`
3C2

V,ϕ

cV Γn

¯¯

exp
´1

p

`

cV `
C3.27

2

˘

`
pa2

n

2

¯

pI1
V q

1
p .

Choosing p :“ pn Ñ
n
`8 and such that pn

pΓ
p2q
n q2

Γn
Ñ
n

0, we get by a standard symmetry and with the notations

introduced in the proof of Theorem 2:

P
”
ˇ

ˇ

ˇ

a

ΓnνnpAϕq
ˇ

ˇ

ˇ
ě a

ı

ď 2CnC̄
ρ´1
ρq
n exp

ˆ

´
aλ
?

Γn

˙

exp
´λ2

Γn

`ρqrϕs21νp~σ~
2q

2
` en

˘

¯

ˆ exp
´ρ´ 1

ρq

µ2

Γn

´ q̄~σ~2
8rϑs

2
1

2
` ēn

¯¯

,

where en is defined similarly to ēn in (4.4) replacing p̄ by p. In particular en Ñ
n

0. Note that for the previous

choices of p, p̄, we have that rCn :“ CnC̄
ρ´1
ρq
n Ñ

n
1 uniformly in ρ ą 1. Recalling that µ “

pqλq2ρ2rϕs21
2pρ´1qΓn

, we are thus

led to minimize the polynomial function

P : λ ÞÝÑ ´
aλ
?

Γn
`
λ2

Γn
An `

λ4

Γ3
n

Bn,

where An “ Anpρq “ ρ rAn and Bn “ Bnpρq “
ρ3

ρ´1
rBn with

(4.5) rAn :“
qrϕs21νp~σ~

2q

2
` en and rBn :“

q3rϕs41
4

´ q̄~σ~2
8rϑs

2
1

2
` ēn

¯

.

Note that both sequences p rAnqně1 and p rBnqně1 are bounded and bounded away from zero sequences (and do
not depend on ρ). The function P is clearly convex and coercive so it attains its minimum at λmin, unique zero
of the equation P 1pλminq “ 0. This equation reads

(4.6) λ3 `
AnΓ2

n

2Bn
λ´

aΓ
5
2
n

4Bn
“ 0

which is the canonical form of this third degree equation to apply the Cardan-Tartaglia formula ( 1) so that

(4.7) λminpρq “
Γn
2

»

–

˜

a
?

ΓnBn
`

d

´2An
3Bn

¯3
`

a2

ΓnB2
n

¸

1
3

`

˜

a
?

ΓnBn
´

d

´2An
3Bn

¯3
`

a2

ΓnB2
n

¸

1
3

fi

fl .

1. If the equation z3
` pz ` q “ 0 has a unique real zero z˚ then its discriminant ∆ “ 4p3

` 27q2
ą 0 and z˚ “

´

1
2

`

´ q `
b

∆
27

˘

¯ 1
3
`

´

1
2

`

´ q ´
b

∆
27

˘

¯ 1
3
.
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In order to derive our non-asymptotic bound, we select two “regimes” based on a first order expansion of λmin

in two cases a
Bn
?

Γn
Ñ 0 and Bn

?
Γn

a Ñ 0, assuming that the free parameter ρ “ ρn to be specified later on

remains bounded, e.g. ρ P p1, 3s (which implies that both quantities An
Bn

and 1
Bn

remain bounded as well). Also,

note that if ρÑ 1, then 1
Bn

and An
Bn
Ñ 0. First, one easily checks that if pxnqě1 and panqně1 are two sequences

of positive real numbers where panqně1 is bounded, then

(4.8)
´

xn `
a

a3
n ` x

2
n

¯
1
3
`

´

xn ´
a

a3
n ` x

2
n

¯
1
3
„

$

&

%

2
3
xn
an

if xn “ o
`

a
3
2
n

˘

pthen xn Ñ 0q,

p2xnq
1
3 if an “ o

`

x
2
3
n

˘

pthen xn Ñ `8q.

‚ If a
Bn
?

Γn
“ o

´´

An
Bn

¯
3
2
¯

(hence goes to 0), setting then xn “
a

Bn
?

Γn
and an “

2An
3Bn

yields

λminpρq „ λ˚pρq :“
a
?

Γn
2An

as nÑ `8.

Note that λ˚ :“ λ˚pρq corresponds to the optimization of the quadratic part of P . Then

P pλ˚q “ ´
a2

4An

´

1´
a2

4A3
n

Bn
Γn

¯

“ ´
a2

4 rAnρ

´

1´
a2

4 rA3
npρ´ 1q

rBn
Γn

¯

.

Set now ξn :“ αnpaq
ρ´1 with αnpaq “

rBn
4 rA3

n

a2

Γn
. Then

P pλ˚q “ ´
a2

4 rAn

1´ ξn

1` αnpaq
ξn

.

It remains to maximize the mapping ξ ÞÑ 1´ξ
1`αnpaqξ´1 over p0, 1q. Its optimum is attained for ξ˚n “

1

1`
b

1` 1
αnpaq

,

which in turn yields

(4.9) P pλ˚q “ ´
a2

4 rAn

¨

˚

˚

˝

1´
2

1`

c

1` 4
rA3
nΓn
rBna2

˛

‹

‹

‚

.

Note that, with the resulting specification of ρ “ ρ˚n :“ 1 ` αnpaq
ξ˚n

P p1, 3s (at least for large enough n), the

above condition xn “ o
`

a
3
2
n

˘

in (4.8) is satisfied a posteriori.

‚ If a
Bn
?

Γn
Ñ `8, then, still owing to (4.8),

λminpρq „ λ̄˚pρq “
Γn
2

´ 2a

Bn
?

Γn

¯
1
3
“

ˆ

aΓn
4Bn

˙
1
3 a

Γn as nÑ `8.

The value λ̄˚pρq corresponds to the quartic pseudo-optimum of P (i.e. obtained by neglecting the quadratic
term). This yields, when reintroducing the parameter ρ,

P
`

λ̄˚pρq
˘

“ ´a
4
3 Γ

1
3
n
pρ´ 1q

1
3

ρp4 rBnq
1
3

¨

˝

3

4
´

rAn

p4 rBnq
1
3

Γ
1
3
n

a
2
3

pρ´ 1q
1
3

˛

‚.

The right hand side of this equality is a function of ρP p1,`8q. Its analysis yields that the optimum is attained
in p1, 3{2s and that it tends asymptotically in n to 3{2 in our considered regime. Taking as suboptimal ρ “ 3{2
gives:

(4.10) P
`

λ̄˚pρq
˘

ď ´
a

4
3

4

ˆ

Γn
rBn

˙
1
3

˜

1´
2

3

rAn
rBn

´Γn
a2

¯
1
3

¸

.

From (4.10), (4.9) and (4.5), we conclude the proof of case (a) by setting c̄n :“ rAn rB
´ 1

3
n which matches with the

definition in the statement of the Theorem.
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In the biased case, the result follows similarly from the corresponding analysis performed in Section 2 taking

Anpρq “
ρqrϕs21νp~σ~

2q

2 . �

Remark 11. ‚ When a —
?

Γn, one checks that λminpρq — Γn and P pλminpρqq — ´Γn. This behavior is
consistent with our non-asymptotic bound. However, for practical and numerical purposes observe that the
optimum can be estimated. Namely, plugging the identity (4.6) satisfied by λminpρq in (4.7) into the definition
of P , yields

P
`

λminpρq
˘

“ ´
λminpρq

2
?

Γn

˜

3a

2
´
λminpρqρ rAn
?

Γn

¸

“ ´

?
Γn
4

pρ´ 1q
1
3

ρ
Φnpa, ρq

ˆ

3a

2
´

?
Γn
2
pρ´ 1q

1
3 rAnΦnpa, ρq

˙

,

where Φnpa, ρq “

˜

a
?

Γn rBn
`

˜

pρ´ 1q
´2 rAn

3 rBn

¯3
`

a2

rB2
nΓn

¸
1
2
¸

1
3

`

˜

a
?

Γn rBn
´

˜

pρ´ 1q
´2 rAn

3 rBn

¯3
`

a2

rB2
nΓn

¸
1
2
¸

1
3

.

Then, an optimization in ρP p1,`8q for given a,Γn can be performed (noting that ρ ÞÑ pρ´ 1qi{3ρ´1, i P t1, 2u
are bounded functions over p1,`8q).

5. Smoothness Results for the Poisson Problems (Proof of Theorem 4)

We first prove here Theorem 4 which allows to derive from the deviation results of Theorems 2 and 3 the
practical deviation bounds of Section 2.3 (i.e. Theorems 5, 6 and 7). We recall that we work in the confluent
setting of (Dp

α) and that we additionally consider two main types of assumptions:

- Strong confluence conditions and smoothness (CR). Namely, assumptions (LV), (Dp
α) and (R3,β)

introduced in Sections 1.2 and 2.2 with the condition }Dσ}28 ď
2α

2p3`βq´p .

- Mild confluence conditions and non-degeneracy (CUE). Namely, assumptions (LV), (Dp
α), (R1,β) and

(UE) introduced in Sections 1.2 and 2.2 together, when d ą 1, with the condition }Dσ}28 ď
2α

2p1`βq´p

and the technical structure assumption on the diffusion coefficient that for all pi, jq P rr1, dss2, Σi,jpxq “
Σi,jpxi^j , ¨ ¨ ¨ , xdq.

It is well known that when (CR) or (CUE) are in force, there exists a unique invariant distribution for (1.1),
i.e. assumption (U) holds. We refer to [Kha80], [PP14], [Pag01], [PV01] for proofs of this assertion. The next
step consists precisely in investigating the smoothness of the corresponding Poisson problem as well as some
associated quantitative pointwise bounds on the gradient of its solution, which is one of the key terms appearing
in the deviation bounds of Theorems 2 and 3.

Let us indicate that the conditions appearing in (CR) depend on pure pathwise properties, whereas the case
(CUE) takes advantage of the regularity of the underlying semi-group which allows to alleviate some smoothness
assumptions on the coefficients and some restrictions on the variations of σ. When the dimension increases, it
becomes useful to benefit from the smoothing effects of a non-degenerate semi-group, especially if we keep in
mind that one of our goals is to handle Lipschitz continuous sources.

5.1. Proof of Theorem 4. Under (CUE) or (CR), it is well known that the Poisson equation (2.5) that we
now recall:

@x P Rd, Aϕpxq “ fpxq ´ νpfq,

admits a unique solution centered w.r.t. ν and with linear growth, in W 2
p,locpRd,Rq for any p ą 1 under (CUE)

(see [PV01]), or in C3,βpRd,Rq under (CR) (see Proposition A.8 in [PP14]). In both cases, we have the following
representation:

(5.1) ϕpxq “ ´

ż

R`

`

Ptfpxq ´ νpfq
˘

dt where Ptfpxq :“ E rfpY 0,x
t qs

and Y 0,x
t solves (1.1) with Y 0,x

0 “ x. To comply with the framework of the above Theorems 5 and 6, the first
step is to establish a pointwise gradient control.
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5.1.1. Gradient Control. Under (CUE) or (CR) we manage to obtain pointwise gradient bounds for ϕ. In our
current confluent setting, these estimates are obtained through controls on the tangent flow, again without any
a priori uniform ellipticity condition of type (UE).

Lemma 6 (Pointwise Gradient Bounds). Assume that (CUE) or (CR) holds. Then

}∇ϕ}8 ď
rf s1
α
,

with α as in (Dp
α).

Proof. Gradient Control in the Confluent framework. Assume now that (Dp
α) holds. Observe that, as soon as

(R1,β) holds, it is well known that that ∇xY
0,x
t is well defined and belongs to L2pPq, see [IW80]. Hence, for

t ą 0, i P rr1, dss:

BxiE rfpY
0,x
t qs “ E rx∇fpY 0,x

t q, BxiY
0,x
t ys, BxiY

0,x
t “ ei `

ż t

0
DbpY 0,x

s qBxiY
0,x
s ds`

d
ÿ

j“1

ż t

0
Dσ¨jpY

0,x
s qBxiY

0,x
s dW j

s ,

where ei stands for the ith canonical vector and Db,Dσ¨j P Rd b Rd.
Let p P p1, 2s be given such that (Dp

α) holds. Considering the mapping y P Rd ÞÑ |y|p, where | ¨ | stands for
the Euclidean norm of Rd, it is easily seen from Itô’s formula that:

|BxiY
0,x
t |p “ 1` p

ż t

0

A

BxiY
0,x
s

|BxiY
0,x
s |

, DbpY 0,x
s q

BxiY
0,x
s

|BxiY
0,x
s |

E

|BxiY
0,x
s |pds

`p
d
ÿ

j“1

ż t

0

A

BxiY
0,x
s

|BxiY
0,x
s |

, Dσ¨jpY
0,x
s q

BxiY
0,x
s

|BxiY
0,x
s |

E

|BxiY
0,x
s |pdW j

s

`
p

2

d
ÿ

j“1

ż t

0

´

|Dσ¨jpY
0,x
s qBxiY

0,x
s |2

|BxiY
0,x
s |2

` pp´ 2q
|xBxiY

0,x
s , Dσ¨jpY

0,x
s qBxiY

0,x
s y|2

|BxiY
0,x
s |4

¯

ˆ|BxiY
0,x
s |pds(5.2)

“ exp

˜

p

ż t

0

A

BxiY
0,x
s

|BxiY
0,x
s |

, DbpY 0,x
s q

BxiY
0,x
s

|BxiY
0,x
s |

E

ds

¸

ˆ E
`

M
˘

t

ˆ exp

˜

p

2

d
ÿ

j“1

ż t

0

´

|Dσ¨jpY
0,x
s qBxiY

0,x
s |2

|BxiY
0,x
s |2

` pp´ 2q
|xBxiY

0,x
s , Dσ¨jpY

0,x
s qBxiY

0,x
s y|2

|BxiY
0,x
s |4

¯

ds

¸

where pMtqtě0 :“
`

p
řd
j“1

şt
0

@ BxiY
0,x
s

|BxiY
0,x
s |

, Dσ¨jpY
0,x
s q

BxiY
0,x
s

|BxiY
0,x
s |

D

dW j
s

˘

tě0
is a square integrable martingale with bounded

integrand and EpMqt :“ exppMt ´
1
2xMytq denotes the associated Doléans exponential martingale. From con-

dition (Dp
α), we thus get:

|BxiY
0,x
t |p ď expp´αptq ˆ EpMtq.(5.3)

We eventually derive:
ż `8

0
|E rx∇fpY 0,x

t q, BxiY
0,x
t ys|dt ď rf s1

ż `8

0
E r|BxiY

0,x
t |ps1{pdt ď rf s1

ż `8

0
exp p´αtq dt “

rf s1
α
.

From the above control and equation (5.1), we thus derive:

(5.4) @i P rr1, dss, @x P Rd, |Bxiϕpxq| ď
rf s1
α
.

Similarly, for all x P Rd,∇ϕpxq “
ş`8

0 Erp∇Y 0,x
t q˚∇fpY t,x

0 qsdt where ∇Y 0,x
t “

`

Bx1Y
0,x
t ¨ ¨ ¨ BxdY

0,x
t

˘

so that p∇Y 0,x
t q˚ “

¨

˚

˝

pBx1Y
0,x
t q˚

...

pBxdY
0,x
t q˚

˛

‹

‚

. Hence, recalling that | ¨ | stands for the Euclidean norm, |∇ϕpxq| ď
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ş`8

0 Er}p∇Y 0,x
t q˚}|∇fpY 0,x

t q|sdt where we recall that for A P RdbRd, }A} :“ sup|z|ď1,zPRd |Az| denotes the opera-

tor (or spectral) matrix norm. Thus, |∇ϕpxq| ď }∇f}8
ş`8

0 Er}p∇Y 0,x
t q˚}ps1{pdt “ }∇f}8

ş`8

0 Er}∇Y 0,x
t }ps1{pdt.

Now,

}∇Y 0,x
t } “ sup

|z|ď1
|∇Y 0,x

t z|.

For any z P Rd, |z| ď 1, setting Z0,x,z
t :“ ∇Y 0,x

t z, one has the following dynamics for the Rd-valued process

pZ0,x,z
s qsPr0,ts:

Z0,x,z
t :“ z `

ż t

0
DbpY 0,x

s qZ0,x,z
s ds`

d
ÿ

j“1

ż t

0
Dσ¨jpY

0,x
s qZ0,x,z

s dW j
s .

Hence, we derive similarly to (5.3) that |Z0,x,z
t |p ď |z|p expp´pαtqEpMtq, where EpMtq does not depend on z.

Write now,

(5.5) Er}∇Y 0,x
t }ps1{p “ Er sup

|z|ď1
|Z0,x,z
t |ps1{p ď Er sup

|z|ď1
|z|p expp´pαtqEpMtqs

1{p ď expp´αtq.

This eventually proves the claim }∇ϕ}8 :“ supxPRd |∇ϕpxq| ď
}∇f}8
α . �

5.1.2. Additional smoothness.

– Theorem 4 can be derived under (CR), by iterating computations similar to the ones performed in Lemma 6.
On the other hand, to have the required smoothness, since we cannot expect some smoothing effect from a non-
degenerate diffusion coefficient, we have to impose that b, σ, f themselves lie in C3,βpRd,Rq and the restriction
on the variations of σ which ensures exponential integrability in time for the expectations of the iterated tangent
flows, see Lemma A.8 in [PP14] for details (see the parallel between the above condition on Dσ and assumption
(ACp) appearing p. 559 in [PP14]).

– Proving Theorem 4 under (CUE) requires more sophisticated tools (Schauder estimates for operators with
unbounded coefficients).

Proof of Theorem 4 under (CUE). Let us begin with the scalar case. For d “ 1, set for all x P R,

(5.6) vpxq :“ ´

ż `8

0
dtErΨpY 0,x

t qBxY
0,x
t s “ ´

ż `8

0
dtE

„

ΨpY 0,x
t q exp

´

ż t

0
b1pY 0,x

s qds
¯

E
´

ż t

0
σ1pY 0,x

s qdWs

¯



where for all y P R, Ψpyq :“ Byfpyq. We observe that Bxϕpxq “ vpxq. Also, from our assumptions on f , b, σ,

we have that Ψ, b1, σ1 P C0,β
b pRd,Rq. Theorems 2.4-2.6 in Krylov and Priola, [KP10] then yield the existence of

a unique solution to the PDE:

(5.7) rAwpxq ` b1pxqwpxq “ Ψpxq, where rAwpxq “ Awpxq ` σσ1pxqw1pxq,

belonging to C2,β
b pRd,Rq and such that the following Schauder estimate holds:

(5.8) DC ě 1, }w}2,β ď Cp1` }Ψ}βq.

Indeed, from (Dp
α), we get that b1pxq ď ´α ă 0 and the potential in (5.7) has the good sign. From (5.6) and

the Girsanov theorem, we also get:

vpxq “ ´

ż `8

0
dtE

„

ΨprY 0,x
t q exp

´

ż t

0
b1prY 0,x

s qds
¯



,

where drY 0,x
s “

`

bprY 0,x
s q ` σσ1prY 0,x

s q
˘

ds ` σprY 0,x
s qdWs. Note that rY has generator rA. A simple identification

procedure, similar to the proof of Theorem II.1.1 in Bass [Bas97] then gives v “ w. The result follows from (5.8).
Let us emphasize that this is a quite deep and involved result for unbounded coefficients.

In the multi-dimensional setting, recalling the technical condition that for all i P rr1, dss, j ě i, Σi,jpxq “
Σi,jpxi, ¨ ¨ ¨ , xdq, we have that differentiating formally the PDE (2.5) in the space variable xi, i P rr1, dss yields
that Bxiϕ “ vi should satisfy:

rAwipxq ` Bxibipxqwipxq “ Ψipxq ´
ÿ

jPrr1,dssztiu

Bxibjpxqvjpxq

´
1

2

ÿ

jPrr1,i´1ss

BxiΣj,jpxqBxjvjpxq ´
ÿ

jPrr1,i´1ss

ÿ

kPrrj`1,dssztiu

BxiΣj,kpxqBxjvkpxq,(5.9)
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with Ψipxq :“ Bxifpxq and

rAwipxq :“ Awipxq`
1

2
BxiΣi,ipxqBxiwipxq `

ÿ

jPrr1,dssztiu

BxiΣi,jpxqBxjwipxq.

We would now like to enter the previous framework of Schauder estimates. To do so, we first observe from
(Dp

α) and the Cauchy-Schwarz inequality that Bxibipxq ď ´α ă 0. Consider now i “ 1 in (5.9). From our
current assumptions on f , b and the previous computations on the gradient for the multi-dimensional case, it

remains to prove rΨ1pxq :“ Ψ1pxq ´
ř

j‰1 Bx1bjpxqvjpxq P C0,β
b pRd,Rq. This will be the case, once we will have

proved that ∇ϕ is β-Hölder continuous, which is a priori not direct. This property is assumed for the remaining
of the proof and shown below. In particular, it leads to the restriction concerning the variations of σ when
d ą 1. Hence, Theorems 2.4-2.6 in Krylov and Priola, [KP10] still apply and give that there exists a unique

solution w1 P C2,β
b pRd,Rq to (5.9) which also satisfies:

(5.10) DC ě 1, }w1}2,β :“
ÿ

α,|α|Prr0,2ss

}Dαw1}8 ` rD
p2qw1sβ ď Cp1` }rΨ1}βq “: C̄ppLVq, pR1,βq, pUEqq.

The identification w1 “ Bx1ϕ “ v1 is standard. The control (5.10) allows to iterate, since it gives that ∇w1 “

pBx1v1, ¨ ¨ ¨ , Bxdv1q “ pBx1,x1ϕ1, ¨ ¨ ¨ , Bxd,x1ϕq is β-Hölder. We thus get by induction, from the specific chosen
structure on σ and by Theorems 2.4-2.6 in Krylov and Priola, [KP10], that for all i P rr1, dss there exists a

unique solution wi P C2,β
b pRd,Rq to (5.9) such that:

DC ě 1, }wi}2,β ď Cp1` }rΨi}βq “: C̄ppLVq, pR1,βq, pUEqq,

rΨipxq :“ Ψipxq ´
ÿ

jPrr1,dssztiu

Bxibjpxqvjpxq ´
1

2

ÿ

1 ď j ă i,
k P rr1, dssztiu

BxiΣj,kpxqBxjvkpxq.(5.11)

The Lipschitz property of the mapping x ÞÑ x∇ϕpxq, bpxqy is eventually derived following the procedure
described in Remark 7.

�

Remark 12 (Structure of σ). We emphasize that the structure condition on σ assumed in Theorem 4 under
(CUE) is mainly technical. It is of course always verified in dimension d “ 1. For d ą 1 it is motivated by
the fact that, differentiating (2.5) without this assumption yields to consider a system of coupled linear PDEs
with growing coefficients for which the Schauder estimates have not been established yet. Following the existing
literature for Schauder estimates for systems (see e.g. Boccia [Boc13]), we think that the results of Krylov and
Priola should extend to this case. This would allow to get rid of the indicated condition. Here, the condition
simply allows to decouple the system.

Let us mention too that the results by Priola [Pri09] could also be a starting point to investigate the smoothness
of the Poisson problem for degenerate kinetic models.

These aspects will concern further research.

Additional Smoothness continued: β-Hölder continuity of the gradient through pathwise analysis. We control
here, under (Dp

α), p P p1, 2s and (R1,β), β P p0, 1s, the β-Hölder modulus of continuity of the gradient. We will

progressively see how the restrictions on Dσ come out. For px, x1q P R2d, write for all i P rr1, dss:
ˇ

ˇ

ˇ
Bxiϕpxq ´ Bxiϕpx

1q

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ż `8

0

´

E rx∇fpY 0,x
t q, BxiY

0,x
t ys ´ E rx∇fpY 0,x1

t q, BxiY
0,x1

t ys

¯

dt

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż `8

0

´

r∇f sβE r|Y 0,x
t ´ Y 0,x1

t |β|BxiY
0,x
t |s ` }∇f}8E r|BxiY

0,x
t ´ BxiY

0,x1

t |s

¯

dt

ˇ

ˇ

ˇ

ˇ

“: pGβ1 `G
β
2 qpx, x

1q.

(5.12)

Let us first deal with the expectation in Gβ1 . Namely, write

E r|Y 0,x
t ´ Y 0,x1

t |β|BxiY
0,x
t |s ď E r|Y 0,x

t ´ Y 0,x1

t |p̄βs
1
p̄Er|BxiY

0,x
t |q̄s

1
q̄ , p̄, q̄ ą 1, p̄´1 ` q̄´1 “ 1.

Take now p̄β “ q̄ ðñ p̄ “ 1`β
β , q̄ “ 1` β which leads to the same integrability constraints on the flows.

If β ` 1 ď p in (Dp
α), then we readily get similarly to (5.3) that Er|BxiY

0,x
t |q̄s

1
q̄ ď expp´αtq.
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If now β ` 1 ą p, as soon as (D1`β
ᾱ ) holds for some ᾱ ą 0, which is actually the case provided that

(5.13) }Dσ}28 ď
2α

1` β ´ p
,

for q̄ “ 1 ` β, we again get similarly to (5.3) that Er|BxiY
0,x
t |q̄s

1
q̄ ď expp´ᾱtq. On the other hand, the mean

value theorem yields:

E r|Y 0,x
t ´ Y 0,x1

t |p̄βs
1
p̄ ď |x´ x1|βE r

ż 1

0
dλ}∇Y 0,x1`λpx´x1q

t }p̄βs
1
p̄ ď |x´ x1|β

´

ż 1

0
dλE r}∇Y 0,x1`λpx´x1q

t }p̄βs

¯
1
p̄

ď |x´ x1|β rexpp´αβtqI1`βďp ` expp´ᾱβtqI1`βąps ,

exploiting (5.5) for the last inequality provided that (5.13), which in turn implies that (D1`β
ᾱ ) for some ᾱ ą 0,

holds if 1` β ą p. Plugging these bounds in (5.12) gives that:

(5.14) @px, x1q P pRdq2, |Gβ1 px, x
1q| ď

r∇f sβ
p1` βq

„

I1`βďp
α

`
I1`βąp
ᾱ



|x´ x1|β.

We already see that, when 1 ` β ą p, for the parameter p of the initial confluence condition (Dp
α), a first

constraint on the variations of σ, namely (5.13) appears.

Let us now turn to Gβ2 . Following the expansion of (5.2) write:

|BxiY
0,x
t ´ BxiY

0,x1

t |2 “ 2

ż t

0

A

BxiY
0,x
s ´ BxiY

0,x1

s , DbpY 0,x
s qBxiY

0,x
s ´DbpY 0,x1

s qBxiY
0,x1

s

E

ds

` 2
d
ÿ

j“1

ż t

0

A

BxiY
0,x
s ´ BxiY

0,x1

s , Dσ¨jpY
0,x
s qBxiY

0,x
s ´Dσ¨jpY

0,x1

s qBxiY
0,x1

s

E

dW j
s

`

d
ÿ

j“1

ż t

0
|Dσ¨jpY

0,x
s qBxiY

0,x
s ´Dσ¨jpY

0,x1

s qBxiY
0,x1

s |2ds.

Let uptq :“ E |BxiY
0,x
t ´BxiY

0,x1

t |2, t ě 0. First note that up0q “ 0. Taking now the expectation and interchanging
expectation and time integration yields

uptq “

ż t

0
EΞsds

where pΞtqtě0 is a pathwise continuous process clearly determined by the terms inside the above time integrals.
One readily checks that, t ÞÑ EΞs is continuous so that u is continuously differentiable and satisfies

u1ptq “ 2E
A

BxiY
0,x
t ´ BxiY

0,x1

t , DbpY 0,x
t qBxiY

0,x
t ´DbpY 0,x1

t qBxiY
0,x1

t

E

`

d
ÿ

j“1

E |Dσ¨jpY 0,x
t qBxiY

0,x
t ´Dσ¨jpY

0,x1

t qBxiY
0,x1

t |2.

Using the Young inequality for a parameter ε P p0, 1s, small enough and to be chosen further, we derive:

u1ptq ď 2E

«

A

BxiY
0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |
, DbpY 0,x

t q
BxiY

0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |

E

|BxiY
0,x
t ´ BxiY

0,x1

t |2

`

ż t

0
}DbpY 0,x

t q ´DbpY 0,x1

t q}|BxiY
0,x1

t ||BxiY
0,x
t ´ BxiY

0,x1

t |

ff

` E

«

p1` εq
d
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

Dσ¨jpY
0,x
t q

BxiY
0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |

ˇ

ˇ

ˇ

ˇ

2

|BxiY
0,x
t ´ BxiY

0,x1

t |2

` p1` ε´1q

d
ÿ

j“1

}Dσ¨jpY
0,x
t q ´Dσ¨jpY

0,x1

t q}2|BxiY
0,x1

t |2

ff

.
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From this computation, the point is now to make the confluence condition (Dp
α) appear and to separate the

components for which we will exploit the β-Hölder continuity, namely Db, pDσ¨jqjPrr1,nss. To do so we first
observe that:

A

BxiY
0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |
, DbpY 0,x

t q
BxiY

0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |

E

`
1

2

d
ÿ

j“1

˜

ˇ

ˇ

ˇ

ˇ

Dσ¨jpY
0,x
t q

BxiY
0,x
t ´ BxiY

0,x1

t

|BxiY
0,x
t ´ BxiY

0,x1

t |

ˇ

ˇ

ˇ

ˇ

2
¸

ď ´α` p2´ pq
1

2
}Dσ}28 “ ´α̃,

where we suppose from now on that

(5.15) ´α̃ :“ ´α` p2´ pq
1

2
}Dσ}28 ă 0 ðñ }Dσ}28 ă

2α

2´ p
.

Hence,

u1ptq ď 2E
„

p´α̃`
ε

2
}Dσ}28q|BxiY

0,x
t ´ BxiY

0,x1

t |2


` 2E
„

}DbpY 0,x
t q ´DbpY 0,x1

t q}|BxiY
0,x1

t ||BxiY
0,x
t ´ BxiY

0,x1

t |



` E
„

p1` ε´1q

d
ÿ

j“1

}Dσ¨jpY
0,x
t q ´Dσ¨jpY

0,x1

t q}2|BxiY
0,x1

t |2


.

Using now again the Young inequality, with η P p0, 1s small enough, for the middle term of the above r.h.s., we
obtain:

u1ptq ď 2
´

´ α̃`
ε

2
}Dσ}28 `

η

2

¯

E
”

|BxiY
0,x
t ´ BxiY

0,x1

t |2
ı

` η´1E
“

}DbpY 0,x
t q ´DbpY 0,x1

t q}2|BxiY
0,x1

t |2
‰

` p1` ε´1q

d
ÿ

j“1

E
”

}Dσ¨jpY
0,x
t q ´Dσ¨jpY

0,x1

t q}2|BxiY
0,x1

t |2
ı

ď 2
´

´ α̃`
ε

2
}Dσ}28 `

η

2

¯

E
”

|BxiY
0,x
t ´ BxiY

0,x1

t |2
ı

` η´1rDbs2βE
“

|Y 0,x
t ´ Y 0,x1

t |2β|BxiY
0,x1

t |2
‰

` p1` ε´1qrDσs2βE
”

|Y 0,x
t ´ Y 0,x1

t |2β|BxiY
0,x1

t |2
ı

.(5.16)

Denote:

´α̃ε,η,σ :“ ´α̃`
ε

2
}Dσ}28 `

η

2
ă 0,

for ε, η small enough. Setting for every t ě 0,

rptq :“ η´1rDbs2βE
“

|Y 0,x
t ´ Y 0,x1

t |2β|BxiY
0,x1

t |2
‰

` p1` ε´1qDσs2βE
”

|Y 0,x
t ´ Y 0,x1

t |2β|BxiY
0,x1

t |2
ı

,

equation (5.16) reads an ordinary differential inequation:

u1ptq ď ´2α̃ε,η,σuptq ` rptq, up0q “ 0.

We derive from the Gronwall lemma that

uptq “ Er|BxiY
0,x
t ´ BxiY

0,x1

t |2s ď expp´2α̃ε,η,σtq

ż t

0
expp2α̃ε,η,σsqrpsqds.

Reproducing as well the computations that led to (5.14), we derive:

uptq ď Cη,ε,β|x´ x
1|2β

ż t

0
exp

`

´ 2α̃ε,η,σpt´ sq
˘

ˆ

E
”

|BxiY
0,x1

s |2p1`βq
ı

1
1`β
`

ż 1

0
dλE

”

}∇Y 0,x1`λpx´x1q
s }2p1`βq

ı

β
1`β

˙

ds.
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From the analysis leading to (5.3), (5.5) we now derive:

Er|BxiY
0,x
t ´ BxiY

0,x1

t |2s

ď
Cη,ε,β

2
|x´ x1|2β expp´2α̃ε,η,σtq

„

exp
`

2pα̃ε,η,σ ´ α̃2p1`βqqt
˘

α̃ε,η,σ ´ α̃2p1`βq
`

exp
`

2pα̃ε,η,σ ´ βα̃2p1`βqqt
˘

α̃ε,η,σ ´ βα̃2p1`βq



,

and

´α̃2p1`βq ď ´α`
`

2p1` βq ´ p
˘1

2
}Dσ}28.

Thus, α̃2p1`βq ă 0 as soon as

(5.17) }Dσ}28 ă
2α

2p1` βq ´ p
,

which is precisely the restriction on the variations of σ appearing in (CUE) when d ą 1, then α̃2p1`βq ą 0 and:

Er|BxiY
0,x
t ´ BxiY

0,x1

t |2s ď C̄η,ε,β|x´ x
1|2β expp´α̃2p1`βqtq.

This last control then gives the expected bound for the β-Hölder modulus of the gradient. Namely, from (5.12), (5.14),

rBxiϕsβ ă
r∇f sβ
p1` βq

”I1`βďp
α

`
I1`βąp
ᾱ

ı

`
}∇f}8C̄η,ε,β
α̃2p1`βq

.

5.2. Proof of the Practical Results of Section 2.3. We first begin with the proof of the

5.2.1. Slutsky like Theorem 6. We keep here for simplicity the generic notation } ¨ } for any admissible matrix
norm according to the assumptions of the theorem. We first write:

(5.18) P

«

a

Γn
νnpfq ´ νpfq
a

νn p}σ}2q
ě a

ff

“ P
„

νnpAϕq ě
a
?

Γn

a

νn p}σ}2q



.

We then proceed similarly to Theorem 8, with an exponential Bienaymé-Tchebychev inequality, for all λ ą 0
we have:

P

«

a

Γn
νnpfq ´ νpfq
a

νn p}σ}2q
ě a

ff

ď E
”

exp

ˆ

´
aλ
?

Γn

a

νn p}σ}2q

˙

exp pλνnpAϕqq
ı

“ exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

E
”

exp

ˆ

´
aλ
?

Γn

”

a

νn p}σ}2q ´
a

ν p}σ}2q
ı

˙

exp pλνnpAϕqq
ı

“ exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

E
”

exp

˜

´
aλ
?

Γn

νn
`

}σ}2
˘

´ ν
`

}σ}2
˘

a

νn p}σ}2q `
a

ν p}σ}2q

¸

exp pλνnpAϕqq
ı

“ exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

E
”

exp

˜

´
aλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸

exp pλνnpAϕqq
ı

.

By the Hölder inequality, for rp, rq ą 1, such that 1
rp `

1
rq “ 1:

P

«

a

Γn
νnpfq ´ νpfq
a

νn p}σ}2q
ěa

ff

ď exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

«

E exp

˜

´
arpλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸ff1{rp
”

E exp pλrqνnpAϕqq
ı1{rq
.

The proof of Theorem 8 yields:

P

«

a

Γn
νnpfq ´ νpfq
a

νn p}σ}2q
ě a

ff

ď Rn exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

exp

ˆ

ρrqλ2

Γn
rAn `

ρ3
rq3λ4

pρ´ 1qΓn
rBn

˙

ˆ

˜

E exp

˜

´
arpλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸¸1{rp

,(5.19)
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where we recall from identity (4.5):

rAn “
qrϕs21νp}σ}

2q

2
` en and rBn “

q3rϕs41
4

´ q̄}σ}28rϑs
2
1

2
` ēn

¯

.

Also, Rn Ñ
n

1 denotes a “generic” remainder. Observe that thanks to the bounds of Theorem 4 (stated in the

above Lemma 6), we get:

(5.20) rAn ď
qrf s21νp}σ}

2q

2α
` en.

Let us now handle the remainder

„

E exp

ˆ

´
arpλ
?

Γn

νnpAϑq?
νnp}σ}2q`

?
νp}σ}2q

˙1{rp

:

«

E exp

˜

´
arpλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸ff1{rp

“

«

E

˜

exp

«

´
arpλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸

`

1νnpAϑqě0 ` 1νnpAϑqă0

˘

¸ff1{rp

ď

˜«

E exp

˜

arp2λ
?

Γn

νn pAϑq
a

ν p}σ}2q

¸ff1{rp

P
“

νnpAϑq ě 0
‰1{rq

`

«

E exp

˜

´
arp2λ
?

Γn

νn pAϑq
a

ν p}σ}2q

¸ff1{rp

P
“

νnpAϑq ă 0
‰1{rq

¸1{rp

.

Let us mention that we introduced the above partition in order to get a sharper constant in the final inequality,
1 below instead of 2, which would follow getting rid of the indicator functions. Now, by Theorem 2 we easily
get:

E

«

exp

˜

´
arpλ
?

Γn

νn pAϑq
a

νn p}σ}2q `
a

ν p}σ}2q

¸ff1{rp

ď Rn exp

ˆ

a2
rp2

Γnνp}σ}2q

λ2

Γn

´

}σ}28}∇ϑ}28
2

` en

¯

˙

”

P
“

νnpAϑq ě 0
‰1{rq

` P
“

νnpAϑq ă 0
‰1{rq

ı1{rp
.(5.21)

We choose rp :“ rppnq Ñ `8, such that rp2a2

Γn
Ñ 0, and so pP

“

νnpAϑq ě 0
‰1{rq

` PrνnpAϑq ă 0s1{rqq1{rp ď 21{rp Ñ 1.

Moreover, exploiting again that for the Gaussian regime, rp2a2

Γn
Ñ 0, we obtain by (5.21) and (5.19):

P

«

a

Γn
νnpfq ´ νpfq
a

νn p}σ}2q
ě a

ff

ď Rn exp

ˆ

´
aλ
?

Γn

a

ν p}σ}2q

˙

exp

ˆ

ρrqλ2

Γn
p rAn ` enq `

ρ3
rq3λ4

pρ´ 1qΓn
rBn

˙

.(5.22)

From identity (5.22), the optimization over λ is similar to the one performed in the proof of Theorem 8. This
yields the deviation bound (2.10). The non-asymptotic confidence interval in (2.11) is derived as for Theorem 5
from the gradient bounds of Theorem 4 and (2.10). �

5.3. Regularization of Lipschitz Sources. We assume here that assumptions (C2), (LV), (UE) are in
force. We suppose as well that the following smoothness holds for b, σ:

(Rb,σ) Regularity and Structure. We assume that there exists β P p0, 1q such that b, σ in (1.1) belong to

C1,βpRd,Rdq and C1,β
b pRd,Rd b Rdq respectively. Also, for all pi, jq P rr1, dss2, Σi,jpxq “ Σi,jpxi^j , ¨ ¨ ¨ , xdq.

Importantly, we are interested, under assumptions (C2), (LV), (UE), (Rb,σ), in giving controls for the esti-
mation of νpfq when the source f is simply Lipschitz continuous. This is indeed the natural framework for the
source which can be handled through functional inequality techniques, see [MT06], [Boi11].

To comply with our previous framework, namely to exploit the smoothness result of Theorem 4 under (CUE),
we need to regularize the source. Let η be a mollifier (i.e. a non-negative compactly supported function such
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that
ş

Rd ηpxqdx “ 1). Define for δ ą 0, ηδpxq “
1
δd
ηpxδ q. We regularize f introducing fδ :“ f ‹ ηδ where ‹ stands

for the convolution on Rd. From usual estimates, we obtain:

DCη ą 0, @x P Rd, |fδpxq ´ fpxq| ď Cηδrf s1,

@β P p0, 1q, r∇fδsβ ď Cηrf s1δ
´β.(5.23)

We emphasize here that we will choose β later in order to be compatible with a certain range of step sequences.
We assume for simplicity that θ P p1{3, 1s (no bias). Recall that we want to investigate:

Pr
a

Γnpνnpfq ´ νpfqq ě as “ P
”

pνnpfδq ´ νpfδqq `Rn,δpfq ě
a
?

Γn

ı

,

Rn,δpfq :“ rpνnpfq ´ νpfqq ´ pνnpfδq ´ νpfδqqs.(5.24)

From (5.23), one readily gets:

(5.25) |Rn,δpfq| ď 2Cηδrf s1.

On the other hand, the coefficients b, σ and the source fδ satisfy assumption (R1,β) (observe indeed that

the mollified function fδ P C
1,βpRd,Rq). Hence, Theorem 4 yields that there exists a unique solution ϕδ P

C3,βpRd,Rq to the equation:

(5.26) Aϕδ “ fδ ´ νpfδq.

Observe from the proof of Theorem 4 under (CUE) (see equations (5.4) and (5.11)) and (5.23) that:

}∇ϕδ}8 ď α´1rf s1, @β P p0, 1q, DCβ ą 0, @i P t1, 2u, rϕ
piq
δ s1 ď Cβp1` }∇fδ}Cβ q ď Cβδ

´β, rϕ
p3q
δ sβ ď Cβδ

´β,

rx∇ϕδ, bys1 ď Cβδ
´β.

(5.27)

Now, from (5.26) the deviation in (5.24) rewrites:

(5.28) P
“

a

Γnpνnpfq ´ νpfqq ě a
‰

“ P
”

νnpAϕδq `Rn,δpfq ě
a
?

Γn

ı

.

From (5.25), the term Rn,δpfq can be seen as a remainder as soon as a?
Γn
" 2Cηδrf s1 ě |Rn,δpfq|. On the

other hand, the deviations of νnpAϕδq can be analyzed as above, reproducing the proofs of Theorems 2 and 8,

replacing the bounds on prϕpiqs1qiPt1,2u, rϕ
p3qsβ appearing therein by those of equation (5.27). Precisely, we get

from (5.25), similarly to (3.30) (replacing the controls on ϕ by those on ϕδ in the proofs of Lemmas 3 and 5):

P
„

ˇ

ˇ

ˇ
νnpAϕδq `Rn,δpfq

ˇ

ˇ

ˇ
ě

a
?

Γn



ď 2

«

E exp
´

´
qλn
Γn

Mn

¯

ff
1
q

exp
´

´
aλn
?

Γn
p1´

?
Γn2Cηrf s1δ

a
q

¯

ˆ exp
´ λ2

n

2Γnp
`
ppaδnq

2

2

¯

exp

˜

3pC2
V,ϕλ

2
n

cV Γ2
n

`
cV
p

¸

pI1
V q

1
2p

ˆ exp

˜

Cδ3.26

pλ2
npΓ

p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p ˆ exp

˜

Cδ3.27

pλ2
npΓ

p2q
n q

2

Γ2
n

¸

pI1
V q

1
4p(5.29)

where Cδ3.27 :“ Cβδ
´β pC

?
C
V
q2

cV
and Cδ3.26 :“

}σ}48C
2
βδ
´2β

4

C
V
cV

precisely correspond to the modifications of the

constants C3.27 and C3.26 :“
}σ}48rϕ

p2qs21
4

C
V
cV

introduced in the proof of Lemma 5 when replacing }D2ϕ}8 by

}D2ϕδ}8 ď Cβδ
´β and rx∇ϕ, bys1 ď C by rx∇ϕδ, bys1 ď Cβδ

´βC. Similarly,

aδn :“
rϕ
p3q
δ sβ

›

›σ
›

›

p3`βq

8
E
“

|U1|
3`β

‰

p1` βqp2` βqp3` βq

Γ
p

3`β
2
q

n
?

Γn
ď
Cβδ

´β
›

›σ
›

›

p3`βq

8
E
“

|U1|
3`β

‰

p1` βqp2` βqp3` βq

Γ
p

3`β
2
q

n
?

Γn
,
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is obtained from the definition of an in Lemma 3 replacing rϕp3qsβ by rϕ
p3q
δ sβ. From the above equation and

Lemma 2 we get:

P
„

|νnpfq ´ νpfq| ě
a
?

Γn



“ P
„

ˇ

ˇ

ˇ
νnpAϕδq `Rn,δpfq

ˇ

ˇ

ˇ
ě

a
?

Γn



ď 2pI1
V q

1
p exp

´cV
p
`
ppaδnq

2

2

¯

ˆ exp

˜

´
a2

2q}σ}28}∇ϕ}28

´

1´

?
Γn4Cηrf s1δ

a
´

1

q}σ}28}∇ϕ}28

! p

Γn

´6C2
V,ϕ

cV
` 2

“

Cδ3.26 ` C
δ
3.27spΓ

p2q
n q

2
¯

`
1

p

)¯

¸

.

The Young inequality yields that for all εn ą 0:

P
„

|νnpfq ´ νpfq| ě
a
?

Γn



ď 2pI1
V q

1
p exp

´cV
p
`
ppaδnq

2

2
` ε´1

n Γnδ
2
¯

ˆ exp

¨

˚

˚

˚

˝

´
a2

2q}σ}28}∇ϕ}28

´

1´
1

q}σ}28}∇ϕ}28

!

2εnC
2
η rf s

2
1 `

p

Γn

´6C2
V,ϕ

cV
` 2

“

Cδ3.26 ` C
δ
3.27spΓ

p2q
n q

2
¯

`
1

p

)

loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon

“:dδn

¯

˛

‹

‹

‹

‚

.

(5.30)

We now want to let p :“ ppnq Ñ
n
`8, εn Ñ

n
0 so that the associated contributions in the above equation can

be viewed as remainders. From the previous definitions of Cδ3.27, C
δ
3.26, we see that, to achieve this goal, two

constraints need to be fulfilled: namely, we must choose δ, p such that

ε´1
n Γnδ

2 Ñ
n

0 and ppaδnq
2 Ñ
n

0.

Now, if θ P p1{2, 1s there exists β P p0, 1q such that Γp
3`β

2
q ď C. In that case: aδn ď

C?
Γn
δ´β “ Γ

´p 1
2
p1´βq´βεq

n Ñ
n

0

for δ “ Γ
´p 1

2
`εq

n and ε ă 1´β
2β . Taking p :“ ppnq “ Γ

p 1
2
p1´βq´βεq

n yields ppaδnq
2 Ñ
n

0. On the other hand, εn “ Γ´εn

also yields ε´1
n Γnδ

2 “ Γ´εn Ñ
n

0.

For θ P p1{3, 1{2q, Γ
p

3`β
2
q

n diverges for all β P p0, 1q, we then have Γ
p
3`β

2 q

n?
Γn

ď Cn
1
2
´θp1`β

2
q. Hence, there exists

β P p0, 1q such that Γ
p
3`β

2 q

n?
Γn

ď Cn
1
2
´θp1`β

2
q Ñ
n

0. However, taking δ “ Γ
´p 1

2
`εq

n , which seems to be an almost

“necessary” choice to satisfy the first constraint ε´1
n Γnδ

2 Ñ
n

0, yields:

aδn — δ´β
Γ
p

3`β
2
q

n
?

Γn
— np1`βqp

1
2
´θq`εβp1´θq Ñ

n
`8,

so that the second constraint cannot be fulfilled. This means that the regularization induces a constraint on
the time steps which must not be too large. In other words, under the sole Lipschitz assumption on the source
f , the fastest convergence regime is out of reach.

Summing up the previous computations, we complete the proof of Theorem 7.

6. Applications

6.1. Non-Asymptotic Deviation Bounds in the Almost Sure CLT. Let pUnqně1 be an i.i.d sequence of
centered d-dimensional random variables with unit covariance matrix. We define the sequence of normalized
partial sums by Z0 “ 0 and

Zn :“

řn
k“1 Uk?
n

, n ě 1.

The almost sure Central Limit Theorem (denoted from now on a.s. CLT) describes how the weighted sum of
the renormalized sums Zn which appear in the usual asymptotic CLT, behaves viewed as a random measure.
Precisely, it states that setting for k ě 1, γk “ 1{k:

(6.1) νZn :“
1

Γn

n
ÿ

k“1

γkδZk
w, a.s.
ÝÑ
n

G, Gpdxq :“ exp
´

´
|x|2

2

¯ dx

p2πqd{2
.
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The above convergence had been established in [LP02], as a by-product of their results concerning the approx-
imation of invariant distributions, under the minimal moment condition Ui P L

2pPq, thus weakening the initial
assumptions by Brosamler and Schatte (see [Bro88] and [Sch88]). The underlying idea is to use a reformulation
of the dynamics of pZnqně0 in terms of a discretization scheme appearing as a perturbation of (S). One indeed
easily checks that, for n ě 0:

Zn`1 “ Zn ´
γn`1

2
Zn `

?
γn`1Un`1 ` rnZn, rn :“

c

1´
1

n` 1
´ 1`

1

2pn` 1q
“ O

´ 1

n2

¯

.(6.2)

Thus, the sequence pZnqně0 appears as a perturbed Euler scheme with decreasing step γn “
1
n of the Ornstein-

Uhlenbeck process dXt “ ´
1
2Xtdt` dWt whose invariant distribution is G. Then the regular Euler scheme

(6.3) Xn`1 “ Xn ´
γn`1

2
Xn `

?
γn`1Un`1,

satisfies (1.3) with ν “ G. The a.s. weak convergence (6.1) established in [LP02] follows as a consequence of
the (fast enough) convergence of Zn towards Xn as n goes to infinity.

Moreover, this rate is fast enough to guarantee that the sequence νZn satisfies the conclusion of Theorem 1

point (a) (when γn “
1
n ,

Γ
p2q
n?
Γn
Ñ
n

0), i.e. its convergence rate is ruled by a CLT at rate
a

logpnq. In fact this

holds under a lower moment assumption U1 P L
3pPq.

Let us mention that the convergence rates related to the a.s. CLT had already been investigated by several
authors. Let us quote among relevant works, Csörgő and Horváth [CH92], for real valued i.i.d. random variables,
Chaâbane and Maâouia [CM00], who investigate the convergence rate of the strong quadratic law of large
numbers for some extensions to vector-valued martingales, and Heck [Hec98], for large deviation results. As an
application of our previous results, we will derive some new non-asymptotic Gaussian deviation bounds for the
a.s. CLT, when the involved random variables pUnqně1 satisfy (GC). We insist here that the sub-Gaussianity
of the innovations is crucial to get a non-asymptotic Gaussian deviation bound. The result readily extends to
the wider class of innovations satisfying the general sub-Gaussian exponential deviation inequality (1.4). Also,
we slightly weaken the regularity assumptions needed on the function f in [LP02] for the associated a.s. CLT
to hold.

6.1.1. Non-Asymptotic Deviation Bounds.

Theorem 9. Assume the innovation sequence pUnqně1 satisfies (GC) and let f be a Lipschitz continuous
function such that Gpfq “

ş

Rd fpxqGpdxq “ 0. Then, there exist two explicit monotonic sequences cn ď 1 ď
Cn, n ě 1, with limnCn “ limn cn “ 1 such that for all a ą 0 and n ě 1:

P
”

a

logpnq ` 1|νZn pfq| ě a
ı

ď 2Cn exp

ˆ

´cn
a2

2}∇ϕ}28

˙

,(6.4)

where ϕ denotes the solution of the Poisson equation:

(6.5) @x P Rd,
1

2
∆ϕpxq ´

1

2
x ¨∇ϕpxq “ fpxq,

which, under the current assumptions, is unique and belongs to W 2
p,locpRd,Rq, for any p ą 1, with }∇ϕ}8 ď

2rf s1.

Proof. For pZnqně0 as in (6.2), and pXnqně0 as in (6.3) we introduce:

∆n :“ Zn ´Xn.

With the definition of νZn in (6.1), write νZn pfq “
1

Γn

řn
k“1 γkfpZk´1q. We also have similarly νXn pfq :“

1
Γn

řn
k“1 γkfpXk´1q. For all λ ą 0, we derive similarly to (3.21) (see as well (5.29)) and with the notations
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of (5.24):

P
“

a

Γn|ν
Z
n pfq| ě a

‰

“ P
”

a

Γn

ˇ

ˇ

ˇ

1

Γn

n
ÿ

k“1

γk
`

fpZk´1q ´ fpXk´1q
˘

` νXn pfq
ˇ

ˇ

ˇ
ě a

ı

ď P
”

a

Γn

ˇ

ˇ

ˇ

1

Γn

n
ÿ

k“1

γk
`

fpZk´1q ´ fpXk´1q
˘

` νXn pAϕδq `Rn,δpfq
ˇ

ˇ

ˇ
ě a

ı

ď 2 exp
´

´
λa
?

Γn

´

1´
2
?

ΓnCηrf s1δ

a

¯¯´

E exp
´

p̄rf s1λν
∆
n p| ¨ |q

¯¯
1
p̄

ˆ

E exp
´

´
qq̄λ

Γn
Mn

¯

˙
1
qq̄

ˆ

ˆ

E exp
´2pq̄λ

Γn
p|Ln| ` |Ḡn|q

¯

˙
1

2pq̄
ˆ

E exp
´4pq̄λ

Γn
|D2,b,n|

¯

˙
1

4pq̄
ˆ

E exp
´4pq̄λ

Γn
|D2,Σ,n|

¯

˙
1

4pq̄

(6.6)

for q̄, q P p1,`8), p̄ “ q̄
q̄´1 , p “

q
q´1 . Also, ϕδ corresponds to the solution of the Poisson equation (6.5) obtained

replacing f by its mollified version fδ. Now, we need the following lemma to control ν∆
n p|¨|q :“ 1

Γn

řn
k“1 γk|∆k´1|.

Lemma 7. There is a non-negative constant C6.7 such that for all λ ą 0:

(6.7) E exp
´

λν∆
n p| ¨ |q

¯

“ E exp
´ λ

Γn

n
ÿ

k“1

γk|∆k´1|

¯

ď exp

¨

˝

C6.7λE r|U1|sΓ
p 3

2
q

n

Γn
`
C2

6.7λ
2Γ
p3q
n

2Γ2
n

˛

‚.

For clarity, we postpone the proof to the end of the current section.
On the other hand, from Section 5.3 we have that ϕδ P C3,βpRd,Rq for all β P p0, 1q. We derive from (6.6), (6.7)

similarly to the proof of Theorem 7 by setting λ̄n :“ a
?

Γn
qq̄}∇ϕ}28

:

P
“

a

Γn|ν
Z
n pfq| ě a

‰

ď 2 exp
´

´
a2

2qq̄}∇ϕ}28

´

1´
4
?

ΓnCηrf s1δ

a

¯¯

exp
´C6.7λ̄nrf s1E r|U1|sΓ

p 3
2
q

n

Γn

¯

exp
´C2

6.7p̄rf s
2
1λ̄

2
nΓ
p3q
n

2Γ2
n

¯

pI1
V q

1
pq̄ exp

´ 1

pq̄

`

cV `
Cδ3.27

2

˘

`
ppaδnq

2

2q̄

¯

ˆ exp
´

λ̄2
n

´

pq̄
´3C2

V,ϕ

cV Γ2
n

`
“

Cδ3.26 `
3

2
Cδ3.27

‰pΓ
p2q
n q

2

Γ2
n

¯

`
1

2pq̄

¯¯

ď 2pI1
V q

1
pq̄ exp

´ 1

pq̄

`

cV `
Cδ3.27

2

˘

`
ppaδnq

2

2q̄
` ε´1

n Γnδ
2
¯

ˆ exp

¨

˚

˝

´
a2

2qq̄}∇ϕ}28

´

1´ dδn ´
p̄

qq̄}∇ϕ}28

rf s21C
2
6.7

´

Γ
p3q
n ` E r|U1|s

2pΓ
p 3

2
q

n q2
¯

Γn

¯

˛

‹

‚

,

for εn ą 0 and dδn as in (5.30). Choose again ppnqně1 and δ as in Section 5.3 so that qn Ñ
n

1, dδn Ñn
0 with the

indicated monotonicity for n large enough. We can now take p̄ :“ p̄n Ñ
n
`8 such that p̄

Γn
Ñ
n

0. The above

inequality then gives the result up to a direct modification of the sequences pCnqně1, pcnqně1. ˝

Proof of Lemma 7. The definition of ∆n implies:

∆n`1 “ ∆n

´

1´
γn`1

2

¯

` rnZn,

where we recall from (6.2) that rn :“
b

1´ 1
n`1 ´ 1` 1

2pn`1q “ Op 1
n2 q. In particular, there exists C̄1 ą 0 such

that for all n ě 1,

(6.8) |rn| ď
C̄1

n2
.

Setting now ρ0 “ 1 and for n ě 1:

ρn :“
”

n
ź

k“1

p1´
γk
2
q

ı´1
“

n
ź

k“1

2k

2k ´ 1
,
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a direct induction on ∆n yields:

(6.9) ∆n “
1

ρn

n
ÿ

k“1

rkρkZk “
1

ρn

n
ÿ

k“1

rkρk

´

k
ÿ

l“1

Ul
?
k

¯

“
1

ρn

n
ÿ

l“1

´

n
ÿ

k“l

rkρk
?
k

¯

Ul.

Also, from the Wallis formula ρn „n
?
πn, which implies that there exists C̄2 ě 1 such that for all n ě 1:

(6.10) C̄´1
2

?
n ď ρn ď C̄2

?
n.

We now get from (6.9) and the Fubini theorem:

(6.11) Γnν
∆
n p| ¨ |q “

n
ÿ

k“1

γk|∆k´1| ď

n
ÿ

k“1

γk
ρk´1

k´1
ÿ

l“1

´

k´1
ÿ

m“l

|rm|ρm
?
m

¯

|Ul| “
n´1
ÿ

l“1

”

n
ÿ

k“l`1

γk
ρk´1

`

k´1
ÿ

m“l

|rm|ρm
?
m

˘

ı

|Ul|.

Combining (6.8) and (6.10), we get that there exist constants C̄3, C̄4 ą 0 such that for all k P rrl ` 1, nss.

(6.12)
γk
ρk´1

k´1
ÿ

m“l

|rm|ρm
?
m

ď
C̄3

k3{2l
,

n
ÿ

k“l`1

γk
ρk´1

k´1
ÿ

m“l

|rm|ρm
?
m

ď
C̄4

l3{2
.

Plugging this inequality in (6.11), we derive:

(6.13) ν∆
n p| ¨ |q ď

1

Γn

n´1
ÿ

l“1

”

n
ÿ

k“l`1

γk
ρk´1

k´1
ÿ

m“l

|rm|ρm
?
m

ı

|Ul| ď
C̄4

Γn

n´1
ÿ

l“1

|Ul|

l3{2
.

For any λ ą 0, Equation (6.13) and the Gaussian concentration property (GC) of the innovation entail:

E exp
´

λν∆
n p| ¨ |q

¯

ď

n´1
ź

k“1

E exp
´ C4λ

Γnk
3
2

|Uk|
¯

ď

n´1
ź

k“1

exp
´ C̄4λ

Γnk
3
2

E r|U1|s `
1

2

` C̄4λ

Γnk
3
2

˘2
¯

“ exp
´ C̄4λE r|U1|sΓ

p 3
2
q

n

Γn
`
C̄2

4λ
2Γ
p3q
n

2Γ2
n

¯

.

This completes the proof. ˝

6.2. Numerical Results. We present in this section numerical results associated with the computation of the
empirical measure νn illustrating our previous theorems.

6.2.1. Sub-Gaussian tails. We first consider d “ r “ 1. Also, for simplicity, the innovations pUiqiě1 and X0

are Bernoulli variables with PpU1 “ ´1q “ PpU1 “ ´1q “ 1
2 . We illustrate here Theorem 2 taking bpxq “ ´x

2 ,
and σpxq “ cospxq in (1.1). This is a (weakly) hypoelliptic example. Indeed, setting for x P R, X1pxq “
cospxqBx and X0pxq “ ´x

2Bx, we have spantX1, rX1, X0su “ R. We choose as well to compute νnpAϕq for
ϕpxq “ x ` ε cospxq for ε “ 0.01, and ϕpxq “ cospxq. The function ϕ is here given. The assumptions of
Theorem 2 follow from Theorem 18 in Rotschild and Stein [RS76] (up to the introduction of a suitable partition
of unity). From Theorem 2, for steps of the form pγkqkě1 “ pk

´θqkě1, θ P r1{3, 1s (corresponding to β “ 1 in

Theorem 2), the function a P R` ÞÑ gn,θpaq :“

#

log
`

Pr|
?

ΓnνnpAϕq| ě as
˘

, θ P p1{3, 1s,

log
`

Pr|
?

ΓnνnpAϕq ` pBn,1 ´ E1
nq| ě as

˘

, θ “ 1{3,
is such

that for a ą an :“ anpθq where for θ P p1{3, 1s, anpθq “ 0 and for θ “ 1{3, anpθq “
rϕp3qsβ}σ}

p3`βq
8 E

“

|U1|
3`β

‰

p1`βqp2`βqp3`βq
Γ
p
3`β

2 q

n?
Γn

:

gn,θpaq ď ´cn
pa´ anq

2

2}σ}28}∇ϕ}28
` logp2Cnq.

We plot in Figure 1 the curves of gn,θ for θ varying as θj “
1
3`p1´

1
3q
j
5 , for j P rr1, 5ss, ϕpxq “ x`ε cospxq and in

Figure 2 the curve of gn,θ for θ “ θ0 “
1
3 and ϕpxq “ cospxq. The simulations have been performed for n “ 5ˆ104

in Figure 1, n “ 5 ˆ 106 in Figure 2, and the probability estimated by Monte Carlo simulation for MC “ 104

realizations of the random variable |
?

ΓnνnpAϕq| in the unbiased case and in the biased case of the random
variable |

?
ΓnνnpAϕq`pBn,1´E1

nq
M |, where pBn,1´E1

nq
M is obtained from Bn,1´E1

n replacing the integral over
[0,1], that needs to be evaluated at every time step, by a quantization of the uniform law on r0, 1s with M “ 10
points. We refer to [GL00] or [Pag97] for details on quantization. We point out that this is one drawback that
appears to obtain the fastest convergence rate, the bias needs to be estimated and therefore the function ϕ in
some sense known (since the approximation of the bias requires to compute its derivatives). The corresponding
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95% confidence intervals have size at most of order 0.016. To compare with, we also introduce the functions

Sn,θpaq :“ ´ pa´anpθqq2

2}σ}28}∇ϕ}28
, Sn,θ,cpaq :“ ´ pa´anpθqq2

2νnc pσ
2q}∇ϕ}28

, Sn,θ,Apaq :“ ´ pa´anpθqq2

2νnc p|σ∇ϕ|2q
and the optimal concentration

P pλminqpn, θ, a, ρq, obtained in Remark 11, optimizing numerically in ρ. The quantities νncpσ
2q, νncp|σ∇ϕ|2q in

the previous expressions actually correspond to the numerical estimation, for nc “ 104 and pγckqkě1 “ pk
´θcqkě1

with θc “ 1
3`10´3, of νpσ2q, νp|σ∇ϕ|2q appearing respectively in the sharper concentration bound of Theorem 8

when σ2 ´ νpσ2q is a coboundary and in the asymptotic Theorem 1. In the unbiased case of Figure 1, we plot
the maximum in j of the pSn,θj qjPrr1,5ss, pSn,θj ,cqjPrr1,5ss, pSn,θj ,AqjPrr1,5ss,

`

P pλminqpn, θj , a, ρq
˘

jPrr1,5ss
corresponding

to j “ 1. The associated curves are denoted by Sn, Sn,c, Sn,A and P pλminqpnq.
The Figures 1 and 2 correspond to the unbiased and biased cases respectively. In the unbiased case, we observe

that the curves almost overlay, the optimal deviation rate P pλminq is very close to the empirical data. It is
also below the numerical estimation of the asymptotic threshold given by Sn,θ,A which is, for our considered
example, almost indistinguishable from the coboundary Sn,θ,c (indeed, since ε “ 0.01, }∇ϕ}28 ď 1 ` ε2 and
νpσ2q}∇ϕ}28 » νp|σ∇ϕ|2q) and far below from the bounds of Sn,θ. In the biased case, P pλminq stays very close
to the theoretical asymptotic bound given by Sn,θ,A up to a certain deviation level a, namely for a P r0, 0.5s.
It then remains the best bound provided by our results. In this example, the improvement associated with
Sn,θ,c is also notable. It is precisely because the source term has a more oscillating gradient that we have also
considered a larger running time, corresponding to n “ 106, for the empirical curves. For this choice, we see
relatively good agreement w.r.t. to the asymptotic deviation bounds of Sn,θ0,A.

The figures below thus illustrate that the explicit optimal rate of Remark 11 seems rather appropriate to
capture the deviations of the empirical random measures.

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0  0.5  1  1.5  2
a

P(λmin(n))
gn,θ1gn,θ2gn,θ3gn,θ4gn,θ5SnSn,ASn,c

Figure 1. Unbiased Case. Plot of
a ÞÑ gn,θpaq, for pθkqkPrr1,5ss, with
ϕpxq“σpxq“x` ε cospxq, ε “ 0.01.

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2

a

P(λmin(n, θ0))
gn,θ0Sn,θ0Sn,θ0,C

Sn,θ0,A

Figure 2. Biased Case. Plot of
a ÞÑ gn,θpaq, for θ0 “

1
3 , with ϕpxq “

σpxq “ cospxq.

We eventually plot below the deviation curves with source ϕpxq “ cospxq adding a last curve obtained
replacing in the formula for P pλminq of Remark 11 the }∇ϕ}28νpσ2q by νp|σ∇ϕ|2q. For practical purposes,
this last quantity is again estimated numerically with the same previous parameters. Even if the analysis of
Theorem 8 cannot be extended to justify such a choice, the empirical evidence is rather striking.

6.2.2. Slutsky like result. In this paragraph, we illustrate our results from Theorem 6, which can be viewed as
an extension of the usual Slustky’s Lemma to our current framework, for a multidimensional process, precisely
for r “ d “ 2 in the case β P p0, 1q. In order to converge as fast as possible without bias, we take θ “ 1

2`β `
1

1000 .

We also choose a model which satisfies the assumptions of Theorem 4 under (CUE) and Lemma 6. We consider:

fpxq “
|x|1`β

1` |x|β
, bpxq “

ˆ

´4x1 ` 6x2

´5x1 ´ 5x2

˙

, σσ˚pxq “

˜

cospx1`x2q

2 ` 1 sinpx1q sinpx2q

4
sinpx1q sinpx2q

4 1´ sinpx2q

2

¸

.

Remark that the non-degeneracy condition (UE) is fulfilled by Σ “ σσ˚, as well as the condition set in
Theorem 4 under (CUE), Σi,jpxq “ Σi,jpxi, . . . , xdq, for all 1 ď i ď j ď d. Furthermore, from the Cholesky
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P(λmin(n))
P(λmin(n)) with carre du champ coboundary

gn,θ1gn,θ2gn,θ3gn,θ4gn,θ5SnSn,ASn,c

Figure 3. Plot of a ÞÑ gn,θpaq, for
pθkqkPrr1,5ss, with ϕpxq “ σpxq “
cospxq.

decomposition, we write:

σpxq “

¨

˚

˝

b

cospx1`x2q

2 ` 1 0

sinpx1q sinpx2q

4

b

cospx1`x2q
2

`1

c

´
sinpx1q2 sinpx2q2

16p
cospx1`x2q

2
`1q

` 1´ sinpx2q

2

˛

‹

‚

.

Let us check that (Dp
α) is satisfied. Firstly, remark that Db`Db˚

2 is a constant matrix whose eigenvalues are

t´
?

2`9
2 ,

?
2´9
2 u. Direct computations yield that, for all x P Rd, ξ P Rd:

B

Dbpxq `Dbpxq˚

2
ξ, ξ

F

`
1

2

r
ÿ

j“1

|Dσ¨jpxqξ|
2 ď ´3.085|ξ|2.

It can be checked similarly that the condition }Dσ}28 ď
2α

2p1`βq´p is satisfied for α “ 3.085 and β “ .5 which we

consider below. Also, the condition (R1,β) clearly holds. In other words, all assumptions of Theorem 6 are in
force. We set for the following plot:

gσnpaq “ logPr
a

Γn|νnfq| ě as, Sσpaq “ ´
a2α2

2rf s21
,

with α “ 3.085, and rf s1 “ 1.
Unlike in the previous simulations, we do not know here the value of νpfq. In fact, in paragraph 6.2.1 we

had chosen to compute the deviation of Aϕ from 0 “ νpAϕq. Here, we estimate from the ergodic theorem νpfq,
taking β “ .5, by νncpfq « 0.71308 for nc “ 5 ¨ 105. Running MC “ 102 samples, we find that the size of the
associated 95% confidence interval is 3.208 ¨ 10´4. Finally, the simulations are performed for n “ 5ˆ 104, and
the probability is calculated by Monte Carlo algorithm for MC “ 103 realizations. The maximum size of the
associated 95% confidence interval is 4.75054 ¨ 10´5. The innovations are Gaussian random variables.

In Figure 4, we observe that the curve Sσ stays above gσn as proved in Theorem 6. However, remark that

the graphs are quite spaced. This can be explained, among other things, by the difference between νp}σ}2q rf s1α
and the asymptotic variance νp|σ˚∇ϕ|2q. Furthermore we have represented Sσ which is a kind of asymptotic
version of P pλminpnqq in the previous plots.

Acknowledgments

For the second author, the article was prepared within the framework of a subsidy granted to the HSE by
the Government of the Russian Federation for the implementation of the Global Competitiveness Program.



NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR ERGODIC APPROXIMATIONS 43

-7

-6

-5

-4

-3

-2

-1

 0

 0  0.5  1  1.5  2

a

g
σ

n
S

σ

Figure 4. Plot of a ÞÑ gnpaq with

fpxq “ |x|β

1`|x|β
, β “ .5.

References

[ACJ08] A. Arnold, A. Carlen, and Q. Ju. Large-time behavior of non-symmetric Fokker-Planck type equations. Comm. Stoch.
Analysis, 2–1:153–175, 2008.

[AMTU01] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence
to equilibrium for Fokker-Planck type equations. Comm. Partial Diff. Equations, 26-(1-2):43–100, 2001.

[Bas97] R. F. Bass. Diffusions and Elliptic Operators. Springer, 1997.

[BB06] G. Blower and F. Bolley. Concentration inequalities on product spaces with applications to Markov processes. Studia
Mathematica, 175-1:47–72, 2006.
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