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NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR THE RECURSIVE APPROXIMATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION
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We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant distribution ν of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme with decreasing time step along a suitable class of (smooth enough) test functions f such that f ´νpf q is a coboundary of the infinitesimal generator. We show that these bounds can still be improved when some suitable squared-norms of the diffusion coefficient also lie in this class. We apply these estimates to design computable non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

1. Introduction 1.1. Setting. The aim of this article is to approach the invariant distribution of the solution of the diffusion equation: dY t " bpY t qdt `σpY t qdW t , (1.1) where pW t q tě0 is a Wiener process of dimension r on a given filtered probability space pΩ, G, pG t q tě0 , Pq, b : R d Ñ R d , and σ : R d Ñ R d b R r are assumed to be Lipschitz continuous functions and to satisfy a mean-reverting assumption in the following sense. If A denotes the infinitesimal generator of the diffusion (1.1), there exists a twice continuously differentiable Lyapunov function V : R d Ñ p0, `8q such that lim |x|Ñ`8 V pxq " `8 and AV ď β ´αV where β P R and α ą 0. Such a condition ensures the existence of an invariant distribution. We will also assume uniqueness of the invariant distribution, denoted from now by ν. We refer to the monographs by Khasminskii [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF] (see also its augmented second edition [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF]), or Villani [Vil09] and to the survey paper [START_REF] Pagès | Sur quelques algorithmes récursifs pour les probabilités numériques[END_REF], for in-depth discussions on the conditions yielding such existence and uniqueness results.

We introduce an approximation algorithm based on an Euler like discretization with decreasing time step, which may use more general innovations than the Brownian increments. Namely, for the step sequence pγ k q kě1 and n ě 0, we define: (S)

X n`1 " X n `γn`1 bpX n q `?γ n`1 σpX n qU n`1 , where X 0 P L 2 pΩ, F 0 , Pq and pU n q ně1 is an i.i.d. sequence of centered random variables matching the moments of the Gaussian law on R r up to order three, independent of X 0 . We define the empirical (random) occupation measure of the scheme in the following way. For all A P BpR d q (where BpR d q denotes the Borel σ-field on R d ):

(1.2) ν n pAq :" ν n pω, Aq :"

ř n k"1 γ k δ X k´1 pωq pAq ř n k"1 γ k .
The measure ν n is here defined accordingly to the intrinsic time scale of the scheme. Namely, Γ n " ř n k"1 γ k represents the current time associated with the Euler scheme (S) after n iterations. Since we are interested in long time approximation, we consider steps pγ k q kě1 such that Γ n :" ř n k"1 γ k Ñ n `8. We also assume γ k Ó k 0.

Observe that, for a bounded ν-a.s. continuous function f , it is proved in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] (see e.g. Theorem 1), that:

(1.3)

ν n pf q " 1 Γ n n ÿ k"1 γ k f pX k´1 q a.s. ÝÑ n νpf q " ż R d f pxqνpdxq,
or equivalently that ν n pω, ¨q w ÝÑ n ν, Ppdωq ´a.s. The above result can be seen as an inhomogeneous counterpart of stability results discussed for homogeneous Markov chains in Duflo [START_REF] Duflo | Méthodes récursives aléatoires[END_REF]. Intuitively, the decreasing steps make the approximation more and more accurate in long time and, therefore, the ergodic empirical mean of the scheme converges to the quantity of interest. Put it differently, there is no bias. This is a significant advantage w.r.t. a more naive discretization method that would rely on a constant step scheme. Indeed, even if this latter approach gains in simplicity, taking γ k " h ą 0 in (S) would lead to replace the r.h.s. of (1.3) by the quantity ν h pf q :" ş R d f pxqν h pdxq, with ν h denoting the invariant distribution of the Euler scheme with step h. In such a case, for the analysis to be complete, one needs to investigate the difference ν ´νh through the corresponding continuous and discrete Poisson problems. We refer to Talay et al. [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], [START_REF] Talay | Stochastic Hamiltonian dissipative systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme[END_REF] for a precise presentation of this approach. Now, once (1.3) is available, the next question naturally concerns the rate of that convergence. This was originally investigated by Lamberton and Pagès [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for functions f of the form f ´νpf q " Aϕ, i.e. f ´νpf q is a coboundary for A. The specific reason for focusing on such a class of functions is that an invariant distribution ν is characterized as a solution in the distribution sense of the stationary Fokker-Planck equation A ˚ν " 0 (where A ˚stands for the adjoint of A). Thus, for smooth enough functions ϕ (at least C 2 pR d , Rq), one has νpAϕq " ş R d Aϕpxqνpdxq " 0. The authors then investigate the weak convergence of ν n pf q ´νpf q once suitably renormalized. However, in these results, the assumptions are made on the function ϕ itself rather than on f . To overcome this limitation and exploit directly some assumptions on the function f requires to solve the Poisson equation Aϕ " f ´νpf q. This is precisely for this step that some structure conditions are needed, namely (hypo)ellipticity or confluence conditions. We refer for instance to the work of Pardoux and Veretennikov [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF], Rothschield and Stein [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF] or Villani [Vil09] who discuss the solvability of the Poisson problem under some ellipticity or hypoellipticity assumptions. We also mention the work of Pagès and Panloup [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF] who exploit some confluence conditions allowing to handle for instance the case of an Ornstein-Uhlenbeck process with degenerate covariance matrix. We refer to Sections 2.2 and 2.3 for precise assumptions giving the uniqueness of the invariant distribution of (1.1) and the expected smoothness properties for the associated Poisson problem.

In the current paper, our goal is to establish for this recursive procedure a non-asymptotic Gaussian control for the deviations of the quantity ν n pf q ´νpf q for possibly unbounded Lipschitz continuous functions f . Such non-asymptotic bounds are crucial in many applicative fields. Indeed, for specific practical simulations, it is not always possible to run ergodic means for very large values of n. It will be direct to derive, as a byproduct of our deviations estimates, some computable non-asymptotic confidence intervals. A specific feature of such non-asymptotic deviation inequalities is that their accuracy depends again on the status of the diffusion coefficient σ with respect to the Poisson equation. Thus, if }σ} 2 ´νp}σ} 2 q " Aϑ is a coboundary (where } ¨} denotes a matrix norm), we manage to improve our analysis, to derive better concentration bounds in a certain deviation range as well as some additional deviation regimes. Also, this additional study seems rather efficient to capture the numerical behavior of the empirical deviations. We refer to Section 4 and 6.2 for details about these points. Eventually, our main deviation results allow to provide deviation inequalities for plain Lipschitz continuous sources f in the ergodic approximation, by using a suitable regularization procedure, as established in Theorem 7. As expected, dealing with this general class of functions requires more stringent constraints on the time steps, that must be small enough, and prevents from obtaining the fastest convergence rates (see again Theorem 7 and Section 5.3).

The main feature of the sequence (1.3) of weighted empirical measures is that it targets the true invariant distribution ν of the continuous time diffusion. The price to pay is the use of an Euler scheme with decreasing step which is a non-homogeneous Markov chain. This induces new difficulties compared to the extensive literature on deviation inequalities for ergodic homogeneous Markov chains. In particular, our approximation procedure produces some remainder terms that need to be controlled accurately enough in a non-asymptotic way to produce tractable deviation inequalities asymptotically close to their counterparts for the diffusion itself. This a major difficulty compared to a CLT where these remainder terms are simply requested to go to 0 fast enough.

As mentioned above and like for the CLT (see [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF] for the diffusion or [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for the weighted empirical measures ν n ), these deviation inequalities are naturally established for coboundaries f ´νpf q " Apϕq, the assumptions being made on ϕ. Our second objective in this paper is to state our results so that all assumptions could be read on the source function f itself. This first requires to solve the Poisson equation in that spirit, that means deriving pointwise regularity results on ϕ from those made on f . Again, for Lipschitz sources, this step will require an appropriate regularization procedure.

In particular, we will not rely on the Sobolev regularity (see e.g. Pardoux and Veretennikov [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF]) but rather on some Schauder estimates in line with the works by Krylov and Priola [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF], which allow to benefit from the elliptic regularity for operators with unbounded coefficients. For more details, we refer to the introduction of Section 5. 1.2. Assumptions and Related Asymptotic Results. From now on, we will extensively use the following notations.

For a given step sequence pγ n q ně1 , we denote: @ P R, Γ p q n :"

n ÿ k"1 γ k , Γ n :" n ÿ k"1 γ k " Γ p1q n .
In practice, we will consider time step sequences: γ n -1 n θ with θ P p0, 1s, where for two sequences pu n q nPN , pv n q nPN the notation u n -v n means that Dn 0 P N, DC ě 1 such that @n ě n 0 , C ´1v n ď u n ď Cv n .

For a vector v P R k , k P td, ru, we denote by |v| :" p ř k j"1 v 2 j q 1 2 its (canonical) Euclidean norm. Also, for a function ψ : R q Ñ R d , we set }ψ} 8 :" sup xPR q |ψpxq|.

Hypotheses. (C1)

The random variable X 0 is supposed to be sub-Gaussian, i.e. its square is exponentially integrable up to some threshold. Namely, there exists λ 0 P R ˚such that: @λ ă λ 0 , E rexppλ|X 0 | 2 qs ă `8.

(GC) The µ-distributed i.i.d. innovation sequence pU n q ně1 is such that E rU 1 s " 0 and for all pi, j, kq P t1, ¨¨¨, ru 3 , E rU i 1 U j 1 s " δ ij , E rU i 1 U j 1 U k 1 s " 0. Also, pU n q ně1 and X 0 are independent. Eventually, U 1 satisfies the following Gaussian concentration property, i.e. for every 1´Lipschitz continuous function g : R r Ñ R and every λ ą 0:

E " exppλgpU 1 qq ‰ ď exp ˆλE rgpU 1 qs `λ2 2 
˙.

Observe that if U 1 plawq " N p0, I r q or U 1 plawq " p 1 2 pδ 1 `δ´1 qq br , i.e. for Gaussian or symmetric Bernoulli increments which are the most commonly used sequences for the innovations, the above identity holds. On the other hand, what follows can be adapted almost straightforwardly for a wider class of sub-Gaussian distributions satisfying that for some ą 0 and for all λ ą 0:

(1.4) E " exppλgpU 1 qq ‰ ď exp ˆλE rgpU 1 qs ` λ 2 4 ˙, which yields that for all r ą 0, Pr|U 1 | ě rs ď 2 expp´r 2 q (sub-Gaussian concentration of the innovation). The case " 2 corresponds to the standard Gaussian concentration. This is also the constant in the logarithmic Sobolev inequality fulfilled by the standard Gaussian measure.

(C2) There exists a positive constant κ such that, sup

xPR d }σpxq} 2 ď κ,
where }σpxq} stands for the operator norm of σpxq, i.e. }σpxq} " sup zPR r ,|z|ď1 |σpxqz| (keep in mind that }σpxq} " }σ ˚pxq} " }σσ ˚pxq} 1 2 ). We then set }σ} 8 :" sup xPR d }σpxq}.

(L V ) There exists a Lyapunov function V : R d ÝÑ rv ˚, `8r, with v ˚ą 0, satisfying the following conditions: i) Regularity-Coercivity. V is a C 2 function, }D 2 V } 8 ă `8, and lim |x|Ñ8 V pxq " `8.

ii) Growth control. There exists C V P p0, `8q such that for all x P R d :

|∇V pxq| 2 `|bpxq| 2 ď C V V pxq.
Remark 1. We have assumed (U) without imposing some specific non-degeneracy conditions. Observe that (L V ) yields existence of an invariant distribution (see e.g. Chapter 4.9 in [START_REF] Ethier | Markov Processes. Characterization and Convergence[END_REF]). Additional structure conditions on the coefficients ((hypo-)ellipticity [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF], [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF], [START_REF] Pardoux | On Poisson equation and diffusion approximation[END_REF], [START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF], [Vil09] or confluence [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF]) then yield uniqueness.

Assumption (S) is a technical condition which is exploited in order to derive the non-asymptotic controls of Theorem 2 (see especially the proof of Proposition 1 below).

Observe that, as soon as conditions (C2), (L V ), (U) are satisfied and E rU 1 s " 0, ErU b3 1 s " 0, the following Central Limit Theorem (CLT) holds (see Theorems 9, 10 in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF]).

Theorem 1 (CLT). Under (C2), (L V ), (U), if E rU 1 s " 0, E rU b3 1 s " 0 and ErV pX 0 qs ă `8, we have the following results. and µ denotes the distribution of the innovations pU k q kě1 . In the above definition of Φ 4 , the term D 3 ϕ stands for the order 3 tensor pB 3 x i ,x j ,x k ϕq pi,j,kqPrr1,dss 3 and we denote, for all x P R d , by

D 3 ϕpxqbpxq the R d b R d matrix with entries `D3 ϕpxqbpxq ˘ij " ř d k"1 pD 3 ϕpxqq ijk b k pxq, pi, jq P rr1, dss 2 .
Remark 2. Let us specify that for a step sequence pγ n q nPN such that γ n -n ´θ, θ P p0, 1s, it is easily checked that case (a) occurs for θ P p ă `8 (sublinear diffusion) in case (b). We refer again to Theorems 9 and 10 in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for further considerations.

Remark 3. The reader should have in mind that an ergodic result similar to the one stated in the fast decreasing step setting holds for the diffusion itself under the same structure assumptions, i.e. (C2), (L V ), (U) (see Bhattacharya [START_REF] Bhattacharya | On the functional central limit theorem and the law of the iterated logarithm for Markov processes[END_REF]). In fact (C2) can be partially relaxed as well, as mentioned above. Precisely,

1 ? t ż t 0 AϕpY s qds L ÝÑ N ´0, ż R d |σ ˚∇ϕ| 2 dν ¯as t Ñ `8.
Note that the asymptotic variance corresponds to the usual integral of the "carré du champ" w.r.t. to the invariant distribution (see again Bhattacharya [Bha82] or the monograph by Bakry et al. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]), i.e.:

ż

R d |σ ˚∇ϕpxq| 2 νpdxq " ´2 ż R d xAϕ, ϕypxqνpdxq.
In both settings, the normalization is the same: ? t for the diffusion and ? Γ n for the scheme. Except that, as emphasized by Theorem 1, for slowly decreasing step -when θ ă 1{3 -the time discretization effect becomes prominent and "hides" the CLT so that θ " 1{3 (critical value between "fast" and "slow" settings) yields the fastest rate with a biased CLT.

Remark 4. We would like to mention that, in the biased case pbq, for steps of the form γ k " γ 0 k ´1{3 , k ě 1, it is important for a practical implementation to choose γ 0 in an appropriate way, namely by minimizing the function

γ 0 Þ Ñ c 1 γ 0 `c2 γ ´1{2 0 , c 1 " lim n ř n k"1 k ´2{3 p ř n k"1 k ´1{3 q 1{2 , c 2 " ş R d |σ ˚∇ϕ| 2 dν
, which corresponds to the meanvariance contribution deriving from the biased limit Theorem. Of course, c 2 is usually unknown, and the concrete optimization has to be performed replacing c 2 by a computable estimate, like for instance upper bounds, i.e. c 2 ď }σ} 8 }∇ϕ} 8 .

The purpose of this work is to obtain non-asymptotic deviation results which match with the above CLT. In the current ergodic framework, the very first non-asymptotic results were established for the Euler scheme with constant time step by Malrieu and Talay in [START_REF] Malrieu | Concentration inequalities for Euler Schemes[END_REF] when the diffusion coefficient σ in (1.1) is constant. The key tool in their approach consists in establishing a Log Sobolev inequality, which implies Gaussian concentration, for the Euler scheme. This approach allows to easily control the invariant distribution associated with the diffusion process (1.1), see e.g. Ledoux [Led99] or Bakry et al. [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF] in a general framework. However Log Sobolev, and even Poincaré, inequalities turn out to be rather rigid tools and are not very well adapted for discretization schemes like (S) with or without decreasing steps.

Our approach relies on martingale techniques, which were already a crucial tool to establish the asymptotic results of [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] and have been successfully used in Frikha and Menozzi [START_REF] Frikha | Concentration bounds for stochastic approximations[END_REF] as well to establish nonasymptotic bounds for the regular Monte Carlo error associated with the Euler discretization of a diffusion over a finite time interval r0, T s and a class of stochastic algorithms of Robbins-Monro type. Roughly speaking, for a given n, we decompose the quantity ? Γ n ν n pAϕq as M n `Rn where pM k q kě0 is a martingale which has Gaussian concentration and R n is a remainder term to be controlled in a non-asymptotic way.

We can as well refer to the recent work by Dedecker and Gouëzel [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic markov chains[END_REF] who also use a martingale approach to derive non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov chains on a general state space.

Let us also mention that many non-asymptotic results have been obtained based on functional inequalities. Bolley, Guillin and Villani [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF] derived non-asymptotic controls for the deviations of the Wasserstein distance between a reference measure and its empirical counterpart, establishing a non-asymptotic version of the Sanov theorem. Deviation estimates for sums of weakly dependent random variables (with sub exponential mixing rates) have been considered in Merlevède et al. [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF]. From a more dynamical viewpoint, let us mention the work of Joulin and Ollivier [START_REF] Joulin | Curvature, concentration and error estimates for Markov chain Monte Carlo[END_REF], who introduced for rather general homogeneous Markov chains a kind of curvature condition to derive a spectral gap for the chain, and therefore an exponential convergence of the marginal laws towards the stationary distribution. We also mention a work of Blower and Bolley [START_REF] Blower | Concentration inequalities on product spaces with applications to Markov processes[END_REF], who obtain Gaussian concentration properties for deviations of functional of the path for metric space valued homogeneous Markov chains or Boissard [START_REF] Boissard | Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance[END_REF] who established non-asymptotic deviation bounds for the Wasserstein distance between the marginal distributions and the stationary law, still in the homogeneous case. The common idea of these works is to prove some contraction properties of the transition kernel of the Markov chain in Wasserstein metric. However, this usually requires to have some continuity in Wasserstein metric for the transition law involved, see e.g. condition (ii) in Theorems 1.2 and 2.1 of [START_REF] Blower | Concentration inequalities on product spaces with applications to Markov processes[END_REF]. Checking such continuity conditions can be difficult in practice. Sufficient conditions, which require absolute continuity and smoothness of the transition laws are given in Proposition 2.2 of [START_REF] Blower | Concentration inequalities on product spaces with applications to Markov processes[END_REF].

Though potentially less sharp for the derivation of constants, the adopted martingale-based approach in this work turns out to be rather simple, robust and can be very naturally adapted to both discrete innovations and inhomogeneous time steps dynamics like the one we currently consider.

It should as well allow to control deviations for functionals of the path, in the spirit of those considered in [START_REF] Pagès | Ergodic approximation of the distribution of a stationary diffusion: rate of convergence[END_REF], [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF]. Also, the approach could possibly extend to diffusions with less stringent Lyapunov conditions, like the weakly mean reverting drifts considered in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion: the case of a weakly mean reverting drift[END_REF], or even to more general ergodic Markov processes, see e.g. Pagès and Rey [START_REF] Pagès | Recursive computation of the invariant distribution of Markov and Feller processes[END_REF]. These aspects will concern further research.

As an application of our non-asymptotic concentration results, we will discuss two important topics:

-The first one is of numerical interest and deals with non-asymptotic confidence intervals associated with the estimation of the ergodic mean. Such results can be very useful in practice when the computational resources are constrained (by time, by the model itself,. . . ). If we assume that ϕ P C 3 pR d , Rq, Lipschitz continuous with pD i ϕq iPt2,3u bounded, such that the mapping x P R d Þ Ñ xbpxq, ∇ϕpxqy and D 3 ϕ are Lipschitz continuous, we then establish that there are explicit sequences c n ď 1 ď C n converging to 1 such that for all n P N, for all a ą 0 and γ k -k ´θ, θ P p 1 3 , 1s,

(1.5) Pr a Γ n ν n pAϕq ě as ď C n exp ˆ´c n a 2 2}σ} 2 8 }∇ϕ} 2 8 ˙.
When the diffusion coefficient σ is such that }σ} 2 ´νp}σ} 2 q is itself a coboundary (or its counterpart for any other norm dominating } ¨}), the previous bound improves in a certain deviation range for a. Namely, we are able to replace }σ} 2 8 by νp}σ} 2 q in (1.5), going thus closer to the theoretical limit variance involving the "carré du champ". Moreover, a mixed regime appears in the non-asymptotic deviation bounds which dramatically improves, from the numerical viewpoint, the general case for a certain deviation range. In particular, the corresponding variance is closer to the asymptotic one given by the "carré du champ" (see Theorem 8 below). In accordance with the limit results of Theorem 1, the drifts associated with the fastest convergence rates can be handled as well. We obtain in full generality, results of type (1.5) under slightly weaker smoothness assumptions, considering e.g. D 3 ϕ being β P p0, 1s-Hölder continuous. Eventually, under suitable ellipticity conditions on σ, we are able to give non-asymptotic deviation bounds for a Lipschitz source f as well as explicit gradient bounds for the solution ϕ of the corresponding Poisson problem.

-The second one is mainly theoretical and concerns non-asymptotic deviation bounds for the celebrated almost-sure CLT first established by Brosamler and Schatte (see [START_REF] Brosamler | An almost everywhere central limit theorem[END_REF] and [START_REF] Schatte | On strong versions of the Central Limit Theorem[END_REF]) and revisited through the ergodic discretization schemes viewpoint in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF].

Both applications require a careful investigation of the corresponding Poisson equation Aϕ " f ´νpf q. We will in particular prove that some pointwise regularity properties can be transferred from f to ϕ.

The paper is organized as follows. We conclude this section by introducing some notations. Our main results are presented in Section 2. We first state therein the specific concentration results for functions f writing f " Aϕ `νpf q (see Section 2.1). We then proceed with some suitable controls on the Poisson problem associated with A and f in a confluent framework under the two main cases considered: namely a possibly degenerate setting, which requires a strong confluence condition and smooth source and coefficients, and a non degenerate setting, which allows to weaken the confluence condition as well as the smoothness assumptions on the source and the coefficients since in that case we manage to benefit from an elliptic bootstrap property (see Section 2.2). We eventually give in Section 2.3 some practical and tractable deviation bounds and nonasymptotic confidence intervals, including a Slutsky like result, for a given specific source f under the afore mentioned conditions on the coefficients of (1.1).

We prove our main concentration result in Section 3. Section 4 is devoted to the case where }σ} 2 ´νp}σ} 2 q is a coboundary. We then prove in Section 5 the required controls on the Poisson equation for our deviation result to hold as well as the practical controls of Section 2.3. Section 6.1 is dedicated to the non-asymptotic deviation bounds for the almost-sure CLT and Section 6.2 to the numerical illustration of our non-asymptotic confidence intervals. 1.3. Notations. In the following, we will denote by C a constant that may change from line to line and depend, uniformly in time, on known parameters appearing in (C1), (GC), (C2), (L V ), (S). Other possible dependencies will be explicitly specified. We will also denote by R n and e n deterministic remainder terms that respectively converge to 1 and 0 with n. The explicit dependencies of those sequences again appear in the proofs.

For a function f P C β pR d , Rq, β P p0, 1s, we denote rf s β :" sup

x‰x 1 |f pxq ´f px 1 q| |x ´x1 | β ă `8
its Hölder modulus of continuity. Observe carefully that, when f is additionally bounded, we have that for all 0 ă β 1 ă β:

(1.6) rf s β 1 ď rf s β β 1 β p2}f } 8 q 1´β β 1 .
Additionally, for f P C p pR d , Rq, p P N, we set for β P p0, 1s:

rf ppq s β :" sup x‰x 1 ,|α|"p |D α f pxq ´Dα f px 1 q| |x ´x1 | β ď `8,
where α (viewed as an element of N d 0 zt0u with N 0 :" NYt0u) is a multi-index of length p, i.e. |α| :"

ř d i"1 α i " p.
For notational convenience, we also introduce for k P N 0 , β P p0, 1s and m P t1, d, d ˆru the Hölder space C k,β pR d , R m q :" ! f P C k pR d , R m q : @α, |α| P rr1, kss, sup

xPR d |D α f pxq| ă `8, rf pkq s β ă `8) .
We also denote by C k,β b the subset of C k,β for which the functions themselves ares bounded. In particular, C 0,1 pR d , R m q is the space of Lipshitz continuous functions from R d to R m and C 0,β b pR d , R m q denotes the space of bounded β-Hölder continuous functions. Observe as well that, if f P C k,β , k ě 1 then f is Lipschitz continuous.

We will as well use the notation rrn, pss, pn, pq P pN 0 q 2 , n ď p, for the set of integers being between n and p. Also, for a given Borel function f : R d Ñ E, where E can be R, R d , R d b R q , q P tr, du, we set for k P N 0 :

f k :" f pX k q.
Eventually, for k P N 0 , we denote by F k :" σ `pX j q jPrr0,kss ˘.

Main results

2.1. Result of non-asymptotic Gaussian concentration. Our main concentration result is given by the following theorem. In this theorem, we consider a slightly more general situation than for the CLT recalled in Theorem 1. We only assume ϕ P C 3,β pR d , Rq, β P p0, 1s instead of ϕ P C 4 pR d , Rq with existing bounded partial derivatives up to order four (which in particular implies that in Theorem 1 ϕ P C 3,1 pR d , Rq).

Theorem 2. Assume (C1), (GC), (C2), (L V ), (U), (S) hold. Consider a Lipschitz continuous (possibly unbounded) function ϕ P C 3,β pR d , Rq for some β P p0, 1s. Let us furthermore suppose that:

(G V ) DC V,ϕ ą 0, @x P R d , |ϕpxq| ď C V,ϕ p1 `aV pxqq.
Let θ P r1{p2 `βq, 1s and assume the step sequence pγ k q kě1 is of the form γ k -k ´θ.

paq Unbiased Case (sub-optimal convergence rate): Let θ P p 1 2`β , 1s.

(i) Assume that the mapping x Þ Ñ x∇ϕpxq, bpxqy is Lipschitz continuous. Then, there exist two explicit monotonic sequences c n ď 1 ď C n , n ě 1, with lim n C n " lim n c n " 1, such that for all n ě 1 and for every a ą 0:

P " | a Γ n ν n pAϕq| ě a ‰ ď 2C n exp ˆ´c n a 2 2}σ} 2 8 }∇ϕ} 2 8 ˙.
(ii) Suppose that the mapping x Þ Ñ x∇ϕpxq, bpxqy is not Lipschitz continuous. The above result still holds for 0 ă a ď χ n ? Γn Γ p2q n for a positive sequence χ n Ñ n 0 arbitrarily slowly, so that χ n ? Γn Γ p2q n Ñ n `8. In particular, for a fixed a ą 0, the above concentration inequality holds for n large enough.

pbq Biased Case (Optimal Convergence Rate): Let θ " 1 2`β . We set for all pk, t, u, xq P rr1, nssˆr0, 1s 2 ˆRd :

Λ β k´1 pt, u, xq :" E " Tr ´`D 3 ϕpx `γk bpxq `ut ? γ k σpxqU k qσpxqU k ˘`σpxqU k b U k σpxq ˚˘¯ı , (2.1)
keeping in mind that, since ϕ P C 3,β pR d , Rq, rD 3 ϕs β ă `8. We define subsequently:

E β n :" 1 ? Γ n n ÿ k"1 γ 3{2 k ż 1 0 dt p1 ´tqt ż 1 0 du Λ β k´1 pt, u, X k´1 q. (2.2) Set now B n,β :"E β n , if β P p0, 1q, B n,β :"E β n `1 ? Γ n n ÿ k"1 γ 2 k ż 1 0 p1 ´tqTr ´D2 ϕpX k´1 `tγ k b k´1 qb k´1 b b k´1 ¯dt `1 2 ? Γ n n ÿ k"1 γ k Tr ´`D 2 ϕpX k´1 `γk b k´1 q ´D2 ϕpX k´1 q ˘Σk´1 ¯, if β " 1.
(

2.3)

There exist two explicit monotonic sequences c n ď 1 ď C n , n ě 1, with lim n C n " lim n c n " 1 such that for all n ě 1 and for every a ą 0:

P " | a Γ n ν n pAϕq `Bn,β | ě a ‰ ď 2C n exp ˆ´c n a 2 2}σ} 2 8 }∇ϕ} 2 8 ˙.
For β P p0, 1q, the random variables

|B n,β | " |E β n | ď rϕ p3q s β }σ} p3`βq 8 E " |U 1 | 3`β ‰ p1`βqp2`βqp3`βq Γ p 3`β 2 q n ?
Γn ÝÑ n a β,8 ą 0 a.s. Also, for β " 1, the pB n,1 q ně1 are exponentially integrable and if, furthermore, D 3 ϕ is C 1 , B n,1 Ñ n ´r γm a.s. where r γm is as in Theorem 1. In any case, a bias appears in our deviation controls when we consider, for a given smoothness of order β P p0, 1s for D 3 ϕ, the fastest associated time steps γ k -k ´θ, θ " 1 2`β . Remark 5. Observe that, when β " 1, the above result provides a non-asymptotic counterpart of the limit Theorem 1. In particular, the concentration constants appearing in Theorem 2 asymptotically match those of the centered CLT recalled in Theorem 1, up to a substitution of the asymptotic variance ş R d |σ ˚∇ϕpxq| 2 νpdxq by its natural upper bound }σ} 2 8 }∇ϕ} 2 8 . Importantly, these bounds do not require "a priori" non-degeneracy conditions and only depend on the diffusion coefficient through the sup-norm of the diffusion matrix Σ, assumption (C2). It will anyhow be very natural to consider a non-degeneracy condition ([PV01], [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF], [Vil09]), or a confluence condition ([PP14]), when investigating the deviations for a given function f , in order to ensure the solvability of the corresponding Poisson equation Aϕ " f ´νpf q and to derive explicit upper bounds for }∇ϕ} 8 in terms of the coefficients b, σ and the source f which turn out to be crucial to design computable non-asymptotic confidence intervals. These aspects are discussed in Section 2.2 below.

The alternative form of the asymptotic variance (see Remark 3) ş R d |σ ˚∇ϕpxq| 2 νpdxq " ´2 ş R d f pxqϕpxqνpdxq suggests that for bounded source terms f , an associated natural variance bound would be 2}f } 8 }ϕ} 8 . Such a control would a priori require less regularity on ϕ than assumed in Theorem 2. One could for instance try to exploit suitable regularization procedures, like for instance the one proposed in Section 5.3 for the proof of Theorem 7 below, to establish non-asymptotic deviation results under weaker assumptions. Our main objective being to capture unbounded Lipschitz functions f , these aspects will concern further research.

Remark 6 (Smoothness and Convergence Rate). Observe that, in coherence with the asymptotic setting of the CLT recalled in Theorem 1, for a given ϕ P C 3,β pR d , Rq, β P p0, 1s, the fastest convergence rate for the deviations is attained for θ " 1 2`β . A bias appears, which can be difficult to estimate in practice since ϕ is usually unknown.

Remark 7 (On the smoothness property of x Þ Ñ xbpxq, ∇ϕpxqy). The Lipschitz continuity assumption on the above mapping appearing in case (i) might seem awkward at first sight. It is non-intrinsic in the sense that it involves both the drift b of the model and the test function ϕ. However, this condition naturally appears when ϕ is a smooth solution to the Poisson equation Aϕ " f ´νpf q. Indeed, recalling the definition of A in (L V ), iii), we can rewrite: x∇ϕpxq, bpxqy " f pxq ´νpf q ´1 2 Tr ´ΣpxqD 2 ϕpxq ¯.

Hence, the Lipschitz continuity of the function in the above left hand side readily follows as soon as the source f is Lipschitz and if D 2 ϕ is bounded and Lipschitz continuous (since σ is also bounded and Lipschitz). Note that with the previous notations for function spaces the previous conditions are implied if

f P C 1,β pR d , Rq Ă C 0,1 pR d , Rq, ϕ P C 3,β pR d , Rq ñ D 2 ϕ P C 1,β b pR d , R d b R d q Ă C 0,1 b pR d , R d b R d q.
We refer to Section 5.1.2 for details.

We now state an improvement of the previous concentration bound when }σ} 2 ´νp}σ} 2 q is itself a coboundary, i.e. when the Poisson problem Aϑ " }σ} 2 ´νp}σ} 2 q can be solved with ϑ satisfying the assumptions required for ϕ in Theorem 2. Precisely, we have the following result.

Theorem 3. paq Under the assumptions of Theorem 2 and with the notations introduced therein, provided that ϑ solution to the Poisson equation Aϑ " }σ} 2 ´νp}σ} 2 q satisfies the same smoothness and growth conditions as ϕ, for β P p0, 1s and θ P p 1 2`β , 1s (unbiased case), there exist two explicit monotonic sequences cn ď 1 ď Cn , n ě 1, with lim n Cn " lim n cn " 1 such that for all n ě 1 for all 0 ă a ď χ n

?

Γn Γ (2.4)

P " | a Γ n ν n pAϕq| ě a ‰ ď 2 r C n exp ˆ´r c n a 2 2νp}σ} 2 q}∇ϕ} 2 8 ˙.
pbq If ϑ solve the Poisson equation Aϑ " ~σ~2 ´νp~σ~2q mutatis mutandis for a matrix norm dominating the operator norm p~σpxq~ě }σpxq}), then the above bound (2.4) still holds with νp~σ~2q instead of νp}σ} 2 q. Importantly, the above result allows to improve the natural variance bound }∇ϕ} 2 8 }σ} 2 8 of Theorem 2 by a more refined, namely }∇ϕ} 2 8 νp}σ}q 2 . Such a bound can be particularly interesting when the supremum norm of σ is high but its average w.r.t. the invariant distribution ν significantly lower. We refer to Section 4, Theorem 8 (general form of Theorem 3) and 6.2 (numerical results) for further discussions on that topic.

Of course Claim pbq is less sharp than paq stated with the operator norm } ¨} but solving the Poisson equation for }σpxq} seems highly non trivial. By contrast, if ~σpxq~" }σpxq} F :" " Tr `σσ ˚pxqq ‰ 1{2 stands for the Fröbenius norm, Theorem 4 below yields the expected smoothness properties on }σ} 2 F ´νp}σ} 2 F q that ensure the existence of a solution to Aϑ " }σ} 2 F ´νp}σ} 2 F q meeting the required smoothness conditions. The price to pay with such computable norms being that they usually induce some dependence on the dimension d on the estimates (observe e.g. for the identity matrix

I d of R d b R d , }I d } F " d 1{2 ).
2.2. Uniqueness of the invariant distribution and Regularity issues for the Poisson problem. For our deviation analysis to work, we need to have the uniqueness of the invariant distribution ν and to establish some pointwise controls on the solution of the associated Poisson equation. Namely, we need to have quantitative bounds on its derivatives and the associated Hölder continuity modulus up to order 3.

To do so, additionally to our main assumptions introduced for Theorem 2, we will work in the confluent setting. In dimension one, any ergodic diffusion is in some sense confluent (see [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF], Appendix of the English translation, Theorem 2.2 p. 308 and its alternative proof in [START_REF] Lemaire | Invariant measure of duplicated diffusions and application to Richardson-Romberg extrapolation[END_REF] Theorem 2). Here, we will suppose that the following condition holds:

' Confluence Conditions (D p α )
We assume that there exists α ą 0 and p P p1, 2s such that for all

x P R d , ξ P R d B Dbpxq `Dbpxq 2 ξ, ξ F `1 2 r ÿ j"1 ´pp ´2q |xDσ ¨j pxqξ, ξy| 2 |ξ| 2 `|Dσ ¨j ξ| 2 ¯ď ´α|ξ| 2 ,
where Db stands here for the Jacobian of b, σ ¨j stands for the j th column of the diffusion matrix σ and Dσ ¨j for its Jacobian matrix. Within the confluent framework, we will consider from now on two kinds of assumptions which first give the uniqueness of ν and that can lead to the required smoothness and to computable gradient bounds, which are crucial since they are precisely the quantities appearing in the non-asymptotic Gaussian deviation controls as emphasized in the statement of Theorem 2.

-Strong Confluence condition and regularity of the coefficients, which means that the drift is sufficiently dominant in the dynamics and the coefficients are smooth (see assumption (C R ) below). Note that these conditions may hold for degenerate diffusion coefficients.

-Non-degeneracy of the diffusion coefficient and mild confluence condition and smoothness on the coefficients (see assumption (C UE ) below). Under a sufficiently strong confluence condition, i.e. when α is large enough in (D p α ), and provided that the coefficients b, σ, f are sufficiently smooth, it is quite direct to derive, through stochastic flow techniques à la Kunita, the required pointwise bounds for the derivatives of the Feynman-Kac representation of the solution to the Poisson equation (see [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF] and Section 5.1).

In the non-degenerate case, the main advantage is that we can alleviate some restrictions on α and the smoothness assumptions on b, σ, f to benefit from an elliptic regularity bootstrap deriving from suitable Schauder estimates available in the current setting from the work by Krylov and Priola [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF].

We now introduce a smoothness assumption on b, σ, f that will be useful in both the considered cases.

' Smoothness of the coefficients and the source. For k P t1, 3u and β P p0, 1q define

(R k,β ) The coefficients in equation (1.1) are s.t. b P C k,β pR d , R d q, σ P C k,β b pR d , R d q.
Also, the source f for which we want to estimate νpf q belong to C k,β pR d , Rq.

With these assumptions at hand, we now introduce the first setting we consider.

˛The confluent and regular assumption (C R ), holds if (D p α ), (R 3,β ), for some β P p0, 1s, are in force and }Dσ} 2 8 ď 2α 2p3`βq´p where }Dσ} 8 :" sup xPR d ´řd j"1 }Dσ ¨j pxq} 2 ¯1 2 recalling that, for every j P rr1, dss, }Dσ ¨j pxq} stands for the operator norm of Dσ ¨j pxq.

In particular, we do not impose in this case any additional structure condition on σ which can degenerate.

In our second main framework, we will assume some uniform ellipticity conditions. ' Non-degeneracy Conditions. (UE) Uniform ellipticity. We assume that w.l.o.g. that r " d (r ě d could also be considered) in (1.1) and that the diffusion coefficient σ is such that

D σ ą 0, @ξ P R d , xσσ ˚pxqξ, ξy ě σ|ξ| 2 .
We now introduce our second main setting: ˛The confluent and non-degenerate assumption (C UE ), holds if (D p α ), (R 1,β ), for some β P p0, 1s, are in force. If d ą 1, we also assume that }Dσ} 2 8 ď 2α 2p1`βq´p and that the diffusion matrix Σ is such that, for all pi, jq P rr1, dss 2 , Σ i,j pxq " Σ i,j px i^j , ¨¨¨, x d q.

Theorem 4. Assume that (L V ) and either (C R ) or (C UE ) are in force. Then there exists a unique invariant distribution for the solution of (1.1), i.e. assumption (U) holds.

The associated Poisson equation

(2.5) @x P R d , Aϕpxq " f pxq ´νpf q,
admits a unique solution ϕ P C 3,β pR d , Rq, β P p0, 1q centered w.r.t. ν. Furthermore, the following gradient bound holds

}∇ϕ} 8 ď rf s 1 α ,
and the mapping x Þ Ñ x∇ϕpxq, bpxqy is Lipschitz continuous.

2.2.1. About the regularity of the coefficients. Under (C R ), the derivatives can be expressed using iterated tangent processes and we cannot hope, without a priori any non-degeneracy condition, for a smoothing effect to hold. To have ϕ P C 3,β pR d , Rq, we need to consider a source f P C 3,β pR d , Rq and the same smoothness on b, σ (Assumption (R 3,β )). We refer to Section 5.1 for the proof of Theorem 4 under (C R ).

In the non-degenerate case, the solvability of the Poisson problem is usually studied in a Sobolev setting, see e.g. [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF]. Let us also indicate that pointwise gradient bounds have been obtained by the same authors in [START_REF] Pardoux | On Poisson equation and diffusion approximation[END_REF] for bounded drifts and diffusion coefficients which are additionally supposed to be smooth, i.e. at least C 2,γ b with the notations introduced in paragraph 1.3. We point out that these estimates do not apply in our current setting in which the drift has typically linear growth.

We eventually mention the last paper by these authors, namely [START_REF] Pardoux | On the Poisson equation and diffusion approximation[END_REF]. They derive therein the uniqueness of the martingale solution to the Poisson equation in a potentially degenerate setting under suitable local Doeblin conditions. In that framework, pointwise controls are obtained as well for the solution itself but not for its derivatives.

To obtain the required smoothness, we use here in the non-degenerate framework of (C UE ) some Schauder estimates, deriving from the work of Krylov and Priola [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF], which allow to benefit from the elliptic regularity. Namely, to obtain the mentioned smoothness on ϕ solving Aϕ " f ´νpf q, that we expect to be in C 3,β pR d , Rq, β P p0, 1q, we can take a source

f P C 1,β pR d , Rq and b P C 1,β pR d , R d q, σ P C 1,β b pR d , R d q.
We would eventually like to emphasize that the structure condition on Σ might seem weird at first sight. It is actually needed to decouple the PDEs formally satisfied by pB x i ϕq iPrr1,dss in order to exploit the a priori estimates of [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF] established for scalar valued PDEs. We refer to Section 5.1 for a proof and details.

2.2.2. About the confluence condition and the restrictions on σ. We work here in the confluent setting of (D p α ). This assumption will allow, through a pathwise analysis associated with the tangent flow, to derive a pointwise gradient bound. Another possibility to obtain such a bound is to assume a so-called Bakry and Émery curvature criterion, see [START_REF] Bakry | Diffusions hypercontractives[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. Under this condition, the gradient and semi-group commute up to an exponential multiplicative factor (see equation (2.7) below).

Bakry and Émery curvature criterion. First, we recall that the "carré du champ" operator Γ of a Markov process with generator A reads, for every f, g in its domain DpAq Γpf, gq :" 1 2 ´Apf gq ´f Ag ´gAf ¯and Γpf q :" Γpf, f q.

We also need to define the Γ 2 operator Γ 2 pf q " 1 2 ´AΓpf q ´2Γpf, Af q ¯.

In our Brownian diffusion setting, we have

@x P R d , Γpf qpxq " |σ ˚∇f pxq| 2 .
whereas the computation of Γ 2 is significantly more involved. However, if the diffusion matrix Σ " σσ ˚is constant then: Γ 2 pf qpxq :" Tr `pD 2 f pxqΣq 2 ˘´x∇f, DbΣ∇f ypxq.

With these notations at hand, we say that the semi-group pP t q tě0 of A satisfies the Bakry and Émery curvature criterion with parameter ρ ą 0 if

(BE ρ ) @ f P DpAq, Γ 2 pf q ě ρ Γpf q.
Observe that for Σ " I d the condition (BE ρ ) is actually equivalent to (D p α ) with α " ρ (and any p P p1, 2s since Dσ " 0) and reads

B Dbpxq `Dbpxq 2 ξ, ξ F ď ´ρ|ξ| 2 .
The computation of the Γ 2 for a general non-degenerate diffusion of the form (1.1) is not easy and is discussed in [START_REF] Arnold | Large-time behavior of non-symmetric Fokker-Planck type equations[END_REF]. In particular, in whole generality, the computation of the Γ 2 requires the coefficients of the operator itself to be smooth (i.e. at least C 2 ). We also refer to [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] if the diffusion matrix is scalar diagonal, i.e. Σpxq " ςpxqI d , x P R d , where ς is real valued. In that case, it is then shown that (BE ρ ) holds if and only if:

´1 2 xpM pxq `M ˚pxqqξ, ξy ď ´ρςpxq|ξ| 2 , (2.6) where M pxq " 1 2 ´ςpxq∆ςpxq `xbpxq, ∇ςpxqy ´}∇ςpxq} 2 ¯Id `´1 2 ´d 4 ¯∇ς b ∇ςpxq ´ςpxq 2 Dbpxq.
An important property when (BE ρ ) holds, see again [START_REF] Bakry | Diffusions hypercontractives[END_REF], [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], is that the following commutation inequality holds:

(2.7) @t ě 0, @x P R d , ΓpP t f qpxq ď expp´2ρtqP t Γpf q.

To conclude, let us say that the Bakry-Emery curvature condition is a very powerful tool to derive pointwise gradient bounds. In our framework, this is unfortunately not enough as soon as d ą 1, because additionally to this kind of bounds we also need, to enter in the framework of Schauder estimates under (C UE ), a control of the β-Hölder modulus of the gradient (see Section 5.1.2). It does not seem that the condition (BE ρ ) helps to get such controls. The restrictions on the variations of Dσ appearing in both assumptions (C UE ) and (C R ) are precisely needed to derive in the first case the bounds on rDϕs β and in the second one to prove that the derivatives exist up to order 3 and that rD 3 ϕs β is controlled as well. This explains why the conditions on Dσ are more stringent in the potentially degenerate setting (C R ). In each case, those bounds are obtained through pathwise analysis and the restrictions on Dσ ensure the time integrability of the iterated tangent flows, see again Section 5.1.2 and Appendix A in [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF] for details.

Practical Deviation Bounds.

A first Non-asymptotic confidence interval result.

Theorem 5 (Non-asymptotic confidence intervals without bias). Let the assumptions of Theorem 4 be in force. Then, there exists a unique invariant distribution ν for (1.1), i.e. (U) holds. Also, ϕ satisfies (G V ) introduced in Theorem 2 for V pxq -1 `|x| 2 .

Assume that (C1) (sub-gaussian tails of the innovation) holds and that the step sequence pγ k q kě1 is such that γ k -k ´θ, θ P p 1 2`β , 1s. Then, for pc n q ně1 , pC n q ně1 like in Theorem 2 with lim n c n " lim n C n " 1, we have that for all n ě 1 and a ą 0 and for any matrix norm ~¨~dominating } ¨}:

(2.8) P " a Γ n |ν n pf q ´νpf q| ą a ‰ ď 2 C n exp ´´c n a 2 α 2 2~σ~2 8 rf s 2 1 ¯with ~σ~8 :" sup xPR r ~σpxq~, (2.9) P " νpf q P " ν n pf q ´a~σ~8rf s 1 α ? Γ n , ν n pf q `a~σ~8rf s 1 α ? Γ n ı  ě 1 ´2C n exp ˆ´c n a 2 2 ˙,
where the parameter α is the same as in the pointwise gradient bound of Theorem 4.

Proof. Equation (2.8) is a direct consequence of Theorem 2 and the gradient bound in Theorem 4. Indeed, the mean-value Theorem readily yields that (G V ) holds. It then suffice to observe that ν n pf q ´νpf q " ν n pAϕq. To prove (2.9), setting a σ,f,α :" a~σ~8 rf s 1 α , it suffices to write:

P " νpf q P " ν n pf q ´aσ,f,α ? Γ n , ν n pf q `aσ,f,α ? Γ n ı  " 1 ´Pr a Γ n ˇˇν n pf q ´νpf q ˇˇě a σ,f,α s
and conclude by (2.8).

2.3.2.

A more refined non-asymptotic confidence interval when ~σ~2 ´νp~σ~2q is a coboundary. We provide in Theorem 6 below a kind of Slutsky's Lemma when, for a matrix norm ~¨~dominating }σpxq} ď ~σpxq~, s.t. ~σ~2 ´νp~σ~2q is a coboundary.

Theorem 6 (Slutsky type concentration result for the coboundary case). Under the assumptions of Theorem 5, for β P p0, 1s and θ P p 1 2`β , 1s (unbiased case), assuming as well that there is a unique solution ϑ to Aϑ " ~σ~2´νp~σ~2q satisfying the same assumptions as ϕ in Theorem 5, there exist two explicit monotonic sequences c n ď 1 ď C n , n ě 1, with lim n C n " lim n c n " 1 such that for all n ě 1, for all a ą 0, the following bounds hold: if a ? Γn Ñ 0 (Gaussian deviations) then,

(2.10) P " | a Γ n ν n pf q ´νpf q a ν n p~σ~2q | ě a ‰ ď 2 C n exp ˆ´c n a 2 α 2 2rf s 2 1 ˙, (2.11) P « νpf q P " ν n pf q ´aa ν n p~σ~2qrf s 1 α ? Γ n , ν n pf q `aa ν n p~σ~2qrf s 1 α ? Γ n ı ff ě 1 ´2C n exp ˆ´c n a 2 2 ˙.
Again, the non-asymptotic confidence interval is explicitly computable in function of the given source f , the coefficients in the dynamics and the chosen (computable) matrix norm ~¨~. It is also sharper than the one in (2.9). 2.3.3. Towards Lipschitz sources in the non-degenerate case. We conclude this section stating a non-asymptotic deviation result for Lipschitz sources under some non-degeneracy conditions (assumption (C UE ) of Theorem 4 replacing the condition stated there for f by a Lipschitz condition).

Theorem 7 (Non-asymptotic concentration bounds for Lipschitz functions). Let the assumptions of Theorem 4 with (C UE ) hold except that f is here solely a Lipschitz continuous function. For a time step sequence pγ k q kě1 of the form γ k -k ´θ, θ P p1{2, 1s, we have that, there exist two explicit monotonic sequences c n ď 1 ď C n , n ě 1, with lim n C n " lim n c n " 1 such that for all n ě 1 and for every a ą 0:

P " | a Γ n `νn pf q ´νpf q ˘| ě a ‰ ď 2C n exp ˆ´c n a 2 α 2 2}σ} 2 8 rf s 2 1 (2.12)
where α is as in Theorem 4.

Such estimates are important since they allow to get rather close to the natural framework which appear in functional inequalities (that mainly deal with Wasserstein distances and their possible deviations). Indeed, through the Monge-Kantorovich formulation, the Wasserstein distance involves Lipschitz functions, since it is precisely achieved taking the minimum over Lipschitz functions for all possible coupling with marginal corresponding to the arguments of the distance (see [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]).

In the literature, some non-asymptotic bounds can be found for the deviations from its mean for the Wasserstein distance between the empirical measure of a homogeneous Markov chain and its stationary distribution (see Boissard [START_REF] Boissard | Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance[END_REF]). Here, we manage to get directly the non-asymptotic deviation bounds over all possible Lipschitz functions for the empirical measure of the scheme aiming directly to approximate the target stationary distribution of the diffusion. Handling the Wasserstein distance in our framework would amount to consider the supremum over the Lipschitz functions in the probability in (2.12). This will concern further research.

We eventually point out that Theorem 7 is obtained through regularization arguments of the source f exploiting the previous results of Theorems 2 and 4 (see Section 5.3 for details). This leads to a constraint on the steps, i.e. γ n -n ´θ, θ P p 1 2 , 1s. This is the price to pay, indeed a bigger θ yields a lower convergence rate, to handle less regular Lipschitz sources. Also, to perform the approximation procedure we precisely need a kind of elliptic bootstrap (like in Theorem 4 under (C UE )). This is why we impose the non-degeneracy assumptions.

Proof of the concentration results (Theorem 2)

For notational convenience, we say that assumption (A) holds whenever (C1), (GC), (C2), (L V ), (U) and (S) are fulfilled. We assume throughout this section that (A) is in force and that the function ϕ appearing in the lemmas satisfies the smoothness assumptions of Theorem 2.

3.1. Strategy. To control the deviations of ν n pAϕq we first give a decomposition lemma, obtained by a standard Taylor expansion. The idea is to perform a kind of splitting between the deterministic contributions in the transitions and the random innovations. Doing so, we manage to prove that the contributions involving the innovations can be gathered into conditionally Lipschitz continuous functions of the noise, with small Lipschitz constant (functions pψ k pX k´1 , ¨qq kPrr1,nss below). These functions precisely give the Gaussian concentration, see Lemma 2. The other terms, that we will call from now on "remainders", will be shown to be uniformly controlled w.r.t. n and do not give any asymptotic contribution in the "fast decreasing" case θ ą 1{p2 `βq (with the terminology of Theorem 2), see Lemmas 3, 4 and 5.

Lemma 1 (Local Decomposition of the empirical measure ). For all n ě 1 and k P rr0, n ´1ss:

ϕpX k q ´ϕpX k´1 q " γ k AϕpX k´1 q `"γ k ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt `1 2 γ k Tr ´`D 2 ϕpX k´1 `γk b k´1 q ´D2 ϕpX k´1 q ˘Σ2 k´1 ¯`ψ k pX k´1 , U k q  ": γ k ApX k´1 q `´ψ k pX k´1 , U k q `R1 n,k pX k´1 q ¯, (3.13)
where for all k P rr1, nss, conditionally to F k´1 , the mapping u Þ Ñ ψ k pX k´1 , uq is Lipschitz continuous in u with constant ? γ k }σ k´1 }}∇ϕ} 8 .

Introducing for a given k, the mapping u Þ Ñ ∆ k pX k´1 , uq :" ψ k pX k´1 , uq ´E rψ k pX k´1 , U k q|F k´1 s, we then rewrite:

ϕpX k q ´ϕpX k´1 q " γ k AϕpX k´1 q `∆k pX k´1 , U k q `Rn,k pX k´1 q, with R n,k pX k´1 q :" R 1 n,k pX k´1 q `E rψ k pX k´1 , U k q|F k´1 s. The contribution ∆ k pX k´1 , U k q can be viewed as a martingale increment. Introduce now the associated (true) martingale

(3.14) M n :" n ÿ k"1 ∆ k pX k´1 , U k q.
Summing over k yields:

(3.15) ϕpX n q ´ϕpX 0 q " Γ n ν n pAϕq `Mn `n ÿ k"1 R n,k pX k´1 q.
Defining R n :" ř n k"1 R n,k pX k´1 q `ϕpX 0 q ´ϕpX n q we obtain the following decomposition of the empirical measure:

(3.16) ν n pAϕq " ´1 Γ n pM n `Rn q.
-Unbiased Case (Sub-Optimal Convergence Rate). This case corresponds to fast decreasing steps of the form γ k -k ´θ, θ ą 1{p2 `βq. To investigate the non-asymptotic deviations of the empirical measure, the idea is now to write for a, λ ą 0:

P " a Γ n ν n pAϕq ě a ‰ ď exp ´´aλ ? Γ n ¯E " exp ´´λ Γ n pM n `Rn q ¯ ď exp ´´aλ ? Γ n ¯E " exp ´´qλ Γ n M n ¯1{q E " exp ´pλ Γ n |R n | ¯1{p , 1 p `1 q " 1, p, q ą 1. (3.17)
We actually aim to choose q :" qpnq Ñ n 1. For a suitable choice of q satisfying the previous condition, we manage, in the fast decreasing case, to show that R n :" E rexpp pλ Γn |R n |qs 1{p Ñ n 1. For the term involving the martingale M n we actually use the Gaussian concentration property (GC) of the innovation on its increments p∆ k pX k´1 , U k qq kPrr1,nss . Namely, using the control of the Lipschitz constant of ∆ k pX k´1 , ¨q stated in Lemma 1, we derive:

E " exp ´´qλ Γ n M n ¯ " E " exp ´´qλ Γ n M n´1 ¯E " exp ´´qλ Γ n ∆ n´1 pX n´1 , U n q ¯ˇF n´1  ď E " exp ´´qλ Γ n M n´1 ¯ exp ˆλ2 q 2 2Γ 2 n γ n }σ} 2 8 }∇ϕ} 2 8 ˙ď exp ˆλ2 q 2 2Γ n }σ} 2 8 }∇ϕ} 2 8 ˙, (3.18)
iterating the procedure to derive the last identity. From (3.17), we thus get:

P " a Γ n ν n pAϕq ě a ‰ ď R n exp ´´aλ ? Γ n `λ2 q 2Γ n }σ} 2 8 }∇ϕ} 2 8 ¯.
Keeping in mind that we manage to find q :" qpnq Ó n 1 such that the remainder R n Ó n 1, the result of Theorem 2 in the considered case then follows from a quadratic optimization over the parameter λ. -Biased Case (Optimal Convergence Rate). This case corresponds to slow decreasing steps of the form γ k -k ´θ, θ " 1{p2`βq. In this setting, some terms of the remainder R n in (3.16) give a non trivial asymptotic contribution. We choose to substract them before studying the deviation (term B n,β in (2.3)).

3.2. Explicit controls on the remainders. Summing the increments appearing in (3.13), we now choose for the analysis to write for a given n P N the remainder R n defined after (3.15) as

R n " n ÿ k"1
R n,k pX k´1 q `ϕpX 0 q ´ϕpX n q " pD 2,b,n `D2,Σ,n q `Ḡ n ´Ln , where:

D 2,b,n :" n ÿ k"1 γ k ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt D 2,Σ,n :" 1 2 n ÿ k"1 γ k Tr ´`D 2 ϕpX k´1 `γk b k´1 q ´D2 ϕpX k´1 q ˘Σ2 k´1 ¯, Ḡn :" n ÿ k"1 E rψ k pX k´1 , U k q|F k´1 s, L n :" ϕpX n q ´ϕpX 0 q. (3.19)
We refer to the proof of Lemma 1 to check that the above definition of Ḡn actually matches the term ?

Γ n E β n introduced in equation (2.
2) of Theorem 2. We rewrite from (3.16)

(3.20) ν n pAϕq " ´1 Γ n pM n `Rn q " ´1 Γ n `Mn `pD 2,b,n `D2,Σ,n q `Ḡ n ´Ln ˘.
We now split the analysis according to the cases (a) and (b) introduced in Theorem 2. (a) θ P p1{p2 `βq, 1s, β P p0, 1s. From (3.20), the exponential Tchebychev and Hölder inequalities yield that, for all λ P R `and all p, q P p1, `8q, 1 p `1 q " 1,

P " a Γ n ν n pAϕq ě a ‰ ď exp ´´aλ ? Γ n ¯ˆE exp ´´qλ Γ n M n ¯˙1 q ˆˆE exp ´2pλ Γ n `ˇL n ˇˇ`ˇˇḠ n ˇˇ˘¯˙1 2p ˆE exp ´4pλ Γ n ˇˇD 2,b,n ˇˇ¯˙1 4p ˆE exp ´4pλ Γ n ˇˇD 2,Σ,n ˇˇ¯˙1 4p . (3.21) (b) θ " 1 2`β , β P p0, 1s. If β " 1, denoting, D 2,n :" D 2,b,n `D2,Σ
,n , we have from (3.19) and with the notations of (2.3), p Ḡn `D2,n q " ? Γ n B n,1 . We study the deviations of:

P " a Γ n ν n pAϕq `Bn,β ě a ‰ " P " ν n pAϕq `Ḡ n `D2,n Γ n ě a ? Γ n ı ď exp ´´aλ ? Γ n ¯ˆE exp ´´qλ Γ n M n ¯˙1 q ˆE exp ´pλ Γ n ˇˇL n ˇˇ¯˙1 p .
(3.22)

For β P p0, 1q, the contributions of D 2,n do not yield any asymptotic bias. Recalling from (2.3) that B n,β " E β n " Ḡn ? Γn , we write:

P " a Γ n ν n pAϕq `Bn,β ě a ‰ " P " ν n pAϕq `Ḡ n Γ n ě a ? Γ n ı ď exp ´´aλ ? Γ n ¯ˆE exp ´´qλ Γ n M n ¯˙1 q ˆˆE exp ´2pλ Γ n ˇˇL n ˇˇ¯˙1 2p ˆE exp ´4pλ Γ n ˇˇD 2,b,n ˇˇ¯˙1 4p ˆE exp ´4pλ Γ n ˇˇD 2,Σ,n ˇˇ¯˙1 4p . (3.23)
Remark 8. Observe that in case (a), the "small steps" and the corresponding sufficient smoothness of ϕ prevent from the appearance of a bias. As a result, the concentration bound is, at the non-asymptotic level, the same as in Theorem 1, up to the additional upper-bound for the variance. In case (b), we subtract the terms B n,β that asymptotically give a bias. When β " 1, this is the case for both terms Ḡn Γn ,

D 2,n
Γn . Also, for D 3 ϕ P C 1 , B n,1 " Ḡn`D2,n ? Γn Ñ n ´r γm introduced in Theorem 1. For β P p0, 1q and ϕ P C 3 pR d , Rq, rϕ p3q s β ă `8, the only term giving a bias is B n,β " E β n " Ḡn ?

Γn .

The lemma below provides the Gaussian contribution to be exploited in inequalities (3.21) -(3.23).

Lemma 2 (Gaussian concentration). For a ą 0, q P p1, `8q, setting

(3.24) λ n :" a q}σ} 2 8 }∇ϕ} 2 8 a Γ n ,
we derive:

exp ˆ´λ n a ? Γ n ˙ˆE exp ´´qλ n Γ n M n ¯˙1 q ď exp ˆ´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ˙.
Lemma 3 (Bounds for the Conditional Expectations). With the above notations, we have that for β P p0, 1s, θ P r 1 2`β , 1s:

|E β n | " | Ḡn | ? Γ n ď a n :" rϕ p3q s β › › σ › › p3`βq 8 E " |U 1 | 3`β ‰ p1 `βqp2 `βqp3 `βq Γ p 3`β 2 q n ?
Γ n , a.s.

Moreover, a n Ñ n a 8 , with a 8 " 0 if θ P p 1 2`β , 1s and a 8 ą 0 if θ " 1 2`β . Also, for β P p0, 1s, θ P p 1 2`β , 1s:

(3.25) ˜E exp ´2pλ n Γ n | Ḡn | ¯¸1 2p ď exp ´λn ? Γ n a n ¯ď exp ´λ2 n 2Γ n p `a2 n p 2 ¯, @p ą 1.
As indicated before, we now aim at controlling the remainders. In particular, from (3.17) and (3.19), we are led to handle terms of the form

E exp ´c n ÿ k"1 γ 2 k |bpX k´1 q| 2 ¯ď pL V q E exp ´c C V n ÿ k"1 γ 2 k |V pX k´1 q|
for small enough real constants c ą 0.

To this end, we will thoroughly rely on the following important integrability result for the Lyapunov function.

Proposition 1. Under (A) there is a constant c V :" c V ppAqq ą 0 such that for all λ P r0, c V s, ξ P r0; 1s:

I ξ V :" sup ně0 E rexppλV ξ n qs ă `8.
We now have the following results for the terms appearing in (3.19).

Lemma 4 (Initial term). Let q P p1, `8q be fixed and λ n be as in (3.24) in Lemma 2. For functions ϕ satisfying (G V ), i.e. there exists C V,ϕ ą 0 such that for all x P R d , |ϕpxq| ď C V,ϕ p1 `aV pxqq, for p :" q q´1 and j P t1, 2u:

ˆE exp ´jpλ n |L n | Γ n ¯˙1 jp ď pI 1 V q 1 jp exp ˜pj `1qpC 2 V,ϕ λ 2 n c V Γ 2 n `cV p ¸" pI 1 V q 1 jp exp ˜pj `1qpC 2 V,ϕ a 2 c V q 2 }σ} 4 8 }∇ϕ} 4 8 Γ n `cV p ¸,
with c V , I 1 V like in Proposition 1. Lemma 5 (Remainders). Let q P p1, `8q be fixed and λ n be as in Lemma 2. Then, there exists C 3.26 :" C 3.26 ppAq, ϕq such that for p " q q´1 :

ˆE exp ´4pλ n Γ n ˇˇD 2,Σ,n ˇˇ¯˙1 4p ď exp ˜C3.26 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p . (3.26)
We also have: -If the mapping x Þ Ñ x∇ϕpxq, bpxqy is Lipschitz continuous, then there exists C 3.27 :" CppAq, ϕq ą 0 such that

ˆE exp ´4pλ n Γ n ˇˇD 2,b,n ˇˇ¯˙1 4p ď exp ´C3.27 pλ 2 n pΓ p2q n q 2 Γ 2 n ¯pI 1 V q 1 4p . (3.27) -For a ď cvq 4C V p }σ} 2 8 }∇ϕ} 2 8 }D 2 ϕ} 2 8 ? Γn Γ p2q n
, there exists an R `-valued sequence pv n q ně1 such that ˇˇv n ˇˇď C 3.28 :" C 3.28 ppAq, ϕq and

ˆE exp ´4pλ n Γ n ˇˇD 2,b,n ˇˇ¯˙1 4p ď pI 1 V q vn . (3.28) Also, v n Ñ n v 8 where v 8 " 0 if θ ą 1{3 and v 8 ą 0 for θ " 1{3.
Proof of Theorem 2. From Lemma 2 we get:

(3.29) ˆE exp ´´qλ n M n Γ n ¯˙1 q exp ´´aλ n ? Γ n ¯ď exp ˆ´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ˙.
(a) We deal with the case β P p0, 1s, θ P p 1 2`β , 1s. (i) We suppose that the mapping x Þ Ñ x∇ϕpxq, bpxqy is Lipschitz continuous. Plugging in (3.21) the controls from (3.29), Lemma 3 equation (3.25), Lemma 4 (with j " 2) and Lemma 5 (equations (3.26), (3.27)), we get:

P " ν n pAϕq ě a ? Γ n  ď exp ˆ´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ˙exp ´λ2 n 2Γ n p `pa 2 n 2 ¯exp ˜3pC 2 V,ϕ λ 2 n c V Γ 2 n `cV p ¸pI 1 V q 1 2p ˆexp ˜C3.26 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p ˆexp ˜C3.27 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p ď pI 1 V q 1 p exp ˜´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ´1 ´1 q}σ} 2 8 }∇ϕ} 2 8 ! p Γ n ´6C 2 V,ϕ c V `2" C 3.26 `C3.27 spΓ p2q n q 2 ¯`1 p )¯ȩ xp ´cV p `pa 2 n 2 ¯. (3.30) Recall now that for θ ą 1 2`β ě 1{3, Γ p 3`β 2 q n { ? Γ n Ñ n 0, Γ p2q n { ? Γ n Ñ
n 0 (see Lemma 3 and Remark 2). We now take p :" p n Ñ n `8, and therefore q :"

q n Ñ n 1, such that p 1{2 n Γ p 3`β 2 q n ? Γn Ñ n 0 so that from Lemma 3, p n a 2 n Ñ n 0. Since Γ p 3`β 2 q n ? Γn ě Γ p2q n ?
Γn this in turn implies:

(3.31)

d n :" 1 q n }σ} 2 8 }∇ϕ} 2 8 ! p n Γ n ´6C 2 V,ϕ c V `"2C 3.26 `3C 3.27 ‰ pΓ p2q n q 2 ¯`1 p n ) Ñ n 0.
We conclude from (3.30) setting c n " q ´1 n p1 ´dn q, C n :"

pI 1 V q 1 pn expp 1 pn rc V `C3.27 2 s `pna 2 n 2 q Ñ n 1.
Observe that taking an increasing sequence pp n q ně1 readily yields C n Ó n 1, and q n Ó n 1. Also, the sequence pp n q ně1 can be chosen in order to have, for n large enough,

d n Ó n 0 so that c n Ò n 1. (ii) Assume a ď c V q 4C V p }σ} 2 8 }∇ϕ} 2 8 }D 2 ϕ} 2 8 ? Γn Γ p2q n
. Plugging in (3.21) the controls from (3.29), Lemma 3, equation (3.25) , Lemmas 4 (with j " 2), 5 (equations (3.26), (3.28)) we then derive:

P " ν n pAϕq ě a ? Γ n ı ď exp ˆ´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ˙exp ´λ2 n 2Γ n p `pa 2 n 2 ¯exp ˜3pC 2 V,ϕ λ 2 n c V Γ 2 n `cV p ¸pI 1 V q 1 2p ˆexp ˜C3.26 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p pI 1 V q vn ď pI 1 V q vn`3 4p exp ˆcV p `pa 2 n 2 ˙exp ˜´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ´1 ´1 q}σ} 2 8 }∇ϕ} 2 8 ! p Γ n ´6C 2 V,ϕ c V `2C 3.26 pΓ p2q n q 2 ¯`1 p )¯¸.
(3.32)

Since θ ą 1 2`β ě 1{3 (see Remark 2), we again take p :" p n Ò n `8 so that p 1{2 n a n Ñ n 0 which also guarantees:

(3.33)

d n :" 1 q n }σ} 2 8 }∇ϕ} 2 8 ! p n ´6C 2 V,ϕ c V Γ n `2C 3.26 pΓ p2q n q 2 Γ n ¯`1 p n ) Ñ n 0.
In this case, we derive the result by setting c n :"

q ´1 n p1 ´dn q Ñ n 1, C n :" pI 1 V q vn`3 4pn expp c V pn `pna 2 n 2 q Ñ n 1
(see the limits of v n following equation (3.28) and (3.46)). Again, pp n q ně1 can be chosen in order to have the stated monotonicity for n large enough. Set now

(3.34) χ n :" c V }σ} 2 8 }∇ϕ} 2 8 4C V }D 2 ϕ} 2 8 q n p n , so that a ď χ n ? Γn Γ p2q n
. Thus, the slower p n goes to infinity, the wider the domain of validity for the estimate in the parameter a. (b) It remains to analyze the case β P p0, 1s, θ " 1 2`β . Let us deal with β " 1. From (3.22), the controls of (3.29) and Lemma 4 (with j " 1) we get:

P " ν n pAϕq `Ḡ n `D2,n Γ n ě a ? Γ n  ď exp ˆ´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ˙exp ˜2pC 2 V,ϕ λ 2 n c V Γ 2 n `cV p ¸pI 1 V q 1 p .
Recalling the definition of λ n in (3.24), we conclude as previously with obvious modifications of pc n q ně1 , pC n q ně1 . The case β P p0, 1q is handled similarly starting from (3.23). Also, when D 3 ϕ P C 1 , we derive similarly to the proof of Theorem 10 in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] that B n,1 Ñ n ´r γm. Eventually, the final control involving the two sided deviation is derived by symmetry.

3.3.

Proof of the Technical Lemmas. This section is devoted to the proof of the previously used Lemmas 1-5 and Proposition 1 which were the key ingredients to derive Theorem 2.

Proof of Lemma 1. For k P rr1, nss, we first write: ϕpX k q ´ϕpX k´1 q " pϕpX k q ´ϕpX k´1 `γk b k´1 qq `pϕpX k´1 `γk b k´1 q ´ϕpX k´1 qq ": T k´1,r pϕq `Tk´1,d pϕq, (3.35) in order to split the random and deterministic contributions in the transitions of the scheme (S).

We then perform a Taylor expansion with integral remainder at order 2 for the function ϕ in the two terms of the r.h.s. of (3.35). Namely, with the above notations:

T k´1,d pϕq " γ k b k´1 ¨∇ϕpX k´1 q `γk ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt, T k´1,r pϕq " ? γ k σ k´1 U k ¨∇ϕpX k´1 `γk b k´1 q `γk ż 1 0 p1 ´tqTr ´D2 ϕpX k´1 `γk b k´1 `t? γ k σ k´1 U k qσ k´1 U k b U k σ k´1 ¯dt.
Hence,

ϕpX k q ´ϕpX k´1 q " γ k AϕpX k´1 q `γk ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt `?γ k σ k´1 U k ¨∇ϕpX k´1 `γk b k´1 q `γk ż 1 0 p1 ´tqTr ´D2 ϕpX k´1 `γk b k´1 `t? γ k σ k´1 U k qσ k´1 U k b U k σ k´1 ´D2 ϕpX k´1 qΣ k´1 ¯dt " γ k AϕpX k´1 q `γk ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt `γk ż 1 0 p1 ´tqTr ´`D 2 ϕpX k´1 `γk b k´1 q ´D2 ϕpX k´1 q ˘Σk´1 ¯dt `ψk pX k´1 , U k q ": γ k AϕpX k´1 q `Dk 2,b `Dk 2,Σ `ψk pX k´1 , U k q, (3.36)
where

ψ k pX k´1 , U k q " ? γ k σ k´1 U k ¨∇ϕpX k´1 `γk b k´1 q `γk ş 1 0 p1 ´tqTr ´D2 ϕpX k´1 `γk b k´1 `t? γ k σ k´1 U k qσ k´1 U k b U k σ k´1 ´D2 ϕpX k´1 `γk b k´1 qΣ k´1 ¯dt.
(3.37)

Observe now that, conditionally to F k´1 , the mapping u Þ Ñ ψ k pX k´1 , uq is Lipschitz continuous: indeed, the innovation U k does not appear in the other contributions of the right side of (3.36). Consequently, as ϕ is Lispchitz continuous we derive, for all pu, u 1 q P pR d q 2 :

|ψ k pX k´1 , uq ´ψk pX k´1 , u 1 q| ď ? γ k }σ k´1 } }∇ϕ} 8 |u ´u1 |.
The result is obtained by summing up the previous identities from k " 1 to n, observing, with the notations of (3.19), that L n " ř n k"1 ϕpX k q´ϕpX k´1 q, D 2,b,n "

ř n k"1 D k 2,b , D 2,Σ,n " ř n k"1 D k 2,Σ , G n :" ř n k"1 ψ k pX k´1 , U k q. Proof of Lemma 2.
The idea is to use conditionally and iteratively the Gaussian concentration property (GC) of the innovation. Let us note that this strategy was already the key ingredient in [START_REF] Frikha | Concentration bounds for stochastic approximations[END_REF]. In the current framework, we exploit that the functions u Þ Ñ ∆ k pX k´1 , uq :" ψ k pX k´1 , uq ´E rψ k pX k´1 , U k q|F k´1 s are conditionally independent w.r.t. F k´1 and Lipschitz continuous with constant ? γ k }σ} 8 }∇ϕ} 8 by Lemma 1.

We thus write:

E exp ´´qλ Γ n M n ¯" E exp ˜´qλ Γ n n ÿ k"1 ∆ k pX k´1 , U k q " E " exp ´´qλ Γ n n´1 ÿ k"1 ∆ k pX k´1 , U k q ¯E" exp ´´qλ Γ n ∆ n pX n´1 , U n q ¯|F n´1 ıı ď E " exp ´´qλ Γ n n´1 ÿ k"1 ∆ k pX k´1 , U k q ¯exp ´q2 λ 2 2Γ 2 n γ n }σ} 2 8 }∇ϕ} 2 8 ¯ı, (3.38)
where we used (GC) in the third line recalling as well that E r∆ n pX n´1 , U n q|F n´1 s " 0.

Iterating the process over k, we obtain:

ˆE exp ´´qλ Γ n M n ¯˙1 q " ˜E exp ´´qλ Γ n n ÿ k"1 ∆ k pX k´1 , U k q ¯¸1 q ď exp ´qλ 2 }σ} 2 8 }∇ϕ} 2 8 2Γ n ¯. (3.39) Finally, exp ´´λa ? Γ n ¯ˆE exp ´´qλ Γ n M n ¯˙1 q ď exp ´gpλq ? Γ n ¯,
where g : R `Ñ R is defined by gpλq " ´a ? Γn λ `qλ 2 2Γn }σ} 2 8 }∇ϕ} 2 8 . As a ą 0, the function attains its minimum at λ n given in (3.24). This eventually yields the expected bound. Proof of Lemma 3. From the definition in (3.37) and the Fubini theorem, we have that for all k P rr1, nss:

E rψ k pX k´1 , U k q|F k´1 s " γ k ş 1 0 p1 ´tqTr ´E" D 2 ϕpX k´1 `γk b k´1 `t? γ k σ k´1 U k qσ k´1 U k b U k σ k´1 ´D2 ϕpX k´1 `γk b k´1 qΣ k´1 |F k´1 ‰ ¯dt. (3.40)
Recalling that U k has the same moments as the standard Gaussian random variable up to order three (see (GC)) and is independent of F k´1 , a Taylor expansion yields:

E " Tr ´D2 ϕpX k´1 `γk b k´1 `t? γ k σ k´1 U k qσ k´1 U k b U k σ k´1 ´D2 ϕpX k´1 `γk b k´1 qΣ k´1 ¯ˇˇF k´1 ı " Tr ´D2 ϕpX k´1 `γk b k´1 qσ k´1 E rU k b U k sσ k´1 ż 1 0 E " Tr ´`D 3 ϕpX k´1 `γk b k´1 `ut ? γ k σ k´1 U k qt ? γ k σ k´1 U k ˘`σ k´1 U k b U k σ k´1 ˘¯ˇˇˇF k´1 ı du ´Tr ´D2 ϕpX k´1 `γk b k´1 qΣ k´1 " Tr ´D2 ϕpX k´1 `γk b k´1 qσ k´1 pE rU k b U k s ´Iq loooooooooomoooooooooon "0 σ k´1 t? γ k ż 1 0 E " Tr ´`rD 3 ϕpX k´1 `γk b k´1 `ut ? γ k σ k´1 U k q ´D3 ϕpX k´1 `γk b k´1 qsσ k´1 U k σk´1 U k b U k σ k´1 ˘¯ˇˇˇF k´1 ı du,
recalling from (GC) that for all pi, j, lq P rr1, rss,

E rU i k U j k U l k |F k´1 s " E rU i 1 U j 1 U l 1 s " 0 (cancellation argument). Hence, |E rψ k pX k´1 , U k q|F k´1 s| ď γ k ż 1 0 p1 ´tqt 1`β rϕ p3q s β E " γ 1`β 2 k }σ k´1 } 3`β |U k | 3`β ż 1 0 u β du ˇˇF k´1 ı dt " rϕ p3q s β γ 3`β 2 k }σ k´1 } 3`β E r|U k | 3`β s p1 `βqp2 `βqp3 `βq ,
recalling that the third derivatives of ϕ are β-Hölder continuous for the first inequality. We thus derive:

|E β n | " | Ḡn | ? Γ n ď 1 ? Γ n n´1 ÿ k"1 ˇˇE " ψ k pX k´1 , U k q|F k´1 ‰ˇˇď rϕ p3q s β }σ} 3`β 8 E r|U 1 | 3`β s p1 `βqp2 `βqp3 `βq Γ p 3`β 2 q n ? Γ n ": a n .
Proof of Proposition 1. First of all, let us decompose the Lyapunov function V with a Taylor expansion like in Lemma 1. We again use a splitting between the deterministic contributions and those involving the innovation. We write for all n P N:

V pX n q ´V pX n´1 q " γ n AV pX n´1 q `γ2 n ż 1 0 p1 ´tqTr ´D2 V pX n´1 `tγ n b n´1 qb n´1 b b n´1 ¯dt ´γn 2 Tr `D2 V pX n´1 qqΣ n´1 ˘`? γ n σ n´1 U n ¨∇V pX n´1 `γn b n´1 q `γn ż 1 0 p1 ´tqTr ´D2 V pX n´1 `γn b n´1 `t? γ n σ n´1 U n qσ n´1 U n b U n σ n´1 ¯dt ď ´γn α V V pX n´1 q `γn β V `CV γ 2 n 2 }D 2 V } 8 V pX n´1 q `γn 2 }D 2 V } 8 }σ} 2 8 `?γ n σ n´1 U n ¨∇V pX n´1 `γn b n´1 q `γn 2 }D 2 V } 8 }σ} 2 8 |U n | 2 ď γ n ´´α V 2 V pX n´1 q `r c ¯`? γ n σ n´1 U n ¨∇V pX n´1 `γn b n´1 q `γn 2 }D 2 V } 8 }σ} 2 8 |U n | 2 (3.41)
for a constant r c :" r cpV, σ, β V q. We have in fact considered the time steps sufficiently small (in (S), we have chosen for all n P N, γ n ă minp

1 2 ? C V c , α V 2C V }D 2 V }8 q).
The two terms involving the innovation U n in the above decomposition can be controlled thanks to the Gaussian concentration hypothesis (GC). Let us define for all x P R d and all γ, λ ą 0 the quantities:

I 1 pγ, λ, xq :" E " exp `λ? γσpxqU 1 ¨∇V px `γbpxqq ˘ı, I 2 pγ, λq :" E " exp `λ γ 2 }D 2 V } 8 }σ} 2 8 |U 1 | 2 ˘ı.
The first one is directly controlled owing to hypothesis (GC):

I 1 pγ n , λ, xq ď exp ´λ2 γ n |σ ˚pxq∇V px `γn bpxqq| 2 2 ¯ď pL V q exp ´λ2 γ n C V }σ} 2 8 V px `γn bpxqq 2 ¯. (3.42)
Furthermore, under (GC), for all c ă 1 2 , I c :" E rexppc|U n | 2 qs ă `8. Hence, for all λ ă 2c }D 2 V }8}σ} 2 8 γ 1 , Jensen's inequality yields:

I 2 pγ n , λq ď " E exp `c|U n | 2 ˘ı λγn}D 2 V }8}σ} 2 8 2c " exp ´γn lnpI c q λ}D 2 V } 8 }σ} 2 8 2c ¯. (3.43)
These controls allow to prove the integrability statement of the proposition by induction. For n " 0, recalling from assumption (C1) that for all λ ă λ 0 , E exppλ|X 0 | 2 q ă `8 and from (L V ), i) that V pxq ď c|x| 2 outside of a compact set, we derive that for all λ P p0, λ 0 c q, there exists C 0 V,λ P p1, `8q such that

E exp `λV pX 0 q ˘ď C 0 V,λ . Set now r β V :" r c `lnpI c q }D 2 V }8}σ} 2 8 2c and r α V :" min `1 γ 1 , α V 2 ´λC V }σ} 2 8 p1 `γ1 C V r1 `γ1 }D 2 V }8 2 sq ˘P p0, 1 γ 1 s, for λ ă α V 2C V }σ} 2 8 p1`γ 1 C V r1`γ 1 }D 2 V }8 2 sq .
Let us assume that for all λ ă λ V :" min ´λ0 2c ,

α V 2C V }σ} 2 8 p1`γ 1 C V r1`γ 1 }D 2 V }8 2 sq , c }D 2 V }8}σ} 2 8 γ 1
¯, the property

(P n´1 ) @k P rr0, n ´1ss, E exp `λV pX k q ˘ď C V,λ :" C 0 V,λ _ exp ´λ r β V r α V ¯,
holds for a fixed n ´1 P N 0 and let us prove pP n q. By inequalities (3.41), (3.42) and (3.43) and the Cauchy-Schwarz inequality, we derive that for all λ ă λ V ,

E exp `λV pX n q ˘" E " exp `λV pX n´1 q ˘E" exp `λpV pX n q ´V pX n´1 qq ˘ˇF n´1 s ı ď E " exp `λrV pX n´1 qp1 ´αV 2 γ n q `r cγ n s ˘I1 pγ n , 2λ, X n´1 q 1{2 I 2 pγ n , 2λq 1{2 ı " exp `λγ n r β V ˘E" exp ´λ`1 ´αV 2 γ n ˘V pX n´1 q `λ2 γ n C V }σ} 2 8 V pX n´1 `γn b n´1 q ¯ı. Recall now that V pX n´1 `γn b n´1 q ď V pX n´1 q `γn |∇V pX n´1 q||b n´1 | `γ2 n 2 }D 2 V } 8 |b n´1 | 2 pL V q,iiq ď V pX n´1 qp1 γn C V r1 `γn}D 2 V }8 2 sq. Thus, E " exp `λV pX n q ˘‰ ď exp `λγ n r β V ˘E" exp `λ p1 ´γn r α V q looooomooooon Pr0,1q V pX n´1 q ˘ı pJensenq ď exp `λγ n r β V ˘E" exp `λV pX n´1 q ˘ıp1´γn r α V q ď exp `λγ n r β V ˘Cp1´γn r α V q V,λ
using (P n´1 ) for the last inequality. From the above equation and the previous definition of C V,λ we have:

exp `λγ n r β V ˘Cp1´γn r α V q V,λ ď C V,λ ðñ C V,λ ě exp ´λ r β V r α V ¯.
Hence, pP n q holds. Taking c V ă λ V completes the proof. Remark 9. Noting that v ˚:" inf xPR d V pxq ą 0, we get that for all pn, ξq P Nˆr0, 1s, and for all λ ă λ V pv ˚q1´ξ :

E exppλV ξ n q " E exp ´λpv ˚qξ ´Vn v ˚¯ξ loomoon ě1 ¯ď E exp `λpv ˚qξ´1 V n ˘ď C V,λpv ˚qξ´1 ă `8.
Thus, we readily get as a by-product of Proposition 1 that, for all ξ P r0, 1s, λ ă λ V pv ˚q1´ξ , sup nPN E exppλV ξ n q ă `8. We refer to Lemaire (see e.g. Theorem 17 in [START_REF] Lemaire | An adaptive scheme for the approximation of dissipative systems[END_REF]) for additional results in that direction.

Proof of Lemma 4. Recalling from (G V ) that there exists C V,ϕ ą 0 such that for all x P R d , |ϕpxq| ď C V,ϕ `1 `aV pxq ˘, we get for j P t1, 2u:

" E exp ´jpλ n |ϕpX 0 q ´ϕpX n q| Γ n ¯ 1 jp ď « E exp ´jpλ n C V,ϕ p2 `aV pX 0 q `aV pX n qq Γ n ¯ff 1 jp ď exp ´2C V,ϕ λ n Γ n ¯«E exp ´2jp C V,ϕ λ n a V pX 0 q Γ n ¯ff 1 2jp « E exp ´2jp C V,ϕ λ n a V pX n q Γ n ¯ff 1 2jp
.

Write now for i P t0, nu by the Young inequality:

2jpC V,ϕ λ n a V pX i q Γ n ď c V V pX i q `pjpq 2 C 2 V,ϕ λ 2 n c V Γ 2 n ,
where c V is the positive real constant such that I 1 V " sup ně0 E rexppc V V pX n qqs ă `8 (see Proposition 1). We then get

" E exp ´jpλ n |ϕpX 0 q ´ϕpX n q| Γ n ¯ 1 jp ď exp ´2C V,ϕ λ n Γ n ¯exp ´jpC 2 V,ϕ λ 2 n c V Γ 2 n ¯´E exppc V V pX 0 qq ¯1 2jp ´E exppc V V pX n qq ¯1 2jp ď exp ˜pj `1qpC 2 V,ϕ λ 2 n c V Γ 2 n ¸exp ˆcV p ˙pI 1 V q 1 jp . l
Proof of Lemma 5.

' Proof of inequalities (3.27) and (3.28).

-

If x Þ Ñ x∇ϕpxq, bpxqy is Lipschitz continuous. We first rewrite from the definition of D 2,b,n in (3.19): D 2,b,n " n ÿ k"1 γ k ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q ´∇ϕpX k´1 q, b k´1 ydt " n ÿ k"1 γ k " ż 1 0 x∇ϕpX k´1 `tγ k b k´1 q, b k´1 ´bpX k´1 `tγ k b k´1 qydt `ż 1 0 `x∇ϕ, bypX k´1 `tγ k b k´1 q ´x∇ϕ, bypX k´1 q ˘dt ı .
From the boundedness of ∇ϕ, and the Lipschitz property of the mappings x Þ Ñ bpxq (which has been assumed from the very beginning) and x Þ Ñ x∇ϕpxq, bpxqy (assumed for the current inequality), recalling that b k´1 " bpX k´1 q, one derives that :

|D 2,b,n | ď n ÿ k"1 γ 2 k ´}∇ϕ} 8 rbs 1 `rx∇ϕ, bys 1 ¯|b k´1 | 2 ď C n ÿ k"1 γ 2 k |b k´1 |, C :" Cpb, ϕq. (3.44)
From this inequality, assumption (L V ), ii) and the Jensen inequality (applied to the exponential function for the measure

1 Γ p2q n ř n k"1 γ 2 k δ k ), we derive: ˆE exp ´4pλ n Γ n |D 2,b,n | ¯˙1 4p ď ˜1 Γ p2q n n ÿ k"1 γ 2 k E exp ´4pλ n Γ p2q n Γ n C a C V a V k´1 ¯¸1 4p .
From the Young inequality we obtain:

E exp ´4pλ n Γ p2q n Γ n C a C V a V k´1 ¯ď exp ´´2 ? 2pλ n Γ p2q n Γ n C a C V ? c V ¯2¯E rexppc V V k´1 qs.
We finally derive with the notations of Proposition 1:

ˆE exp ´4pλ n Γ n |D 2,b,n | ¯˙1 4p ď exp ´2pλ 2 n pΓ p2q n q 2 Γ 2 n pC a C V q 2 c V ¯pI 1 V q 1 4p ď exp ´C3.27 pλ 2 n pΓ p2q n q 2 Γ 2 n ¯pI 1 V q 1 4p , setting C 3.27 :" 2 pC ? C V q 2 c V with C " 1 2 `}∇ϕ} 8 rbs 1 `rx∇ϕ, bys 1 ˘as in (3.44). l -If a ď c V q 4C V p }σ} 2 8 }∇ϕ} 2 8 }D 2 ϕ} 2 8 ? Γn Γ p2q n " χ n ? Γn Γ p2q n
with the notation introduced in (3.34). Write first from (3.19) (definition of D 2,b,n ), using a Taylor expansion on ∇ϕ:

ˆE exp ´4pλ n Γ n |D 2,b,n | ¯˙1 4p ď ˜E exp ´4pλ n Γ n n ÿ k"1 γ 2 k ż 1 0 p1 ´tq ˇˇTr ´D2 ϕpX k´1 `tγ k b k´1 qb k´1 b b k´1 ¯ˇˇd t ¯¸1 4p .
(3.45)

We first easily get from the assumptions on ϕ and point ii) of (L V ) that:

ˆE exp ´4pλ n Γ n |D 2,b,n | ¯˙1 4p ď ˜E exp ´2pλ n Γ n n ÿ k"1 γ 2 k C V V k´1 }D 2 ϕ} 8 ¯¸1 4p .
From the Jensen inequality,we derive:

ˆE exp ´4pλ n Γ n |D 2,b,n | ¯˙1 4p ď ˜1 Γ p2q n n ÿ k"1 γ 2 k E exp ´2pλ n Γ p2q n Γ n }D 2 ϕ} 8 C V V k´1 ¯¸1 4p .
We then have from the definition of λ n in (3.24) that:

vn :" 2pλ n Γ p2q n Γ n }D 2 ϕ} 8 C V c V " Γ p2q n ? Γ n 2C V p c V q }D 2 ϕ} 8 }σ} 2 8 }∇ϕ} 2 8 a ď 1.
The Jensen inequality for concave functions yields for all k P rr1, nss:

E exp ´2pλ n Γ p2q n Γ n }D 2 ϕ} 8 C V V k´1 ¯" E exp ´v n c V V k´1 ¯ď ´E exp ´cV V k´1 ¯¯vn .
Thus, setting

(3.46) v n :" vn 4p " λ n Γ p2q n 2Γ n }D 2 ϕ} 8 C V c V ,
we finally derive,

" E exp ´4pλ n Γ n |D 2,b,n | ¯ 1 4p ď « 1 Γ p2q n n ÿ k"1 γ 2 k ´sup lě1 E " exppc V V l´1 q ‰ ¯vn ff 1 4p " pI 1 V q vn ": C n ,
using again the notations of Proposition 1. This gives (3.28). ' Proof of inequality (3.26). We proceed as for the proof of (3.28) and (3.27). Write:

ˆE exp ´4pλ n Γ n |D 2,Σ,n | ¯˙1 4p ď ˜E exp ´4pλ n Γ n n ÿ k"1 γ k 2 ˇˇTr ´`D 2 ϕpX k´1 `γk b k´1 q ´D2 ϕpX k´1 q ˘Σk´1 ¯ˇˇ¯¸1 4p ď ˜E exp ´2pλ n Γ n }σ} 2 8 rϕ p2q s 1 n ÿ k"1 γ 2 k |b k´1 | ¯¸1 4p ď ˜E exp ´2pλ n Γ n }σ} 2 8 rϕ p2q s 1 C 1 2 V n ÿ k"1 γ 2 k |V k´1 | 1 2 ¯¸1 4p ď ˜1 Γ p2q n n ÿ k"1 γ 2 k E exp ´2pλ n Γ p2q n Γ n }σ} 2 8 rϕ p2q s 1 C 1 2 V |V k´1 | 1 2 ¯¸1 4p .
Using once again the Young inequality and setting C 3.26 :"

}σ} 4 8 rϕ p2q s 2 1 4 C V c V , we obtain: ˆE exp ´4pλ n Γ n |D 2,Σ,n | ¯˙1 4p ď exp ´pλ 2 n 4 ´Γp2q n Γ n ¯2}σ} 4 8 rϕ p2q s 2 1 C V c V ¯pI 1 V q 1 4p ď exp ´C3.26 pλ 2 n ´Γp2q n Γ n ¯2¯p I 1 V q 1 4p
. l

4. A refinement when ~σ~2 ´νp~σ~2q is a Coboundary

We will assume in this section that there exists a solution ϑ of the Poisson problem Aϑ " ~σ~2 ´νp~σ~2q, where ~¨~is a matrix norm such that } ¨} ď ~¨~, satisfying the assumptions stated for ϕ in Theorem 2. This is in particular the case for the Fröbenius norm } ¨}F under the assumptions of the previous Theorem 4.

In this special case, we have a slightly different concentration result improving our previous ones for a certain deviation range.

Theorem 8. Under the assumptions of Theorem 2 and with the notations introduced therein, we have that: (a) For (β P p0, 1s and θ P p 1 2`β , 1s), there exist two explicit monotonic sequences cn ď 1 ď Cn , n ě 1, with lim n Cn " lim n cn " 1 such that for all n ě 1 for all a ą 0:

P " | a Γ n ν n pAϕq| ě a ‰ ď 2 Cn exp ˆ´c n 2νp~σ~2q}∇ϕ} 2 8 Φ n paq ˙, Φ n paq :" » -˜a2 ´1 ´2 1 `b1 `4 c3 n Γn a 2 ¯¸_ ˜a 4 3 Γ 1 3 n cn ˜1 ´2 3 cn ˆΓn a 2 ˙1 3 ¸`¸fi fl ,
where x `" maxpx, 0q and cn :" ´rϕs 1 rϑs 1

¯2{3 νp~σ~2q~σ~´2

{3 8 čn with čn being an explicit positive sequence s.t. čn Ó n 1. (b) For β P p0, 1s, θ " 1 2`β , there exist two explicit monotonic sequences cn ď 1 ď Cn , n ě 1, with lim n Cn " lim n cn " 1 such that for all n ě 1 for all a ą 0:

P " | a Γ n ν n pAϕq `Bn,β | ě a ‰ ď 2 r C n exp ˆ´r c n 2νp~σ~2q}∇ϕ} 2 8 Φ n paq ˙.
Remark 10 (About deviation rates). Observe that in order to derive global deviation bounds (valid for every a ą 0) two concentration regimes appear in the previous bounds. For an arbitrary fixed a ą 0, we have that for n large enough (depending on a), the Gaussian concentration regime will give the fastest decay, since To summarize, when the Gaussian regime prevails (i.e. when a ? Γn is small), the results of Theorem 2 have been improved in the sense that the variance in the deviations is a sharper upper bound of the "carré du champ" ş R d |σ ˚∇ϕpxq| 2 νpdxq appearing in the asymptotic Theorem 1. Indeed, we managed to replace the supremum norm ~σ~2 8 deriving from Theorem 2 and the domination condition on the matrix norms by νp~σ~2q. However, our martingale approach naturally leads to a bound in }∇ϕ} 2 8 . On the other hand, the global double regime seems to be the price to pay to benefit from the better approximation of the "carré du champ" in the Gaussian regime.

Eventually, Theorem 3 is a direct consequence of the previous theorem in the Gaussian regime.

Proof. We focus on case (a) for β P p0, 1q, θ P p1{p2 `βq, 1s. Case (b) could be derived similarly following the proof of Theorem 2. We restart from the computations of Section 3.1 that give for all λ ą 0 the control in equation (3.21). Let us now deal with the term giving the concentration and write for all ρ ą 1:

E exp ´´qλ Γ n M n ¯ď ˜E exp ´´ρ qλ Γ n M n ´ρ2 pqλq 2 rϕs 2 1 2Γ 2 n n ÿ k"1 γ k AϑpX k´1 q ¯¸1 ρ ˆ˜E exp ´ρ2 pqλq 2 rϕs 2 1 2pρ ´1qΓ 2 n n ÿ k"1 γ k AϑpX k´1 q ¯¸1´1 ρ ": T 1 ρ 1 T 1´1 ρ 2 . (4.1)
Since for all x P R d , Aϑpxq " ~σpxq~2 ´νp~σ~2q, we obtain:

T 1 " exp ´ρ2 pqλq 2 rϕs 2 1 νp~σ~2q 2Γ n ¯E exp ´´ρ qλ Γ n M n ´ρ2 pqλq 2 rϕs 2 1 2Γ 2 n n ÿ k"1 γ k ~σpX k´1 q~2 ¯.
The key idea is that we have exploited the Poisson equation solved by ϑ to replace the previous rough control exp ´pqλq 2 rϕs 2 1 ~σ~2 8 2Γn ¯, coming from the martingale increment obtained in equation (3.18) and the domination condition on the matrix norms, by the above term exp ´ρ2 pqλq 2 rϕs 2 1 νp~σ~2q 2Γn ¯. This last contribution will be part of the optimization procedure over λ. This improvement will be all the more significant that neighborhoods of the points where the norm of the diffusion coefficient σ attains its supremum are not very much charged by the invariant distribution. The point for T 1 is then to prove that the remaining expectation is less than 1. It will be shown by exhibiting an appropriate underlying supermartingale.

Set to this end Ă T 1 :" exp ´´ρ 2 pqλq 2 rϕs 2 1 νp~σ~2q 2Γn ¯T1 . Define now, for a given n P N and m P N 0 , S m :"

exp ´´ρ qλ Γn M m ´ρ2 pqλq 2 rϕs 2 1 2Γ 2 n ř m k"1 γ k ~σpX k´1 q~2 ¯.
From the definition of the martingale pM k q kě1 in (3.14) and the controls of the Lipschitz constants of the functions `ψk pX k´1 , ¨q˘k Prr1,nss in Lemma 1, we get by iterated conditioning:

Ă T 1 ď E " S n´1 exp ´´ρ 2 pqλq 2 rϕs 2 1 2Γ 2 n γ n ~σpX n´1 q~2 ¯E" exp ´´ρ qλ Γ n pM n ´Mn´1 q ¯ˇˇF n´1 ıı ď pGCq E " S n´1 exp ´´ρ 2 pqλq 2 rϕs 2 1 2Γ 2 n γ n ~σpX n´1 q~2 ¯expp ρ 2 pqλq 2 2Γ 2 n γ n rϕs 2 1 ~σpX n´1 q~2q ı ď E rS n´1 s ď 1.
In other words, pS m q mě0 is a positive supermartingale. We finally get that, for all ρ ą 1:

(4.2) T 1 ρ 1 ď exp ´ρpqλq 2 rϕs 2 1 νp~σ~2q 2Γ n ¯.
For the term T 2 , we have that setting µ :" µpq, n, ρ, λq "

pqλq 2 ρ 2 rϕs 2 1 2pρ´1qΓn , T 2 " E exp ´µ Γ n n ÿ k"1 γ k AϑpX k´1 q ¯,
so that this contribution can be controlled from the previous expansion of Lemma 1 exploiting the technical lemmas of Section 3.1 replacing λ by µ and ϕ by ϑ.

In case (a), for θ P p1{p2 `βq, 1s, β P p0, 1s, the Hölder inequalities yield that for all µ P R `and all p, q P p1, `8q, 1 p `1 q " 1, similarly to (3.21),

T 2 " E exp ´µ Γ n n ÿ k"1 γ k AϑpX k´1 q ¯ď ˆE exp ´´qµ Γ n M ϑ n ¯˙1 q ˆˆE exp ´2pµ Γ n |L ϑ n | ¯˙1 2p ˆE exp ´4pµ Γ n |D ϑ 2,b,n | ¯˙1 4 p ˆE exp ´4pµ Γ n |D ϑ 2,Σ,n | ¯˙1 4 p , (4.3)
where the superscripts in ϑ emphasize that the contributions to be analyzed are those associated with the solution ϑ of the Poisson problem with source ~σ~2 ´νp~σ~2q.

Still for simplicity, we assume as well (case (i)) that the mapping x Þ Ñ xbpxq, ∇ϑpxqy is Lipschitz continuous. Plugging in (4.3) the controls established in Lemma 4 (with j " 2), Lemma 5 (equations (3.26) and (3.27)) and (3.39), then replacing λ n by µ, we get similarly to the first inequality of (3.30) and with the notations of Lemma 3:

T 2 ď exp ´qµ 2 ~σ~2 8 rϑs 2 1 2Γ n ¯exp ˆµ2 2Γ n p `pa 2 n 2 ˙exp ˜3pC 2 V,ϑ µ 2 c V Γ 2 n `cV p ¸pI 1 V q 1 2 p ˆexp ˜C3.26 pµ 2 pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4 p ˆexp ˜C3.27 ´3pµ 2 pΓ p2q n q 2 2Γ 2 n `1 2p ¯¸pI 1 V q 1 4 p . ď exp ´µ2 Γ n ´q~σ~2 8 rϑs 2 1 2 `p ´pΓ p2q n q 2 Γ n rC 3.26 `3 2 C 3.27 s `3C 2 V,ϑ c V Γ n ¯`1 2p ¯¯exp ´1 p `cV `C3.27 2 ˘`pa 2 n 2 ¯pI 1 V q 1 p . Set now Cn :" exp ´1 p `cV `C3.27 2 ˘`pa 2 n 2 ¯pI 1 V q 1 p , ēn :" p´p Γ p2q n q 2 Γ n rC 3.26 `3 2 C 3.27 s `3C 2 V,ϑ c V Γ n ¯`1 2p . (4.4)
In the considered case, the exponent p :" pn can again be taken such that pn Ñ n `8 and pn We derive from the above control and (4.2) that for all q, ρ ą 1:

ˆE exp ´´λq Γ n M n ¯˙1 q ď ´T 1 ρ 1 T 1´1 ρ 2 ¯1 q ď exp ´ρqλ 2 rϕs 2 1 νp~σ~2q 2Γ n ¯C ρ´1 ρq n exp ´ρ ´1 ρq µ 2 Γ n ´q~σ~2 8 rϑs 2 1 2 `ē n ¯¯.
Plugging this bound in (3.21), using again the controls of Lemmas 4 and 5, eventually yields:

P " a Γ n ν n pAϕq ě a ı ď exp ˆ´aλ ? Γ n ˙exp ´λ2 2Γ n `ρqrϕs 2 1 νp~σ~2q `1 p ˘¯C ρ´1 ρq n exp ´ρ ´1 ρq µ 2 Γ n ´q~σ~2 8 rϑs 2 1 2 `ē n ¯ēxp ´λ2 Γ n p ´pΓ p2q n q 2 Γ n `C3.26 `3 2 C 3.27 ˘`3C 2 V,ϕ c V Γ n ¯¯exp ´1 p `cV `C3.27 2 ˘`pa 2 n 2 ¯pI 1 V q 1 p .
Choosing p :" p n Ñ n `8 and such that p n pΓ p2q n q 2 Γn Ñ n 0, we get by a standard symmetry and with the notations introduced in the proof of Theorem 2:

P "ˇˇˇa Γ n ν n pAϕq ˇˇě a ı ď 2 C n C ρ´1 ρq n exp ˆ´aλ ? Γ n ˙exp ´λ2 Γ n `ρqrϕs 2 1 νp~σ~2q 2 `en ˘ēxp ´ρ ´1 ρq µ 2 Γ n ´q~σ~2 8 rϑs 2 1 2 `ē n ¯¯,
where e n is defined similarly to ēn in (4.4) replacing p by p. In particular e n Ñ n 0. Note that for the previous choices of p, p, we have that r

C n :" C n C ρ´1 ρq n Ñ n
1 uniformly in ρ ą 1. Recalling that µ " pqλq 2 ρ 2 rϕs 2 1 2pρ´1qΓn , we are thus led to minimize the polynomial function

P : λ Þ ÝÑ ´aλ ? Γ n `λ2 Γ n A n `λ4 Γ 3 n B n , where A n " A n pρq " ρ r A n and B n " B n pρq " ρ 3 ρ´1 r B n with (4.5) r A n :" qrϕs 2 1 νp~σ~2q 2 `en and r B n :" q 3 rϕs 4 1 4 ´q~σ~2 8 rϑs 2 1 2 `ē n ¯.
Note that both sequences p r A n q ně1 and p r B n q ně1 are bounded and bounded away from zero sequences (and do not depend on ρ). The function P is clearly convex and coercive so it attains its minimum at λ min , unique zero of the equation P 1 pλ min q " 0. This equation reads

(4.6) λ 3 `An Γ 2 n 2B n λ ´aΓ 5 2 n 4B n " 0
which is the canonical form of this third degree equation to apply the Cardan-Tartaglia formula ( 1 ) so that (4.7)

λ min pρq " Γ n 2 » -˜a ? Γ n B n `d´2 A n 3B n ¯3 `a2 Γ n B 2 n ¸1 3 `˜a ? Γ n B n ´d´2 A n 3B n ¯3 `a2 Γ n B 2 n ¸1 3 fi fl .
1. If the equation z 3 `pz `q " 0 has a unique real zero z˚then its discriminant ∆ " 4p 3 `27q 2 ą 0 and z˚" ´1 2 `´q b

∆ 27 ˘¯1 3 `´1 2 `´q ´b ∆ 27 ˘¯1 3 .
In order to derive our non-asymptotic bound, we select two "regimes" based on a first order expansion of λ min in two cases a Bn ?

Γn Ñ 0 and Bn ? Γn a Ñ 0, assuming that the free parameter ρ " ρ n to be specified later on remains bounded, e.g. ρ P p1, 3s (which implies that both quantities An Bn and 1 Bn remain bounded as well). Also, note that if ρ Ñ 1, then 1

Bn and An Bn Ñ 0. First, one easily checks that if px n q ě1 and pa n q ně1 are two sequences of positive real numbers where pa n q ně1 is bounded, then

(4.8) ´xn `aa 3 n `x2 n ¯1 3 `´x n ´aa 3 n `x2 n ¯1 3 " $ & % 2 3 xn an if x n " o `a 3 2 n ˘pthen x n Ñ 0q, p2x n q 1 3 if a n " o `x 2 3 n ˘pthen x n Ñ `8q. ' If a Bn ?
Γn " o ´´An Bn ¯3 2 ¯(hence goes to 0), setting then x n " a Bn ?

Γn and a n " 2An 3Bn yields

λ min pρq " λ ˚pρq :" a ? Γ n 2A n
as n Ñ `8.

Note that λ ˚:" λ ˚pρq corresponds to the optimization of the quadratic part of P . Then

P pλ ˚q " ´a2 4A n ´1 ´a2 4A 3 n B n Γ n ¯" ´a2 4 r A n ρ ´1 ´a2 4 r A 3 n pρ ´1q r B n Γ n ¯.
Set now ξ n :" αnpaq ρ´1 with α n paq "

r Bn 4 r A 3 n a 2
Γn . Then

P pλ ˚q " ´a2 4 r A n 1 ´ξn 1 `αnpaq ξn .
It remains to maximize the mapping ξ Þ Ñ 1´ξ 1`αnpaqξ ´1 over p0, 1q. Its optimum is attained for ξ n " 1 1`b1`1 αnpaq , which in turn yields (4.9)

P pλ ˚q " ´a2 4 r A n ¨1 ´2 1 `c1 `4 r A 3 n Γn r Bna 2 ‹ ‹ ' .
Note that, with the resulting specification of ρ " ρ n :" 1 `αnpaq ξ n P p1, 3s (at least for large enough n), the above condition

x n " o `a 3 2 n ˘in (4.8) is satisfied a posteriori. ' If a Bn ?
Γn Ñ `8, then, still owing to (4.8),

λ min pρq " λ˚p ρq " Γ n 2 ´2a B n ? Γ n ¯1 3 " ˆaΓ n 4B n ˙1 3 a Γ n as n Ñ `8.
The value λ˚p ρq corresponds to the quartic pseudo-optimum of P (i.e. obtained by neglecting the quadratic term). This yields, when reintroducing the parameter ρ,

P `λ ˚pρq ˘" ´a 4 3 Γ 1 3 n pρ ´1q 1 3 ρp4 r B n q 1 3 ¨3 4 ´r A n p4 r B n q 1 3 Γ 1 3 n a 2 3 pρ ´1q 1 3 '.
The right hand side of this equality is a function of ρ P p1, `8q. Its analysis yields that the optimum is attained in p1, 3{2s and that it tends asymptotically in n to 3{2 in our considered regime. Taking as suboptimal ρ " 3{2 gives:

(4.10)

P `λ ˚pρq ˘ď ´a 4 3 4 ˆΓn r B n ˙1 3 ˜1 ´2 3 r A n r B n ´Γn a 2 ¯1 3 ¸.
From (4.10), (4.9) and (4.5), we conclude the proof of case (a) by setting cn :" r A n r B ´1 3 n which matches with the definition in the statement of the Theorem.

In the biased case, the result follows similarly from the corresponding analysis performed in Section 2 taking A n pρq "

ρqrϕs 2 1 νp~σ~2q 2 .
Remark 11. ' When a -? Γ n , one checks that λ min pρq -Γ n and P pλ min pρqq -´Γn . This behavior is consistent with our non-asymptotic bound. However, for practical and numerical purposes observe that the optimum can be estimated. Namely, plugging the identity (4.6) satisfied by λ min pρq in (4.7) into the definition of P , yields

P `λmin pρq ˘" ´λmin pρq 2 ? Γ n ˜3a 2 ´λmin pρqρ r A n ? Γ n "
´?Γ n 4 pρ ´1q

1 3 ρ Φ n pa, ρq ˆ3a 2 ´?Γ n 2 pρ ´1q 1 3 r A n Φ n pa, ρq ˙,
where Φ n pa, ρq " ˜a ?

Γ n r B n `˜pρ ´1q ´2 r A n 3 r B n ¯3 `a2 r B 2 n Γ n ¸1 2 ¸1 3 `˜a ? Γ n r B n ´˜pρ ´1q ´2 r A n 3 r B n ¯3 `a2 r B 2 n Γ n ¸1 2 ¸1 3 .
Then, an optimization in ρ P p1, `8q for given a, Γ n can be performed (noting that ρ Þ Ñ pρ ´1q i{3 ρ ´1, i P t1, 2u are bounded functions over p1, `8q).

Smoothness Results for the Poisson Problems (Proof of Theorem 4)

We first prove here Theorem 4 which allows to derive from the deviation results of Theorems 2 and 3 the practical deviation bounds of Section 2.3 (i.e. Theorems 5, 6 and 7). We recall that we work in the confluent setting of (D p α ) and that we additionally consider two main types of assumptions:

-Strong confluence conditions and smoothness (C R ). Namely, assumptions (L V ), (D p α ) and (R 3,β ) introduced in Sections 1.2 and 2.2 with the condition }Dσ} 2 8 ď 2α 2p3`βq´p .

-Mild confluence conditions and non-degeneracy (C UE ). Namely, assumptions (L V ), (D p α ), (R 1,β ) and (UE) introduced in Sections 1.2 and 2.2 together, when d ą 1, with the condition }Dσ} 2 8 ď 2α 2p1`βq´p and the technical structure assumption on the diffusion coefficient that for all pi, jq P rr1, dss 2 , Σ i,j pxq " Σ i,j px i^j , ¨¨¨, x d q.

It is well known that when (C R ) or (C UE ) are in force, there exists a unique invariant distribution for (1.1), i.e. assumption (U) holds. We refer to [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF], [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF], [START_REF] Pagès | Sur quelques algorithmes récursifs pour les probabilités numériques[END_REF], [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF] for proofs of this assertion. The next step consists precisely in investigating the smoothness of the corresponding Poisson problem as well as some associated quantitative pointwise bounds on the gradient of its solution, which is one of the key terms appearing in the deviation bounds of Theorems 2 and 3.

Let us indicate that the conditions appearing in (C R ) depend on pure pathwise properties, whereas the case (C UE ) takes advantage of the regularity of the underlying semi-group which allows to alleviate some smoothness assumptions on the coefficients and some restrictions on the variations of σ. When the dimension increases, it becomes useful to benefit from the smoothing effects of a non-degenerate semi-group, especially if we keep in mind that one of our goals is to handle Lipschitz continuous sources. 5.1. Proof of Theorem 4. Under (C UE ) or (C R ), it is well known that the Poisson equation (2.5) that we now recall: @x P R d , Aϕpxq " f pxq ´νpf q, admits a unique solution centered w.r.t. ν and with linear growth, in W 2 p,loc pR d , Rq for any p ą 1 under (C UE ) (see [START_REF] Pardoux | On the Poisson Equation and Diffusion Approximation[END_REF]), or in C 3,β pR d , Rq under (C R ) (see Proposition A.8 in [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF]). In both cases, we have the following representation:

(5.1) ϕpxq " ´żR ``P t f pxq ´νpf q ˘dt where P t f pxq :" E rf pY 0,x t qs and Y 0,x t solves (1.1) with Y 0,x 0 " x. To comply with the framework of the above Theorems 5 and 6, the first step is to establish a pointwise gradient control. 5.1.1. Gradient Control. Under (C UE ) or (C R ) we manage to obtain pointwise gradient bounds for ϕ. In our current confluent setting, these estimates are obtained through controls on the tangent flow, again without any a priori uniform ellipticity condition of type (UE).

Lemma 6 (Pointwise Gradient Bounds). Assume that (C UE ) or (C R ) holds. Then

}∇ϕ} 8 ď rf s 1 α ,
with α as in (D p α ).

Proof. Gradient Control in the Confluent framework. Assume now that (D p α ) holds. Observe that, as soon as (R 1,β ) holds, it is well known that that ∇ x Y 0,x t is well defined and belongs to L 2 pPq, see [START_REF] Ikeda | Stochastic differential equations[END_REF]. Hence, for t ą 0, i P rr1, dss:

B x i E rf pY 0,x t qs " E rx∇f pY 0,x t q, B x i Y 0,x t ys, B x i Y 0,x t " e i `ż t 0 DbpY 0,x s qB x i Y 0,x s ds `d ÿ j"1 ż t 0 Dσ ¨j pY 0,x s qB x i Y 0,x s dW j s ,
where e i stands for the i th canonical vector and Db, Dσ ¨j P R d b R d . Let p P p1, 2s be given such that (D p α ) holds. Considering the mapping y P R d Þ Ñ |y| p , where | ¨| stands for the Euclidean norm of R d , it is easily seen from Itô's formula that:

|B x i Y 0,x t | p " 1 `p ż t 0 A B x i Y 0,x s |B x i Y 0,x s | , DbpY 0,x s q B x i Y 0,x s |B x i Y 0,x s | E |B x i Y 0,x s | p ds `p d ÿ j"1 ż t 0 A B x i Y 0,x s |B x i Y 0,x s | , Dσ ¨j pY 0,x s q B x i Y 0,x s |B x i Y 0,x s | E |B x i Y 0,x s | p dW j s `p 2 d ÿ j"1 ż t 0 ´|Dσ ¨j pY 0,x s qB x i Y 0,x s | 2 |B x i Y 0,x s | 2 `pp ´2q |xB x i Y 0,x s , Dσ ¨j pY 0,x s qB x i Y 0,x s y| 2 |B x i Y 0,x s | 4 |B x i Y 0,x s | p ds (5.2) " exp ˜p ż t 0 A B x i Y 0,x s |B x i Y 0,x s | , DbpY 0,x s q B x i Y 0,x s |B x i Y 0,x s | E ds ¸ˆE `M ˘t ˆexp ˜p 2 d ÿ j"1 ż t 0 ´|Dσ ¨j pY 0,x s qB x i Y 0,x s | 2 |B x i Y 0,x s | 2 `pp ´2q |xB x i Y 0,x s , Dσ ¨j pY 0,x s qB x i Y 0,x s y| 2 |B x i Y 0,x s | 4
¯ds where pM t q tě0 :"

`p ř d j"1 ş t 0 @ Bx i Y 0,x s |Bx i Y 0,x s | , Dσ ¨j pY 0,x s q Bx i Y 0,x s |Bx i Y 0,x s | D dW j
s ˘tě0 is a square integrable martingale with bounded integrand and EpM q t :" exppM t ´1 2 xM y t q denotes the associated Doléans exponential martingale. From condition (D p α ), we thus get:

|B x i Y 0,x t | p ď expp´αptq ˆEpM t q. (5.3)
We eventually derive:

ż `8 0 |E rx∇f pY 0,x t q, B x i Y 0,x t ys|dt ď rf s 1 ż `8 0 E r|B x i Y 0,x t | p s 1{p dt ď rf s 1 ż `8 0 exp p´αtq dt " rf s 1 α .
From the above control and equation (5.1), we thus derive:

(5.4) @i P rr1, dss, @x P R d , |B x i ϕpxq| ď rf s 1 α .

Similarly, for all x P R d , ∇ϕpxq " ş `8 0 Erp∇Y 0,x t q ˚∇f pY t,x 0 qsdt where ∇Y 0,x

t " `Bx 1 Y 0,x t ¨¨¨B x d Y 0,x t so that p∇Y 0,x t q ˚" ¨pB x 1 Y 0,x t q . . . pB x d Y 0,x t q ˚‹ '.
Hence, recalling that | ¨| stands for the Euclidean norm, |∇ϕpxq| ď ş `8 0 Er}p∇Y 0,x t q ˚}|∇f pY 0,x t q|sdt where we recall that for A P R d bR d , }A} :" sup |z|ď1,zPR d |Az| denotes the operator (or spectral) matrix norm. Thus, |∇ϕpxq| ď }∇f } 8 ş `8

0 Er}p∇Y 0,x t q ˚}p s 1{p dt " }∇f } 8 ş `8 0 Er}∇Y 0,x t } p s 1{p dt. Now, }∇Y 0,x t } " sup |z|ď1 |∇Y 0,x t z|.
For any z P R d , |z| ď 1, setting Z 0,x,z t :" ∇Y 0,x t z, one has the following dynamics for the R d -valued process pZ 0,x,z s q sPr0,ts :

Z 0,x,z t :" z `ż t 0 DbpY 0,x s qZ 0,x,z s ds `d ÿ j"1 ż t 0
Dσ ¨j pY 0,x s qZ 0,x,z s dW j s .

Hence, we derive similarly to (5.3) that |Z 0,x,z t | p ď |z| p expp´pαtqEpM t q, where EpM t q does not depend on z. Write now, (5.5)

Er}∇Y 0,x t } p s 1{p " Er sup |z|ď1 |Z 0,x,z t | p s 1{p ď Er sup |z|ď1 |z| p expp´pαtqEpM t qs 1{p ď expp´αtq.
This eventually proves the claim }∇ϕ} 8 :" sup xPR d |∇ϕpxq| ď }∇f }8 α . 5.1.2. Additional smoothness.

-Theorem 4 can be derived under (C R ), by iterating computations similar to the ones performed in Lemma 6. On the other hand, to have the required smoothness, since we cannot expect some smoothing effect from a nondegenerate diffusion coefficient, we have to impose that b, σ, f themselves lie in C 3,β pR d , Rq and the restriction on the variations of σ which ensures exponential integrability in time for the expectations of the iterated tangent flows, see Lemma A.8 in [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF] for details (see the parallel between the above condition on Dσ and assumption (AC p ) appearing p. 559 in [START_REF] Pagès | A mixed-step algorithm for the approximation of the stationary regime of a diffusion[END_REF]).

-Proving Theorem 4 under (C UE ) requires more sophisticated tools (Schauder estimates for operators with unbounded coefficients).

Proof of Theorem 4 under (C UE ). Let us begin with the scalar case. For d " 1, set for all x P R, 

(

¯

where for all y P R, Ψpyq :" B y f pyq. We observe that B x ϕpxq " vpxq. Also, from our assumptions on f , b, σ, we have that Ψ, b 1 , σ 1 P C 0,β b pR d , Rq. Theorems 2.4-2.6 in Krylov and Priola, [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF] then yield the existence of a unique solution to the PDE:

(5.7) r Awpxq `b1 pxqwpxq " Ψpxq, where r Awpxq " Awpxq `σσ 1 pxqw 1 pxq, belonging to C 2,β b pR d , Rq and such that the following Schauder estimate holds: (5.8)

D C ě 1, }w} 2,β ď Cp1 `}Ψ} β q.
Indeed, from (D p α ), we get that b 1 pxq ď ´α ă 0 and the potential in (5.7) has the good sign. From (5.6) and the Girsanov theorem, we also get:

vpxq " ´ż `8 0 dt E " Ψp r Y 0,x t q exp ´ż t 0 b 1 p r Y 0,x s qds ¯ ,
where d r Y 0,x s " `bp r Y 0,x s q `σσ 1 p r Y 0,x s q ˘ds `σp r Y 0,x s qdW s . Note that r Y has generator r A. A simple identification procedure, similar to the proof of Theorem II.1.1 in Bass [START_REF] Bass | Diffusions and Elliptic Operators[END_REF] then gives v " w. The result follows from (5.8). Let us emphasize that this is a quite deep and involved result for unbounded coefficients.

In the multi-dimensional setting, recalling the technical condition that for all i P rr1, dss, j ě i, Σ i,j pxq " Σ i,j px i , ¨¨¨, x d q, we have that differentiating formally the PDE (2.5) in the space variable x i , i P rr1, dss yields that B x i ϕ " v i should satisfy:

r A w i pxq `Bx i b i pxqw i pxq " Ψ i pxq ´ÿ jPrr1,dssztiu B x i b j pxqv j pxq ´1 2 ÿ jPrr1,i´1ss B x i Σ j,j pxqB x j v j pxq ´ÿ jPrr1,i´1ss ÿ kPrrj`1,dssztiu B x i Σ j,k pxqB x j v k pxq, (5.9)
with Ψ i pxq :" B x i f pxq and r Aw i pxq :" A w i pxq`1 2 B x i Σ i,i pxqB x i w i pxq `ÿ jPrr1,dssztiu B x i Σ i,j pxqB x j w i pxq.

We would now like to enter the previous framework of Schauder estimates. To do so, we first observe from (D p α ) and the Cauchy-Schwarz inequality that B x i b i pxq ď ´α ă 0. Consider now i " 1 in (5.9). From our current assumptions on f , b and the previous computations on the gradient for the multi-dimensional case, it remains to prove r Ψ 1 pxq :" Ψ 1 pxq ´řj‰1 B x 1 b j pxqv j pxq P C 0,β b pR d , Rq. This will be the case, once we will have proved that ∇ϕ is β-Hölder continuous, which is a priori not direct. This property is assumed for the remaining of the proof and shown below. In particular, it leads to the restriction concerning the variations of σ when d ą 1. Hence, Theorems 2.4-2.6 in Krylov and Priola, [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF] still apply and give that there exists a unique solution w 1 P C 2,β b pR d , Rq to (5.9) which also satisfies: (5.10)

D C ě 1, }w 1 } 2,β :" ÿ α,|α|Prr0,2ss
}D α w 1 } 8 `rD p2q w 1 s β ď Cp1 `} r Ψ 1 } β q ": CppL V q, pR 1,β q, pUEqq.

The identification w 1 " B x 1 ϕ " v 1 is standard. The control (5.10) allows to iterate, since it gives that ∇w 1 " pB

x 1 v 1 , ¨¨¨, B x d v 1 q " pB x 1 ,x 1 ϕ 1 , ¨¨¨, B x d ,x 1 ϕq is β-Hölder.
We thus get by induction, from the specific chosen structure on σ and by Theorems 2.4-2.6 in Krylov and Priola, [START_REF] Krylov | Elliptic and parabolic second-order PDEs with growing coefficients[END_REF], that for all i P rr1, dss there exists a unique solution w i P C 2,β b pR d , Rq to (5.9) such that:

D C ě 1, }w i } 2,β ď Cp1 `} r Ψ i } β q ": CppL V q, pR 1,β q, pUEqq, r Ψ i pxq :" Ψ i pxq ´ÿ jPrr1,dssztiu B x i b j pxqv j pxq ´1 2 ÿ 1 ď j ă i, k P rr1, dssztiu B x i Σ j,k pxqB x j v k pxq.
(5.11)

The Lipschitz property of the mapping x Þ Ñ x∇ϕpxq, bpxqy is eventually derived following the procedure described in Remark 7.

Remark 12 (Structure of σ). We emphasize that the structure condition on σ assumed in Theorem 4 under (C UE ) is mainly technical. It is of course always verified in dimension d " 1. For d ą 1 it is motivated by the fact that, differentiating (2.5) without this assumption yields to consider a system of coupled linear PDEs with growing coefficients for which the Schauder estimates have not been established yet. Following the existing literature for Schauder estimates for systems (see e.g. Boccia [START_REF] Boccia | Schauder estimates for solutions of higher-order parabolic systems[END_REF]), we think that the results of Krylov and Priola should extend to this case. This would allow to get rid of the indicated condition. Here, the condition simply allows to decouple the system.

Let us mention too that the results by Priola [Pri09] could also be a starting point to investigate the smoothness of the Poisson problem for degenerate kinetic models.

These aspects will concern further research.

Additional Smoothness continued: β-Hölder continuity of the gradient through pathwise analysis. We control here, under (D p α ), p P p1, 2s and (R 1,β ), β P p0, 1s, the β-Hölder modulus of continuity of the gradient. We will progressively see how the restrictions on Dσ come out. For px, x 1 q P R 2d , write for all i P rr1, dss:

ˇˇB x i ϕpxq ´Bx i ϕpx 1 q ˇˇ" ˇˇˇż `8 0 ´E rx∇f pY 0,x t q, B x i Y 0,x t ys ´E rx∇f pY 0,x 1 t q, B x i Y 0,x 1 t ys ¯dt ˇˇď ˇˇˇż `8 0 ´r∇f s β E r|Y 0,x t ´Y 0,x 1 t | β |B x i Y 0,x t |s `}∇f } 8 E r|B x i Y 0,x t ´Bx i Y 0,x 1 t |s ¯dt ˇˇˇ" : pG β 1 `Gβ 2 qpx, x 1 q.
(5.12)

Let us first deal with the expectation in G β 1 . Namely, write

E r|Y 0,x t ´Y 0,x 1 t | β |B x i Y 0,x t |s ď E r|Y 0,x t ´Y 0,x 1 t | pβ s 1 p Er|B x i Y 0,x t | qs 1 q
, p, q ą 1, p´1 `q ´1 " 1.

Take now pβ " q ðñ p " 1`β β , q " 1 `β which leads to the same integrability constraints on the flows. If β `1 ď p in (D p α ), then we readily get similarly to (5.3) that Er|B x i Y 0,x t | qs 1 q ď expp´αtq.

If now β `1 ą p, as soon as (D 1`β ᾱ ) holds for some ᾱ ą 0, which is actually the case provided that (5.13) }Dσ} 2 8 ď 2α 1 `β ´p , for q " 1 `β, we again get similarly to (5.3) that Er|B x i Y 0,x t | qs 1 q ď expp´ᾱtq. On the other hand, the mean value theorem yields:

E r|Y 0,x t ´Y 0,x 1 t | pβ s 1 p ď |x ´x1 | β E r ż 1 0 dλ}∇Y 0,x 1 `λpx´x 1 q t } pβ s 1 p ď |x ´x1 | β ´ż 1 0 dλE r}∇Y 0,x 1 `λpx´x 1 q t } pβ s ¯1 p ď |x ´x1 | β rexpp´αβtqI 1`βďp `expp´ᾱβtqI 1`βąp s ,
exploiting (5.5) for the last inequality provided that (5.13), which in turn implies that (D 1`β ᾱ ) for some ᾱ ą 0, holds if 1 `β ą p. Plugging these bounds in (5.12) gives that:

(5.14) @px, x 1 q P pR d q 2 , |G β 1 px, x 1 q| ď r∇f s β p1 `βq

" I 1`βďp α `I1`βąp ᾱ  |x ´x1 | β .
We already see that, when 1 `β ą p, for the parameter p of the initial confluence condition (D p α ), a first constraint on the variations of σ, namely (5.13) appears.

Let us now turn to G β 2 . Following the expansion of (5.2) write:

|B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 " 2 ż t 0 A B x i Y 0,x s ´Bx i Y 0,x 1 s , DbpY 0,x s qB x i Y 0,x s ´DbpY 0,x 1 s qB x i Y 0,x 1 s E ds `2 d ÿ j"1 ż t 0 A B x i Y 0,x s ´Bx i Y 0,x 1 s , Dσ ¨j pY 0,x s qB x i Y 0,x s ´Dσ ¨j pY 0,x 1 s qB x i Y 0,x 1 s E dW j s `d ÿ j"1 ż t 0 |Dσ ¨j pY 0,x s qB x i Y 0,x s ´Dσ ¨j pY 0,x 1 s qB x i Y 0,x 1 s | 2 ds. Let uptq :" E |B x i Y 0,x t ´Bx i Y 0,x 1 t
| 2 , t ě 0. First note that up0q " 0. Taking now the expectation and interchanging expectation and time integration yields uptq "

ż t 0 E Ξ s ds
where pΞ t q tě0 is a pathwise continuous process clearly determined by the terms inside the above time integrals. One readily checks that, t Þ Ñ E Ξ s is continuous so that u is continuously differentiable and satisfies

u 1 ptq " 2 E A B x i Y 0,x t ´Bx i Y 0,x 1 t , DbpY 0,x t qB x i Y 0,x t ´DbpY 0,x 1 t qB x i Y 0,x 1 t E `d ÿ j"1 E |Dσ ¨j pY 0,x t qB x i Y 0,x t ´Dσ ¨j pY 0,x 1 t qB x i Y 0,x 1 t | 2 .
Using the Young inequality for a parameter ε P p0, 1s, small enough and to be chosen further, we derive:

u 1 ptq ď 2 E « A B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | , DbpY 0,x t q B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | E |B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 `ż t 0 }DbpY 0,x t q ´DbpY 0,x 1 t q}|B x i Y 0,x 1 t ||B x i Y 0,x t ´Bx i Y 0,x 1 t | ff `E« p1 `εq d ÿ j"1 ˇˇˇD σ ¨j pY 0,x t q B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | ˇˇˇ2 |B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 `p1 `ε´1 q d ÿ j"1 }Dσ ¨j pY 0,x t q ´Dσ ¨j pY 0,x 1 t q} 2 |B x i Y 0,x 1 t | 2 ff .
From this computation, the point is now to make the confluence condition (D p α ) appear and to separate the components for which we will exploit the β-Hölder continuity, namely Db, pDσ ¨j q jPrr1,nss . To do so we first observe that:

A B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | , DbpY 0,x t q B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | E `1 2 d ÿ j"1 ˜ˇˇˇD σ ¨j pY 0,x t q B x i Y 0,x t ´Bx i Y 0,x 1 t |B x i Y 0,x t ´Bx i Y 0,x 1 t | ˇˇˇ2 ḑ ´α `p2 ´pq 1 2 }Dσ} 2 8 " ´α,
where we suppose from now on that (5.15) ´α :" ´α `p2 ´pq 1 2 }Dσ} 2 8 ă 0 ðñ }Dσ} 2 8 ă 2α 2 ´p .

Hence,

u 1 ptq ď 2E " p´α `ε 2 }Dσ} 2 8 q|B x i Y 0,x t ´Bx i Y 0,x 1 t | 2  `2E " }DbpY 0,x t q ´DbpY 0,x 1 t q}|B x i Y 0,x 1 t ||B x i Y 0,x t ´Bx i Y 0,x 1 t |  `E" p1 `ε´1 q d ÿ j"1 }Dσ ¨j pY 0,x t q ´Dσ ¨j pY 0,x 1 t q} 2 |B x i Y 0,x 1 t | 2  .
Using now again the Young inequality, with η P p0, 1s small enough, for the middle term of the above r.h.s., we obtain:

u 1 ptq ď 2 ´´α `ε 2 }Dσ} 2 8 `η 2 ¯E" |B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 ı `η´1 E " }DbpY 0,x t q ´DbpY 0,x 1 t q} 2 |B x i Y 0,x 1 t | 2 ‰ `p1 `ε´1 q d ÿ j"1 E " }Dσ ¨j pY 0,x t q ´Dσ ¨j pY 0,x 1 t q} 2 |B x i Y 0,x 1 t | 2 ı ď 2 ´´α `ε 2 }Dσ} 2 8 `η 2 ¯E" |B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 ı `η´1 rDbs 2 β E " |Y 0,x t ´Y 0,x 1 t | 2β |B x i Y 0,x 1 t | 2 ‰ `p1 `ε´1 qrDσs 2 β E " |Y 0,x t ´Y 0,x 1 t | 2β |B x i Y 0,x 1 t | 2 ı . (5.16) Denote: ´α ε,η,σ :" ´α `ε 2 }Dσ} 2 8 `η 2 ă 0,
for ε, η small enough. Setting for every t ě 0,

rptq :" η ´1rDbs 2 β E " |Y 0,x t ´Y 0,x 1 t | 2β |B x i Y 0,x 1 t | 2 ‰ `p1 `ε´1 qDσs 2 β E " |Y 0,x t ´Y 0,x 1 t | 2β |B x i Y 0,x 1 t | 2
ı , equation (5.16) reads an ordinary differential inequation:

u 1 ptq ď ´2α ε,η,σ uptq `rptq, up0q " 0.

We derive from the Gronwall lemma that

uptq " Er|B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 s ď expp´2α ε,η,σ tq ż t 0 expp2α ε,η,σ sqrpsqds.
Reproducing as well the computations that led to (5.14), we derive:

uptq ď C η,ε,β |x ´x1 | 2β ż t 0 exp `´2 αε,η,σ pt ´sq ˘ˆE " |B x i Y 0,x 1 s | 2p1`βq ı 1 1`β `ż 1 0 dλE " }∇Y 0,x 1 `λpx´x 1 q s } 2p1`βq ı β 1`β ˙ds.
From the analysis leading to (5.3), (5.5) we now derive: 

Er|B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 s ď C η,ε,β 2 |x ´x1 | 2β expp´2α ε,η,σ tq " exp `2pα
Er|B x i Y 0,x t ´Bx i Y 0,x 1 t | 2 s ď Cη,ε,β |x ´x1 | 2β expp´α 2p1`βq tq.
This last control then gives the expected bound for the β-Hölder modulus of the gradient. Namely, from (5.12), (5.14),

rB x i ϕs β ă r∇f s β p1 `βq " I 1`βďp α `I1`βąp ᾱ ı `}∇f } 8 Cη,ε,β α2p1`βq . 
5.2. Proof of the Practical Results of Section 2.3. We first begin with the proof of the 5.2.1. Slutsky like Theorem 6. We keep here for simplicity the generic notation } ¨} for any admissible matrix norm according to the assumptions of the theorem. We first write:

(5.18)

P « a Γ n ν n pf q ´νpf q a ν n p}σ} 2 q ě a ff " P " ν n pAϕq ě a ? Γ n a ν n p}σ} 2 q  .
We then proceed similarly to Theorem 8, with an exponential Bienaymé-Tchebychev inequality, for all λ ą 0 we have:

P « a Γ n ν n pf q ´νpf q a ν n p}σ} 2 q ě a ff ď E " exp ˆ´aλ ? Γ n a ν n p}σ} 2 q ˙exp pλν n pAϕqq ı " exp ˆ´aλ ? Γ n a ν p}σ} 2 q ˙E" exp ˆ´aλ ? Γ n " a ν n p}σ} 2 q ´aν p}σ} 2 q ı ˙exp pλν n pAϕqq ı " exp ˆ´aλ ? Γ n a ν p}σ} 2 q ˙E" exp ˜´aλ ? Γ n ν n `}σ} 2 ˘´ν `}σ} 2 ȃν n p}σ} 2 q `aν p}σ} 2 q ¸exp pλν n pAϕqq ı " exp ˆ´aλ ? Γ n a ν p}σ} 2 q ˙E" exp ˜´aλ ? Γ n
ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸exp pλν n pAϕqq ı .

By the Hölder inequality, for r p, r q ą 1, such that 1 r p `1 r q " 1:

P « a Γ n ν n pf q ´νpf q a ν n p}σ} 2 q ěa ff ď exp ˆ´aλ ? Γ n a ν p}σ} 2 q «E exp ˜´ar pλ ? Γ n
ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸ff1{r p " E exp pλr qν n pAϕqq ı 1{r q .

The proof of Theorem 8 yields:

P « a Γ n ν n pf q ´νpf q a ν n p}σ} 2 q ě a ff ď R n exp ˆ´aλ ? Γ n a ν p}σ} 2 q ˙exp ˆρr qλ 2 Γ n r A n `ρ3 r q 3 λ 4 pρ ´1qΓ n r B n Ė exp ˜´ar pλ ? Γ n ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸¸1{r p , (5.19)
where we recall from identity (4.5):

r A n "
qrϕs 2 1 νp}σ} 2 q 2 `en and r B n "

q 3 rϕs 4 1 4 ´q}σ} 2 8 rϑs 2 1 2 `ē n ¯.
Also, R n Ñ n 1 denotes a "generic" remainder. Observe that thanks to the bounds of Theorem 4 (stated in the above Lemma 6), we get:

(5.20) r A n ď qrf s 2 1 νp}σ} 2 q 2α `en .

Let us now handle the remainder " E exp ˆ´ar pλ ? Γn νnpAϑq ? νnp}σ} 2 q`?νp}σ} 2 q ˙1{r p :

« E exp ˜´ar pλ ? Γ n ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸ff1{r p " « E ˜exp « ´ar pλ ? Γ n ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸`1 νnpAϑqě0 `1νnpAϑqă0 ˘¸ff 1{r p ď ˜«E exp ˜ar p 2 λ ? Γ n ν n pAϑq a ν p}σ} 2 q ¸ff1{r p P " ν n pAϑq ě 0 ‰ 1{r q `«E exp ˜´ar p 2 λ ? Γ n ν n pAϑq a ν p}σ} 2 q ¸ff1{r p P " ν n pAϑq ă 0 ‰ 1{r q ¸1{r p .
Let us mention that we introduced the above partition in order to get a sharper constant in the final inequality, 1 below instead of 2, which would follow getting rid of the indicator functions. Now, by Theorem 2 we easily get:

E « exp ˜´ar pλ ? Γ n ν n pAϑq a ν n p}σ} 2 q `aν p}σ} 2 q ¸ff1{r p ď R n exp ˆa2 r p 2 Γ n νp}σ} 2 q λ 2 Γ n ´}σ} 2 8 }∇ϑ} 2 8 2 `en
¯˙" P " ν n pAϑq ě 0 ‰ 1{r q `P" ν n pAϑq ă 0 ‰ 1{r q ı 1{r p . (5.21) We choose r p :" r ppnq Ñ `8, such that r p 2 a 2 Γn Ñ 0, and so pP " ν n pAϑq ě 0 ‰ 1{r q `Prν n pAϑq ă 0s 1{r q q 1{r p ď 2 1{r p Ñ 1.

Moreover, exploiting again that for the Gaussian regime, r p 2 a 2

Γn Ñ 0, we obtain by (5.21) and (5.19):

P « a Γ n ν n pf q ´νpf q a ν n p}σ} 2 q ě a ff ď R n exp ˆ´aλ ? Γ n a ν p}σ} 2 q ˙exp ˆρr qλ 2 Γ n p r A n `en q `ρ3 r q 3 λ 4 pρ ´1qΓ n r B n ˙. (5.22)
From identity (5.22), the optimization over λ is similar to the one performed in the proof of Theorem 8. This yields the deviation bound (2.10). The non-asymptotic confidence interval in (2.11) is derived as for Theorem 5 from the gradient bounds of Theorem 4 and (2.10).

5.3.

Regularization of Lipschitz Sources. We assume here that assumptions (C2), (L V ), (UE) are in force. We suppose as well that the following smoothness holds for b, σ:

(R b,σ ) Regularity and Structure. We assume that there exists β P p0, 1q such that b, σ in (1.1) belong to C 1,β pR d , R d q and C 1,β b pR d , R d b R d q respectively. Also, for all pi, jq P rr1, dss 2 , Σ i,j pxq " Σ i,j px i^j , ¨¨¨, x d q. Importantly, we are interested, under assumptions (C2), (L V ), (UE), (R b,σ ), in giving controls for the estimation of νpf q when the source f is simply Lipschitz continuous. This is indeed the natural framework for the source which can be handled through functional inequality techniques, see [START_REF] Malrieu | Concentration inequalities for Euler Schemes[END_REF], [START_REF] Boissard | Simple bounds for the convergence of empirical and occupation measures in 1-Wasserstein distance[END_REF].

To comply with our previous framework, namely to exploit the smoothness result of Theorem 4 under (C UE ), we need to regularize the source. Let η be a mollifier (i.e. a non-negative compactly supported function such that ş R d ηpxqdx " 1). Define for δ ą 0, η δ pxq " 1 δ d ηp x δ q. We regularize f introducing f δ :" f ‹ η δ where ‹ stands for the convolution on R d . From usual estimates, we obtain:

D C η ą 0, @x P R d , |f δ pxq ´f pxq| ď C η δrf s 1 , @β P p0, 1q, r∇f δ s β ď C η rf s 1 δ ´β . (5.23)
We emphasize here that we will choose β later in order to be compatible with a certain range of step sequences. We assume for simplicity that θ P p1{3, 1s (no bias). Recall that we want to investigate: Pr a Γ n pν n pf q ´νpf qq ě as " P " pν n pf δ q ´νpf δ qq `Rn,δ pf q ě a ? Γ n ı , R n,δ pf q :" rpν n pf q ´νpf qq ´pν n pf δ q ´νpf δ qqs. (5.24) From (5.23), one readily gets:

(5.25)

|R n,δ pf q| ď 2C η δrf s 1 .

On the other hand, the coefficients b, σ and the source f δ satisfy assumption (R 1,β ) (observe indeed that the mollified function f δ P C 1,β pR d , Rq). Hence, Theorem 4 yields that there exists a unique solution ϕ δ P C 3,β pR d , Rq to the equation:

(5.26) Aϕ δ " f δ ´νpf δ q.

Observe from the proof of Theorem 4 under (C UE ) (see equations (5.4) and (5.11)) and (5.23) that:

}∇ϕ δ } 8 ď α ´1rf s 1 , @β P p0, 1q, D C β ą 0, @i P t1, 2u, rϕ piq δ s 1 ď C β p1 `}∇f δ } C β q ď C β δ ´β , rϕ p3q δ s β ď C β δ ´β , rx∇ϕ δ , bys 1 ď C β δ ´β .
(5.27) Now, from (5.26) the deviation in (5.24) rewrites:

(5.28) P " a Γ n pν n pf q ´νpf qq ě a ‰ " P " ν n pAϕ δ q `Rn,δ pf q ě a ? Γ n ı .

From (5.25), the term R n,δ pf q can be seen as a remainder as soon as a ?

Γn " 2C η δrf s 1 ě |R n,δ pf q|. On the other hand, the deviations of ν n pAϕ δ q can be analyzed as above, reproducing the proofs of Theorems 2 and 8, replacing the bounds on prϕ piq s 1 q iPt1,2u , rϕ p3q s β appearing therein by those of equation (5.27). Precisely, we get from (5.25), similarly to (3.30) (replacing the controls on ϕ by those on ϕ δ in the proofs of Lemmas 3 and 5):

P " ˇˇν n pAϕ δ q `Rn,δ pf q ˇˇě a ? Γ n  ď 2 « E exp ´´qλ n Γ n M n ¯ff 1 q exp ´´aλ n ? Γ n p1 ´?Γ n 2C η rf s 1 δ a q ēxp ´λ2 n 2Γ n p `ppa δ n q 2 2 ¯exp ˜3pC 2 V,ϕ λ 2 n c V Γ 2 n `cV p ¸pI 1 V q 1 2p ˆexp ˜Cδ 3.26 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p ˆexp ˜Cδ 3.27 pλ 2 n pΓ p2q n q 2 Γ 2 n ¸pI 1 V q 1 4p
(5.29)

where 

C δ 3.27 :" C β δ ´β pC ? C V q 2 c V and C δ 3.26 :" }σ} 4 8 C 2 β δ ´2β 4 C V c V precisely
rϕ p3q δ s β › › σ › › p3`βq 8 E " |U 1 | 3`β ‰ p1 `βqp2 `βqp3 `βq Γ p 3`β 2 q n ? Γ n ď C β δ ´β › › σ › › p3`βq 8 E " |U 1 | 3`β ‰ p1 `βqp2 `βqp3 `βq Γ p 3`β 2 q n ? Γ n ,
is obtained from the definition of a n in Lemma 3 replacing rϕ p3q s β by rϕ p3q δ s β . From the above equation and Lemma 2 we get:

P " |ν n pf q ´νpf q| ě a ? Γ n  " P " ˇˇν n pAϕ δ q `Rn,δ pf q ˇˇě a ? Γ n  ď 2pI 1 V q 1 p exp ´cV p `ppa δ n q 2 2 ēxp ˜´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ´1 ´?Γ n 4C η rf s 1 δ a ´1 q}σ} 2 8 }∇ϕ} 2 8 ! p Γ n ´6C 2 V,ϕ c V `2" C δ 3.26 `Cδ 3.27 spΓ p2q n q 2 ¯`1 p )¯¸.
The Young inequality yields that for all ε n ą 0:

P " |ν n pf q ´νpf q| ě a ? Γ n  ď 2pI 1 V q 1 p exp ´cV p `ppa δ n q 2 2 `ε´1 n Γ n δ 2 ēxp ¨´a 2 2q}σ} 2 8 }∇ϕ} 2 8 ´1 ´1 q}σ} 2 8 }∇ϕ} 2 8 ! 2ε n C 2 η rf s 2 1 `p Γ n ´6C 2 V,ϕ c V `2" C δ 3.26 `Cδ 3.27 spΓ p2q n q 2 ¯`1 p ) loooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooon ":d δ n ¯‹ ‹ ‹ ' . 
(5.30)

We now want to let p :" ppnq Ñ n `8, ε n Ñ n 0 so that the associated contributions in the above equation can be viewed as remainders. From the previous definitions of C δ 3.27 , C δ 3.26 , we see that, to achieve this goal, two constraints need to be fulfilled: namely, we must choose δ, p such that

ε ´1 n Γ n δ 2 Ñ n 0 and ppa δ n q 2 Ñ n 0.
Now, if θ P p1{2, 1s there exists β P p0, 1q such that Γ p 3`β 2 q ď C. In that case:

a δ n ď C ? Γn δ ´β " Γ ´p 1 2 p1´βq´βεq n Ñ n 0 for δ " Γ ´p 1 2 `εq n and ε ă 1´β 2β . Taking p :" ppnq " Γ p 1 2 p1´βq´βεq n yields ppa δ n q 2 Ñ n 0. On the other hand, ε n " Γ ´ε n also yields ε ´1 n Γ n δ 2 " Γ ´ε n Ñ n 0.
For θ P p1{3, 1{2q, Γ p 3`β 2 q n diverges for all β P p0, 1q, we then have Γ p 3`β 2 q n ? Γn ď Cn 1 2 ´θp1`β 2 q . Hence, there exists β P p0, 1q such that Γ p 3`β 2 q n ? Γn ď Cn 1 2 ´θp1`β 2 q Ñ n 0. However, taking δ " Γ ´p 1 2 `εq n , which seems to be an almost "necessary" choice to satisfy the first constraint ε ´1 n Γ n δ 2 Ñ n 0, yields:

a δ n -δ ´β Γ p 3`β 2 q n ? Γ n -n p1`βqp 1 2 ´θq`εβp1´θq Ñ n `8,
so that the second constraint cannot be fulfilled. This means that the regularization induces a constraint on the time steps which must not be too large. In other words, under the sole Lipschitz assumption on the source f , the fastest convergence regime is out of reach. Summing up the previous computations, we complete the proof of Theorem 7.

6. Applications 6.1. Non-Asymptotic Deviation Bounds in the Almost Sure CLT. Let pU n q ně1 be an i.i.d sequence of centered d-dimensional random variables with unit covariance matrix. We define the sequence of normalized partial sums by Z 0 " 0 and Z n :"

ř n k"1 U k ? n , n ě 1.
The almost sure Central Limit Theorem (denoted from now on a.s. CLT) describes how the weighted sum of the renormalized sums Z n which appear in the usual asymptotic CLT, behaves viewed as a random measure. Precisely, it states that setting for k ě 1, γ k " 1{k:

(6.1)

ν Z n :" 1 Γ n n ÿ k"1 γ k δ Z k w, a.s.
ÝÑ n G, Gpdxq :" exp ´´|x| 2 2 ¯dx p2πq d{2 .

The above convergence had been established in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF], as a by-product of their results concerning the approximation of invariant distributions, under the minimal moment condition U i P L 2 pPq, thus weakening the initial assumptions by Brosamler and Schatte (see [START_REF] Brosamler | An almost everywhere central limit theorem[END_REF] and [START_REF] Schatte | On strong versions of the Central Limit Theorem[END_REF]). The underlying idea is to use a reformulation of the dynamics of pZ n q ně0 in terms of a discretization scheme appearing as a perturbation of (S). One indeed easily checks that, for n ě 0:

Z n`1 " Z n ´γn`1 2 Z n `?γ n`1 U n`1 `rn Z n , r n :" c 1 ´1 n `1 ´1 `1 2pn `1q " O ´1 n 2 ¯. (6.2) Thus, the sequence pZ n q ně0 appears as a perturbed Euler scheme with decreasing step γ n " 1 n of the Ornstein-Uhlenbeck process dX t " ´1 2 X t dt `dW t whose invariant distribution is G. Then the regular Euler scheme (6.3)

X n`1 " X n ´γn`1 2 X n `?γ n`1 U n`1 , satisfies (1.3) with ν " G. The a.s. weak convergence (6.1) established in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] follows as a consequence of the (fast enough) convergence of Z n towards X n as n goes to infinity. Moreover, this rate is fast enough to guarantee that the sequence ν Z n satisfies the conclusion of Theorem 1 point (a) (when γ n " 1 n , Γ p2q n ?

Γn Ñ n 0), i.e. its convergence rate is ruled by a CLT at rate a logpnq. In fact this holds under a lower moment assumption U 1 P L 3 pPq.

Let us mention that the convergence rates related to the a.s. CLT had already been investigated by several authors. Let us quote among relevant works, Csörgő and Horváth [START_REF] Csörgő | Invariance principles for logarithmic averages[END_REF], for real valued i.i.d. random variables, Chaâbane and Maâouia [START_REF] Chaabane | Théorèmes limites avec poids pour les martingales vectorielles[END_REF], who investigate the convergence rate of the strong quadratic law of large numbers for some extensions to vector-valued martingales, and Heck [START_REF] Heck | The principle of large deviations for the almost everywhere central limit theorem[END_REF], for large deviation results. As an application of our previous results, we will derive some new non-asymptotic Gaussian deviation bounds for the a.s. CLT, when the involved random variables pU n q ně1 satisfy (GC). We insist here that the sub-Gaussianity of the innovations is crucial to get a non-asymptotic Gaussian deviation bound. The result readily extends to the wider class of innovations satisfying the general sub-Gaussian exponential deviation inequality (1.4). Also, we slightly weaken the regularity assumptions needed on the function f in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] for the associated a.s. CLT to hold. 6.1.1. Non-Asymptotic Deviation Bounds.

Theorem 9. Assume the innovation sequence pU n q ně1 satisfies (GC) and let f be a Lipschitz continuous function such that Gpf q " ş R d f pxqGpdxq " 0. Then, there exist two explicit monotonic sequences c n ď 1 ď C n , n ě 1, with lim n C n " lim n c n " 1 such that for all a ą 0 and n ě 1: x ¨∇ϕpxq " f pxq, which, under the current assumptions, is unique and belongs to W 2 p,loc pR d , Rq, for any p ą 1, with }∇ϕ} 8 ď 2rf s 1 .

Proof. For pZ n q ně0 as in (6.2), and pX n q ně0 as in (6.3) we introduce:

∆ n :" Z n ´Xn .
With the definition of ν Z n in (6.1), write ν Z n pf q " 1 Γn ř n k"1 γ k f pZ k´1 q. We also have similarly ν X n pf q :" 1 Γn ř n k"1 γ k f pX k´1 q. For all λ ą 0, we derive similarly to (3.21) (see as well (5.29)) and with the notations of (5.24):

P " a Γ n |ν Z n pf q| ě a ‰ " P " a Γ n ˇˇ1 Γ n n ÿ k"1
γ k `f pZ k´1 q ´f pX k´1 q ˘`ν X n pf q ˇˇě a ı ď P " a Γ n ˇˇ1 Γ n n ÿ k"1 γ k `f pZ k´1 q ´f pX k´1 q ˘`ν X n pAϕ δ q `Rn,δ pf q ˇˇě a ı for q, q P p1, `8), p " q q´1 , p " q q´1 . Also, ϕ δ corresponds to the solution of the Poisson equation (6.5) obtained replacing f by its mollified version f δ . Now, we need the following lemma to control ν ∆ n p|¨|q :" For clarity, we postpone the proof to the end of the current section.

ď
On the other hand, from Section 5.3 we have that ϕ δ P C 3,β pR d , Rq for all β P p0, 1q. We derive from (6.6), (6.7) similarly to the proof of Theorem 7 by setting λn :" Γn ¯‹ ', for ε n ą 0 and d δ n as in (5.30). Choose again pp n q ně1 and δ as in Section 5.3 so that q n Ñ n 1, d δ n Ñ n 0 with the indicated monotonicity for n large enough. We can now take p :" pn Ñ n `8 such that p Γn Ñ n 0. The above inequality then gives the result up to a direct modification of the sequences pC n q ně1 , pc n q ně1 . Proof of Lemma 7. The definition of ∆ n implies:

∆ n`1 " ∆ n ´1 ´γn`1 2 ¯`r n Z n ,
where we recall from (6.2) that r n :" b 1 ´1 n`1 ´1 `1 2pn`1q " Op 1 n 2 q. In particular, there exists C1 ą 0 such that for all n ě 1, (6.8)

|r n | ď C1 n 2 . Setting now ρ 0 " 1 and for n ě 1:

ρ n :" " n ź k"1 p1 ´γk 2 q ı ´1 " n ź k"1 2k 2k
´1 , 95% confidence intervals have size at most of order 0.016. To compare with, we also introduce the functions S n,θ paq :" ´pa´anpθqq 2 2}σ} 2 8 }∇ϕ} 2

8

, S n,θ,c paq :" ´pa´anpθqq 2 2νn c pσ 2 q}∇ϕ} 2 8 , S n,θ,A paq :" ´pa´anpθqq 2 2νn c p|σ∇ϕ| 2 q and the optimal concentration P pλ min qpn, θ, a, ρq, obtained in Remark 11, optimizing numerically in ρ. The quantities ν nc pσ 2 q, ν nc p|σ∇ϕ| 2 q in the previous expressions actually correspond to the numerical estimation, for n c " 10 4 and pγ c k q kě1 " pk ´θc q kě1 with θ c " 1 3 `10 ´3, of νpσ 2 q, νp|σ∇ϕ| 2 q appearing respectively in the sharper concentration bound of Theorem 8 when σ 2 ´νpσ 2 q is a coboundary and in the asymptotic Theorem 1. In the unbiased case of Figure 1, we plot the maximum in j of the pS n,θ j q jPrr1,5ss , pS n,θ j ,c q jPrr1,5ss , pS n,θ j ,A q jPrr1,5ss , `P pλ min qpn, θ j , a, ρq ˘jPrr1,5ss corresponding to j " 1. The associated curves are denoted by S n , S n,c , S n,A and P pλ min qpnq.

The Figures 1 and 2 correspond to the unbiased and biased cases respectively. In the unbiased case, we observe that the curves almost overlay, the optimal deviation rate P pλ min q is very close to the empirical data. It is also below the numerical estimation of the asymptotic threshold given by S n,θ,A which is, for our considered example, almost indistinguishable from the coboundary S n,θ,c (indeed, since ε " 0.01, }∇ϕ} 2 8 ď 1 `ε2 and νpσ 2 q}∇ϕ} 2 8 » νp|σ∇ϕ| 2 q) and far below from the bounds of S n,θ . In the biased case, P pλ min q stays very close to the theoretical asymptotic bound given by S n,θ,A up to a certain deviation level a, namely for a P r0, 0.5s. It then remains the best bound provided by our results. In this example, the improvement associated with S n,θ,c is also notable. It is precisely because the source term has a more oscillating gradient that we have also considered a larger running time, corresponding to n " 10 6 , for the empirical curves. For this choice, we see relatively good agreement w.r.t. to the asymptotic deviation bounds of S n,θ 0 ,A .

The figures below thus illustrate that the explicit optimal rate of Remark 11 seems rather appropriate to capture the deviations of the empirical random measures. g n,θ 1 g n,θ 2 g n,θ 3 g n,θ 4 g n,θ 5 S n S n,A S n,c Figure 1. Unbiased Case. Plot of a Þ Ñ g n,θ paq, for pθ k q kPrr1,5ss , with ϕpxq " σpxq " x `ε cospxq, ε " 0.01. We eventually plot below the deviation curves with source ϕpxq " cospxq adding a last curve obtained replacing in the formula for P pλ min q of Remark 11 the }∇ϕ} 2 8 νpσ 2 q by νp|σ∇ϕ| 2 q. For practical purposes, this last quantity is again estimated numerically with the same previous parameters. Even if the analysis of Theorem 8 cannot be extended to justify such a choice, the empirical evidence is rather striking. 6.2.2. Slutsky like result. In this paragraph, we illustrate our results from Theorem 6, which can be viewed as an extension of the usual Slustky's Lemma to our current framework, for a multidimensional process, precisely for r " d " 2 in the case β P p0, 1q. In order to converge as fast as possible without bias, we take θ " 1 2`β `1 1000 . We also choose a model which satisfies the assumptions of Theorem 4 under (C UE ) and Lemma 6. We consider: f pxq " |x| 1`β 1 `|x| β , bpxq " ˆ´4x 1 `6x 2 ´5x 1 ´5x 2 ˙, σσ ˚pxq " ˜cospx 1 `x2 q 2 `1 sinpx 1 q sinpx 2 q 4 sinpx 1 q sinpx 2 q 4

1 ´sinpx 2 q 2 ¸.

Remark that the non-degeneracy condition (UE) is fulfilled by Σ " σσ ˚, as well as the condition set in Theorem 4 under (C UE ), Σ i,j pxq " Σ i,j px i , . . . , x d q, for all 1 ď i ď j ď d. Furthermore, from the Cholesky 

  Also, when a -?Γ n the two above contributions give a Gaussian bound, with suboptimal constants. Eventually, when a " ? Γ n , for a fixed n, we have that the first term is "stuck" at the threshold Γ n whatever level a is considered, i.e. a 2 `1 ´2 1`b1`4c 3 whereas the second clearly becomes bigger.

  indicated monotonicity for large enough n.

Figure 2 .

 2 Figure2. Biased Case. Plot of a Þ Ñ g n,θ paq, for θ 0 " 1 3 , with ϕpxq " σpxq " cospxq.

Figure 4 .

 4 Figure 4. Plot of a Þ Ñ g n paq with f pxq " |x| β 1`|x| β , β " .5.

?

  Γn " 0 and E r|U 1 | 6 s ă `8, then, for any Lipschitz continuous function ϕ in C 3 pR d , Rq with D 2 ϕ and D 3 ϕ bounded, one has (with pLq denoting weak convergence)

	paq Fast decreasing step. If lim n	Γ p2q n
				a Γ n ν n pAϕq	pLq ÝÑ N ˆ0,	ż	|σ ˚∇ϕ| 2 dν	˙.
						R d
	pbq Critical and slowly decreasing step. If lim n	Γ	p2q n
						ż	|σ ˚∇ϕ| 2 dν ˙if r γ ă `8, pcritical decreasing stepq
						R d
	Γ n Γ n p2q	ν n pAϕq	P ÝÑ m if r γ " `8, pslowly decreasing stepq,
	where	m :"	´żR d ´1 2	D 2 ϕpxqbpxq b2 `Φ4 pxq ¯νpdxq,

? Γn " r γ Ps0, `8s and if E r|U 1 | 8 s ă `8, then for every Lipschitz continuous function ϕ P C 4 pR d , Rq with pD i ϕq iPt2,3,4u bounded: a Γ n ν n pAϕq pLq ÝÑ N ˆr γm, with Φ 4 pxq :" ż R r ´1 2 xD 3 ϕpxqbpxq, pσpxquq b2 y `1 24 D 4 ϕpxqpσpxquq b4 ¯µpduq

  Γn ă `8, i.e. γ n -n ´θ, θ P p1{2, 1s, the CLT of point (a) holds without the condition E rU b3 1 s " 0 provided E r|U 1 | 4 s ă `8 (see Theorem 9 in[START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF]). Moreover, the boundedness condition (C2) can be relaxed to derive the CLT, which holds provided lim |x|Ñ`8

	1 3 , 1s for which Γ p2q n ? Γn Ñ n	0. In case (b), that is for θ P p0, 1 3 s, Γ p2q n ? Γn Ñ n	r γ, with r γ ă	`8
	for θ " 1 3 and r γ " `8 for θ P p0, 1 3 q.		
	Let us mention that, when lim n	Γ p3{2q n ?		
				|σ ˚∇ϕpxq| 2 V pxq	" 0 (strictly
	sublinear diffusion) in case (a) and sup xPR d	|σ ˚∇ϕpxq| 2 V pxq

  ε,η,σ ´α 2p1`βq qt αε,η,σ which is precisely the restriction on the variations of σ appearing in (C UE ) when d ą 1, then α2p1`βq ą 0 and:

					´α 2p1`βq	αε,η,σ  `exp `2pα ε,η,σ ´β α2p1`βq qt ´β α2p1`βq ,
	and			
	´α 2p1`βq ď ´α ``2p1 `βq	´p˘1 2	}Dσ} 2 8 .	
	Thus, α2p1`βq ă 0 as soon as			
	(5.17)		}Dσ} 2 8 ă	2α 2p1 `βq	´p ,

  correspond to the modifications of the constants C 3.27 and C 3.26 :" V introduced in the proof of Lemma 5 when replacing }D 2 ϕ} 8 by }D 2 ϕ δ } 8 ď C β δ ´β and rx∇ϕ, bys 1 ď C by rx∇ϕ δ , bys 1 ď C β δ ´β C. Similarly,

	}σ} 4 8 rϕ p2q s 2 1	C V
	4	
	a δ n :"	

c

  |∆ k´1 |.Lemma 7. There is a non-negative constant C 6.7 such that for all λ ą 0:

	1 Γn k"1 γ k (6.7) ř n E exp ´λν ∆ n p| ¨|q ¯" E exp ´λ Γ n n ÿ k"1 γ k |∆ k´1 | ¯ď exp ¨C6.7 λE r|U 1 |sΓ 2 q n Γ n n 2Γ 2 `C2 6.7 λ 2 Γ n p3q p 3 '.
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a direct induction on ∆ n yields: (6.9)

∆ n "

Also, from the Wallis formula ρ n " n ? πn, which implies that there exists C2 ě 1 such that for all n ě 1:

(6.10) C´1

2 ? n ď ρ n ď C2 ? n.

We now get from (6.9) and the Fubini theorem:

(6.11) Γ n ν ∆ n p| ¨|q "

Combining (6.8) and (6.10), we get that there exist constants C3 , C4 ą 0 such that for all k P rrl `1, nss.

(6.12)

Plugging this inequality in (6.11), we derive:

For any λ ą 0, Equation (6.13) and the Gaussian concentration property (GC) of the innovation entail:

This completes the proof.

6.2.

Numerical Results. We present in this section numerical results associated with the computation of the empirical measure ν n illustrating our previous theorems. 6.2.1. Sub-Gaussian tails. We first consider d " r " 1. Also, for simplicity, the innovations pU i q iě1 and X 0 are Bernoulli variables with PpU 1 " ´1q " PpU 1 " ´1q " 1 2 . We illustrate here Theorem 2 taking bpxq " ´x 2 , and σpxq " cospxq in (1.1). This is a (weakly) hypoelliptic example. Indeed, setting for x P R, X 1 pxq " cospxqB x and X 0 pxq " ´x 2 B x , we have spantX 1 , rX 1 , X 0 su " R. We choose as well to compute ν n pAϕq for ϕpxq " x `ε cospxq for ε " 0.01, and ϕpxq " cospxq. The function ϕ is here given. The assumptions of Theorem 2 follow from Theorem 18 in Rotschild and Stein [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF] (up to the introduction of a suitable partition of unity). From Theorem 2, for steps of the form pγ k q kě1 " pk ´θq kě1 , θ P r1{3, 1s (corresponding to β " 1 in Theorem 2), the function

is such that for a ą a n :" a n pθq where for θ P p1{3, 1s, a n pθq " 0 and for θ " 1{3, a n pθq "

g n,θ paq ď ´cn pa ´an q 2 2}σ} 2 8 }∇ϕ} 2 8 `logp2C n q.

We plot in Figure 1 the curves of g n,θ for θ varying as θ j " 1 3 `p1´1 3 q j 5 , for j P rr1, 5ss, ϕpxq " x`ε cospxq and in Figure 2 the curve of g n,θ for θ " θ 0 " 1 3 and ϕpxq " cospxq. The simulations have been performed for n " 5ˆ10 4 in Figure 1, n " 5 ˆ10 6 in Figure 2, and the probability estimated by Monte Carlo simulation for M C " 10 4 realizations of the random variable | ? Γ n ν n pAϕq| in the unbiased case and in the biased case of the random variable | ? Γ n ν n pAϕq `pB n,1 ´E1 n q M |, where pB n,1 ´E1 n q M is obtained from B n,1 ´E1 n replacing the integral over [0,1], that needs to be evaluated at every time step, by a quantization of the uniform law on r0, 1s with M " 10 points. We refer to [START_REF] Graf | Foundations of quantization for random vectors[END_REF] or [START_REF] Pagès | A space vector quantization method for numerical integration[END_REF] for details on quantization. We point out that this is one drawback that appears to obtain the fastest convergence rate, the bias needs to be estimated and therefore the function ϕ in some sense known (since the approximation of the bias requires to compute its derivatives). The corresponding Figure 3. Plot of a Þ Ñ g n,θ paq, for pθ k q kPrr1,5ss , with ϕpxq " σpxq " cospxq. decomposition, we write:

Let us check that (D p α ) is satisfied. Firstly, remark that Db`Db 2 is a constant matrix whose eigenvalues are t´? 2`9 2 , ? 2´9 2 u. Direct computations yield that, for all x P R d , ξ P R d :

It can be checked similarly that the condition }Dσ} 2 8 ď 2α 2p1`βq´p is satisfied for α " 3.085 and β " .5 which we consider below. Also, the condition (R 1,β ) clearly holds. In other words, all assumptions of Theorem 6 are in force. We set for the following plot:

with α " 3.085, and rf s 1 " 1. Unlike in the previous simulations, we do not know here the value of νpf q. In fact, in paragraph 6.2.1 we had chosen to compute the deviation of Aϕ from 0 " νpAϕq. Here, we estimate from the ergodic theorem νpf q, taking β " .5, by ν n c pf q « 0.71308 for n c " 5 ¨10 5 . Running M C " 10 2 samples, we find that the size of the associated 95% confidence interval is 3.208 ¨10 ´4. Finally, the simulations are performed for n " 5 ˆ10 4 , and the probability is calculated by Monte Carlo algorithm for M C " 10 3 realizations. The maximum size of the associated 95% confidence interval is 4.75054 ¨10 ´5. The innovations are Gaussian random variables.

In Figure 4, we observe that the curve S σ stays above g σ n as proved in Theorem 6. However, remark that the graphs are quite spaced. This can be explained, among other things, by the difference between νp}σ} 2 q rf s 1 α and the asymptotic variance νp|σ ˚∇ϕ| 2 q. Furthermore we have represented S σ which is a kind of asymptotic version of P pλ min pnqq in the previous plots.