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NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR THE RECURSIVE
APPROXIMATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION

I. HONORE, S. MENOZZI, AND G. PAGES

ABSTRACT. We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant
distribution v of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme
with decreasing time step along a suitable class of (smooth enough) test functions f such that f — v(f) is a
coboundary of the infinitesimal generator. We show that these bounds can still be improved when some suitable
squared-norms of the diffusion coefficient also lie in this class. We apply these estimates to design computable
non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive
non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

1. INTRODUCTION

1.1. Setting. The aim of this article is to approach the invariant distribution of the solution of the diffusion
equation:

(1.1) dY; = b(Y;)dt + o(Y;)dW,,

where (W;)¢=0 is a Wiener process of dimension 7 on a given filtered probability space (2, G, (G¢)i=0,P), b : RY —
R? and o : RY - R?® R" are assumed to be Lipschitz continuous functions and to satisfy a mean-reverting
assumption in the following sense. If A denotes the infinitesimal generator of the diffusion (1.1), there exists
a twice continuously differentiable Lyapunov function V' : R — (0, +00) such that lim,_, o V(z) = 400 and
AV < 8 — aV where fe R and o > 0. Such a condition ensures the existence of an invariant distribution. We
will also assume uniqueness of the invariant distribution, denoted from now by v. We refer to the monographs
by Khasminskii [Kha80] (see also its augmented second edition [KM11]), or Villani [Vil09] and to the survey
paper [Pag01], for in-depth discussions on the conditions yielding such existence and uniqueness results.

We introduce an approximation algorithm based on an Euler like discretization with decreasing time step,
which may use more general innovations than the Brownian increments. Namely, for the step sequence (vx)xk>1
and n = 0, we define:

(S) Xny1 =X + '7n+1b(Xn) + \/'Yn+10(Xn)Un+1a

where Xo € L?(Q, Fo,P) and (Uy,)n>1 is an i.i.d. sequence of centered random variables matching the moments
of the Gaussian law on R" up to order three, independent of Xj.

We define the empirical (random) occupation measure of the scheme in the following way. For all A € B(R?)
(where B(R?) denotes the Borel o-field on R?):

_ Zz:l ’Yk(;Xk,l(w) (A)

ZZ:1 Vi

The measure v, is here defined accordingly to the intrinsic time scale of the scheme. Namely, T'), = >0, vk

represents the current time associated with the Euler scheme (S) after n iterations. Since we are interested in

long time approximation, we consider steps (vx)r>1 such that I';, :== >0, v, — +00. We also assume ~y; | 0.
n

(1.2) Un(A) == vp(w, A) :

k
Observe that, for a bounded v-a.s. continuous function f, it is proved in [LP02] (see e.g. Theorem 1), that:

(1.3 D) = = 3wl Kier) 20l = [ f@wlan),

™ k=1
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or equivalently that v, (w, ) — v, P(dw) — a.s. The above result can be seen as an inhomogeneous counterpart
n

of stability results discussed for homogeneous Markov chains in Duflo [Duf90]. Intuitively, the decreasing steps
make the approximation more and more accurate in long time and, therefore, the ergodic empirical mean of the
scheme converges to the quantity of interest. Put it differently, there is no bias. This is a significant advantage
w.r.t. a more naive discretization method that would rely on a constant step scheme. Indeed, even if this latter
approach gains in simplicity, taking 7, = h > 0 in (S) would lead to replace the r.h.s. of (1.3) by the quantity
VI (f) := Sga f(2)v""(dz), with 1" denoting the invariant distribution of the Euler scheme with step h. In such a
case, for the analysis to be complete, one needs to investigate the difference v — v through the corresponding
continuous and discrete Poisson problems. We refer to Talay et al. [TT90], [Tal02] for a precise presentation of
this approach.

Now, once (1.3) is available, the next question naturally concerns the rate of that convergence. This was
originally investigated by Lamberton and Pages [LP02] for functions f of the form f—v(f) = Ag, i.e. f—v(f)
is a coboundary for A. The specific reason for focusing on such a class of functions is that an invariant
distribution v is characterized as a solution in the distribution sense of the stationary Fokker-Planck equation
A*v = 0 (where A* stands for the adjoint of .A). Thus, for smooth enough functions ¢ (at least C2(R? R)),
one has v(Ap) = (ps Ap(x)v(dz) = 0. The authors then investigate the weak convergence of vy, (f) — v(f)
once suitably renormalized. However, in these results, the assumptions are made on the function ¢ itself rather
than on f. To overcome this limitation and exploit directly some assumptions on the function f requires
to solve the Poisson equation Ay = f — v(f). This is precisely for this step that some structure conditions
are needed, namely (hypo)ellipticity or confluence conditions. We refer for instance to the work of Pardoux
and Veretennikov [PV01], Rothschield and Stein [RS76] or Villani [Vil09] who discuss the solvability of the
Poisson problem under some ellipticity or hypoellipticity assumptions. We also mention the work of Pages
and Panloup [PP14] who exploit some confluence conditions allowing to handle for instance the case of an
Ornstein-Uhlenbeck process with degenerate covariance matrix. We refer to Sections 2.2 and 2.3 for precise
assumptions giving the uniqueness of the invariant distribution of (1.1) and the expected smoothness properties
for the associated Poisson problem.

In the current paper, our goal is to establish for this recursive procedure a non-asymptotic Gaussian control
for the deviations of the quantity v, (f) — v(f) for possibly unbounded Lipschitz continuous functions f. Such
non-asymptotic bounds are crucial in many applicative fields. Indeed, for specific practical simulations, it
is not always possible to run ergodic means for very large values of n. It will be direct to derive, as a by-
product of our deviations estimates, some computable non-asymptotic confidence intervals. A specific feature
of such non-asymptotic deviation inequalities is that their accuracy depends again on the status of the diffusion
coefficient ¢ with respect to the Poisson equation. Thus, if |o|? — v(|o|?) = AY is a coboundary (where || - |
denotes a matrix norm), we manage to improve our analysis, to derive better concentration bounds in a certain
deviation range as well as some additional deviation regimes. Also, this additional study seems rather efficient
to capture the numerical behavior of the empirical deviations. We refer to Section 4 and 6.2 for details about
these points. Eventually, our main deviation results allow to provide deviation inequalities for plain Lipschitz
continuous sources f in the ergodic approximation, by using a suitable regularization procedure, as established
in Theorem 7. As expected, dealing with this general class of functions requires more stringent constraints on
the time steps, that must be small enough, and prevents from obtaining the fastest convergence rates (see again
Theorem 7 and Section 5.3).

The main feature of the sequence (1.3) of weighted empirical measures is that it targets the true invariant
distribution v of the continuous time diffusion. The price to pay is the use of an Euler scheme with decreasing
step which is a non-homogeneous Markov chain. This induces new difficulties compared to the extensive
literature on deviation inequalities for ergodic homogeneous Markov chains. In particular, our approximation
procedure produces some remainder terms that need to be controlled accurately enough in a non-asymptotic
way to produce tractable deviation inequalities asymptotically close to their counterparts for the diffusion itself.
This a major difficulty compared to a C'LT where these remainder terms are simply requested to go to 0 fast
enough.

As mentioned above and like for the CLT (see [Bha82] for the diffusion or [LP02] for the weighted empirical
measures ), these deviation inequalities are naturally established for coboundaries f — v(f) = A(y), the
assumptions being made on . Our second objective in this paper is to state our results so that all assumptions
could be read on the source function f itself. This first requires to solve the Poisson equation in that spirit,
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that means deriving pointwise regularity results on ¢ from those made on f. Again, for Lipschitz sources, this
step will require an appropriate regularization procedure.

In particular, we will not rely on the Sobolev regularity (see e.g. Pardoux and Veretennikov [PV01]) but rather
on some Schauder estimates in line with the works by Krylov and Priola [KP10], which allow to benefit from
the elliptic regularity for operators with unbounded coefficients. For more details, we refer to the introduction
of Section 5.

1.2. Assumptions and Related Asymptotic Results. From now on, we will extensively use the following
notations.
For a given step sequence (v,)n>1, we denote:

n

n
VeeR, TV = > af, Tni= >y =T,
k=1 k=1
In practice, we will consider time step sequences: 7, = n—lg with 6 € (0, 1], where for two sequences (uy)neN, (Un)nen
the notation u,, = v, means that Ing € N, 3C > 1 such that Yn > ng, C~ v, < u, < Cv,.
For a vector v € R¥, k € {d,r}, we denote by |v| := (Z?Zl ’UJQ)% its (canonical) Euclidean norm. Also, for a
function v : R? — R%, we set 1)) := SUp,epa [¢(2)].

Hypotheses.

(C1) The random variable X is supposed to be sub-Gaussian, i.e. its square is exponentially integrable up to
some threshold. Namely, there exists A\g € R% such that:

YA <o, E[exp(\Xo|?)] < +c0.

(GC) The p-distributed i.i.d. innovation sequence (Up)n>1 is such that E[U;] = 0 and for all (i,5,k) €
(1,--- 7}, E[UIU]] = 6y, E[UIUIUF] = 0. Also, (Up)n>1 and X, are independent. Eventually, U; sat-
isfies the following Gaussian concentration property, i.e. for every 1—Lipschitz continuous function g : R — R
and every A > 0:

2
Blexp(a(0)] < exp (B[] + 5 ).

Observe that if U; (law) N(0, 1) or Uy (law) (%((51 +8_1))®", i.e. for Gaussian or symmetric Bernoulli increments

which are the most commonly used sequences for the innovations, the above identity holds. On the other hand,
what follows can be adapted almost straightforwardly for a wider class of sub-Gaussian distributions satisfying
that for some @ > 0 and for all A > 0:

o 2
(14) Bl exp(00)] < exp (AB L@+ - ).

which yields that for all » > 0, P[|U1| = r] < 2exp(—g) (sub-Gaussian concentration of the innovation). The
case w = 2 corresponds to the standard Gaussian concentration. This is also the constant in the logarithmic
Sobolev inequality fulfilled by the standard Gaussian measure.

(C2) There exists a positive constant x such that,

sup [o(2)[* < &,

zeR
where |o(z)| stands for the operator norm of o(z), ie. [o(x)| = sup.epr|.j<i |0(2)z| (keep in mind that
1
lo(2)| = llo*(@)| = [oo*(2)]2). We then set oo := sup,ea [o(2)]-

(Lv) There exists a Lyapunov function V : RY — [v*, +o0[, with v* > 0, satisfying the following conditions:
i) Regularity-Coercivity. V is a C* function, |D?*V||s < +00, and lim,_,, V(2) = +00.
ii) Growth control. There exists C|, € (0, +00) such that for all z € R%:
IVV (2)*> + |b(2)]? < C, V().
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iii) Stability. Let A be the infinitesimal generator associated with the diffusion Equation (1.1), defined for
all p € C2(RY,R) and for all x € R? by:

Ap(x) = (b(x), Vo(x)) + %Tr(z(m)Dst(fv))a S(x) := 00 (),

where, for two vectors vy, vo € R?, the symbol (v1, v9) stands for the canonical inner product of v; and
vy and for M € R? @ R%, Tr(M) denotes the trace of the matrix M.

There exist a,, > 0, By € RT such that for all = € R,
AV (z) < —a, V() + By.
As a consequence of (Ly) i), there exist constants K and ¢ such that for |x| > K, |V (z)| < &|z|?, which in turn
implies, from (Ly) ii), that |b(x)| < 4/C, ¢|z|.
(U) There exists a unique invariant distribution, denoted from now on by v, for Equation (1.1).
(S) For a Lyapunov function V satisfying (Ly), we assume that the step sequence (vx)x>1 satisfies for all
1. - 1 oy,
k=17 <35 mm(m, CVHDQV\IOO)'

Condition (S) means that we assume the time steps are sufficiently small w.r.t. the upper bounds of the
coefficients and the Lyapunov function.

Remark 1. We have assumed (U) without imposing some specific non-degeneracy conditions. Observe that
(Lv) yields ezistence of an invariant distribution (see e.g. Chapter 4.9 in [EKS86]). Additional structure
conditions on the coefficients ((hypo-)ellipticity [KM11], [PVO01], [PV03], [PV05], [Vil09] or confluence [PP14])
then yield uniqueness.

Assumption (S) is a technical condition which is exploited in order to derive the non-asymptotic controls of
Theorem 2 (see especially the proof of Proposition 1 below).

Observe that, as soon as conditions (C2), (Lv), (U) are satisfied and E [U;] = 0, E[U®?] = 0, the following
Central Limit Theorem (CLT) holds (see Theorems 9, 10 in [LP02]).

Theorem 1 (CLT). Under (C2), (Lv), (U), if E[U1] = 0, E[U®*] =0 and E[V(X,)] < +c0, we have the
following results.
2)

(
(a) Fast decreasing step. If lim, \F/TIQ— =0 and E[|U1|%] < 40, then, for any Lipschitz continuous function

¢ in C3(RY R) with D% and D3y bounded, one has (with (L) denoting weak convergence)
V nvn (Ap) O N (O,f |0*Vg0|2d1/> )
R4

(2)
(b) Critical and slowly decreasing step. If lim, % = 7 €]0, +0] and if E[|U1|®] < +c0, then for every
Lipschitz continuous function ¢ €C*(R?, R) with (Di@)ie{2’374} bounded:

VI nvn (Ap) O, (’Nym,f |0*ch|2dl/> if ¥ < 400, (critical decreasing step)
Rd

r
FT;)Vn(AQO) Lom it ¥ = 4w, (slowly decreasing step),

n

where m = —fRd (%Dgw(x)b(m)®2+<I>4(x))u(d:c),
with i) = | (GO, (@0 + 5 D ela) ola)n)™ Ja(du

and p denotes the distribution of the innovations (Uy)r=1. In the above definition of ®4, the term D3y
stands for the order 3 tensor (agi,:pj,xk@)(i,j,k)e[[l,d]]if and we denote, for all x € RY, by D3p(x)b(z) the

R?®@ R? matriz with entries (D3<p(x)b(x))ij = Zzzl(Dggo(x))ijkbk(x), (i,7) € [[1,d]>.
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Remark 2. Let us specify that for a step sequence (Yn)nen such that v, =n=%, 0 € (0,1], it is easily checked

1 L I - 11 I a
that case (a) occurs for 0 € (5, 1] for which i 0. In case (b), that is for 0 € (0, 5], il with ¥ < 40

f0r9=% and’~y=+oof07’96(0,%).

/2

Let us mention that, when limn"T <+, i.e. v, =n"? 0 € (1/2,1], the CLT of point (a) holds without
the condition E[U®3] = 0 provided E[|U;]*] < 40 (see Theorem 9 in [LP02]). Moreover, the boundedness
condition (C2) can be relaxed to derive the CLT, which holds provided limj, % = 0 (strictly

sublinear diffusion) in case (a) and sup,cga % < 40 (sublinear diffusion) in case (b). We refer again to

Theorems 9 and 10 in [LP02] for further considerations.

Remark 3. The reader should have in mind that an ergodic result similar to the one stated in the fast decreasing
step setting holds for the diffusion itself under the same structure assumptions, i.e. (C2), (Lv), (U) (see
Bhattacharya [Bha82]). In fact (C2) can be partially relazed as well, as mentioned above. Precisely,

1 [t C
— | A st—w\/o,f *Vol2d t — 400.
ﬁfo o(¥)ds SN (0. | 10" plv) s o

Note that the asymptotic variance corresponds to the usual integral of the “carré du champ” w.r.t. to the
invariant distribution (see again Bhattacharya [Bha82] or the monograph by Bakry et al. [BGL14]), i.e.:

| lorvel)Pridn) = -2 | App)pldn)
Rd R

In both settings, the normalization is the same: v/t for the diffusion and /T, for the scheme. Except that, as
emphasized by Theorem 1, for slowly decreasing step — when 0 < 1/3 — the time discretization effect becomes
prominent and “hides” the CLT so that 6 = 1/3 (critical value between “fast” and “slow” settings) yields the
fastest rate with a biased CLT.

Remark 4. We would like to mention that, in the biased case (b), for steps of the form ~y = Yok™3, k=1,

it is important for a practical implementation to choose vy in an appropriate way, namely by minimizing the
n: k72/3

variance contribution deriving from the biased limit Theorem. Of course, co is usually unknown, and the

concrete optimization has to be performed replacing co by a computable estimate, like for instance upper bounds,

i.e. c2 < | oo Ve|ow-

function vy — c1y0 + 0270_1/2,01 = lim,, cy = SRd |0*V|?dv, which corresponds to the mean-

The purpose of this work is to obtain non-asymptotic deviation results which match with the above CLT. In
the current ergodic framework, the very first non-asymptotic results were established for the Euler scheme with
constant time step by Malrieu and Talay in [MT06] when the diffusion coefficient ¢ in (1.1) is constant. The key
tool in their approach consists in establishing a Log Sobolev inequality, which implies Gaussian concentration,
for the Euler scheme. This approach allows to easily control the invariant distribution associated with the
diffusion process (1.1), see e.g. Ledoux [Led99] or Bakry et al. [BGL14] in a general framework. However Log
Sobolev, and even Poincaré, inequalities turn out to be rather rigid tools and are not very well adapted for
discretization schemes like (S) with or without decreasing steps.

Our approach relies on martingale techniques, which were already a crucial tool to establish the asymptotic
results of [LP02] and have been successfully used in Frikha and Menozzi [FM12] as well to establish non-
asymptotic bounds for the regular Monte Carlo error associated with the Euler discretization of a diffusion over
a finite time interval [0,7"] and a class of stochastic algorithms of Robbins-Monro type. Roughly speaking,
for a given n, we decompose the quantity /T, (Ap) as M, + R, where (My)g=o is a martingale which has
Gaussian concentration and R, is a remainder term to be controlled in a non-asymptotic way.

We can as well refer to the recent work by Dedecker and Gouézel [DG15] who also use a martingale approach
to derive non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov
chains on a general state space.

Let us also mention that many non-asymptotic results have been obtained based on functional inequalities.
Bolley, Guillin and Villani [BGV07] derived non-asymptotic controls for the deviations of the Wasserstein
distance between a reference measure and its empirical counterpart, establishing a non-asymptotic version of
the Sanov theorem. Deviation estimates for sums of weakly dependent random variables (with sub exponential
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mixing rates) have been considered in Merlevede et al. [MPR11]|. From a more dynamical viewpoint, let us
mention the work of Joulin and Ollivier [JO10], who introduced for rather general homogeneous Markov chains
a kind of curvature condition to derive a spectral gap for the chain, and therefore an exponential convergence
of the marginal laws towards the stationary distribution. We also mention a work of Blower and Bolley [BB06],
who obtain Gaussian concentration properties for deviations of functional of the path for metric space valued
homogeneous Markov chains or Boissard [Boill] who established non-asymptotic deviation bounds for the
Wasserstein distance between the marginal distributions and the stationary law, still in the homogeneous case.
The common idea of these works is to prove some contraction properties of the transition kernel of the Markov
chain in Wasserstein metric. However, this usually requires to have some continuity in Wasserstein metric for
the transition law involved, see e.g. condition (7i) in Theorems 1.2 and 2.1 of [BB06]. Checking such continuity
conditions can be difficult in practice. Sufficient conditions, which require absolute continuity and smoothness
of the transition laws are given in Proposition 2.2 of [BBO06].

Though potentially less sharp for the derivation of constants, the adopted martingale-based approach in this
work turns out to be rather simple, robust and can be very naturally adapted to both discrete innovations and
inhomogeneous time steps dynamics like the one we currently consider.

It should as well allow to control deviations for functionals of the path, in the spirit of those considered
in [PP12], [PP14]. Also, the approach could possibly extend to diffusions with less stringent Lyapunov con-
ditions, like the weakly mean reverting drifts considered in [LP03], or even to more general ergodic Markov
processes, see e.g. Pages and Rey [PR17]. These aspects will concern further research.

As an application of our non-asymptotic concentration results, we will discuss two important topics:

— The first one is of numerical interest and deals with non-asymptotic confidence intervals associated with the
estimation of the ergodic mean. Such results can be very useful in practice when the computational resources
are constrained (by time, by the model itself,...). If we assume that ¢ € C3(R?, R), Lipschitz continuous with
(D'p)e(2,3 bounded, such that the mapping x € RY — (b(x), Vip(z)) and D3¢ are Lipschitz continuous, we
then establish that there are explicit sequences ¢, < 1 < (), converging to 1 such that for all n € N, for all
a>0and v, =k % fe (%,1]7

a2
1.5 Pl Thvn(Ap) = a] < C,exp (—cn> .
(15) [ (Ag) > a] 2[o|ZIVell3

When the diffusion coefficient o is such that |o|? — v(|o|?) is itself a coboundary (or its counterpart for any
other norm dominating || - ||), the previous bound improves in a certain deviation range for a. Namely, we are
able to replace |o||%, by v(||o|?) in (1.5), going thus closer to the theoretical limit variance involving the “carré
du champ”. Moreover, a mixed regime appears in the non-asymptotic deviation bounds which dramatically
improves, from the numerical viewpoint, the general case for a certain deviation range. In particular, the
corresponding variance is closer to the asymptotic one given by the “carré du champ” (see Theorem 8 below).
In accordance with the limit results of Theorem 1, the drifts associated with the fastest convergence rates
can be handled as well. We obtain in full generality, results of type (1.5) under slightly weaker smoothness
assumptions, considering e.g. D3¢ being 8 € (0,1]-Holder continuous. Eventually, under suitable ellipticity
conditions on o, we are able to give non-asymptotic deviation bounds for a Lipschitz source f as well as explicit
gradient bounds for the solution ¢ of the corresponding Poisson problem.

— The second one is mainly theoretical and concerns non-asymptotic deviation bounds for the celebrated
almost-sure CLT first established by Brosamler and Schatte (see [Bro88] and [Sch88]) and revisited through the
ergodic discretization schemes viewpoint in [LP02].

Both applications require a careful investigation of the corresponding Poisson equation Ap = f — v(f). We
will in particular prove that some pointwise regularity properties can be transferred from f to .

The paper is organized as follows. We conclude this section by introducing some notations. Our main
results are presented in Section 2. We first state therein the specific concentration results for functions f
writing f = Ag + v(f) (see Section 2.1). We then proceed with some suitable controls on the Poisson problem
associated with A4 and f in a confluent framework under the two main cases considered: namely a possibly
degenerate setting, which requires a strong confluence condition and smooth source and coeflicients, and a non
degenerate setting, which allows to weaken the confluence condition as well as the smoothness assumptions
on the source and the coefficients since in that case we manage to benefit from an elliptic bootstrap property
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(see Section 2.2). We eventually give in Section 2.3 some practical and tractable deviation bounds and non-
asymptotic confidence intervals, including a Slutsky like result, for a given specific source f under the afore
mentioned conditions on the coefficients of (1.1).

We prove our main concentration result in Section 3. Section 4 is devoted to the case where ||o|? — v(]|o|?)
is a coboundary. We then prove in Section 5 the required controls on the Poisson equation for our deviation
result to hold as well as the practical controls of Section 2.3. Section 6.1 is dedicated to the non-asymptotic
deviation bounds for the almost-sure CLT and Section 6.2 to the numerical illustration of our non-asymptotic
confidence intervals.

1.3. Notations. In the following, we will denote by C' a constant that may change from line to line and
depend, uniformly in time, on known parameters appearing in (C1), (GC), (C2), (Lv), (S). Other possible
dependencies will be explicitly specified. We will also denote by Z%,, and e,, deterministic remainder terms that
respectively converge to 1 and 0 with n. The explicit dependencies of those sequences again appear in the
proofs.

For a function f e C?(R% R), § € (0,1], we denote

[f]ﬁ ;= sup |f(x) — f((l?/)’

< 400
:E?éxl ’1’ - .’IJ"B

its Holder modulus of continuity. Observe carefully that, when f is additionally bounded, we have that for all
0<p <p:
ﬁ
(1.6) [l < [£15 @l Fl)'™
Additionally, for f e C?(R% R), pe N, we set for 3 e (0,1]:
| D f(x) — D f(a)]

jz —a!|?

[f(p)]ﬁ = sup
£z |al=p

<+,

where o (viewed as an element of N¢\{0} with Ny := NuU{0}) is a multi-index of length p, i.e. |a| := Z;.i:l a; = p.
For notational convenience, we also introduce for k € Ny, 5 € (0,1] and m € {1,d,d x r} the Holder space

ChB(RL, R™) := {f e CK(RL,R™) : Ya, |a] € [1, k], sup [Df(x)| < +oo, [fM]s < +oo}.

zeR4

We also denote by Cf ¥ the subset of C¥# for which the functions themselves ares bounded. In particular,
CO1(R?, R™) is the space of Lipshitz continuous functions from R? to R™ and C’l? B (R4, R™) denotes the space of
bounded -Hélder continuous functions. Observe as well that, if f € C¥P, k > 1 then f is Lipschitz continuous.

We will as well use the notation [[n,p], (n,p) € (Ng)?,n < p, for the set of integers being between n and p.
Also, for a given Borel function f : R? — E, where E can be R,RY, R @RY, ¢ e {r,d}, we set for k € Ny:

fe = f(Xk).
Eventually, for k € Ny, we denote by Fj, := 0((Xj)je[[0,k]])-

2. MAIN RESULTS

2.1. Result of non-asymptotic Gaussian concentration. Our main concentration result is given by the
following theorem. In this theorem, we consider a slightly more general situation than for the CLT recalled in
Theorem 1. We only assume ¢ € C>?(R? R), 8 € (0,1] instead of ¢ € C*(R% R) with existing bounded partial
derivatives up to order four (which in particular implies that in Theorem 1 ¢ € C3!(R% R)).

Theorem 2. Assume (C1), (GC), (C2), (Lv), (U), (S) hold. Consider a Lipschitz continuous (possibly
unbounded) function ¢ € C3P(R® R) for some B € (0,1]. Let us furthermore suppose that:

(Gv) ICv,e > 0, Vo e RY, [p(z)| < Cyp(l ++/V ().
Let 0 € [1/(2 + B),1] and assume the step sequence (yx)rx=1 5 of the form vy, = k=9,

(a) Unbiased Case (sub-optimal convergence rate): Let 0 € (ﬁ, 1].
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(i) Assume that the mapping x — (Vo(x),b(z)) is Lipschitz continuous.
Then, there exist two explicit monotonic sequences ¢, < 1 < C,, n = 1, with lim, C,, = lim, ¢, = 1,
such that for alln =1 and for every a > 0:

2
P[[v/Trvn(Ap)| = a] < 2C, exp <—cna> .

2|olZ 1V elZ

(ii) Suppose that the mapping v — (Vo(x),b(z)) is not Lipschitz continuous. The above result still holds
VT

for 0 < a < Xn\/?) for a positive sequence x, — 0 arbitrarily slowly, so that x, el — 400. In
n n

particular, for a ﬁzed a > 0, the above concentration inequality holds for n large enough

(b) Biased Case (Optimal Convergence Rate): Letf = We set for all (k,t,u,z) € [1,n]] x [0, 1]? xR%:

1
248
1) AL (L) = E| T (D + wble) + uty ko (2) U)o (2)U) (o(2)Us ® Ugor(2)*) ) |
keeping in mind that, since p € C3’B(Rd,R), [D?’go]g < +o0. We define subsequently:

(2.2) V2

dt fduAf (b, Xg).

Set now

B, :=Ef, if 5 e (0,1),

5
(2.3) Bnp :=En W

1
Z ’yg f (1 — t)TI‘ (D%O(Xk,l + t")/kb]gfl)bkfl ® bkfl)dt
0

Z ’Yle"< (Xi—1 + Vebr—1) — D2<P(Xk71))2k71>7 if §=1.

There exist two explicit monotonic sequences ¢, < 1 < Cp, n = 1, with lim, C,, = lim, ¢, = 1 such that for all
n =1 and for every a > 0:

2
P[[«/Fnun(flgo) + B gl = a,] < 2C, exp (—cna> .

2]o %1 Vel

3+8
. o8y [e®1slel SR [ p e ] p )
For B € (0,1), the random variables |B,, g| = |En| < (1+8)(2+8)(3+5) L T 4B > 0 a.s. Also, for

B =1, the (Bn1)n>1 are exponentially integrable and if, furthermore, D3y is C1, B, 1 — —¥m a.s. where ym is
n

as in Theorem 1. In any case, a bias appears in our deviation controls when we consider, for a given smoothness

of order B € (0,1] for D3y, the fastest associated time steps v, = k=%, 6 = ﬁ

Remark 5. Observe that, when B = 1, the above result provides a mon-asymptotic counterpart of the limit
Theorem 1. In particular, the concentration constants appearing in Theorem 2 asymptotically match those of
the centered CLT recalled in Theorem 1, up to a substitution of the asymptotic variance §pq |0* V() [*v(dz)
by its natural upper bound |o|% |Vl .

Importantly, these bounds do not require “a priori” non-degeneracy conditions and only depend on the dif-
fusion coefficient through the sup-norm of the diffusion matriz X, assumption (C2). It will anyhow be very
natural to consider a non-degeneracy condition ([PVO01], [RS76], [Vil09]), or a confluence condition ([PP14]),
when investigating the deviations for a given function f, in order to ensure the solvability of the corresponding
Poisson equation Ap = f —v(f) and to derive explicit upper bounds for |V¢|« in terms of the coefficients b, o
and the source f which turn out to be crucial to design computable non-asymptotic confidence intervals. These
aspects are discussed in Section 2.2 below.

The alternative form of the asymptotic variance (see Remark 3) §pa |0*Vo(x)Pv(dz) = =2 §pa f(2)p(z)v(dz)
suggests that for bounded source terms f, an associated natural variance bound would be 2||f| x| ¢]w- Such a
control would a priori require less regularity on ¢ than assumed in Theorem 2. One could for instance try
to exploit suitable regularization procedures, like for instance the one proposed in Section 5.3 for the proof of
Theorem 7 below, to establish non-asymptotic deviation results under weaker assumptions. Our main objective
being to capture unbounded Lipschitz functions f, these aspects will concern further research.
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Remark 6 (Smoothness and Convergence Rate). Observe that, in coherence with the asymptotic setting of
the CLT recalled in Theorem 1, for a given ¢ € C3P(R%R), B € (0,1], the fastest convergence rate for the
deviations is attained for 6 = Qiﬂ. A bias appears, which can be difficult to estimate in practice since @ is
usually unknown.

Remark 7 (On the smoothness property of z — {b(z), V(z))). The Lipschitz continuity assumption on the
above mapping appearing in case (i) might seem awkward at first sight. It is non-intrinsic in the sense that it
involves both the drift b of the model and the test function . However, this condition naturally appears when
@ is a smooth solution to the Poisson equation Ap = f — v(f). Indeed, recalling the definition of A in (Lv),
i11), we can rewrite:

(Vp(a), b)) = f(z) — () — 5 Tr(S() D(w) ).

Hence, the Lipschitz continuity of the function in the above left hand side readily follows as soon as the source
f is Lipschitz and if D?p is bounded and Lipschitz continuous (since o is also bounded and Lipschitz). Note
that with the previous notations for function spaces the previous conditions are implied if f € Cl’ﬁ(Rd,R) c
CONRY,R), ¢ € C3B(RY,R) = D?p € C;"B(Rd,Rd@Rd) c Cg’l(Rd,Rd@)Rd). We refer to Section 5.1.2 for
details.

We now state an improvement of the previous concentration bound when |o|?> —v(||o|?) is itself a coboundary,
i.e. when the Poisson problem A9 = |o|? — v(|o|?) can be solved with ¥ satisfying the assumptions required
for ¢ in Theorem 2. Precisely, we have the following result.

Theorem 3. (a) Under the assumptions of Theorem 2 and with the notations introduced therein, provided that ¥
solution to the Poisson equation AV = |o|? —v(|o|?) satisfies the same smoothness and growth conditions as ¢,
for B € (0,1] and 0 € (ﬁ, 1] (unbiased case), there exist two explicit monotonic sequences ¢, <1< Cp, n =1,
with lim,, C,, = lim,, &, = 1 such that forallm =1 for all0 < a < Xn% for a positive sequence xp - 0
VTn

arbitrarily slowly, so that Xn@ - +o0:
~ ~ a2
(2.4) P[|\/ﬁl/n(.,4g0)| >a] <2C,exp (—cn BB > .
(b) If ¥ solve the Poisson equation A9 = ||o||?> — v(||o||?) mutatis mutandis for a matriz norm dominating the

operator norm (||o(x)|| = |o(z)]), then the above bound (2.4) still holds with v(||o||?) instead of v(|o|?).

Importantly, the above result allows to improve the natural variance bound |Vp|%|o|? of Theorem 2 by a
more refined, namely V|2 v(]|o|])2. Such a bound can be particularly interesting when the supremum norm of
o is high but its average w.r.t. the invariant distribution v significantly lower. We refer to Section 4, Theorem 8
(general form of Theorem 3) and 6.2 (numerical results) for further discussions on that topic.

Of course Claim (b) is less sharp than (a) stated with the operator norm || - | but solving the Poisson equation
for |o(z)| seems highly non trivial. By contrast, if ||o(z)| = |o(z)|r = [Tlr(aa*(ﬂz))]l/2 stands for the
Frébenius norm, Theorem 4 below yields the expected smoothness properties on |o|% — v(|o[%) that ensure
the existence of a solution to AU = |o|% — v(|o]%) meeting the required smoothness conditions. The price to
pay with such computable norms being that they usually induce some dependence on the dimension d on the
estimates (observe e.g. for the identity matrix Iy of R¢ @ R?, |Iy|r = dV/?).

2.2. Uniqueness of the invariant distribution and Regularity issues for the Poisson problem. For
our deviation analysis to work, we need to have the uniqueness of the invariant distribution v and to establish
some pointwise controls on the solution of the associated Poisson equation. Namely, we need to have quantitative
bounds on its derivatives and the associated Holder continuity modulus up to order 3.

To do so, additionally to our main assumptions introduced for Theorem 2, we will work in the confluent
setting. In dimension one, any ergodic diffusion is in some sense confluent (see [Kha80], Appendix of the
English translation, Theorem 2.2 p. 308 and its alternative proof in [LPP15] Theorem 2). Here, we will suppose
that the following condition holds:

e Confluence Conditions
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(D%) We assume that there exists a > 0 and p € (1,2] such that for all z € R%, ¢ € R?

x x)* N o g\x ’
<Db( ) + Db(x) £’€>+ % 2 ((p—2)‘<D ()€, &)l n \Da.j§]2) < —alef?,
j=1

2 13§

where Db stands here for the Jacobian of b, o.; stands for the §™ column of the diffusion matrix o and Do
for its Jacobian matrix.

Within the confluent framework, we will consider from now on two kinds of assumptions which first give the
uniqueness of v and that can lead to the required smoothness and to computable gradient bounds, which are
crucial since they are precisely the quantities appearing in the non-asymptotic Gaussian deviation controls as
emphasized in the statement of Theorem 2.

- Strong Confluence condition and regularity of the coefficients, which means that the drift is sufficiently domi-
nant in the dynamics and the coefficients are smooth (see assumption (Cr) below). Note that these conditions
may hold for degenerate diffusion coefficients.

- Non-degeneracy of the diffusion coefficient and mild confluence condition and smoothness on the coefficients
(see assumption (Cyg) below).

Under a sufficiently strong confluence condition, i.e. when « is large enough in (D%), and provided that the
coefficients b, o, f are sufficiently smooth, it is quite direct to derive, through stochastic flow techniques d la
Kunita, the required pointwise bounds for the derivatives of the Feynman-Kac representation of the solution to
the Poisson equation (see [PP14] and Section 5.1).

In the non-degenerate case, the main advantage is that we can alleviate some restrictions on « and the
smoothness assumptions on b, o, f to benefit from an elliptic regularity bootstrap deriving from suitable Schauder
estimates available in the current setting from the work by Krylov and Priola [KP10].

We now introduce a smoothness assumption on b, o, f that will be useful in both the considered cases.

e Smoothness of the coefficients and the source. For k € {1,3} and 3 € (0,1) define

(Ry.5) The coefficients in equation (1.1) are s.t. b e CK4(R%, R%), 0 € C{f’ﬂ(Rd,Rd). Also, the source f for which
we want to estimate v(f) belong to C#(R?% R).

With these assumptions at hand, we now introduce the first setting we consider.

o The confluent and regular assumption (Cr), holds if (D%), (R33), for some 8 € (0,1], are in force and
1

|Do|?, < 2(33% where | Do o 1= Sup epa <Z?=1 HDU.j(I’)H2>§ recalling that, for every j € [1,d]], |Do.;(z)|
stands for the operator norm of Do ().

In particular, we do not impose in this case any additional structure condition on ¢ which can degenerate.

In our second main framework, we will assume some uniform ellipticity conditions.
e Non-degeneracy Conditions.
(UE) Uniform ellipticity. We assume that w.l.o.g. that » = d (r = d could also be considered) in (1.1) and that
the diffusion coefficient ¢ is such that
3g >0, VEeR?, (oo™ (2)§,6) > alé|.
We now introduce our second main setting:

¢ The confluent and non-degenerate assumption (Cyg), holds if (D%), (R ), for some § € (0,1], are
in force. If d > 1, we also assume that |Do|?% < 2(270‘ and that the diffusion matrix ¥ is such that, for all

1+8)-p
(i,7) € [Ldl?, Bij(x) = Zij(zing, - 2a)-
Theorem 4. Assume that (Lv) and either (Cr) or (Cug) are in force. Then there exists a unique invariant
distribution for the solution of (1.1), i.e. assumption (U) holds.
The associated Poisson equation

(2.5) Vo e RY, Ap(a) = f(2) - v(f),

admits a unique solution ¢ € C3#(R4 R), B € (0,1) centered w.r.t. v. Furthermore, the following gradient bound
holds
[f]

(%
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and the mapping v — (Vo(x),b(z)) is Lipschitz continuous.

2.2.1. About the regularity of the coefficients. Under (Cr), the derivatives can be expressed using iterated
tangent processes and we cannot hope, without a priori any non-degeneracy condition, for a smoothing effect
to hold. To have ¢ € C3>#(R? R), we need to consider a source f € C>’(R?% R) and the same smoothness on b, o
(Assumption (Rgg)). We refer to Section 5.1 for the proof of Theorem 4 under (Cr).

In the non-degenerate case, the solvability of the Poisson problem is usually studied in a Sobolev setting, see
e.g. [PVO01]. Let us also indicate that pointwise gradient bounds have been obtained by the same authors in
[PV03] for bounded drifts and diffusion coefficients which are additionally supposed to be smooth, i.e. at least
CE’V with the notations introduced in paragraph 1.3. We point out that these estimates do not apply in our
current setting in which the drift has typically linear growth.

We eventually mention the last paper by these authors, namely [PV05]. They derive therein the uniqueness of
the martingale solution to the Poisson equation in a potentially degenerate setting under suitable local Doeblin
conditions. In that framework, pointwise controls are obtained as well for the solution itself but not for its
derivatives.

To obtain the required smoothness, we use here in the non-degenerate framework of (Cyg) some Schauder
estimates, deriving from the work of Krylov and Priola [KP10], which allow to benefit from the elliptic regularity.
Namely, to obtain the mentioned smoothness on ¢ solving Ap = f—v(f), that we expect to be in C*# (R4, R), 8 €
(0,1), we can take a source f € Cv?(R% R) and be CH(R? RY), 0 € C’I}’ﬁ(Rd,Rd).

We would eventually like to emphasize that the structure condition on 3 might seem weird at first sight.
It is actually needed to decouple the PDEs formally satisfied by (8%@)2»6[[1,(1]] in order to exploit the a prior:
estimates of [KP10] established for scalar valued PDEs. We refer to Section 5.1 for a proof and details.

2.2.2. About the confluence condition and the restrictions on o. We work here in the confluent setting of (D).
This assumption will allow, through a pathwise analysis associated with the tangent flow, to derive a pointwise
gradient bound. Another possibility to obtain such a bound is to assume a so-called Bakry and Emery curvature
criterion, see [BE85, BGL14]. Under this condition, the gradient and semi-group commute up to an exponential
multiplicative factor (see equation (2.7) below).

> Bakry and Emery curvature criterion. First, we recall that the “carré du champ” operator I' of a Markov
process with generator A reads, for every f, g in its domain D(.A)

0(f.9) = 3 (Afg) ~ FAg— 0 Af) and  T(f) = T(7. )

We also need to define the I'y operator

1
Do(f) = 5 (AT() = 20 (s, A7)
In our Brownian diffusion setting, we have

Vo e RY, T(f)(x) = 0"V f(2)]*.

whereas the computation of I's is significantly more involved. However, if the diffusion matrix ¥ = oo™ is

constant then:
D2(f)(z) := Te((D? f(2)%)?) <V f, DIV f) ().

With these notations at hand, we say that the semi-group (Pi)i=0 of A satisfies the Bakry and Emery
curvature criterion with parameter p > 0 if

(BE,) VfeD(A), Taf)=pl(f).
Observe that for ¥ = I; the condition (BE,) is actually equivalent to (D%) with o = p (and any p € (1, 2]
since Do = 0) and reads

<Db(a:) —;Db(x)*£7§> < —plel2.

The computation of the I'y for a general non-degenerate diffusion of the form (1.1) is not easy and is discussed
in [ACJ08]. In particular, in whole generality, the computation of the I's requires the coefficients of the operator
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itself to be smooth (i.e. at least C2). We also refer to [AMTUO1] if the diffusion matrix is scalar diagonal, i.e.
Y(x) = s(z)14, z€ R?, where < is real valued. In that case, it is then shown that (BE,) holds if and only if:

(26) 5 (M (&) + M*@)E,© < —ps()lel

M) = 3 (s@)A() + bla), V(@) — [Vs@)?) Lo + (5 - §) Ve ® Vo(a) — s(@)?Dbz).

An important property when (BE,) holds, see again [BE85], [BGL14], is that the following commutation
inequality holds:

(2.7) Vt >0, Yo e R, T(Pf)(x) < exp(—2pt) PI(f).

To conclude, let us say that the Bakry-Emery curvature condition is a very powerful tool to derive pointwise
gradient bounds. In our framework, this is unfortunately not enough as soon as d > 1, because additionally to
this kind of bounds we also need, to enter in the framework of Schauder estimates under (Cyg), a control of
the B-Holder modulus of the gradient (see Section 5.1.2). It does not seem that the condition (BE,) helps to
get such controls. The restrictions on the variations of Do appearing in both assumptions (Cyg) and (Cr)
are precisely needed to derive in the first case the bounds on [Dy]s and in the second one to prove that the
derivatives exist up to order 3 and that [D3p] is controlled as well. This explains why the conditions on Do
are more stringent in the potentially degenerate setting (Cr). In each case, those bounds are obtained through
pathwise analysis and the restrictions on Do ensure the time integrability of the iterated tangent flows, see
again Section 5.1.2 and Appendix A in [PP14] for details.

2.3. Practical Deviation Bounds.

2.3.1. A first Non-asymptotic confidence interval result.

Theorem 5 (Non-asymptotic confidence intervals without bias). Let the assumptions of Theorem 4 be in force.
Then, there exists a unique invariant distribution v for (1.1), i.e. (U) holds. Also, ¢ satisfies (Gv) introduced
in Theorem 2 for V(x) =1+ |z|?.

Assume that (C1) (sub-gaussian tails of the innovation) holds and that the step sequence (Vi)k=1 is such that
e =k70 0 (525,1]. Then, for (cp)n=1, (Cp)ns1 like in Theorem 2 with lim,, ¢, = lim, C,, = 1, we have that

foralln =1 anzc;g; 0 and for any matriz norm || - || dominating | - | :
2 2
28) PV ()] > a] < 2Chesp (= engpmr) with Joll i= sup llo(a)]l,
al|oleo[fTa allolec [T a?
(2.9) P [V(f) € [Vn(f) - W’Vn(f) + a\/ﬁ]] >1-2C,exp <—cn2> ,

where the parameter a is the same as in the pointwise gradient bound of Theorem 4.

Proof. Equation (2.8) is a direct consequence of Theorem 2 and the gradient bound in Theorem 4. Indeed, the

mean-value Theorem readily yields that (Gv) holds. It then suffice to observe that v, (f) —v(f) = vn(Ag). To

prove (2.9), setting as f,q = aH\U\H@%, it suffices to write:

P[u(f)e[un(f)ci‘;%l,yn(fwr%]] — 1= PVTalvn(f) = v(f)| > ao.s.]

and conclude by (2.8). O

2.3.2. A more refined non-asymptotic confidence interval when ||o||> — v(||o||?) is a coboundary. We provide
in Theorem 6 below a kind of Slutsky’s Lemma when, for a matrix norm || - || dominating |o(z)| < [|o(2)]], s-t.
llel? — v(||e||?) is a coboundary.

Theorem 6 (Slutsky type concentration result for the coboundary case). Under the assumptions of Theorem 5,
for B € (0,1] and 0 € (ﬁ, 1] (unbiased case), assuming as well that there is a unique solution ¥ to AV =

llel?=v(||all?) satisfying the same assumptions as ¢ in Theorem 5, there exist two explicit monotonic sequences
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cn <1< Cy, n>=1, with lim, C,, = lim, ¢, = 1 such that for all n > 1, for all a > 0, the following bounds
hold: zf\/‘lﬂ—n
2

(2.10) [l\ﬁyn _ (f)\ >a] <2C,exp <_Cna042>
Vealllell?) 2[f11)°

ar/vp(||o ar/vn(||lo a?
(2.11) P [I/(f) € [Vn(f) - O([\/rlf)[f]l,un(f) + o(z\/llf)[f]l]] =>1-2C, exp (—ch) :

Again, the non-asymptotic confidence interval is explicitly computable in function of the given source f, the
coefficients in the dynamics and the chosen (computable) matrix norm || - [|. It is also sharper than the one
n (2.9).

2.3.3. Towards Lipschitz sources in the non-degenerate case. We conclude this section stating a non-asymptotic
deviation result for Lipschitz sources under some non-degeneracy conditions (assumption (Cyg) of Theorem 4
replacing the condition stated there for f by a Lipschitz condition).

Theorem 7 (Non-asymptotic concentration bounds for Lipschitz functions). Let the assumptions of Theorem 4
with (Cug) hold except that f is here solely a Lipschitz continuous function. For a time step sequence (Y )g>1 of
the form v, = k=%, 6 € (1/2,1], we have that, there exist two explicit monotonic sequences ¢, <1< Cp, n =1,
with lim,, C,, = lim,, ¢;, = 1 such that for all n = 1 and for every a > 0:

2,2

(2.12) P[|v/Tn(vn(f) — v(f))| = a] < 2C, exp <—6nW>

where a is as in Theorem 4.

Such estimates are important since they allow to get rather close to the natural framework which appear
in functional inequalities (that mainly deal with Wasserstein distances and their possible deviations). Indeed,
through the Monge-Kantorovich formulation, the Wasserstein distance involves Lipschitz functions, since it is
precisely achieved taking the minimum over Lipschitz functions for all possible coupling with marginal corre-
sponding to the arguments of the distance (see [BGL14]).

In the literature, some non-asymptotic bounds can be found for the deviations from its mean for the Wasser-
stein distance between the empirical measure of a homogeneous Markov chain and its stationary distribution
(see Boissard [Boill]). Here, we manage to get directly the non-asymptotic deviation bounds over all possible
Lipschitz functions for the empirical measure of the scheme aiming directly to approximate the target stationary
distribution of the diffusion. Handling the Wasserstein distance in our framework would amount to consider
the supremum over the Lipschitz functions in the probability in (2.12). This will concern further research.

We eventually point out that Theorem 7 is obtained through regularization arguments of the source f
exploiting the previous results of Theorems 2 and 4 (see Section 5.3 for details). This leads to a constraint on
the steps, i.e. v, =n"?, 6 ¢ (%, 1]. This is the price to pay, indeed a bigger 6 yields a lower convergence rate, to
handle less regular Lipschitz sources. Also, to perform the approximation procedure we precisely need a kind of
elliptic bootstrap (like in Theorem 4 under (Cyg)). This is why we impose the non-degeneracy assumptions.

3. PROOF OF THE CONCENTRATION RESULTS (THEOREM 2)

For notational convenience, we say that assumption (A) holds whenever (C1), (GC), (C2), (Lv), (U) and
(S) are fulfilled. We assume throughout this section that (A) is in force and that the function ¢ appearing in
the lemmas satisfies the smoothness assumptions of Theorem 2.

3.1. Strategy. To control the deviations of v, (Ap) we first give a decomposition lemma, obtained by a standard
Taylor expansion. The idea is to perform a kind of splitting between the deterministic contributions in the
transitions and the random innovations. Doing so, we manage to prove that the contributions involving the
innovations can be gathered into conditionally Lipschitz continuous functions of the noise, with small Lipschitz
constant (functions (¢(Xk—1,"))kef1,n] below). These functions precisely give the Gaussian concentration, see
Lemma 2. The other terms, that we will call from now on “remainders”, will be shown to be uniformly controlled
w.r.t. n and do not give any asymptotic contribution in the “fast decreasing” case 6 > 1/(2 + () (with the
terminology of Theorem 2), see Lemmas 3, 4 and 5.
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Lemma 1 (Local Decomposition of the empirical measure ). For alln > 1 and k € [0,n — 1]:

1
©(Xi) —o(Xi—1) = MmAe(Xp—1) + {Wc fo (Vo(Xp—1 + typbr—1) — Vo(Xp_1), bp—1)dt

1
+§'Yk TI'((D2SD(X]§_1 + Yebr—1) — DQ@(Xk—l))Ez—l) + Y (Xp—1, Uk)}

(3.13) = A1) + (Ur(Xko1, Up) + Bl (Xen) )
where for all k € [[1,n]], conditionally to Fi_1, the mapping u — ¥p(Xk_1,u) is Lipschitz continuous in u with
constant /Vi|log—1[[Ve]oo-

Introducing for a given k, the mapping u — Ag(Xp_1,u) 1= ¥ (Xk—1,u) — E [¢p(Xk—1,Ug)| Fr—1], we then
rewrite:

P(Xk) — p(X—1) = AP(Xp—1) + Ap(Xg—1, Ug) + R g (Xp—1),

with Ry, j(Xg—1) := RiL’k(Xk,l) + E [¢(Xk—1, Uk)|Fr—1]- The contribution Ag(Xi_1,Ux) can be viewed as a
martingale increment. Introduce now the associated (true) martingale

(3.14) My, = Y Ap(Xp—1, Ug).
k=1
Summing over k yields:
(3.15) 0(Xn) = 9(Xo) = Tnim(Ap) + My + > Ry i(Xp1)-
k=1

Defining Ry, := > R k(Xi—1) + ¢(Xo) — ¢(X,,) we obtain the following decomposition of the empirical
measure:

(3.16) n(A) = =5 -(My + Ro).

- Unbiased Case (Sub-Optimal Convergence Rate). This case corresponds to fast decreasing steps of the form
e =k 6> 1/(2 + ). To investigate the non-asymptotic deviations of the empirical measure, the idea is
now to write for a, A > 0:

Pl\/Tuvn(Ap) > a] < exp ( _ )E [exp ( — F);L(Mn + Rn)ﬂ

vIn
ax qA Va PA Py
3.17 < exp(— )E[exp(—M)} Eexp(—R ) ,—+—-—=1, p,g>1.
(3.17) VT, r, " T, o P g
We actually aim to choose ¢ := ¢(n) — 1. For a suitable choice of ¢ satisfying the previous condition, we
n

manage, in the fast decreasing case, to show that %, := E [exp(g—/\‘ R,|)]YP — 1. For the term involving the
" n

martingale M,, we actually use the Gaussian concentration property (GC) of the innovation on its increments
(Ak(Xk—1,Uk))re[1,n]- Namely, using the control of the Lipschitz constant of Ay (Xy_1,-) stated in Lemma 1,
we derive:

E{exp(—g;\LM )] - E{exp(—g/\Mn_l)E{exp<—q/\An_l( w1, Un) ) | P 1”

n

q>\ )\2 )\2 2 5
(318) < Elew (- £ 0000) [ (GEmlol Vel ) < e (o2l ).
iterating the procedure to derive the last identity. From (3.17), we thus get:
aA

PIVTurn(Ap) 2 o] < @ exp (- S+ 5 ol [7l2,).

Keeping in mind that we manage to find ¢ := g(n) |,, 1 such that the remainder %, |, 1, the result of Theorem 2
in the considered case then follows from a quadratic optimization over the parameter .

- Biased Case (Optimal Convergence Rate). This case corresponds to slow decreasing steps of the form v, = k=,
0 = 1/(2+/3). In this setting, some terms of the remainder R,, in (3.16) give a non trivial asymptotic contribution.
We choose to substract them before studying the deviation (term B, g in (2.3)).
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3.2. Explicit controls on the remainders. Summing the increments appearing in (3.13), we now choose for
the analysis to write for a given n € N the remainder R,, defined after (3.15) as

= > Rnp(Xk—1) + ©(X0) = 9(Xn) = (Dopn + Dasin) + Gn — La,

k=1
where:
n 1
Dopn = Z’ka (Vo (Xg—1 + tybr—1) — Vo(Xg_1), bp_1)dt
k=1
Dy, = ! y Y Tr ( (D*o(Xp—1 + Yebi—1) — D*0(X4-1)) 71 )
2 k=1
Gn = D E[(Xi—1,Up)| Frl,
k=1
(3.19) Ln = ¢(Xn) — (Xo).

We refer to the proof of Lemma 1 to check that the above definition of G,, actually matches the term +/ FnEﬁi
introduced in equation (2.2) of Theorem 2. We rewrite from (3.16)

1 1 _
(320) Vn(AQO) = _7(Mn + Rn) = _F(Mn + (DZ,b,n + DQ,E,n) + Gn - Ln)

L'y
We now split the analysis according to the cases (a) and (b) introduced in Theorem 2.

(a) € (1/(2+p),1], B € (0,1]. From (3.20), the exponential Tchebychev and Hélder inequalities yield that, for
all A\e Ry and all p,q € (1, +0), Il)+ 3 =1,

e R S I D))
e <Eexp <2§j\(‘L”‘ + |G"D)> ’ (Eexp <|D2b"|)> ’ <EeXp ( ))41‘7 :

(b) 6 = ﬁ, B e (0,1]. If B =1, denoting, D, := Da}p, + Da s, we have from (3.19) and with the notations
of (2.3), (Gn + D2y) = vVTnByi. We study the deviations of:

Gy + Doy, a
Pl\/Tnvn(Ap) + Bog = a] = IP’[I/”(.Ago) + . 2n m]

< exp ( _ j%) <Eexp ( — lq“iMn>>; <Eexp (?2|Ln|)) v
(3.22)

For 3 € (0,1), the contributions of Ds; do not yield any asymptotic bias. Recalling from (2.3) that B, g =

Eﬁ = %, we write:

P[\/ﬁyn(ftcp) + B85 > a] = P[Vn(Ago) + ?: > \/%] < exp ( — \;L%) (]Eexp ( — lq“i\LMn>>}l

52 (e (2210))” (esp (22102001) ) (oo (E21020)) "

Remark 8. Observe that in case (a), the “small steps” and the corresponding sufficient smoothness of ¢ prevent
from the appearance of a bias. As a result, the concentration bound is, at the non-asymptotic level, the same
as in Theorem 1, up to the additional upper-bound for the variance. In case (b), we subtract the terms By, g

that asymptotically give a bias. When B = 1, this is the case for both terms %’ DFan‘ Also, for D3¢ € C',

Bn1 = G"\J/rrﬂz’” — —Am introduced in Theorem 1. For B € (0,1) and ¢ € C3(R%,R), [¢®)]s < +o0, the only
n n

term giving a bias is By, g = ES = \/GFL
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The lemma below provides the Gaussian contribution to be exploited in inequalities (3.21) - (3.23).

Lemma 2 (Gaussian concentration). For a > 0, g € (1,400), setting
a
(3.24) Api= ——— /T,
" dlelZIvels YT
we derive:

1
a q)\TL E a/2
exp —M) <Eexp - =M, ) < exp <—> .
( NI ( Ty ) 2o %1V elZ

Lemma 3 (Bounds for the Conditional Expectations). With the above notations, we have that for 8 € (0,1],6 €
[ 1]:

_ 3+ 348
Gl _ [p®s ol B[0P Ty )

= , @.S.

<ap:
VT, (1+8)2+8)B+8) VIn
Moreover, a, — ax, with axp = 0 if 0 € (ﬁ, 1] and axy > 0 if 0 = ﬁ Also, for € (0,1], 0 € (525,1]:

B =

20\ | = E An A2 a’p
2 Eexp ( W) ] < e (Fean) <exp (53 + 22E), 1.
(3.25) < exp T |Gyl ) exp ma ) exp oT.p + 5 Vp >

As indicated before, we now aim at controlling the remainders. In particular, from (3.17) and (3.19), we are
led to handle terms of the form

Eexp (ckzlfy,%]b(Xkl)F) (El) E exp (cCV l;’yg]V(Xkl)D

for small enough real constants ¢ > 0.
To this end, we will thoroughly rely on the following important integrability result for the Lyapunov function.

Proposition 1. Under (A) there is a constant cy := cy((A)) > 0 such that for all A € [0,cv], £ € [0;1]:
I‘g, = sup E [exp(AV$)] < +o0.
n=0

We now have the following results for the terms appearing in (3.19).

Lemma 4 (Initial term). Let ¢ € (1,400) be fixzed and X\, be as in (3.24) in Lemma 2. For functions ¢
satisfying (Gv), i.e. there ezists Cy,, > 0 such that for all v € R, |p(z)| < Cvu(1 ++/V(2)), for p := o1
and j € {1,2}:

L . 2 2 . 9 9
Eexp <]p/\ ) < I)dp exp - - F 4 7 = (I,)i» exp ) + X ’
< "T, ) T2 p ) =W Pl BIVeiT, T D

with cy, I‘l/ like in Proposition 1.

Lemma 5 (Remainders). Let ¢ € (1,4+00) be fizred and A\, be as in Lemma 2. Then, there exists Cz96 1=

C3.26((A), ¢) such that forp = 3:
1
4p )\2 F7(7,2) 2 1
)) < exp (CS.ZGPTL(IQ) (I‘l/)4p.

4p,
(3.26) (Eexp< lzi ’DQ,Z,n

We also have:

- If the mapping © — (NVp(x),b(x)) is Lipschitz continuous, then there exists Cs.97 := C((A),p) > 0 such that

1
4pA, iz MO\
(3.27) (EeXp( llzn |D2,b,n|)> " <exp (03.27]%2))(—7\1/)41‘”-

2Vel: VT
_ Fora < -24 lol% Vel n
= 4Cyp [D%gf5, @

there exists an RT -valued sequence (vy)n>1 such that ’vn| < Cs.98 := C3.28((A), ¢)

and

1
4dpA ap
(3.28) (EeXP( T n\Dz,b,nD> < (Iy)".
n
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Also, vy, — Vo where v, =0 if @ > 1/3 and vy, > 0 for 6 = 1/3.

Proof of Theorem 2. From Lemma 2 we get:

1
Mo\ @ an, a?
3.29 Eexp | — gA\n— ) exp| — —=—) < exp (—) .
5:29) (Bow (-ong?)) oo (- 32) 2o IV
(a) We deal with the case § € (0,1],60 € (2+B’ 1].

(i) We suppose that the mapping = — (Vp(z),b(x)) is Lipschitz continuous. Plugging in (3.21) the controls
from (3.29), Lemma 3 equation (3.25), Lemma 4 (with j = 2) and Lemma 5 (equations (3.26), (3.27)), we get:

a a? A2 pa;, CV Ao ey i
P v, (A 2] < exp <—> exp ( —l——) exp 790—1— Ii)2r
[ Vi 2¢[o]Z[VelZ M,p | 2 otz Ty )

A2 (12 n A2(TP)2 1
. (CW (1« exp (Coan B0 (1)

n

a? 1 p (6C% 1
I)eexp | — 1— - 2 4 2[C3.06 + Cy07](P)2) + =
<) p( ooz U e 1y (o + 2Com + ComlTRF) + )
2
v, DPay
(3.30) xexp(p +7)

Recall now that for 6 > ﬁ 1/3, F /\/ 07 Fg)/\/ — 0 (see Lemma 3 and Remark 2). We now

")

take p := p, — 400, and therefore ¢ := ¢, — 1, such that pl/zr — 0 so that from Lemma 3, p,a2 — 0.

348 n n m n n

(3%8) (2)
Since F\/FT—n > \F/TTL this in turn implies:

1 pn (6CF, 1
(3.31) d, = {*( + 12C3.96 + 3C3.97 ( ( )) ) _}_7}_)0.
" anlolZ Vel AT\ ey +l | pn)

1
We conclude from (3.30) setting ¢, = ¢, (1 — dy,), Cy, := (1) P exp(pin[cv + %] + %) - 1. Observe that
taking an increasing sequence (py)n>1 readily yields Cy, |, 1, and gy, |, 1. Also, the sequence (py)n>1 can be
chosen in order to have, for n large enough, d, |, 0 so that ¢, 1, 1
2 2
(i) Assume a < %%F—Vg’;. Plugging in (3.21) the controls from (3.29), Lemma 3, equation (3.25) ,
v o Ty
Lemmas 4 (with j = 2), 5 (equations (3.26), (3.28)) we then derive:

2 2 2
a a A pa CV )\n cy
Plintdp) > ] <o (~ gt o (g + 2ot ewp (b 4 ) o
nlAP) > P AT 2402 Velz ) TP \arp T 2 /P T2 T ()

2 (1 (2)y2 L
X exp <0326p)\ (FI; ) )(Iv)4(lv)

2 2 1 p (6CF, 1
< (1Lt <Cv+p”> S e —_—ED R e T A R = A R
<@ (5 e | g oo (- om0 2Canl@F) + 7))

(3.32)
Since 0 > m > 1/3 (see Remark 2), we again take p := p,, 1,, + so that p,l/ 2an - 0 which also guarantees:
1 6C%, 2C506(TP)2\ 1
(3.33) dy = - . { ( Vi 3:26(I”) ) + 7} 0.
qﬂHUHooHVSOHOO cvl'y 1% Pn’ n

In this case, we derive the result by setting ¢, := ¢; (1 —d,) — 1, Cy := (I‘l/)v"+‘h'% exp(2L + %) -1
n n n
(see the limits of v, following equation (3.28) and (3.46)). Again, (pn)n>1 can be chosen in order to have the
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stated monotonicity for n large enough. Set now

cvlolZIVelZ g

3.34 Xn = ,
(3.34) "= 40, D%, b

VDin
r”
the parameter a.

(b) It remains to analyze the case 5 € (0,1],60 = ﬁ Let us deal with 5 = 1. From (3.22), the controls of (3.29)

so that a < x, Thus, the slower p,, goes to infinity, the wider the domain of validity for the estimate in

and Lemma 4 (with j = 1) we get:

Gp+ Do a ] a? 2pCE N2 oy !
P | v, (Ap) + = = > <exp|——-—F5—— Jexp | —22—= + — | (I{))>.
[ n(Ae) r, VT, 2qllo(%1Vel3 cyT? p (1v)

Recalling the definition of A, in (3.24), we conclude as previously with obvious modifications of (¢;)n>1, (Cn)n>1-
The case 3 € (0,1) is handled similarly starting from (3.23).
Also, when D3p € C!, we derive similarly to the proof of Theorem 10 in [LP02] that B, 1 — —¥m.

Eventually, the final control involving the two sided deviation is derived by symmetry. =

3.3. Proof of the Technical Lemmas. This section is devoted to the proof of the previously used Lemmas 1—
5 and Proposition 1 which were the key ingredients to derive Theorem 2.

Proof of Lemma 1. For k € [1,n]], we first write:

©(Xk) — 0(Xp—1) = (0(Xk) — o(Xp—1 +br—1)) + ((Xg—1 + br—1) — ©(Xi-1))

(3.35) = T 1.,(9) + Th1.a(),

in order to split the random and deterministic contributions in the transitions of the scheme (S).
We then perform a Taylor expansion with integral remainder at order 2 for the function ¢ in the two terms
of the r.h.s. of (3.35). Namely, with the above notations:

1

Ti-1,4(¢) = Awbe—1 - Vo(Xip—1) + 'YkJ (Vo(Xp—1 + tybp—1) — Vo(Xp_1), bp_1)dt,
0

Tpc10(0) = vV ok—1Uk - Vo(Xp_1 + mbr—1)

1
+Yk f (1—-t)Tr (DQQO(Xk_l + Vb1 + t\/%Uk_lUk)O'k_lUk ® Ukcr;’;_1>dt.
0

Hence,

o(Xk) — p(Xp-1) = Ae(Xi—1)

1
+’ka (Vo(Xik—1 + tyebr—1) — Vo(Xk—1), bp—1)dt + \/Yk0k—1Uk - Voo(Xk—1 + Yibr—1)
0

1
+’}/kf (1—t)Tr (D%O(Xk,l + Vb1 + t\/%gkflUk)kalUk ® Uk0—;§71 — D2¢<Xk,1)2k,1>dt
0
1

= YAp(Xp_1) + %J (Vo(Xk—1 + tyebr—1) — Vo(Xi—1), bp—1)dt
0

1
+’ijo (1- t)Tr((Dz‘P(kal + Yebr—1) — DQSO(kal))Zkfl>dt + ¢ (Xp—1, Uk)

(3.36) = WwAp(Xp1) + D5y, + D + $i(Xi—1, Ui),
where
Ur(Xe—1,Ur) = /0k-1Ux - Voo(Xg—1 + Yebr—1)
+ Yk Sé(l - t)Tl“<D2%0(Xk71 + Ybr—1 + ty/VkOk—1Uk)0%—1U @ Upoj_| — D*o(Xp—1 + fykbk,l)Zk,l)dt.
(3.37)
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Observe now that, conditionally to Fi_1, the mapping u — i (Xg_1,u) is Lipschitz continuous: indeed, the
innovation Uy does not appear in the other contributions of the right side of (3.36). Consequently, as ¢ is
Lispchitz continuous we derive, for all (u, ) € (R%)2:

|00 (X1, 1) = p(Xp—1, 0)| < Vglon-1] [ Veplloo|u — o],

The result is obtained by summing up the previous identities from k = 1 to n, observing, with the notations
of (3.19), that Ly, = 3551 ¢(Xk)—¢0(Xg-1), Dapn = 2y Dl2€,b7 Dosm =2k DS,E’ G =21 Ye(Xy—1, Ug)-

[}

Proof of Lemma 2. The idea is to use conditionally and iteratively the Gaussian concentration property
(GC) of the innovation. Let us note that this strategy was already the key ingredient in [FM12]. In the
current framework, we exploit that the functions u — Ag(Xg_1,u) := ¥k (Xgk_1,u) — E [p(Xg—1, Ug)| Fr—1] are
conditionally independent w.r.t. Fj,_; and Lipschitz continuous with constant \/9x|c|«| Ve[ by Lemma 1.
We thus write:

Eexp ( — g‘—AMn) = [Eexp (q)\ i Ap(Xk—1, Uk))
n " k=1
- E[exp(flqﬂi _1Ak<Xk_1,Uk))E[exp(1?AA (Xo-1,Un) ) [ Faca ]|
" g=1 "
(3.9 < Bfon (- 25 A0, 00) e (o 21Tl ) |
n - n

where we used (GC) in the third line recalling as well that E [A,(X,—1,Up)|Fn-1] = 0.
Iterating the process over k, we obtain:

q>\2!0|§o|Vs0|§o>
2T, '

(3.39) (E exp (- I(i:Mn)>; = (Eexp (- A i AR(Xp1, Uk)))

Finally,

€xp ( - \j\%) (Eexp(— IciiMn>>q < exp (i]/(%)?

where g : Rt — R is defined by g(\) = — AT %HO’H%OHVQDHEO. As a > 0, the function attains its minimum

at A, given in (3.24). This eventually yields the expected bound. o

Proof of Lemma 3. From the definition in (3.37) and the Fubini theorem, we have that for all k € [1,n]:

E [tr(Xk—1, Up)| Fr—1] = Sé(l —t)Tr (E[D%(qu + Yibp—1 + t\/Vok—1Uk) 01 Ux @ Upofi_,

(3.40) —D2p(Xp1 + ykbk_l)zk_1|f,€_1])dt.
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Recalling that Uy has the same moments as the standard Gaussian random variable up to order three (see
(GC)) and is independent of Fj_1, a Taylor expansion yields:

E[TI"<D280(X1€71 + b1 + ty/VkOk-1Uk) ok 1Ux @ Upoi_; — D*o(Xj_ 1 + ')’kbkfl)zkfl) ‘fkq]

= TT<D290(Xk—1 + Ybr—1)ok1E [Up ® Uk]UZ‘_1)

1
+f0 E[Tl"((DSSO(Xk—l + Yrbr—1 + ut\/AkOk—1Us )t/ Ve 0k—-1Uk) (03—1 U ® Uk0z71)> ’]:k—l]du

—Tr (chp(X/H + 'kakfl)zk71>

= TT<D290(X1<;—1 + Yebr—1)ok—1 (E[Ux @ Up] — 1) U;—1>

=0

1
+t\/%f E[Tr(([DgSO(Xk—I + Yebk—1 + uty/Tkok—1Ug) — D*p(Xp—1 + ybr—1)]ok—1Uy)
0

x (05-1Uk @ Uka;:_1)) ’fk_l]du,

recalling from (GC) that for all (i,5,1) € [1,r], E [UéUZUﬂfk—ﬂ — E[UiU]U!] = 0 (cancellation argument).
Hence,

1 148 1
e (Xt UDIFll < o [ (0= 00 LB o [P0 [Pl 7
0 0

(o ® g0 ® lows PR [JU[5+5]
(1+8)2+ 8B +5) ’

recalling that the third derivatives of ¢ are S-Holder continuous for the first inequality. We thus derive:

e n— (342)
s G 1S [e®]glo|3 B[O PP T, 2
SN m,;l Bl UAll < S0 T aa s v,

Proof of Proposition 1. First of all, let us decompose the Lyapunov function V with a Taylor expansion
like in Lemma 1. We again use a splitting between the deterministic contributions and those involving the
innovation. We write for all n € N:

1

V(X)) = V(Xn1) = 7 AV (Xnit) +73Lf (1 —t)Tr<D2V(Xn_1 4 tnbn1)bn_1 ®bn_1)dt

0

—72£Tr(D2V(Xn,1))zn,1) S nOn1Un - VV (X1 + Ynbp_1)

1
—i—’ynj (1—{)Tr (D2V(Xn_1 4 bt + ty/TnOn1Un)on_1Un ® Una;;_l)dt
0

2
Ay V(Xn1) + 3By + Cyp 2 D2V [V (Xr)

<
Tn Tn
+5HD2VHooHaHi + V/mOn-1Up - VV(Xp1 + Ynbn1) + 7HDQVHooHUHEOIUn\2
(0% ~ n
(3.41) < %( — 7V (Xp 1) + c) + A/ TnOn-1Up - VV (X1 + Ynbn_1) + %\|D2vuwy\au§o|Un\2

for a constant ¢ := ¢(V, 0, By). We have in fact considered the time steps sufficiently small (in (S), we have
. 1 o . . . . .
chosen for all n € N, 7,, < min( /O I [‘)’2‘/“@ )). The two terms involving the innovation U, in the above

decomposition can be controlled thanks to the Gaussian concentration hypothesis (GC). Let us define for all
x € R? and all v, A > 0 the quantities:

L3, A, @) = E| exp (A\WFo(@)Us - VV (@ + 30(2)) | 227 3) i= E| exp (AL IDV oo o203 |
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The first one is directly controlled owing to hypothesis (GC):

Nonlo* (@) VV (z + an(ﬂﬁ))!2>
(

< ex
2

S

Lv)

(AZ’%CV loZV (z + yb(z)) )

(3.42)  L(yp, A\ z) < exp( 5

2c

Furthermore, under (GC), for all ¢ < L, I. := E[exp(c|U,|?)] < +c0. Hence, for all A < VLo lE

2
Jensen’s inequality yields:

Ml D2V owlol% 2‘7 2
’ = exp (’Vn 111(1c)2|c||00>-

These controls allow to prove the integrability statement of the proposition by induction. For n = 0, recalling
from assumption (C1) that for all A < Ao, Eexp(\|Xo|?) < +c0 and from (Ly), i) that V(z) < ¢|x|? outside of
a compact set, we derive that for all A € (0, /\—EO), there exists C"O//\ € (1, +0) such that

(3.43) Ly, A) < [E exp (CIUnI2)]

Eexp (AV(Xp)) < Cp.

Set now 5V = ¢+ In([, )7“[)2‘/“?“0“@ and &y := min (i Y —AC, o) +1C 1+ 1D VHOO])) e (0,1],

Y’ et
Yy

for \ < 5 .
20y, |3 (14+m O, [1+ 22 )

Ao Qy c
Let us assume that for all A < Ay := min (2 20, HJH%’O(HmCV[H”1”D§V”°°])7 HDQVlloollffllgom)’ the property
(Pn_t) vk € [0,n — 1], Eexp (AV(X3)) < Cyp i= C¥, v exp ( ﬁv)

v

holds for a fixed n — 1 € Ny and let us prove (P,). By inequalities (3.41), (3.42) and (3.43) and the Cauchy-
Schwarz inequality, we derive that for all A < Ay,

Eexp (AV(X,))

E| exp (AV (Xo-1))E[ exp (A(V (Xn) = V(Xn-1))) [ Fa-i]]

< E[exp (A[V (X _1)(1 — %V%) + D) I (s 22 X)) Y2 (o 2)\)1/2]
— exp (A%BV)E[exp </\(1 - %V%)V(Xn_l) + A2, 0, o)AV (Xt + %bn_l))].

(Lv),id)
Recall now that V(X,—1 +vnbn—1) < V(Xn—1) + 1| VV (Xpn=1)||bn-1] + %HD2VHOO|bn_1\2 < V(Xp-1)(1+

mC,[1 + M]) Thus,

Elexp WV (X)) < exp (\By)E| exp (A (1 = ) V(Xa )|
€[0,1)

(Jensen)

N (1—yndiv) &
< eXp(/\vnﬁv)E[eXp(/\V(an))] e < exp (M fv)CU )

using (P,,—1) for the last inequality. From the above equation and the previous definition of Cv, A we have:

exp ()\%ﬁv) 1 %a‘/) SOy = Cyp 2 eXp( fv)

14

Hence, (P,) holds. Taking ¢y < Ay completes the proof. o

Remark 9. Noting that v* := inf,cga V(z) > 0, we get that for all (n,&) € Nx[0,1], and for all A\ < Ay (v*)1~¢:

Eexp(AVS) = Eexp ()\(v*)5 (%)5) < Eexp (A(v*)s_an) < Cyppr)e—1 < +0.
N

>1

Thus, we readily get as a by-product of Proposition 1 that, for all ¢ € [0,1],\ < Ay (v*)17¢, supneNEexp(AVf) <
+00. We refer to Lemaire (see e.g. Theorem 17 in [LemO7]) for additional results in that direction.
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Proof of Lemma 4. Recalling from (Gvy) that there exists Cy,, > 0 such that for all z € RY, |p(z)| <

Cv(14++/V(z)), we get for j € {1,2}:

{EeXp (ijnMXO)Fn@(X")')F < !Eexp (ij Crp(2+1/V(Xo) +/V(X )

1
Jjp

L'y

1 1
< exp (20‘/(;,;\‘ ) [Eexp (2]]9 Cv, o n ‘/1;(5(@)] v [Eexp (ij C’V#;)\nV(Xn))] v .

Write now for i € {0,n} by the Young inequality:

V(X;) (7p)*CY A%
2j " < X;) +
JpCv, oA T, cvV(X;) + T2

where cy is the positive real constant such that I{, = supE [exp(cyV(X,))] < +%0 (see Proposition 1). We
nz=0

then get
1 1

B (ivh ‘w(XO)r_f(X”N)F) < exp (200, ) exp (W> (EexplevV (Xo)) ™ (Bexplev V(X)) ™

i+ 1)pC2 )\%
< exp (W) exp <C;)/> (I‘l/)ﬁ L]
Proof of Lemma 5.

e Proof of inequalities (3.27) and (3.28).
- If £ — (Vp(z),b(x)) is Lipschitz continuous. We first rewrite from the definition of Dy ,, in (3.19):

Dyppn = %J (Vo(Xi—1 +tybp—1) — Vo(Xp_1), bp_1)dt

R‘

= D m J (Vo(Xg—1 + tykbk—1), b—1 — b(Xg—1 + typb—1))dl
k=1

+ fo (Vi B (X1 + i) = (T, b)) ]

From the boundedness of Vi, and the Lipschitz property of the mappings z — b(z) (which has been assumed
from the very beginning) and z — (Vy(z),b(z)) (assumed for the current inequality), recalling that by_1 =
b(X)—_1), one derives that :

Ba1) Dol < 2 R(IVelelh + (Tbn ) Pt < 0 Y tiaal: € = Ol

k=1 —

From this inequality, assumption (Lv), ii) and the Jensen inequality (applied to the exponential function for
the measure @ Y1 V26k), we derive:

4dpA,
Bexp (
( exp (22
From the Young inequality we obtain:

IEexp(le)\F C’\/i\/K) exp((mfp)\F Cf)) E [exp(cy Vi—1)]-

We finally derive with the notations of Propos1t10n 1:
1
4pA,, i» 2pA2 (T C«/ 1 N(Ty )2 1
<Eexp( ];‘ , )) ’ < exp< P F2 ) IV 41 < exp (Cg_g7pné)>(f‘l/)4lﬁ,

2
setting C5.97 := PV ”cfv) with C = 3 (|Ve|w[b]i + [(Ve, b>]1) as in (3.44).

L n (2) ap
, )>4p < (P}Z) D iEexp <4pAanFn cm%)) y

n k=1
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O

- Ifa< &‘(qp%\r/g = Xn\/@T with the notation introduced in (3.34). Write first from (3.19) (definition

of Dy} p,), using a Taylor expansion on V:

4dpA,
Eexp (
( exp T,
(3.45)
We first easily get from the assumptions on ¢ and point ii) of (L) that:

dphy,
<Eexp( ?

From the Jensen inequality,we derive:
1

1 L
4p/\ i 1 & 2pA T v
We then have from the definition of A, in (3.24) that:

2pAaLsy) D%l Sv = Y 2C,p [ D%
D20, v =
Ly v VTn eva |o]Z[Vel%

The Jensen inequality for concave functions yields for all k € [[1,n]:

1

>>41 (EeXp p - f (1t ‘Tr O(Xp—1 + tyrbr—1)br—1 @ b 1>‘dt>>4p.

”kl

1

1 n 1p
)) 4p < (Eexp <2§)\n 2 ’Y;?CVVk1’D290“oo)> ' .

k=1

a<1.

Up 1=

2pAn, F Tn,
E exp (pF7|‘D2(pHOOC Vi_ 1) = Eexp (@nchk_l) < (Eexp (cVVk_1)> .
Thus, setting
- (2)
v Al C
: n = RALEE L “ D2 7‘/’
(3.46) o= G = S| DYl 2

we finally derive,

) 1
4pAn ip 1 ¢ on | 1
[Eexp( 111 ‘DZ,b,n‘)] "< [I‘(Q) 2 fy,%<supE [exp(chl_l)D ] = (IL) = Cy,
n n’ k=1

=1

using again the notations of Proposition 1. This gives (3.28).
e Proof of inequality (3.26). We proceed as for the proof of (3.28) and (3.27). Write:

4dpA, i Yk ’Tr((D2<,0(Xk—1 + Yebr—1) — DQSO(Xk—I))Zk—l) D) ip

1 1
2 )\ n 4p 2 )\ 1 n 1 4p
< [Eexp (2 o]% [0 Z Yielbr-1 ) < EeXp( P o2 [p®PToe Y] ’Y;%\kaﬂ?)
r, = r, =
a1
1 & 2pA P 1 N
< (U M tEexp (Lo [P 1 G Vi) |
I’ k=1 n
(2)
Using once again the Young inequality and setting C3 26 : w Gv. , we obtain:

(2)

(Eexp (?’DZE’”D); <oxp (22 (F()) ol PR (1) < e (Coan2 (T2) i), O
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4. A REFINEMENT WHEN ||o[|? — v(||o[|?) 18 A COBOUNDARY

We will assume in this section that there exists a solution v of the Poisson problem AY = [|o||> — v(||o[|?),
where [ - || is a matrix norm such that | - || < || - ||, satisfying the assumptions stated for ¢ in Theorem 2. This
is in particular the case for the Frobenius norm | - | under the assumptions of the previous Theorem 4.

In this special case, we have a slightly different concentration result improving our previous ones for a certain
deviation range.
Theorem 8. Under the assumptions of Theorem 2 and with the notations introduced therein, we have that:
(a) For (B € (0,1] and 0 € (ﬁ, 1]), there exist two explicit monotonic sequences &, < 1 < Cp, n = 1, with
lim,, C’n = lim, ¢, = 1 such that for alln =1 for all a > 0:

~ ¢
Pl Thvn(Ap)| = a|l < 2C,exp <— - @n(a)) ,
[ ] Wl IV AT

1

2 1 2 (Th\?
O, (a) := <a2 (1 — )) v (aéF%En (1 — —Cp, <2> > ) ,
1+4/1+4c s 37 \a .
/ _
where r4 = max(z,0) and ¢, := <%) v(lall® el 23, with &y being an explicit positive sequence s.t.

(b) For g € (0,1],0 = 2+B’ there exist two explicit monotonic sequences ¢, < 1 < Cy, n = 1, with lim, C), =
lim,, &, = 1 such that for allm =1 for all a > 0:

~ [
PllvVTnvn(Ap) + By gl = a <20€Xp<— - @(a)).
[V Ewn(Ag) + Bl 2 a] < 2Cnexp =5y ™
Remark 10 (About deviation rates). Observe that in order to derive global deviation bounds (valid for every
a > 0) two concentration regimes appear in the previous bounds. For an arbitrary fized a > 0, we have
that for n large enough (depending on a), the Gaussian concentration regime will give the fastest decay, since

2 . . . . . .
——=— — 0. Also, when a = +/I',, the two above contributions give a Gaussian bound, with suboptimal
144 /1448, 8 Iy ’ n g ) P

n

constants Eventually, when a » /I’ o for a fized n, we have that the first term is “stuck” at the threshold 'y,
hat level idered, 1—— 3T, wh th d clearly b bi
whatever level a is considered, i.e. a ( 1+\/m) — ¢, I'y, whereas the second clearly becomes bigger.

a—00

To summarize, when the Gaussian regime prevails (i.e. when \/% is small), the results of Theorem 2 have

been improved in the sense that the variance in the deviations is a sharper upper bound of the “carré du champ”
Spa |o*Vo(z)|?v(dx) appearing in the asymptotic Theorem 1. Indeed, we managed to replace the supremum norm
llol?, deriving from Theorem 2 and the domination condition on the matriz norms by v(||o||?). However, our
martingale approach naturally leads to a bound in |Vl|% .

On the other hand, the global double regime seems to be the price to pay to benefit from the better approrimation
of the “carré du champ” in the Gaussian regime.

Eventually, Theorem 8 is a direct consequence of the previous theorem in the Gaussian regime.

Proof. We focus on case (a) for g€ (0,1), 6 € (1/(2 + 8),1]. Case (b) could be derived similarly following the
proof of Theorem 2. We restart from the computations of Section 3.1 that give for all A > 0 the control in
equation (3.21). Let us now deal with the term giving the concentration and write for all p > 1:

1

Eexp(—l({j:Mn) < (Eexp(—p](?j\LMn—((];)i Vi A (Xo— 1)))p
1
F

n = 11
(4.1) X Eexp( Z N Xp—1) ) =97, ".
Since for all z € RY, A9 (x) = ||o(z)]|? — v(||o]|?), we obtain:

200 \)2[ ]2 2 A 2(00)2[0]2 &
7 = exp (LI o, (2207, - HOVTE S o, )7),
n n no =

2
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The key idea is that we have exploited the Poisson equation solved by ¥ to replace the previous rough control
exp ((qA)Z[wﬁ\HUH@O

I'n

>, coming from the martingale increment obtained in equation (3.18) and the domination

(p2(q>\)2[90]fV(\HUH\2) )
2T,

condition on the matrix norms, by the above term exp . This last contribution will be part

of the optimization procedure over \. This improvement will be all the more significant that neighborhoods of
the points where the norm of the diffusion coefficient ¢ attains its supremum are not very much charged by the
invariant distribution. The point for .73 is then to prove that the remaining expectation is less than 1. Tt will
be shown by exhibiting an appropriate underlying supermartingale.

Set to this end ,f?\f = exp ( — pQ(qA)Q[flliy(mU‘”2)>g%. Define now, for a given n € N and m € Ny, S, :=

exp (—p%Mm - % Dohe1 Vello (X 1)\H2> From the definition of the martingale (M})r>1 in (3.14) and

the controls of the Lipschitz constants of the functions (wk(Xk_l, ))
conditioning;:

ke[[1,n] in Lemma 1, we get by iterated

< mfsirew (- 2O o, 1) E e (o2 (0, - M) £

P2 (gN)?[p]}
o2

2 2
ullo(Ku)I2) exp(ES L [l (K1) [2)] < E[S] < 1

<, E[Swren (- oI2

(GC)

In other words, (S, )m=0 is a positive supermartingale. We finally get that, for all p > 1:

1

(4.2) TP < exp (p(qA)Q[s;E:(Illff?))_

(g))2p*[0]2

For the term .75, we have that setting p := u(q,n, p, ) = ST

Ty = EGXP( Z Vi AV (X — 1))

”kl

so that this contribution can be controlled from the previous expansion of Lemma 1 exploiting the technical
lemmas of Section 3.1 replacing A by u and ¢ by 9.
In case (a), for 0 € (1/(2 + B8),1], B € (0,1], the Holder inequalities yield that for all 4 € R4 and all

D,q € (1,400), % % = 1, similarly to (3.21),

Q=

Ty = Eexp( Z Ve AY (X 1)) < (Eexp <—1(¥:Mg>>

"k1

(4.3) x (Eexp( |L79|>>1 (Eexp< \Dan\)>1 (Eexp( DY En\))‘fp,

where the superscripts in ¥ emphasize that the contributions to be analyzed are those associated with the
solution 9 of the Poisson problem with source [|o||? — v(||o|?).

Still for simplicity, we assume as well (case (7)) that the mapping x — (b(x), Vi¥(z)) is Lipschitz continuous.
Plugging in (4.3) the controls established in Lemma 4 (with j = 2), Lemma 5 (equations (3.26) and (3.27))
and (3.39), then replacing A, by u, we get similarly to the first inequality of (3.30) and with the notations of
Lemma 3:

721l 12 [912 2 3pC2 12
(%<em@MWAh%m<u_ya%@<pw“+?y@ﬁ
p

2T, 2I,p 2 cyl?2
~ 2/(2)\2 ~ 2/m(2)y2
pr(Tn”) L 3pps(Cn)® 1 N
X exp <C3‘26F%n> (Iy/)% x exp <C3‘27(2F%n + 275) (Iy)%.

2 qlol|2 [9]2 {22 3 3C7 1 1 C pay \ 112
< exp (ﬁ%(qm(j;[ i +]§<( Fn) [C3.26 + 503.27] + - Vﬂ) + —)) exp <5 (ev + 3'27) + ﬁ)(hl/)@
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Set now
~ 1 Ca7\ | DPap\, 1\1
C, = exp (5 (cv + 5 ) + 7>(IV)P,
() 3 3CTe\ 1
(4.4) €n = p( T [C3.26 + 203,27] + CVFn) + 5

(2)\2
(F K — 0 in order

In the considered case, the exponent p := p,, can again be taken such that p,, — +0o0 and p,
n
to have, &, — 0,C,, — 1 with the indicated monotonicity for large enough n.
We derlve from the above control and (4.2) that for all ¢, p > 1:
1

(e (_gMn))é < (37} <o (TR

(£ 102 (AllEWR )y

pq T'p 2
Plugging this bound in (3.21), using again the controls of Lemmas 4 and 5, eventually yields:

P [\/ﬁyn(,ztgp) > a] < exp( ) exp( C2u(||o]2) + ))é,};ql exp (pp:llé<q‘alll220[ﬂ]% N én>>
2 (2)y2
WEJ
()2
I'n

3 3C3 1 Cs, pa’ 1
(03.26 + 503.27) + T;:)) exp (;}(Cv + 3227) + 7) (IV)P

xexp(

Choosing p := p, — 400 and such that p, — 0, we get by a standard symmetry and with the notations
n n

introduced in the proof of Theorem 2:

P H\/F»nyn(.%lgp)‘ > a] < QCnC':’T; exp <_\jl%) exp (;\i(w 4 eﬂ))
N VLT

pqg T'n 2
where e, is defined similarly to €, in (4.4) replacing p by p. In particular e, - 0. Note that for the previous
choices of p,p, we have that 6’ = C,Chy o — 1 uniformly in p > 1. Recalling that u = %, we are thus
led to minimize the polynomial function
2 4
PZ)\'—>—\(/I%+;\‘TZA71+;\‘%B“,
where A, = A,(p) = pgn and B, = B,(p) = p’%én with
) P e I SO % U S

Note that both sequences (En)ngl and (En)n>1 are bounded and bounded away from zero sequences (and do
not depend on p). The function P is clearly convex and coercive so it attains its minimum at Apjn, unique zero
of the equation P'(Amin) = 0. This equation reads

5

A, T2 al'2

4. )\3 n)\ . n
(4.6) + 2B, 4B,

which is the canonical form of this third degree equation to apply the Cardan-Tartaglia formula (1) so that

(4.7) Amin(p) = F—Z" (\/ﬁB \/(2An> r:;,% >3 n (\/éBn B \/(3293 n r:;% >3

1. If the equation 2% + pz + ¢ = 0 has a unique real zero z then its discriminant A = 4p® + 27¢®> > 0 and 24 = (%( —q+

) (B3

=0
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In order to derive our non-asymptotic bound, we select two “regimes” based on a first order expansion of Ay
in two cases # — 0 and B"Tm — 0, assuming that the free parameter p = p, to be specified later on
remains bounded, e.g. p € (1, 3] (which implies that both quantities g—z and B%L remain bounded as well). Also,

note that if p — 1, then Bin and g—z — 0. First, one easily checks that if (z,)>1 and (a,),>1 are two sequences
of positive real numbers where (ay,),>1 is bounded, then

1

3
1 2 . 5
1 5 2 f @, =o(a2) (then z, — 0
(4.8) (xn—% a%4—w%)3 +—<xn-—\/ai%—x%)3 ~ g e O(GZ)( e &n = 0),
3
n

Njw

o If ?/ﬁ = 0((2—2) > (hence goes to 0), setting then x,, = %\/ﬁ and a, = ggz yields

VI,
Auin(p) ~ N(p) i= T asn— oo,

Note that A* := \*(p) corresponds to the optimization of the quadratic part of P. Then

~

p@*):_li(l_;;ﬁ)_ @ B)

- _mnp( CAB(p-1)Ta

Set now &, := %«‘1’) with ap(a) = fig % Then

n

a? 1-¢&,
44,1+ 22l

n

PO =

1-¢ * 1

It remains to maximize the mapping & — Tran(a)e=T Over (0,1). Its optimum is attained for ¥ = H\/Til@’

which in turn yields

2
2
(4.9) PO = *ﬁ 1 _
n A3T,
L4145
an(a)

Note that, with the resulting specification of p = p¥ =1 + € (1,3] (at least for large enough n), the

&k
3
above condition z,, = o(a%) in (4.8) is satisfied a posteriori.
o If —2— — 400, then, still owing to (4.8),

BnA/Tp
1
- T, 2a 3 al’y, \ 3
)\min ~ \* = ( ) = A/ Fn - .

The value A\*(p) corresponds to the quartic pseudo-optimum of P (i.e. obtained by neglecting the quadratic
term). This yields, when reintroducing the parameter p,

A,

~

(4B,)5 a

* ——CL% %(p—l)‘
PO = FnﬁK4§n)

‘ !
Swi=

=

(p—1)

W] W=
= w

Wl

The right hand side of this equality is a function of pe (1, +00). Its analysis yields that the optimum is attained
in (1,3/2] and that it tends asymptotically in n to 3/2 in our considered regime. Taking as suboptimal p = 3/2
gives:

(4.10) f%&*@»)s;—?f(%f)é (1—-52:(£?)é>.

~ o~
From (4.10), (4.9) and (4.5), we conclude the proof of case (a) by setting &, := A, B, ®* which matches with the
definition in the statement of the Theorem.
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In the biased case, the result follows similarly from the corresponding analysis performed in Section 2 taking
An(p) = w. -

Remark 11. e When a = /I'y,, one checks that Apin(p) = 'y and P(Anin(p)) = —I'n. This behavior is
consistent with our non-asymptotic bound. However, for practical and numerical purposes observe that the
optimum can be estimated. Namely, plugging the identity (4.6) satisfied by Amin(p) in (4.7) into the definition
of P, yields

P ()‘min (p)) =

Auinlp) <3 - Amm<p>pﬁn>
2T, \ 2 T

VL (p-1)s
4 p

1 1 1 1

2he @ \'Y 2he @ \'Y

where @, (a,p) = S (p—l)( N ) + + L (p—1)<T> b .
VTnBy 3B,/ = B, VTnBy 3B,/ = B,

Then, an optimization in pe (1, +w) for given a,T,, can be performed (noting that p — (p—1)"/3p~1, i e {1,2}
are bounded functions over (1, +)).

D, (a,p) (32(1 — \/?(p - 1);’ﬁnq)n(a7p)> ;

5. SMOOTHNESS RESULTS FOR THE POISSON PROBLEMS (PROOF OF THEOREM 4)

We first prove here Theorem 4 which allows to derive from the deviation results of Theorems 2 and 3 the
practical deviation bounds of Section 2.3 (i.e. Theorems 5, 6 and 7). We recall that we work in the confluent
setting of (D%) and that we additionally consider two main types of assumptions:

- Strong confluence conditions and smoothness (Cr). Namely, assumptions (Lv), (D) and (Rg3p)

introduced in Sections 1.2 and 2.2 with the condition || Do |2, < 2(3-2%'

- Mild confluence conditions and non-degeneracy (Cug). Namely, assumptions (Lv), (D%), (R1,3) and
(UE) introduced in Sections 1.2 and 2.2 together, when d > 1, with the condition | Do % < 2(13%
and the technical structure assumption on the diffusion coefficient that for all (i, 7) € [1,d]?, & j(z) =
Yij(@ing, o, xd)-

It is well known that when (Cr) or (Cug) are in force, there exists a unique invariant distribution for (1.1),
i.e. assumption (U) holds. We refer to [Kha80], [PP14], [Pag01], [PVO01] for proofs of this assertion. The next
step consists precisely in investigating the smoothness of the corresponding Poisson problem as well as some
associated quantitative pointwise bounds on the gradient of its solution, which is one of the key terms appearing
in the deviation bounds of Theorems 2 and 3.

Let us indicate that the conditions appearing in (Cr) depend on pure pathwise properties, whereas the case
(Cug) takes advantage of the regularity of the underlying semi-group which allows to alleviate some smoothness
assumptions on the coefficients and some restrictions on the variations of . When the dimension increases, it
becomes useful to benefit from the smoothing effects of a non-degenerate semi-group, especially if we keep in
mind that one of our goals is to handle Lipschitz continuous sources.

5.1. Proof of Theorem 4. Under (Cyg) or (Cr), it is well known that the Poisson equation (2.5) that we
now recall:

Vo e RY, Ap(z) = f(z) —v(f),
admits a unique solution centered w.r.t. v and with linear growth, in WpQ’ 1oe (R R) for any p > 1 under (Cug)

(see [PVO01]), or in C>#(R?,R) under (CRr) (see Proposition A.8 in [PP14]). In both cases, we have the following
representation:

(5.1) olz) = — jR (Pif(a) — v(f))dt  where Pif(z) = E[f(Y>)]

and Y solves (1.1) with Yy"* = 2. To comply with the framework of the above Theorems 5 and 6, the first
step is to establish a pointwise gradient control.
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5.1.1. Gradient Control. Under (Cyg) or (Cr) we manage to obtain pointwise gradient bounds for ¢. In our
current confluent setting, these estimates are obtained through controls on the tangent flow, again without any
a priori uniform ellipticity condition of type (UE).

Lemma 6 (Pointwise Gradient Bounds). Assume that (Cuyg) or (Cr) holds. Then

IVl < LI
«

with o as in (DY).

Proof. Gradient Control in the Confluent framework. Assume now that (D) holds. Observe that, as soon as
(R1,3) holds, it is well known that that V.Y is well defined and belongs to L2(P), see [IW80]. Hence, for
t>0,ie[1,d]:

t d t
OnE[f(Y))] = ELV YD), 00, Y,) 5], 00,Y, " = e + f Db(Y")0,, Y2 ds + ) f Do (Y) 0y, YR AW,
0 . 0

where e; stands for the i*® canonical vector and Db, Do € RY ®@ R,
Let p € (1,2] be given such that (D%) holds. Considering the mapping y € R? — |y|P, where | - | stands for
the Euclidean norm of R, it is easily seen from It&’s formula that:

J < aszO (Yso,m) axiYsO,:v >| " S o ds

a AYO,xp

aZYO 0y, YH
+p2j e DO S i Yo
x; s

+(p—2)

0,z 0,72
pzj \DUJY )0z, Ys"

[0, YO, Da](Yo‘T)é’leO"ENz)
0a Y(”\

(5.2) X |0, YO

$ZYvOm 0 a$ZYO$
= eXp( f<6 Yo Db(Y; )M>d> x E(M),

|DO' OCC axlyo I| |<ax1Y0x _DO'J( 0 I)axzyo x>’2
X ex + ds

where (M;)i=0 := (p S i1 So (i Da Yo" Do;(Y{™) Ox; ¥ >dW] ), 18 a square integrable martingale with bounded

|0z, YO“ ’ |0, yol =0
integrand and E(M); := exp(Mt $(M}),) denotes ‘the associated Doléans exponential martingale. From con-
dition (D), we thus get:
(5.3) 10, Y|P < exp(—apt) x E(M,).
We eventually derive:
e 0 0 e 0 i [f]x
| BT 0N < Ul [ Bl P < [ | exp (-atyar = L
0 0 0
From the above control and equation (5.1), we thus derive:
(5.4) Vie [1,d], Yz e R?, |0,,¢0(z)| < Q
o
Similarly, for all = € R Vo(z) = [T E[(VY>")*Vf(Yy™)]dt where VY, = ( 0,V .. ,,Y,>" )
0,2? E3
(02, Y;)
so that (VY ™")* = : . Hence, recalling that | - | stands for the Euclidean norm, |Ve(x)| <

(02 Yy )*
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TEE[ (VY5 * |V £(V,2)[]dt where we recall that for A € RIQRY, ||A| := SUP|,|<1,erd |A2| denotes the opera-

tor (or spectral) matrix norm. Thus, |Ve(x)| < |V f|w Sroo E[|(VY, ") *|P]YPdt = |V ] aroo E[| VY, " [P]V/Pdt.
Now,

VY27 = sup [VY "2

|z|<1

For any z € R?, |z| < 1, setting Z"™"* := VY,>"2, one has the following dynamics for the Ré-valued process
07 bl .
(Zs"7)sefo,1):

t d ot
70 = +J Dy(Y)")ZI"Rds + ) f Do (Y% Z0%=qwi.
0 —1 Y0
j=1

Hence, we derive similarly to (5.3) that |Z)*|P < |z|P exp(—pat)E (M), where (M) does not depend on z.
Write now,

(5.5) E[[VY*[P]'7 = E[sup | 2051 < E[sup |2[? exp(—pat)€(M;)]'7 < exp(—at).

|2|<1 |2|<1

iy 0

This eventually proves the claim |V := sup,ega |[Vi(z)| < 22
5.1.2. Additional smoothness.

— Theorem 4 can be derived under (Cr), by iterating computations similar to the ones performed in Lemma 6.
On the other hand, to have the required smoothness, since we cannot expect some smoothing effect from a non-
degenerate diffusion coefficient, we have to impose that b, o, f themselves lie in C*#(R% R) and the restriction
on the variations of ¢ which ensures exponential integrability in time for the expectations of the iterated tangent
flows, see Lemma A.8 in [PP14] for details (see the parallel between the above condition on Do and assumption
(AC,) appearing p. 559 in [PP14]).

— Proving Theorem 4 under (Cyg) requires more sophisticated tools (Schauder estimates for operators with
unbounded coefficients).

Proof of Theorem 4 under (Cug). Let us begin with the scalar case. For d = 1, set for all z € R,
t

th[mI/(YtW) exp (Lt b’(YSO’x)ds)S< L a'(YSO’x)dWSH

where for all y € R, U(y) := d,f(y). We observe that d,¢(z) = v(x). Also, from our assumptions on f, b,0,
we have that U, b, 0’ € Cg’ﬁ(Rd, R). Theorems 2.4-2.6 in Krylov and Priola, [KP10] then yield the existence of
a unique solution to the PDE:

(5.7) Aw(z) + V' (z)w(z) = U(z), where Aw(z) = Aw(z) + oo’ (x)w'(z),

belonging to Cg B (R%,R) and such that the following Schauder estimate holds:

(5.8) 3C =1, |wlap < CO+[¥]p).

Indeed, from (D), we get that b'(z) < —a < 0 and the potential in (5.7) has the good sign. From (5.6) and
the Girsanov theorem, we also get:

o(z) = — f R [\If(f/;o’x)exp ( L t b’(f{f’”)dsﬂ ,

0

+00

5.9 o)== | @B - - [

+00

where dV)"" = (b(Ys"") + o0’ (V™)) ds + o(Y")dW;. Note that ¥ has generator A. A simple identification
procedure, similar to the proof of Theorem I1.1.1 in Bass [Bas97] then gives v = w. The result follows from (5.8).
Let us emphasize that this is a quite deep and involved result for unbounded coefficients.

In the multi-dimensional setting, recalling the technical condition that for all ¢ € [[1,d], j > i, ¥;(x) =
Y (@i, -+ ,xq), we have that differentiating formally the PDE (2.5) in the space variable z;, i € [[1,d] yields
that 0, = v; should satisfy:

Awi(z) + dubi(@)wi(z) = Wi(z)— Y Oubj(z)v;(x)
Jel1,d\{i}
(5.9) 5 Y am@an@ =Y Y S,

je[[1,i—1]) jel1,i—1] kej+1,d]\{5}
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with W;(x) := 0z, f(z) and

Aw;(z) = Awi(w)—i—%@xiﬂi,i(x)@xiwi(x) + D 0N ()0 wi(a).
Jel1,d]\{4}

We would now like to enter the previous framework of Schauder estimates. To do so, we first observe from
(D%) and the Cauchy-Schwarz inequality that 0,,b;(z) < —a < 0. Consider now i = 1 in (5.9). From our
current assumptions on f, b and the previous computations on the gradient for the multi-dimensional case, it
remains to prove W (z) := Uy () — 221 Oni bj ()0 (2) € C,?”B(Rd,R). This will be the case, once we will have
proved that V is S-Hoélder continuous, which is a priori not direct. This property is assumed for the remaining
of the proof and shown below. In particular, it leads to the restriction concerning the variations of ¢ when
d > 1. Hence, Theorems 2.4-2.6 in Krylov and Priola, [KP10] still apply and give that there exists a unique
solution w; € Cg’ﬁ(Rd,R) to (5.9) which also satisfies:

(5.10)  3C=1, |wiles = Y. ID*wife + [DPwr]s < C(L+ [ ¥15) =: C((Lv), (Rap), (UE)).
a,|alel[0,2]

The identification wy; = 05, = v is standard. The control (5.10) allows to iterate, since it gives that Vw; =
(O 015+, 0z, 01) = (Opy a1 P1s- -+ s Oy p) is B-Holder. We thus get by induction, from the specific chosen
structure on ¢ and by Theorems 2.4-2.6 in Krylov and Priola, [KP10], that for all i € [1,d] there exists a
unique solution w; € Cg’ﬁ(Rd, R) to (5.9) such that:

3C 2 1, wilap < C(1+ |¥if5) =: C((Lv), (Rap), (UE)),

~ 1
(5.11) Uy(a) = Wi(z) = Y, dubj(@)vj(e) — 3 Y 0nSin(@)dsu().
Jell1.dl\{i} 1sj<i,
ke [T, d]\{i}
The Lipschitz property of the mapping =z — (V(z),b(x)) is eventually derived following the procedure
described in Remark 7.

g

Remark 12 (Structure of o). We emphasize that the structure condition on o assumed in Theorem 4 under
(Cug) is mainly technical. It is of course always verified in dimension d = 1. For d > 1 it is motivated by
the fact that, differentiating (2.5) without this assumption yields to consider a system of coupled linear PDEs
with growing coefficients for which the Schauder estimates have not been established yet. Following the existing
literature for Schauder estimates for systems (see e.g. Boccia [Bocl3]), we think that the results of Krylov and
Priola should extend to this case. This would allow to get rid of the indicated condition. Here, the condition
stmply allows to decouple the system.

Let us mention too that the results by Priola [Pri09] could also be a starting point to investigate the smoothness
of the Poisson problem for degenerate kinetic models.

These aspects will concern further research.

Additional Smoothness continued: B-Holder continuity of the gradient through pathwise analysis. We control
here, under (D%), p € (1,2] and (R ), 8 € (0,1], the S-Holder modulus of continuity of the gradient. We will
progressively see how the restrictions on Do come out. For (z,2') € R??, write for all i € [1,d]:

Oz, p(x) — Oz, (")

+00 , ,
[ (BT 0033 = BT ). 20300

<

o / T T z/
JO (VALY = Y 2100 Y07 1) + IV B (100, = 00,7, u)dt\ = (G} + G5)(a, ).

(5.12)

Let us first deal with the expectation in G'f . Namely, write

1 15341 A1
E[V = VP10, Y < B[V =YV PPIRE|0, Y, |9, pog> 1, pt g =1
Take now pg =q < p= %, @ = 1 + B which leads to the same integrability constraints on the flows.

If 3+ 1< pin (D}), then we readily get similarly to (5.3) that E[|6xi§/}0’x|q]% < exp(—at).
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If now 8 4+ 1 > p, as soon as (Di—fﬁ ) holds for some @ > 0, which is actually the case provided that
2a

Q=

for = 1+ 3, we again get similarly to (5.3) that E[|d,,Y,""|7]
value theorem yields:

< exp(—at). On the other hand, the mean

1 !/ /! _ l—
B[V — v P85 < o 2B L] LY e o8 < o[ s [y e}
t t 0 t
< o—a'ff [exp(—am)mgp + exp(—GAt)L14a5p]

exploiting (5.5) for the last inequality provided that (5.13), which in turn implies that (DLTP ) for some & > 0,
holds if 1 + 8 > p. Plugging these bounds in (5.12) gives that:

[Vf]ﬁ 4 8<p 4 H1+L8>p |z — $/|B_
(1+5) ! a
We already see that, when 1 + 3 > p, for the parameter p of the initial confluence condition (D%), a first

constraint on the variations of o, namely (5.13) appears.
Let us now turn to Gg . Following the expansion of (5.2) write:

(5.14) V(z,2') e RY?, |GY(z,2")| <

/ t ! / !
05, Y = 0, Y = 2 fo (00 Y07 = 00, Y2, Db(YD)0,, Y7 = DH(Y) 00, Y2 ds

d
+2)] f (0007 = 0, Y2 Doy (Y0)0r, Y2 = Doy (YO0, Y ) dW
: 0

d
) fo Do (YO7)2,, YO — Do (YO )0, YO [2ds.

Let u(t) :=E |6in;0’z—8xi}QO’x,|2, t = 0. First note that u(0) = 0. Taking now the expectation and interchanging
expectation and time integration yields

t
u(t) = J EEsds

0
where (Z;):>0 is a pathwise continuous process clearly determined by the terms inside the above time integrals.

One readily checks that, t — E =g is continuous so that u is continuously differentiable and satisfies
W (1) = 2B {0,V = 0 Y0 DO, = DbV )2 V)

d
+ Z E |DO"J'(Y;O’x)aI¢Y;0’x o DO‘.]’(Y;O"T )amthO,m |2‘
j=1

Using the Young inequality for a parameter € € (0, 1], small enough and to be chosen further, we derive:

0, 0,z 0, 0,z
< a’lfzy;t v - aﬂ?zy;f ’ ,Db(Y;O’x) aﬂﬁzY;f Y — 6%}/;‘ ’

/
105, Y, — 04, Y0
|a$iY2071‘ _ axiy;fo’x/‘ ’amy;o,a; . axth0’$l|> z; Lt i Xt

u'(t) < 2E

t / / /
+ J |Db(Y,") = Db(Yy ™ )105, Y (102, Yy — 00, Y, |

[1+5

1+€

0,z 0,z |2
aﬂszt — al‘zYt

0, 0,z" 2
\5 Y2 5 YO,:L"/| |02, Y i 0, Yy “
zitt - Vxpty

Oac 0,z 0,z’
Do.j(Yy"") = Do (Y, )[?|00, Yy "

5P
5
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From this computation, the point is now to make the confluence condition (D%) appear and to separate the
components for which we will exploit the S-Holder continuity, namely Db, (Do ;) ef1,n]- To do so we first
observe that:

2)

0,z 0,z
595@'}/; — afiy;f
0,x 0,x’

YO, i ]/0 ) [
,Db( A m) T;tt > 2 z : ’ A x T;tt T;tt

|axm“ a Y“ \axiYJ”x D

1
—a+ (2 - p)5 Dol = —d,

where we suppose from now on that

1 2
(5.15) ~a:=—a+(2-p)5|Dol}, <0 = |Do]}, < 2&
-p

Hence,
’ - € 2 0,z 0,2' 2
() < 26| (- 5 IDO )Y - 0.

' 2E[D bYT) — DbV, ) 0,2 (|00, Y axm()w’l]

d
" E[(l 1) S Doy (¥0) — Doy (2 )10, ¥, \2}
j=1

Using now again the Young inequality, with 7 € (0, 1] small enough, for the middle term of the above r.h.s., we
obtain:

W) <2( —a+ S|Pl + D)E[10: Y — Y0 ]

d
+ B[P = DO ) PI0n Y0 2] + (14 671 Y E[ 1D (V) = Doy (v )2l v P
7j=1

<2(—a+5|DolZ + |10, Y — 0, Y |
(5:16) +n  [DBEE[YV " =¥ P10n, 2 2] + (1 + e )DoRE| V" = v [2P10n, v .

Denote:

- . €
—Qepo = —Q+ iHDaHgO + g <0,

for £, n small enough. Setting for every ¢ = 0,
r(t) = n DVBE[YST = YO P10, Y0 2] + (1+ e Dol3E[ IV - v 20, v 2
equation (5.16) reads an ordinary differential inequation:
u'(t) < —2a. ou(t) +7(t), u(0)=0.

We derive from the Gronwall lemma that

) t
w(t) = E[|0n, Y2 — 0, V2" 2] < exp(—2d€m7gt)J exp (20, 5,05)7(s)ds.
0

Reproducing as well the computations that led to (5.14), we derive:

t 1 1 B
- a:’!wf exp ( = 2z o (t — 5)) (E[mxﬁ’f’x'\z(”ﬁ)] 1*‘*+f AAE| VYD =209 | ”‘*)ds.
0 0

u(t) < Cpep
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From the analysis leading to (5.3), (5.5) we now derive:

E[|0,, Y — 00, Y ]

C exp (2(0epnge — @ t exp (2(Ce o — B t
< 0,6, l — x/,Qﬁ eXp(—Qdamgt)[ p (~( e, ~ 2(1+,8)) ) n p (~( £,1, ~B 2(1+5)) )}
2 Qe m,o — C2(144) Oeno — 6a2(1+6)
and
- 1
—Qo(14p8) S —Q + (2(1 + ) _p)iHDUHEO
Thus, dq4) < 0 as soon as
2a
(5.17) HDUHCQ)O < ma

which is precisely the restriction on the variations of o appearing in (Cyg) when d > 1, then G911y > 0 and:
EHasz;fox Oz YOI exp(_d2(1+ﬁ)t)'
This last control then gives the expected bound for the S-Ho6lder modulus of the gradient. Namely, from (5.12), (5.14),

[Vf]g [H1+B<P + ]11+B>p] vaHooCn s,ﬂ
1+B)L « a Q2(148)

5.2. Proof of the Practical Results of Section 2.3. We first begin with the proof of the

d

] Cnéﬁ‘x_x

[afﬂz (p]ﬁ < (

5.2.1. Slutsky like Theorem 6. We keep here for simplicity the generic notation | - || for any admissible matrix
norm according to the assumptions of the theorem. We first write:

Vn(f) - V(f) |: a ]
5.18 PV, —————=>a| =P |vn(Ap) = —/vn (|o]?) | -

We then proceed similarly to Theorem 8, with an exponential Bienaymé-Tchebychev inequality, for all A > 0
we have:

Pl ] <B[exp (o (o)) exp(Aunmso))]

— oxp (v o) ) B e (— G ~ Vi TToTP] ) exp O (49
= €X — aA V\\|lOoO exX Un HO’H ) (”O-HQ) exX v,

= p< TV ( |2)>E p( xﬁ\/vn EB +¢V(|U|2)> p (A n(AsO))]

= €X — aA V\\|loO exX n (Aﬁ) exX vV,

- p( SVl |2>>E p( ot s w<|a|2>> b (wi(Ap)) |

. [ ST alf) ) >a]

vn ([lo]|?)
1/p
< exp| — aA v(|le]|?) || Eex (— apA Vn (AY) )] E exp (A\qvy, (A 1/‘6
< p< N (il ))[ p T Voo + Vo 0o [ P (AGun( 80))]

The proof of Theorem 8 yields:

P[VﬁM>a] < RBpexp <— a

R O >
v(|o|?) ) exp < A, + B,
v (o) /v el )) T AT Lo r,

~ 1/p
519 i [ Eexo [ — apA U, (A9) )) 7
o ( p( VI /v ([o]?) + /v (Jo]?)
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where we recall from identity (4.5):

N 2 2 N 31014 /dlol2 1912
gl g, el (B
2 4 2
Also, %, — 1 denotes a “generic” remainder. Observe that thanks to the bounds of Theorem 4 (stated in the
n

above Lemma 6), we get:

7 o alfliv(el?)

2 A, < ————" +e,.
(5.20) 50 +e

5 AV 1P
Let us now handle the remainder [E exp (—\(71% \/Vn(oy’;ng\}y(UQ))] :

VT Jvn ([02) + /v (o))

[ 5 1/p
— | (exo | - ap U (AD) ) » L ) ) ]
i ( p[ VT /vn ([0]?) + /v (Jo]?) (Luanyz0 + Lo a<0)

_ 1/
< ( E exp (aﬁQA Vn (AV) )] pIP’[Vn(.,éh?)?O]l/(7

VEa /v (Jlo]?)

_ 1/p 1/p
+ Eexp( A _vn (AV) )] P[un(A0)<0]1/a> .

VT /v (o)

Let us mention that we introduced the above partition in order to get a sharper constant in the final inequality,
1 below instead of 2, which would follow getting rid of the indicator functions. Now, by Theorem 2 we easily
get:

- - 1/p
E exp ( ap v, (AY) )]

E [exp (‘ g o )]W
VI A/vy ([0]?) + /v ([o]?)

a’p? V(IUI%OIW?IIEO

1/p
Lov(lo]?) Tn 2 '

(5:21) < Znexp ( + )) |P[vn(A9) = 0]"7 + Plv,(AD) < 0]

We choose p := p(n) — +o0, such that % — 0, and so (P[vn(AY) = 0]1/6 + Plv, (AY) < 0]V0)1/P < 2WP 5 1,

Moreover, exploiting again that for the Gaussian regime, ﬁ;—f — 0, we obtain by (5.21) and (5.19):

M a ex —ﬁ vi|o €X p(?)\z ﬂN
(5.22) P[\/ﬁ DR ]<%’n p< v |2)> p<rn (p— 1T, ")

From identity (5.22), the optimization over \ is similar to the one performed in the proof of Theorem 8. This
yields the deviation bound (2.10). The non-asymptotic confidence interval in (2.11) is derived as for Theorem 5
from the gradient bounds of Theorem 4 and (2.10). O

(An + en) +

5.3. Regularization of Lipschitz Sources. We assume here that assumptions (C2), (Lv), (UE) are in
force. We suppose as well that the following smoothness holds for b, o:

(Rp,») Regularity and Structure. We assume that there exists § € (0,1) such that b,o in (1.1) belong to
CHA(R?, R?) and C;’B(Rd,Rd@)Rd) respectively. Also, for all (i, ) € [1,d]?, i (z) = X ;(Tinj, -+ ,Ta).

Importantly, we are interested, under assumptions (C2), (Lv), (UE), (R, ), in giving controls for the esti-
mation of v(f) when the source f is simply Lipschitz continuous. This is indeed the natural framework for the
source which can be handled through functional inequality techniques, see [MT06], [Boill].

To comply with our previous framework, namely to exploit the smoothness result of Theorem 4 under (Cyg),
we need to regularize the source. Let n be a mollifier (i.e. a non-negative compactly supported function such
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that {5, n(x)dz = 1). Define for 6 > 0, n;(x) = 6%177(%). We regularize f introducing fs := f *ns; where * stands
for the convolution on R?. From usual estimates, we obtain:

3C, >0, Ve e R, |fs(x) — f(z)| < Cyo[ 1,
(5.23) Ve (0,1),  [Vfslp < Cylflio ™.

We emphasize here that we will choose 3 later in order to be compatible with a certain range of step sequences.
We assume for simplicity that # € (1/3,1] (no bias). Recall that we want to investigate:

PIVEun(f) = v(F) = al = Bl(wnlfs) = v(fs) + Rus(f) = —=|,

VI,
(5.24) Rns(f) = [wnl(f) —v(f)) — (n(fs) — v(f5))]-
From (5.23), one readily gets:
(5.25) | Bn5(f)] < 2Cy0[f]h-

On the other hand, the coefficients b, and the source f5 satisfy assumption (R; ) (observe indeed that
the mollified function f5 € C1#(R? R)). Hence, Theorem 4 yields that there exists a unique solution s €
C38 (R, R) to the equation:

(5.26) Aps = f5 — v(fs).
Observe from the proof of Theorem 4 under (Cyg) (see equations (5.4) and (5.11)) and (5.23) that:

(5.27)
Vsl < ™ [f]1, VB (0,1), 3C5 >0, Vie {1,2}, [p]) < Ca(1 + |V fsles) < Cs7, [08P]5 < Ca677,
[(Vips, b)]1 < 0"

Now, from (5.26) the deviation in (5.24) rewrites:

a
(5.28) PIVTa(n(F) = () > a] = B[va(Ags) + Rus(f) > = .
From (5.25), the term R, ;(f) can be seen as a remainder as soon as \/‘1% » 2C,60[f]1 = |Rps(f)|- On the

other hand, the deviations of v, (Ays) can be analyzed as above, reproducing the proofs of Theorems 2 and 8,
replacing the bounds on ( [@(i)]l)ie{lg}, [¢®)]5 appearing therein by those of equation (5.27). Precisely, we get
from (5.25), similarly to (3.30) (replacing the controls on ¢ by those on ¢s in the proofs of Lemmas 3 and 5):

1
q

a qAhn al, VD20, f116
P [ vn(Agps) + Rn,g(f)‘ > W} < 2[Eexp (_FM”)] exp ( - \/1“7(1 — an[ | )>
/\2 p(a6)2 C\/go)‘n cy
n 3 I
X exp (2an * 2 )exp cyl?2 o P ( V)
(2)y2 2 ((2)y2
(5.20) <exp (csfﬁ(r)) (1) x exp (c§.27(r2) (1)
A2 o4 o25-28
where €4, := Cgé~# OVev) and Cf .4 = IolCa0" ™ Cy. precisely correspond to the modifications of the
3.27 B oy 3.26 4 cy
4 2)12
constants C3o7 and C39¢ = M% introduced in the proof of Lemma 5 when replacing | D%y, by

1D2ps]0 < CdF and [(V,b)]1 < C by [(Vs,by]1 < Cgd~PC. Similarly,

ﬁ 3+8
5 e slole PR P T Cpo— o] 3 PR ] T

R Gy ) Ry ) [ CReaye) \/ﬁ< (1+B8)2+BB+8) VIn’




NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR ERGODIC APPROXIMATIONS 37

is obtained from the definition of a,, in Lemma 3 replacing [¢(®] by [g0§3)] 3. From the above equation and

Lemma 2 we get:

. 52
Bt = w0 > | = B i) + Rust| > = | < 2005 enp (2 + 21220
a? VT4C,[f10 1 p (6CT, 5 5 @52 . 1

o <_2qauzouwzo<1 ST e, (T 2 Gl )+ ) )

The Young inequality yields that for all €, > 0:

P [Ivn(f) T

a 1 cy  plad)?
Tn] < 2(1‘1/)1’ exp <? + Tn + 5n1Fn62>

a? 1 p (6C% 1
xexp | — 1— 2enC2[f13 + o [ —£ + 2[C 96 + CL 7] (TP)2) + =
| ~agrarreet (U e U O+ (57 200 + ) + )
::d'(rsz
(5.30)

We now want to let p := p(n) — +o0, &, — 0 so that the associated contributions in the above equation can
n n

be viewed as remainders. From the previous definitions of CJ,;, C4,4, we see that, to achieve this goal, two
constraints need to be fulfilled: namely, we must choose §, p such that

e 11,62 - 0 and p(ad)? - 0.

—(L(1-8)—
Now, if § € (1/2,1] there exists 5 € (0, 1) such that 1'% < C. In that case: ad < \/%5_6 = Fn(2(1 RN
n n
(1 11_8)_
for 6 = Fn(2+6) and € < % Taking p := p(n) = Fq(f(l B)=Fe) yields p(al)? - 0. On the other hand, &, =T';,¢
also yields ;1,62 = T',,¢ — 0.
" 3+8
(3£8) . iz ) 1_g(148) .
For 0 € (1/3,1/2), I', 2 7 diverges for all g € (0,1), we then have == < Cn2 2). Hence, there exists
VI
3+ st
B € (0,1) such that F”\/? < Cn3—00+3) . However, taking 6 = Fn(2+€), which seems to be an almost
n n
“necessary” choice to satisfy the first constraint e, 'T',62 — 0, yields:
n
(*5%)
o = 5_51% — p(1+B)(5—-0)+eB(1-0) _, +oo,

VI n
so that the second constraint cannot be fulfilled. This means that the regularization induces a constraint on
the time steps which must not be too large. In other words, under the sole Lipschitz assumption on the source
f, the fastest convergence regime is out of reach.
Summing up the previous computations, we complete the proof of Theorem 7.

6. APPLICATIONS

6.1. Non-Asymptotic Deviation Bounds in the Almost Sure CLT. Let (U,),>1 be an i.i.d sequence of
centered d-dimensional random variables with unit covariance matrix. We define the sequence of normalized
partial sums by Zy = 0 and

_ 21Uk

vn
The almost sure Central Limit Theorem (denoted from now on a.s. CLT) describes how the weighted sum of
the renormalized sums Z,, which appear in the usual asymptotic CLT, behaves viewed as a random measure.
Precisely, it states that setting for k > 1, v = 1/k:

In : ,n=1.

|x|2) dx

Z ._ i N w, a.5. o _
(6.1) Vo =T Z Y0z, - G, G(dx) := exp( 2 ) i

" k=1
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The above convergence had been established in [LP02], as a by-product of their results concerning the approx-
imation of invariant distributions, under the minimal moment condition U; € L?(PP), thus weakening the initial
assumptions by Brosamler and Schatte (see [Bro88] and [Sch88]). The underlying idea is to use a reformulation
of the dynamics of (Z,)n>0 in terms of a discretization scheme appearing as a perturbation of (S). One indeed
easily checks that, for n > 0:

1

Tnt1 1 1
(62)  Zuy1 = Zu— 20+ \GuiiUnis + uZn, o=\ [1= — — 1+ D) " O(ﬁ).

Thus, the sequence (Z,),>0 appears as a perturbed Euler scheme with decreasing step 7, = % of the Ornstein-
Uhlenbeck process dX; = —%Xtdt + dW; whose invariant distribution is G. Then the regular Euler scheme

(63) Xn+1 = Xn - ’7n2+1 Xn + vV 7n+lUn+17

satisfies (1.3) with v = G. The a.s. weak convergence (6.1) established in [LP02] follows as a consequence of
the (fast enough) convergence of Z,, towards X,, as n goes to infinity.
Moreover, this rate is fast enough to guarantee that the sequence v satisfies the conclusion of Theorem 1

(2)
point (a) (when 7, = 1, \F/Tl:— — 0), i.e. its convergence rate is ruled by a CLT at rate 4/log(n). In fact this
n o n

holds under a lower moment assumption U; € L3(P).

Let us mention that the convergence rates related to the a.s. CLT had already been investigated by several
authors. Let us quote among relevant works, Csoérgé and Horvath [CH92], for real valued i.i.d. random variables,
Chaébane and Maéouia [CMO00]|, who investigate the convergence rate of the strong quadratic law of large
numbers for some extensions to vector-valued martingales, and Heck [Hec98], for large deviation results. As an
application of our previous results, we will derive some new non-asymptotic Gaussian deviation bounds for the
a.s. CLT, when the involved random variables (U,,),>1 satisfy (GC). We insist here that the sub-Gaussianity
of the innovations is crucial to get a non-asymptotic Gaussian deviation bound. The result readily extends to
the wider class of innovations satisfying the general sub-Gaussian exponential deviation inequality (1.4). Also,
we slightly weaken the regularity assumptions needed on the function f in [LP02] for the associated a.s. CLT
to hold.

6.1.1. Non-Asymptotic Deviation Bounds.
Theorem 9. Assume the innovation sequence (Uy,)n>1 satisfies (GC) and let f be a Lipschitz continuous

function such that G(f) = Sga f(2)G(dx) = 0. Then, there exist two explicit monotonic sequences ¢, < 1 <
Cpn, n =1, with lim,, C,, = lim, ¢,, = 1 such that for alla >0 and n > 1:

a2
(6.4) P[«/log(n) + 1V2(f)| = a] < 20, exp (—CHW() ,

where ¢ denotes the solution of the Poisson equation:

(6.5) Yz e RY, %Agp(m) - %:r V() = f(z),

which, under the current assumptions, is unique and belongs to W;loc(Rd,R), for any p > 1, with |Vl <

2[f1h-

Proof. For (Z,)n=0 as in (6.2), and (X, )n>0 as in (6.3) we introduce:
N, = Z,—X,.

With the definition of vZ in (6.1), write vZ(f) = ﬁzzzl Yef(Zr—1). We also have similarly v (f) :=

n

ﬁZZ:l Vi f(Xgk—1). For all A > 0, we derive similarly to (3.21) (see as well (5.29)) and with the notations
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of (5.24):
PIVIZ) =] = VR S (f(Zin) - F(Xn) + 0 ()] > d]
" k=1
- P[m\rlnéw(f(zm — (X)) + 13 (Ags) + Bug(f)| 2 o
< e (- 2 (1= 2O (B (371002 ) (Eewp (2201, ));"

1 1 1
2pg ~ 2p7 4dpgA 4pg 4pgA 4pg
(6.6) x <]Eexp (%q (|Ln| + ]Gn))> <Eexp( = |D2,b,n|)> <Eexp (T’iq yD2727n|>>

for g,qe (1,+x0), p = pn “Lp= ﬁ Also, s corresponds to the solution of the Poisson equation (6.5) obtained
replacing f by its mollified version f5. Now, we need the following lemma to control 5 (|-|) := ln Dby V| A1l

Lemma 7. There is a non-negative constant Cg.7 such that for all A > 0:

3 2 y2m(3)
Cor B[S | C3T
T, oT2

(6.7) E exp ()\V,?(] . \)) = Eexp < 2 Vie| Ag— 1\) exp

For clarity, we postpone the proof to the end of the current section.
On the other hand, from Section 5.3 we have that 5 € C*#(R% R) for all 8 € (0,1). We derive from (6.6), (6.7)

similarly to the proof of Theorem 7 by setting A, := qq‘ﬁvl;ﬂg :
3
§ VTGl 118 Co Al /E U]
z > < _ a 1— nbyl) 11 6.7nlJ |1 1L n
VL (P2 a] < 20 (= 5eom ) ) e ( = )
CLpLBRDY N 2 1 Clary . (pas)”
exp ( 6.7 [21]%21 )(I‘l/)w exp (p—q(cv + 227) + 2% )
_ 30?2 (F(Q))Q 1
2 Ve n
X exp (/\n (P ( T2 +[C8.26 + 03 27]T) + %»
e 1 C3 o7 P(ag)Q 1 g2
< — ‘ | )
(Iv) paexp (pq (CV + 9 ) + 2 +e, )
)
g [F1CE (T + B0 >2)>
X ex — — —Qy — ——C 3
P\ 20l Vel 0Vl T,

for &, > 0 and d’ as in (5.30). Choose again (py)n>1 and § as in Section 5.3 so that ¢, — 1,d® — 0 with the
n n
indicated monotonicity for n large enough. We can now take p := p, — +00 such that £~ — 0. The above
n non

inequality then gives the result up to a direct modification of the sequences (Cy,)n>1, (¢n)n>1- o
Proof of Lemma 7. The definition of A, implies:
Aot = An<1 . '7"2“) ¥ 1 Zn,

where we recall from (6.2) that 7, := 4/1 — 4= — 1+ =L~ = O(%). In particular, there exists C; > 0 such
n+1 2(n+1) n
that for alln > 1
C
(6.8) || < P

Setting now pg = 1 and for n > 1:

T30

k=1 k

—:
[\
=

1 k—1
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a direct induction on A,, yields:

(69 Bm L Sz - LS () - LS (5
T P Vk Vi

=1 k=1 =1

Also, from the Wallis formula p,, ~, +/7n, which implies that there exists Cy > 1 such that for all n >

(6.10) 1\/5 S Pn S 2\/5-

We now get from (6.9) and the Fubini theorem:
n k-1

611) T iwkmk_n <y (kZ"j'ﬁm)|U| Sy ’CZ'@'ﬁm)]wr

=1 PR=103 Y T =1 k= PR
Combining (6.8) and (6.10), we get that there exist constants C’g, Cy > 0 such that for all k € [l + 1, n].

|7'm‘pm Yk |rm‘pm
(6.12) Z k3/2l lek 1 2 ym 537

Plugging this inequality in (6 11) we derive:

(6.13) v (- ]) < Z[ Z . Z |rm‘pm]’U‘ EZU;

Do iz b S o1

For any A > 0, Equation (6.13) and the Gaussian concentration property ( C) of the innovation entail:

C
Eexp (M2 (-]) < HEexp( ) < Hexp( B0+ 5(-5)°)
A (3)  A2y2p0)
C4AE [|Uy |02 Ci Ty,
- eXp( : Hrnl” 421“% )
This completes the proof. =

6.2. Numerical Results. We present in this section numerical results associated with the computation of the
empirical measure v, illustrating our previous theorems.

6.2.1. Sub-Gaussian tails. We first consider d = r = 1. Also, for simplicity, the innovations (U;);>1 and X
are Bernoulli variables with P(U; = —1) = P(U; = —1) = 3. We illustrate here Theorem 2 taking b(z) = —%,
and o(z) = cos(z) in (1.1). This is a (weakly) hypoelliptic example. Indeed, setting for x € R, X;(z) =
cos(x)0; and Xo(x) = —50,, we have span{Xi, [X1, Xo]} = R. We choose as well to compute v, (Ayp) for
o(r) = = + ecos(x) for ¢ = 0.01, and p(x) = cos(x). The function ¢ is here given. The assumptions of
Theorem 2 follow from Theorem 18 in Rotschild and Stein [RS76] (up to the introduction of a suitable partition
of unity). From Theorem 2, for steps of the form (yx)x=1 = (K™)r=1, 6 € [1/3,1] (corresponding to f = 1 in

log (P[|vThvn(Ap)| = al), 6 € (1/3,1],
log (PH\/FTLVn(-ASO) + (Bng — Ep)| = a]), 0=1/3,
=R

[e®1s 0| OE[ U [2+#] 1
(1+8)(2+8)(3+8) VTn *

Theorem 2), the function a € R — g, 9(a) := is such

that for a > a,, := a,(0) where for 6 € (1/3,1], a,(8) = 0 and for 0 = 1/3, a,(0) =

(@ — ap)?

"2fol, HWH2

We plot in Figure 1 the curves of g, g for 0 varying as 6; = 3+ (1— 7) , for j € [[1,5]], ¢(x) = z+¢cos(z) and in
Figure 2 the curve of g, 9 for § = 6y =  and p(z) = cos( ). The simulations have been performed for n = 5x 10%
in Figure 1, n = 5 x 10% in Figure 2, and the probability estimated by Monte Carlo simulation for MC = 10*
realizations of the random variable |\/T',v,(Ag)| in the unbiased case and in the biased case of the random
variable [v/Tpvn(Ap) + (Bn1 — EL)M|, where (B, 1 — E})™ is obtained from B, ; — E} replacing the integral over
[0,1], that needs to be evaluated at every time step, by a quantization of the uniform law on [0, 1] with M = 10
points. We refer to [GL00] or [Pag97] for details on quantization. We point out that this is one drawback that
appears to obtain the fastest convergence rate, the bias needs to be estimated and therefore the function ¢ in
some sense known (since the approximation of the bias requires to compute its derivatives). The corresponding

gnpola) < —c + log(2C,,).
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95% confidence intervals have size at most of order 0.016. To compare with, we also introduce the functions

a—an 2 a—an 2 a—an 2 . .
Sno(a) == —W, Sn..cla) == —%, Sn.o.4(a) = —% and the optimal concentration

P(Amin)(n,0,a,p), obtained in Remark 11, optimizing numerically in p. The quantities v,,_(c?), v, (JoV|?) in
the previous expressions actually correspond to the numerical estimation, for n. = 10* and (v§)k>1 = (k7% )i=1
with 08¢ = %—i— 1073, of v(0?), v(|ocVp|?) appearing respectively in the sharper concentration bound of Theorem 8
when 0% — v(0?) is a coboundary and in the asymptotic Theorem 1. In the unbiased case of Figure 1, we plot
the maximum in j of the (Sng,)je1,5]5 (Sn.6;.¢)je[1,5]> (Sn.6;,4)je[1,5]> (P(Amin)(n, 65, a, p))je[[m]] corresponding
to j = 1. The associated curves are denoted by Sy, Sy ¢, Sn,4 and P(Amin)(n).

The Figures 1 and 2 correspond to the unbiased and biased cases respectively. In the unbiased case, we observe
that the curves almost overlay, the optimal deviation rate P(Apin) is very close to the empirical data. It is
also below the numerical estimation of the asymptotic threshold given by S, 4 which is, for our considered
example, almost indistinguishable from the coboundary S, . (indeed, since ¢ = 0.01,[Vp|% < 1 + &% and
v(0?)|Ve|% ~ v(JoVp|?)) and far below from the bounds of S, ¢. In the biased case, P(Amin) stays very close
to the theoretical asymptotic bound given by S, 9 4 up to a certain deviation level a, namely for a € [0,0.5].
It then remains the best bound provided by our results. In this example, the improvement associated with
Sh.0,c is also notable. It is precisely because the source term has a more oscillating gradient that we have also
considered a larger running time, corresponding to n = 10%, for the empirical curves. For this choice, we see
relatively good agreement w.r.t. to the asymptotic deviation bounds of S, g, 4.

The figures below thus illustrate that the explicit optimal rate of Remark 11 seems rather appropriate to
capture the deviations of the empirical random measures.

0 presmTEE——————— 0 e
-1 »\.‘:‘N’\ B \,‘,\" 1 ] T .
\\"”s\ -
-2 S
3 - -
4
| POy ()
Sy
9n,6, 8
5| ng, ° 6
gnsﬂﬁ T \ *
Sl s —
' 8
7
-8
10 P(pin(n, 60)
-9 I
Sn.0,,0
-10 2 O —
0 0.5 1 15 2 0 0.5 1 1.5
FicURE 1. Unbiased Case. Plot of F1GURE 2. Biased Case. Plot of
a — gngla), for (ek)kelllﬁlh with a— gnela), for 6y = %, with p(z) =
p(r)=0(x)=x + ecos(x), e = 0.01. o(x) = cos(x).
We eventually plot below the deviation curves with source ¢(x) = cos(z) adding a last curve obtained

replacing in the formula for P(Amin) of Remark 11 the V|2 v(0?) by v(|oVp|?). For practical purposes,
this last quantity is again estimated numerically with the same previous parameters. Even if the analysis of
Theorem 8 cannot be extended to justify such a choice, the empirical evidence is rather striking.

6.2.2. Slutsky like result. In this paragraph, we illustrate our results from Theorem 6, which can be viewed as
an extension of the usual Slustky’s Lemma to our current framework, for a multidimensional process, precisely
for r = d = 2 in the case $ € (0,1). In order to converge as fast as possible without bias, we take § = ﬁ + ﬁ.

We also choose a model which satisfies the assumptions of Theorem 4 under (Cyg) and Lemma 6. We consider:
|x’1+,3 421 + 629 cos(z1+x2) +1 sin(z1) sin(z2)
f($) = W? b(l‘) = —5x1 — by ) O'O'*(LL') = Sin(:L2‘1)4Sil’l(I2) 1— S%H(QIQ) :

Remark that the non-degeneracy condition (UE) is fulfilled by ¥ = o0*, as well as the condition set in
Theorem 4 under (Cug), Xi;(x) = X (i, ...,2q), for all 1 < i < j < d. Furthermore, from the Cholesky
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P(hin(n))
-10 |- P(Amin(n)) with carre du champ coboundary x
9n,6,
9n,6,
Ono; ~

0 0.5 1 1.5 2

FIGURE 3. Plot of a — g, ¢(a), for
(Ok)keqi,5, With @(z) = o(z) =

cos(z).
decomposition, we write:
cos(x1+:v2)
— = +1 0
O'(iL‘) = sin(wl) sin(z2) _ sin(z1)? sin(z2)? sin(zg)

4 /COS(Ié+12)+1 16(cob(z%+zg)+1) 2

Let us check that (D) is satisfied. Firstly, remark that Db%m’* is a constant matrix whose eigenvalues are
{—@, @} Direct computations yield that, for all z € R%, ¢ € R%:

bz b(z
<D()§D §§> Z|Daj (2)€]? < —3.085/¢[2.

It can be checked similarly that the condition |Dc||%, < W is satisfied for o = 3.085 and 3 = .5 which we

consider below. Also, the condition (R g) clearly holds. In other words, all assumptions of Theorem 6 are in
force. We set for the following plot:

a2a2
45(@) = Yog Py Talin )| 2 ol S(a) = iy

with o = 3.085, and [f]; = 1.

Unlike in the previous simulations, we do not know here the value of v(f). In fact, in paragraph 6.2.1 we
had chosen to compute the deviation of Ay from 0 = v(Ap). Here, we estimate from the ergodic theorem v(f),
taking B = .5, by vpe(f) ~ 0.71308 for n¢ = 5-10°. Running MC = 10? samples, we find that the size of the
associated 95% confidence interval is 3.208 - 107, Finally, the simulations are performed for n = 5 x 104, and
the probability is calculated by Monte Carlo algorithm for MC = 10? realizations. The maximum size of the
associated 95% confidence interval is 4.75054 - 1075, The innovations are Gaussian random variables.

In Figure 4, we observe that the curve S, stays above g7 as proved in Theorem 6. However, remark that

the graphs are quite spaced. This can be explained, among other things, by the difference between V(HUHz)%

and the asymptotic variance v(|o*V|?). Furthermore we have represented S, which is a kind of asymptotic
version of P(Apin(n)) in the previous plots.
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