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NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR THE RECURSIVE
APPROXIMATION OF THE INVARIANT MEASURE OF A DIFFUSION

I. HONORE, S. MENOZZI, AND G. PAGES

ABSTRACT. We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant
measure v of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme
with decreasing time step along a suitable class of (smooth enough) test functions f such that f — v(f) is a
coboundary of the infinitesimal generator. We show that these bounds can still be improved when the (squared)
Frébenius norm of the diffusion coefficient also lies in this class. We apply these estimates to design computable
non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive
non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

1. INTRODUCTION

1.1. Setting. The aim of this article is to approach the invariant measure of the solution of the diffusion
equation:

(1.1) dY; = b(Y;)dt + o(Y;)dWy,

where (W)i>0 is a Wiener process of dimension r on a given filtered probability space (2,3, (Gt)i>0,P), b :
R? — R% and o : R - R? ® R” are assumed to be Lipschitz continuous functions and to satisfy a mean-
reverting assumption. Typically, if A denotes the infinitesimal generator of the diffusion (1.1), there exists a
twice continuously differentiable Lyapunov function V : RY — (0, 4+00) such that lim, 400 V(z) = +00 and
AV < 8 —aV where € R and « > 0. Such a condition ensures the existence of an invariant distribution. We
will also assume uniqueness of the invariant measure, denoted from now by v. We refer to the monographs by
Khasminski and Milstein [KM11], Ethier and Kurtz [EK86] or Villani [Vil09], for in-depth discussions on the
conditions yielding such existence and uniqueness results.

We introduce an approximation algorithm based on an Euler like discretization with decreasing time step,
which may use more general innovations than the Brownian increments. Namely, for the step sequence (yx)r>1
and n > 0, we define:

(S) X1 =X + 7n+1b(Xn) + / ’Yn—l—lU(Xn)Un—l-la

where Xo € L*(Q, Fo,P) and (U,,)n>1 is an i.i.d. sequence of centered random variables matching the moments
of the Gaussian law on R" up to order three, independent of Xj.

We define the empirical (random) measure of the scheme in the following way. For all A € B(R?) (where
B(R?) denotes the Borel o-field on R?):

S wx @ (4)

22:1 Yk

The measure v, is here defined accordingly to the intrinsic time scale of the scheme. Since we are interested in

long time approximation, we consider steps (7)g>1 such that I';, := Y ;| 7, — +o00. We also assume 5, | 0.
- n

(1.2) Un(A) = vp(w, A) :

k
Observe that, for a bounded v-a.s. continuous function f, it can be shown, see e.g. Theorem 1 in [LP02], that:

(13) ) = 5= ol (i) 25 v(h) = [ flaplan),
" k=1
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or equivalently that v, (w, ) — v, P(dw) — a.s. The above result can be seen as an inhomogeneous counterpart
n

of stability results discussed for homogeneous Markov chains in Duflo [Duf90]. Intuitively, the decreasing steps
make the approximation more and more accurate in long time and, therefore, the ergodic empirical mean of the
scheme converges to the quantity of interest. Put it differently, there is no bias. This is a significant advantage
w.r.t. a more naive discretization method that would rely on a constant step scheme. Indeed, even if this latter
approach gains in simplicity, taking 7, = h > 0 in (S) would lead to replace the r.h.s. of (1.3) by the quantity
VI(f) = Jga f(z)V"(dz), with 1" denoting the invariant measure of the Euler scheme with step h. In such a
case, for the analysis to be complete, one needs to investigate the difference v — v through the corresponding
continuous and discrete Poisson problems. We refer to Talay et al. [TT90], [Tal02] for a precise presentation of
this approach.

Now, once (1.3) is available, the next question naturally concerns the rate of that convergence. This was
originally investigated by Lamberton and Pages [LP02] for functions f of the form f—v(f) = Ag, i.e. f—v(f)
is a coboundary for A. The specific reason for focusing on such a class of functions is that an invariant
distribution v is characterized as a solution in the distribution sense of the stationary Fokker-Planck equation
A*v = 0 (where A* stands for the adjoint of A). Thus, for smooth enough functions ¢ (at least C2(R? R)),
one has v(Ayp) = [pa Ap(z)v(dz) = 0. The authors then investigate the convergence in law of v,(f) — v(f)
once suitably renormalized. However, in these results, the assumptions are made on the function ¢ itself rather
than on f. To overcome this limitation and exploit directly some assumptions on the function f requires to
solve the Poisson equation Ap = f — v(f). This is precisely for this step that some structure conditions are
needed, namely (hypo)ellipticity or confluence conditions. We refer for instance to the work of Pardoux and
Veretennikov [PV01], Rothschield and Stein [RS76] or Villani [Vil09] who discuss the solvability of the Poisson
problem under some ellipticity or hypoellipticity assumptions, or to Pages and Panloup [PP12] who exploit
some confluence conditions allowing to handle for instance the case of an Ornstein-Uhlenbeck process with
degenerate covariance matrix.

In the current paper, our goal is to establish, in a similar framework, a non-asymptotic Gaussian control for
the deviations of the quantity v, (f) —v(f). Such non-asymptotic bounds are crucial in many applicative fields.
Indeed, for specific practical simulations, it is not always possible to run ergodic means for very large values of n.
It will be direct to derive, as a by-product of our deviations estimates, some non-asymptotic confidence intervals
that can be explicitly computed. A specific feature of such non-asymptotic deviation inequality is that their
accuracy depends again on the status of the diffusion coefficient ¢ with respect to the Poisson equation. Thus,
if ||o)|? — v(||o]|?) = AY is a coboundary, we manage to improve our analysis, to derive better concentration
bounds in a certain deviation range as well as some additional deviation regimes. Also, this additional study
seems rather efficient to capture the numerical behavior of the empirical deviations. We refer to Section 4 and
6.2 for details about these points. Eventually, this allows to provide deviations inequalities for plain Lipschitz
continuous sources f in the ergodic approximation, by using a suitable regularization procedure, see Section
5.4.

The main difficulty, compared to the extensive literature on deviation inequalities for ergodic homogeneous
Markov chains is to take into account the inhomogeneous feature of this problem, combined with the fact
that our target is the true invariant distribution of the continuous time diffusion. Such kind of approximation
produce some remainder terms that should be controlled accurately enough in a non-asymptotic way to produce
tractable deviation inequalities asymptotically close to their counterparts for the diffusion itself. This a major
difficulty compared to a C' LT where these remainder terms are simply requested to go to 0.

As mentioned above and like for the CLT (see [Bha82] for the diffusion or [LP02] for the weighted empirical
measures ), these deviation inequalities are naturally established for coboundaries f — v(f) = A(g), the
assumptions being made on . Our second objective in this paper is to state our results so that all assumptions
could be read on the source function f itself. This requires to solve the Poisson equation in that spirit, that
means deriving pointwise regularity results on ¢ from those made on f.

In particular, we will not rely on the Sobolev regularity but rather on some Schauder estimates in line with
the works by Krylov and Priola [KP10], which allow to benefit from the parabolic regularity. For more details,
we refer to the introduction of Section 5.
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1.2. Assumptions and Related Asymptotic Results. From now on, we will extensively use the following
notations. For a given step sequence (vy)n>1, we denote:

WER, T =3 af, Tyi=Y p =T
k=1 k=1

In practice, we will consider time step sequences: 7, < # with 6 € (0, 1], where for two sequences (un)neN, (Un)nen
the notation u, =< v, means that Ing € N, 3C > 1 such that Vn > ng, C v, < u, < Cuy,.

Hypotheses.

(C1) The random variable Xj is supposed to be sub-Gaussian, i.e. square exponentially integrable up to some
threshold. Namely, there exists A\g € R% such that:

YA <X, Elexp(A\Xo|?)] < +oc.
(GC) Theiid. innovation sequence (Uy)n>1 is such that E [U1] = 0 and for all (4,4, k) € {1,--- Y EUIUY =

8ij» E[USU{UF) = 0. Also, (Uy)n>1 and Xp are independent. Eventually, U; satisfies the following Gaussian
concentration property, i.e. for every 1—Lipschitz continuous function g : R” — R and every A > O:

E[exp(Ag(U1))] < exp (AE lg(Un)] + 2) .

Observe that if Uy (1) N(0,1,) or Uy () (3(01 + 6-1))®", d.e. for Gaussian or symmetrized Bernoulli

increments which are the most commonly used sequences for the innovations, the above identity holds. On the
other hand, what follows can be adapted almost straightforwardly for a wider class of sub-Gaussian distributions
satisfying that there exists @ > 0 such that for all A > 0:

(14) E[esp(hg(01)] < exp (B [o(01)] + ).

yielding that for all r > 0, P[|U;| > 7] < 2exp(—g) (sub-Gaussian concentration of the innovation). Setting
w = 2 corresponds to the standard Gaussian concentration. This is also the constant in the logarithmic Sobolev
inequality satisfied by the standard Gaussian measure.

(C2) There exists a positive constant & such that, defining for all z € RY, ¥(z) := oo*(z):

sup Tr(X(z)) = sup [lo(z)|* < &,
z€RY z€R4

where ||o(z)|| stands for the Frobenius norm of o(z). We then set ||o||« := sup,epa [|o(x)].
(Lv) We have the following Lyapunov like stability condition:

There exists V : R? — [v*, 4-00[ with v* > 0 such that
i) Vis a C? function, [|[D*V o < 400, and lim_o, V(x) = 400.
ii) There exists C,, € (0,+400) such that for all x € R%:
IVV (@) + [b(2)]” < O,V (2).
iii) Let A be the infinitesimal generator associated with the diffusion Equation (1.1), defined for all ¢ €
C2(R4,R) and for all z € R? by:
Ap() = b(w) - Vi) + 5 Te (S() Dp(a)),

where, for two vectors vy, v9 € Rd, the symbol v; - vo stands for the canonical inner product of v; and
vg, and, for M € R? @ R?, Tr(M) denotes the trace of the matrix M.

There exist o, > 0, By € RT such that for all x € R?,
AV(z) < —ay V(z) + .

(U) There is a unique invariant measure v to Equation (1.1).
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(S) For V satistying (Ly):
i) As a consequence of (Ly) i), there exist constants K and ¢ such that for |z| > K, |V(z)| < ¢z|? and

z)| < 4/C, ¢zl )
D)

. . 1. .
ii) We assume that the sequence (7 )r>1 satisfies for all k > 1,y < 5 mln(\/ci, o TV

Condition ii) in (S) means that the time steps are sufficiently small w.r.t. the upper bounds of the coefficients
and the Lyapunov function.

Remark 1. We have assumed (U) without imposing some specific non-degeneracy conditions. Observe that
(Lv) yields existence (see [EK86]). Additional structure conditions ((hypo-)ellipticity [KM11], [PV01], [Vil09]
or confluence [PP12]) then yield uniqueness.

Assumption (S) is a technical condition which is exploited in order to derive the non-asymptotic controls of
Theorem 2 (see especially the proof of Lemma & below).

We say that assumption (A) holds whenever (C1), (GC), (C2), (Lv), (U) and (S) are fulfilled. Except
when explicitly indicated, we assume throughout the paper that assumption (A) is in force.

Observe that, as soon as conditions (C2), (Lv), (U) are satisfied and E [U;] = 0, the following Central Limit
Theorem (CLT) holds (see Theorems 9, 10 in [LP02]).

Theorem 1 (CLT). Under (C2), (Cv) (U), if E[U1] =0, E[U®?] =0, we have the following results.

(a) Fast decreasing step. If lim,, = F =0 and E[|U;|% < +oo, then, for any Lipschitz continuous function
¢ in C3(RY R) with D%p and D3y bounded, one has

VTava(Ag) — N (o, / ,a*wzdy) |
Rd

(2)
(b) Critical and slowly decreasing step. If lim,, % = 7 €]0,4+00] and if E[|U1|®] < +oo, then for any

Lipschitz function continuous ¢ in C*(R? R) with (Diw)ie{2,374} bounded, one gets:

VI nvn(Ap) £, N(ﬁm,/ ]U*V<p]2dy> if ¥ < 400, (critical decreasing step)
Rd

&un(Ago) Eoom if ¥ = 400, (slowly decreasing step),
where
= - / L D2 o(@)b(2)®? + & d
m [ (GD%e@h(@) + @4(a) Jud),
Bie) = [ (GO (o) + 3 D)ol )

and p denotes the distribution of the innovations (Ug)g>1. In the above definition of ®4, the term D3
stands for the order 3 tensor (8%,%,%%0)(i,j,k)e[l,d]]3 and we denote, for all x € RY, by D3p(z)b(z) the

R? @ R? matriz with entries (D3<p(x)b(x))z.j = Ezzl(Ds’(p(w))ijkbk(x), (i,7) € [1,d]>.

Remark 2. Let us specify that for a step sequence (Vn)nen such that v, <n=%, 6 € (0,1], it is easily checked
(2) r®
that case (a) occurs for 6 € (%,1] for which \Fﬁ — 0. In case (b), that is for 6 € (0, 3], \/712— — 7, withy < +00

for@z% and ¥ = +oo for 6 € (0 ,g).

(3/2)
F\"F < 400, Qe. v, < n7%0 € (1/2,1], the statement of point (a) holds
without the condition E[U{?®] = 0 and as soon as E[|U]!] < 400 (see Theorem 9 in [LP02]). Moreover, the

boundedness condition (C2) can be relaxed to derive the CLT, which holds provided limyg) 400 % =0

(strictly sublinear diffusion) in case (a) and sup,cgd % < 400 (sublinear diffusion) in case (b). We refer

Let us mention that, when

again to Theorems 9 and 10 in [LP02] for further considerations.
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Remark 3. Note that the asymptotic variance corresponds to the usual integral of the “carré du champ” w.r.t.
to the invariant measure, see Bhattacharya [Bha82] or the monograph by Bakry et al. [BGL14], i.e.:

/ 0" Vo) P de) = —2 / (A, o) (@)v(dz).
Rd

Rd
Remark 4. The reader should have in mind that an ergodic result similar to the one stated in the fast de-
creasing step setting holds for the diffusion itself under the same structure assumptions, i.e. (C2), (Lv)
(see Bhattacharya [Bha82]). In fact (C2) can be partially relaxed as well, like mentioned above. Precisely,

% fg f(Ys)ds £ N(O, [ga lo*Vl?dv) as t — 4oco. In both cases, the normalization is the same: the square
root of the considered running time, t for the diffusion and Iy, for the scheme. In Theorem 1, the fastest conver-
gence is obtained for = 1/3 (critical value between “fast” and “slow” settings), for which a bias induced by the

discretization steps in. When 0 € (0,1/3) (slow decreasing step), this discretization effect becomes prominent
and “hides” the CLT.

Remark 5. We would like to mention that, in the biased case (b), for steps of the form ~ = Yok™V3, k>1, it
s important from a practical viewpoint to choose g in an appropriate way, namely by minimizing the function

Yo — c1v0 + 02751/2,01 = lim, %,02 = fRd \U*Vg0|2dy, which corresponds to the mean-variance
contribution deriving from the bicwke:d1 limit Theorem. Of course, co is usually unknown, and the concrete
optimization has to be performed replacing co by a computable estimate, like for instance upper bounds, i.e.
2 < [|o]loc][Velloo-

The purpose of this work is to obtain non-asymptotic deviation results which match with the above CLT. In
the current ergodic framework, the very first non-asymptotic results were established for the Euler scheme with
constant time step by Malrieu and Talay in [MT06] when the diffusion coefficient ¢ in (1.1) is constant. The key
tool in their approach consists in establishing a Log Sobolev inequality, which implies Gaussian concentration,
for the Euler scheme. This approach allows to easily control the invariant distribution associated with the
diffusion process (1.1), see e.g. Ledoux [Led99] or Bakry et al. [BGL14] in a general framework. However Log
Sobolev, and even Poincaré, inequalities turn out to be rather rigid tools and are not very well adapted for
discretization schemes like (S) with or without decreasing steps.

Our approach relies on martingale techniques, which were already a crucial tool to establish the asymptotic
results of [LP02] and have been successfully used in Frikha and Menozzi [FM12] as well to establish non-
asymptotic bounds for the regular Monte Carlo error associated with the Euler discretization of a diffusion
over a finite time interval [0, 7] and a class of stochastic algorithms of Robbins-Monro type. Roughly speaking,
for a given n, we decompose the quantity myn(A¢) as M, + R, where (M})x>o is a martingale which has
Gaussian concentration and R,, is a remainder term to be controlled in a non-asymptotic way.

We can as well refer to the recent work by Dedecker and Gouézel [DG15] who also use a martingale approach
to derive non-asymptotic deviation bounds for separately bounded functionals of geometrically ergodic Markov
chains on a general state space.

Let us also mention that many non-asymptotic results have been obtained based on functional inequalities.
Bolley, Guillin and Villani [BGV07] derived non-asymptotic controls for the deviations of the Wasserstein
distance between a reference measure and its empirical counterpart, establishing a non-asymptotic version of
the Sanov theorem. Deviation estimates for sums of weakly dependent random variables (with sub exponential
mixing rates) have been considered in Merlevede et al. [MPR11]. From a more dynamical viewpoint, let us
mention the work of Joulin and Ollivier [JO10], who introduced for rather general homogeneous Markov chains
a kind of curvature condition to derive a spectral gap for the chain, and therefore an exponential convergence
of the marginal laws towards the stationary measure. We also mention a work of Blower and Bolley [BB06],
who obtain Gaussian concentration properties for deviations of functional of the path for metric space valued
homogeneous Markov chains or Boissard [Boill] who established non-asymptotic deviation bounds for the
Wasserstein distance between the marginal distributions and the stationary law, still in the homogeneous case.
The common idea of these works is to prove some contraction properties of the transition kernel of the Markov
chain in Wasserstein metric. However, this usually requires to have some continuity in Wasserstein metric for
the transition law involved, see e.g. condition (7i) in Theorems 1.2 and 2.1 of [BB06]. Checking such continuity
conditions can be difficult in practice. Sufficient conditions, which require absolute continuity and smoothness
of the transition laws are given in Proposition 2.2 of [BB06].
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Though potentially less sharp for the derivation of constants, the adopted martingale-based approach in this
work turns out to be rather simple, robust and can be very naturally adapted to both discrete innovations and
inhomogeneous time steps dynamics like the one we currently consider.

It should as well allow to control deviations for functionals of the path, in the spirit of those considered
in [PP12]. Also, the approach could possibly extend to diffusions with less stringent Lyapunov conditions, like
the weakly mean reverting drifts considered in [LP03], or even to more general ergodic Markov processes. These
aspects will concern further research.

As an application of our non-asymptotic concentration results, we will discuss two important topics:

— The first one is of numerical interest and deals with non-asymptotic confidence intervals associated with the
estimation of the ergodic mean. Such results can be very useful in practice when the computational resources
are constrained (by time, by the model itself,...). If we assume that ¢ is C3(R% R), Lipschitz continuous with
(D'p)ieq2,33 bounded, such that there exists C > 0 satisfying for all z € RY, [D%p(z)| < Cy(1 + |z|)~! and
D3¢ is Lipschitz continuous, we then establish that there are explicit sequences ¢, < 1 < C,, converging to 1
such that for all n € N, for all @ > 0 and v, < k=%, 6 € (%, 1],

a2
> < —Cpy————————

(15) VT (49) 2l < Cue ~engro o)

When the diffusion coefficient o is such that ||o||*> —v(||o||?) is itself a coboundary, the previous bound improves
in a certain deviation range for a. Namely, we are able to replace ||o||%, by v(||o|?) in (1.5), going thus closer
to the theoretical limit variance involving the “carré du champ”. Moreover, a mixed regime appears in the
non-asymptotic deviation bounds which dramatically improves, from the numerical viewpoint, the general case
for a certain deviation range. In particular, the corresponding variance is closer to the asymptotic one given
by the “carré du champ” (see Theorem 3 below). In accordance with the limit results of Theorem 1, the drifts
associated with the fastest convergence rates can be handled as well. We obtain in full generality, results of type
(1.5) under slightly weaker smoothness assumptions, considering e.g. D3y being 8 € (0, 1]-Hélder continuous.
Eventually, under suitable ellipticity conditions on o, we are able to give non-asymptotic deviation bounds for a
Lipschitz source f as well as explicit gradient bounds for the solution ¢ of the corresponding Poisson problem.

— The second one is mainly theoretical and concerns non-asymptotic deviation bounds for the celebrated
almost-sure CLT first established by Brosamler and Schatte (see [Bro88] and [Sch88]) and revisited through the
ergodic discretization schemes viewpoint in [LP02].

Both applications require a careful investigation of the corresponding Poisson problem.

The paper is organized as follows. We conclude this section by introducing some notations. We then state
and prove in Section 2 our main concentration results. To this end, we state various technical Lemmas whose
proofs are postponed to Section 3. Section 4 is devoted to the case where ||o||?> — v(||o||?) is a coboundary, We
then establish in Section 5 some precise and quantitative deviation bounds for /T, (v, (f) —v/(f)) provided some
good controls on the Poisson equation holds, including a Slutsky like theorem in view of practical applications.
We prove that these controls are achieved in two frameworks: when some non-degeneracy or confluent conditions
hold. The associated non-asymptotic confidence intervals are discussed as well. Section 6.1 is dedicated to the
non-asymptotic deviation bounds for the almost-sure CLT and Section 6.2 to the numerical illustration of our
non-asymptotic confidence intervals.

1.3. Notations. In the following, we will denote by C' a constant that may change from line to line and depend,
uniformly in time, on known parameters appearing in (A). Other possible dependencies will be explicitly
specified. We will also denote by &%, and e,, deterministic remainder terms that respectively converge to 1 and
0 with n. The explicit dependencies of those sequences again appear in the proofs.

For a function f € C#(R%,R), B € (0,1], we denote

its Holder modulus of continuity. Observe carefully that, when f is additionally bounded, we have that for all
0<p <p:

(1.6) [fler < f ]g(%\ﬂ\m)
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Additionally, for f € CP(R4,R), p € N, we set for 8 € (0,1]:
|Df(z) — D*f(2)]|

jz —2/|°

[f(p)]ﬁ = sup

! |a|=p

< 400,

where a (viewed as an element of N3\ {0} with Ny := NU{0}) is a multi-index of length p, i.e. |a| := Zle o =p.
For notational convenience, we also introduce for k € Ny, 8 € (0,1] and m € {1,d,d x r} the Holder space
CHA(RLR™) := {f € C*(RE,R™) : Va, | € [1,k], sup |D*f(z)| < o0, [f®]5 < +00}.
x€R4
We also denote by Cf # the subset of C¥# for which the functions themselves ares bounded. In particular,
COL(R?, R™) is the space of Lipshitz continuous functions from R to R™. Observe as well that, if f € C*8, k> 1
then f is Lipschitz continuous.

We will as well use the notation [n,p], (n,p) € (Ng)2,n < p, for the set of integers being between n and p.
Also, for a given Borel function f : R? — E, where E can be R,RY, R @ RY, ¢ € {r,d}, we set for k € Ny:

Jo = f(Xk).
Eventually, for k € No, we denote by Fy, := o ((X})jepo.x])-

2. MAIN RESULTS

2.1. Result of non-asymptotic Gaussian concentration. Our main concentration result is given by the
following theorem. In this theorem, we consider a slightly more general situation than for the CLT recalled in
Theorem 1. We only assume ¢ € C3#(R% R), 8 € (0,1] instead of ¢ € C*(R? R) with existing bounded partial
derivatives up to order four (which in particular implies that in Theorem 1 ¢ € C3!(R? R)).

Theorem 2. Assume (A) holds. Consider a Lipschitz continuous (possibly unbounded) function ¢ € C3? (R4 R)
for some g € (0,1]. Let us assume furthermore that:

(Gv) ICy, > 0, Vo € RY, |p(2)| < Cyp(1 4+ V().
Assume the step sequence (Y )k>1 is of the form vy < k=% 0 € [1/(2 + B),1].

(a) Unbiased Case (sub-optimal convergence rate): Assume € (0,1] and 6 € (ﬁ, 1]
(i) Assume that there exists Cp, > 0 such that for all x € RY, |D%*p(z)| < C,p/(1 + |z]).
Then, there exist two explicit monotonic sequences ¢, < 1 < Cy, n > 1, with lim, C,, = lim, ¢, = 1,

such that for alln > 1 and for every a > 0:

P[|v/Trva(Ap)| = a] < 20, exp (_cn‘ﬂ) |

2)lo 13 1VellZ

(ii) If the function ¢ does not fulfill the condition |D?*p(x)| < Cyp/(1 + |2]), the above result still holds for
0<a<x, ¥ Vi

el for a positive sequence xn - 0 arbitrarily slowly, so that xn el - +o00. In particular,

for a fized a S 0, the above concentration mequalzty holds for n large enough

(b) Biased Case (Optimal Convergence Rate): Assume 5 € (0,1],0 = ﬁ We set for all (k,t,u,x) €
[1,n] x [0,1]? x R4:

21)  Api(t,u,z) :zE[Tr((D?’go(a:—F'ykb( %) + uty/Axo (2) U)o (z)U) (0 ( )Uk®Uka(x)*))}

and define subsequently?:

1 « 3/2/1 /1
2.2 EP = dt (1 =)t | dubp_1(t,u, Xp_1).
( ) n \/I‘inzf)/k; 0 ( ) 0 U k 1(7u7 kl)

k=1

1. The dependency of EZ in 8 is hidden in the presence of the S-Hdlder function D3¢ in Agx_:
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Set now for B € (0,1]:

B,z :=Ef if 3 €(0,1),

1 1
B, ;:Eﬁ + ’)/2/ (1—t)Tr Dz(p X1+ typbr—1)bi—1 @ b1 ) dt
(2.3) ’ VT, ; “Jo (D% ) )

1 . 2 2 : _
+ ﬁ ;’ykTI“((D o(Xg—1 + Ybr—1) — D SO(Xk;—l))Ek—l), if g =1.

There exist two explicit monotonic sequences ¢, < 1 < Cp, n > 1, with lim, C,, = lim, ¢, = 1 such that for all
n > 1 and for every a > 0:

a2
Pl nvn(Ap) + By gl > a| < 2C, exp <—cn> )
v sl 2 d] R

318
. _ 1B < Ol SR o] p 8
For 8 € (0,1), the random variables |By g| = |En| < A CTRGTE) M T oo > 0 a.s. Also,

for B =1, the (Bn.1)n>1 are exponentially integrable and if, furthermore, D3¢ is C1, B,1 — —3m a.s. where
- n

Am is as in Theorem 1. In any case, a bias appears in our deviation controls when we consider, for a given
smoothness of order 3 € (0,1] for D3¢, the fastest associated time steps v < k=%, 6 = ﬁ

Remark 6. Observe that, when [ = 1, the above result provides the exact non-asymptotic counterpart of the
limit Theorem 1. In particular, the concentration constants appearing in Theorem 2 asymptotically match those
of the centered CLT recalled in Theorem 1, up to a substitution of the asymptotic variance [gq |0*V(x)[*v(dz)
by its natural upper bound ||o||%||Vpl||%,. We refer to Section 4 for an improvement when ||o||? — v(||o|?) is
itself a coboundary.

Importantly, these bounds do no require non-degeneracy conditions and only depend on the diffusion coefficient
through the sup-norm of the diffusion matriz 3, assumption (C2). It will anyhow be very natural to consider
a non-degeneracy condition ([PVO01], [RS76], [Vil09]), or a confluence condition ([PP12]), when investigating
the deviations for a given function f, in order to ensure the solvability of the corresponding Poisson equation
Ap = f—v(f).

We discuss in Section 5 further on some specific cases that yield the required smoothness in Theorem 2 for
the solution ¢ of the Poisson equation Ap = f — v(f) corresponding to a given source f. Roughly speaking, if
oc* is non-degenerate, b € CY#(R4,RY), 0 € C;’B(Rd,Rd ®@ RY) and the source f € CYP(RYR) for B € (0,1),
we have that under (A), the solution ¢ of the Poisson problem satisfies the above assumptions (a) (7). Under
confluence conditions, which allow degeneracies, we cannot hope to rely on an elliptic bootstrap effect and the
required smoothness on @ actually imposes that the source itself is smooth.

Remark 7 (Smoothness and Convergence Rate). Observe that, in coherence with the asymptotic setting of
the CLT recalled in Theorem 1, for a given ¢ € C3P(R%R), B € (0,1], the fastest convergence rate for the

deviations is attained for 0 = 241—/3' A bias appears, which can be difficult to estimate in practice since p is

usually unknown.

Observe that we could derive from Theorem 2, up to the resolution of the Poisson equation Ay = f — v(f),
some non-asymptotic confidence interval for v, (f). This point is discussed in Section 5.

2.2. Strategy. To control the deviations of v, (Ay) we first give a decomposition lemma, obtained by a standard
Taylor expansion. The idea is to perform a kind of splitting between the deterministic contributions in the
transitions and the random innovations. Doing so, we manage to prove that the contributions involving the
innovations can be gathered into conditionally Lipschitz continuous functions of the noise, with small Lipschitz
constant (functions (1 (Xg—1,))ke[1,n) below). These functions precisely give the Gaussian concentration, see
Lemma 2. The other terms, that we will call from now on “remainders”, will be shown to be uniformly controlled
w.r.t. n and do not give any asymptotic contribution in the “fast decreasing” case 6§ > 1/(2 + () (with the
terminology of Theorem 2), see Lemmas 3, 4 and 5.
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Lemma 1 (Local Decomposition of the empirical measure ). For alln > 1 and k € [0,n — 1]:

1
O(Xk) —o(Xp—1) = MmAp(Xp-1) + [Wz/ (1-1)Tr (DQQD(Xk:—l + tYkbg—1)bgp—1 ® bk—l)dt
0

(2.4)

1
+§’7k Tr((DZSO(Xk_l + Vibrp—1) — D290(Xk—1))2i—1) + Yp(Xg—1, Uk)}

YA(Xp—1) + (W(Xk—h Uk) + Ryll,k(Xk—l))

where for all k € [1,n], conditionally to Fi—1, the mapping u — 1 (Xg—1,u) is Lipschitz continuous in u with
constant /Y |lok—1|[||V#l|oo-

Introducing for a given k, the mapping u — Ag(Xy—1,u) = ¥i(Xk—1,u) — E [p(Xg—1, Ux)| Fr—1], we then

rewrite:

(2.5)

©(Xk) — o(Xi—1) = AP Xp—1) + Ap(Xp—1, Up) + Ry 1o (Xp—1),
with Ry, (Xg—1) := R}Lk(Xk_l) + E [¢k(Xk—1,Uk)|Fr—1]. The contribution Ag(Xy_1,Ux) can be viewed as a
martingale increment. Introduce now the associated (true) martingale

Summing over k yields:

(2.6)

©(Xn)

Mn = ZAk(Xk*l’ Uk)
k=1

- LP(XO) = FnVn(A‘p) + M, + Z Rn,k’(Xk—l)'

k=1

Defining Ry, := Y ;_; Rnk(Xk—1) + ¢(Xo) — »(X,) we obtain the following decomposition of the empirical

measure:

(2.7)

1

vn(Ap) = — T

(M, + Ry,).

- Unbiased Case (Sub-Optimal Convergence Rate). This case corresponds to fast decreasing steps of the form
e =< k7% 6 > 1/(2+ B). To investigate the non-asymptotic deviations of the empirical measure, the idea is
now to write for a, A > 0:

a\ A
P[T >a] < exp(— = )E [exp (= T (M + Ry))
[VTavn(Ap) > a] < exp N [exp (Mo + Ra)
a\ g\ 1/a PA P 1 1
2.8 < ex (— )E[ex (—M)] E |ex (—R) ,—+—-—=1, p,qg>1.
(2.8) P~ TF P~ g Mn p Fnl nl >t g p:q
We actually aim to choose ¢ := ¢(n) — 1. For a suitable choice of ¢ satisfying the previous condition, we
n
manage, in the fast decreasing case, to show that %, := E [exp(lng]Rn|)]1/ P — 1. For the term involving the
n n

martingale M, we actually use the Gaussian concentration property (GC) of the innovation on its increments
(Ak(Xk—1,Uk))refi,n]- Namely, using the control of the Lipschitz constant of A(Xy_1,-) stated in Lemma 1,

we derive:
A
E [exp ( — ;{Mnﬂ
(2.9)

<

E[exp(—l(i)\

E {exp ( f}

n—l)E [exp ( - %An—l(Xn—ly Un)) ‘fn—1:|:|
2.2 2.2
= ) [ exp (G oIV ) < ex (S lol Vel )

iterating the procedure to derive the last identity. From (2.8), we thus get:

P[myn(Aw) > a} < X, exp ( -

a\
vy

g
+ g llol%vel).

Keeping in mind that we manage to find ¢ := g(n) |, 1 such that the remainder %, |, 1, the result of Theorem
2 in the considered case then follows from a quadratic optimization over the parameter .
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- Biased Case (Optimal Convergence Rate). This case corresponds to slow decreasing steps of the form v, =< k=,
6 = 1/(2+0). In this setting, some terms of the remainder R,, in (2.7) give a non trivial asymptotic contribution.
We choose to substract them before studying the deviation (term B,, g in (2.3)).

2.3. Explicit controls on the remainders. Summing the increments appearing in (2.4), we now choose for
the analysis to write for a given n € N the remainder R, defined after (2.6) as R, = > Ry x(Xg—1)+9(Xo) -
o(Xp) = (Dopn + D2xpn) + Gn — Ly, where:

Dgybyn = Z’yk/ 1—t Tr(Dz(p(Xk,1+t’)/kbk,1)bk,1®bk,1)dt,
Doy, = *Z%TF( O(Xp—1 +brp—1) — DQSD(Xk—l))E%—l)a
Gn = ZE[wk(kal,Uw\fH],
k=1
(2.10) Ln = ¢(Xa) = (Xo).

We refer to the proof of Lemma 1 to check that the above definition of G, actually matches the term / FnE,/f
introduced in equation (2.2) of Theorem 2. We rewrite from (2.7)

1 1 _
(211) I/n(.A(p) = —F<Mn + Rn) = —F(Mn + (D2,b,n + DQ,E,n) + G, — Ln)

We now split the analysis according to the cases (a) and (b) introduced in Theorem 2.
(a) 8 € (1/(2+ B),1], B € (0,1]. From (2.11), the exponential Tchebychev and Holder inequalities yield that,
for all A € Ry and all p,q € (1,+00), % + é =1,

P[/Thvn(Ap) > a] < exp(_ j%) <Eexp<_ ?Mn»;

n

1 1 1
4dp p
(212) (Eexp( (|Za] + |G \))) (mexp (\ngn\)) (xaexp (I%’\DQM\D
(b) 6= ﬁ, B e (0,1]. If B =1, denoting, Do, := Doy + Do s, we have from (2.10) and with the notations

of (2.3), (Gn + Day) = VTBy1. We study the deviations of:

. Gn+D27n a
P[\/Tovn(Ap) + Bog > a] = P[Vn(fhp)—i— —— \/ﬁ}

oxp (= 1) (B (- 211))” (e (22]1]) )
(2.13)

For 3 € (0,1), the contributions of Dj,, do not yield any asymptotic bias. Recalling from (2.3) that B, 3 =
Ef =

IN

o we write:

I'n
P[\/ﬁun(Acp) + B >a] = IP’{I/n(Ago) ? > \/Cl%] < exp ( - ;%) <Eexp ( — lq“iMn>> ’
(2.14) X <Eexp( ’L ‘)) v <Eexp (Z?:\|D27b7n‘))@ (Eexp (4;:\ >>4p

Remark 8. Observe that in case (a), the “small steps” and the corresponding sufficient smoothness of ¢ prevent
from the appearance of a bias. As a result, the concentration bound is, at the non-asymptotic level, the same
as in Theorem 1, up to the additional upper-bound for the variance. In case (b), we subtract the terms B, g

that asymptotically give a bias. When [ = 1, this is the case for both terms %, DFQTL" Also, for D3p € C*,

Bn1 = é"\z&’" — —Am introduced in Theorem 1. For B € (0,1) and ¢ € C3(RY,R), [¢®)]5 < 400, the only
n n

term giving a bias is B, g = Ef =

Gn

3
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The lemma below provides the Gaussian contribution to be exploited in inequalities (2.12) - (2.14).

Lemma 2 (Gaussian concentration). For a > 0, g € (1,+00), setting

(2.15) Ay = —— > T,

alleliZIVelk

we derive:

1
a qAn a a’
A — E - —M, < — .
eXp( m)( ex T, )> exP( 2q||a\zouwnzo>

Lemma 3 (Bounds for the Conditional Expectations). With the above notations, we have that for 8 € (0,1],0 €
[543 1):

_ 3 348
P O i S T D S
SRRV Vi (1+8)2+B)B+8) VTn'
Moreover, a, — doo, with ase = 0 if 6 € (ﬁ, 1] and ax > 0 if 6 = ﬁ Also, for 5 € (0,1], 0 € (ﬁ, 1]:
1
2D\ | = » An A2 a’p
. n < n g o 2= 9 .
(2.16) (]Eexp( T |G |)> _exp(ma ) exp (2an—|— 5 ) Vp>1

As indicated before, we now aim at controlling the remainders. In particular, from (2.8) and (2.10), we are
led to handle terms of the form

E exp <cZ’y£!b(Xk_1)|2> E exp (CCV Zv£|V(Xk_1)]>
k=1

<
(EV) k=1

for small enough real constants ¢ > 0.
To this end, we will thoroughly rely on the following important integrability result for the Lyapunov function.

Proposition 1. Under (A) there is a constant cy := cy((A)) > 0 such that for all X € [0,cy], £ € [0;1]:

Ié = sup E [exp(AV%)] < +o0.
n>0

We now have the following results for the terms appearing in (2.10).

Lemma 4 (Initial term). Let ¢ € (1,400) be fized and A\, be as in (2.15) in Lemma 2. For functions ¢
satisfying (Gy), i.e. there exists Cy, > 0 such that for all x € R%, |p(z)| < Cvu(1 ++/V(2)), for p = paal
and j € {1,2}:

L y 2 2 . 2 2
3 N U+ DpCY AL ey N (j + 1)pCE a v
Eexp (]p)\ ) < (Liy)irexp| —————"—+ — | = (Li,)7? exp > + 2,
( "rJ) =W wrz ) TR e,

with cy, I‘l/ like in Proposition 1.

Lemma 5 (Remainders). Let ¢ € (1,400) be fized and X\, be as in Lemma 2. Then, there exists Co17 1=
C2.17((A), ¢) such that for p = q%’

dpA,
(2.17) (Eexp( ]12 |Dasm

1
pr 22 I‘%z) 2 1
)) < exp <C2.17p";2) (Iy)%.

n

We also have:

- If for all x € R,
that

D?p(z)| < %TII for some constant C, > 0, then there exists Ca15 :== C((A), ) > 0 such

ApA,, 3pAZ(MiP)2 1 1
(2.18) (E exp ( ? }Dz,b,nD) v < exp <Cz_18(% + %> (I‘l/)zfp
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2
- Fora < C”qp ”UHD ”Z‘f” Vla (2) , there exists an RY -valued sequence (vy,)n>1 such that ‘Un} < Co.19 := Ca19((A), )
V oo

and

(2.19) <EeXp(4§2”\ 2bn|)>1p < (Iy)™

Also, vy, — Voo where Voo =0 if @ > 1/3 and v > 0 for 6 = 1/3.

Proof of Theorem 2. From Lemma 2 we get:

1
M, a aA a?
2.20 Eexp ( — qghp—2" ) exp ( — —— ) < exp <— ) .
(2:20) (2o (~ong?)) e (- 72) 240 BTVl
(a) We deal with the case 5 € (0,1],60 € (ﬁ, 1].

(i) We suppose that there exists C,, > 0 such that for all z € R?, |D?p(z)| < Cp/(1+]z|). Plugging in (2.12) the
controls from (2.20), Lemma 3 equation (2.16), Lemma 4 (with j = 2) and Lemma 5 (equations (2.17), (2.18)),

we get:
a’ A2 pa;, 3pCV A2 cy
vn(A Sexp(— )ep( +—> exp | —2 2+ 2~ | (I
P4 > i) 2alol2IVel ) P \arp T 2 o A Lk

A2 (122 1 2Py 1 1
X exp (Cg,npn(rq) (1‘1/)417 x exp | Co1s (% + %) (1‘1/)417

a? 1 p (6CE 1
I ~ 1- (2 4 [2C047 + 3C215)(TP)?) + =
< () eXp( ool U ool Uy ey + G +3C2ml(2)%) + 0 )

Cois,  pa’
2 ]+ 2 )

Recall now that for 6 > >1/3, F /\/ - 0, I‘(Q)/\/ - 0 (see Lemma 3 and Remark 2). We now
2+5

1
(2.21) X eXp (2—9 ey +

+,8
1/2r

take p := p, - 400, and therefore q := g, - 1, such that py /o

=)
- 0 so that from Lemma 3, p,a? — 0.
n
. r(dgﬁ) r® .. . .
Since % > \/% this in turn implies:

1
anllolZ

(2.22) dy =

n

DPn 60\2/,g0 (2)\2 1
\\lelgo{ﬁ( o + [202_17 + 302.18} ()7 ) + ]771} — 0.

1
We conclude from (2.21) setting ¢, = g, (1 — dy,), Cy, := (I},)Pn exp( ey + Caas] 4 p"a 2) — 1. Observe that
n
taking an increasing sequence (py,),>1 readily yields C,, |, 1, and ¢, in 1. Also, the sequence (py)n>1 can be
chosen in order to have, for n large enough, d, |, 0 so that ¢, T, 1

(i) Assume a < ;L ”glllj"j%‘%fuw % Plugging in (2.12) the controls from (2.20), Lemma 3, equation (2.16) ,
V

Lemmas 4 (with j =2), 5 (equatlons (2.17), (2.19)) we then derive:

a® A2 pa’ 3pC\2, /\% cy 1L
Un(A }<exp<— >exp(”+")exp — 2 T ) (I 2
PlinAp) > = 2ol Ivels ) P \ar,p 2 otz T )W)

(Il )vn+4 (CV + pa%> a? (1 1 { P (60\2/’@ 190 (1_‘(2))2> n 1})
P ex — |exp | — - e - .
PAD 2 )P\ gllo 2 Vel U qllolZ Vel \ T, \ ey 2175 »

(2.23)
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Since 0 > ﬁ > 1/3 (see Remark 2), we again take p := p, 1, 400 so that p}«/ 2an — 0 which also guarantees:
n
1 6C7, 205 17(I'))? 1
2.24 d, = {p ( 0 4 22 )+—}—>0.
220 RPN 22T L O S SR AL

3 2
In this case, we derive the result by setting ¢, := ¢, (1 — d,) — 1, Cy, := (I},)"" " Ten exp(2F + Pnfn) -1
n n n

(see the limits of v, following equation (2.19) and (3.11)). Again, (pn)n>1 can be chosen in order to have the
stated monotonicity for n large enough. Set now

cvllolZ Vel an

2.25 Xn = ,
(2.25) "= 40, 1D, pa

so that a < Xn%- Thus, the slower p,, goes to infinity, the wider the domain of validity for the estimate in

the parameter a.
(b) It remains to analyze the case § € (0,1],0 = ﬁ Let us deal with 8 = 1. From (2.13), the controls of (2.20)

and Lemma 4 (with j = 1) we get:

G, + Ds., a a? 217012/ /\% cy 1.1
P (v (Ag) + ot Don 0| o (- exp | el L YV ()5,
" T, VT 2q||o |12, Vel ol p )V

Recalling the definition of A, in (2.15), we conclude as previously with obvious modifications of (¢ )n>1, (Cn)n>1-
The case 8 € (0,1) is handled similarly starting from (2.14).
Also, when D3p € C!, we derive similarly to the proof of Theorem 10 in [LP02] that B, 1 — —ym.
n

Eventually, the final control involving the two sided deviation is derived by symmetry. O

3. PROOF OF THE TECHNICAL LEMMAS
Proof of Lemma 1. For k € [1,n], we first write:
©(Xi) — o(Xi—1) = (0(Xk) — o(Xp—1 +br—1)) + ((Xp—1 + Mbr—1) — ©(Xi—1))
= Ti—1,(p) + Th—1,4(0),

in order to split the random and deterministic contributions in the transitions of the scheme (S).
We then perform a Taylor expansion with integral remainder at order 2 for the function ¢ in the two terms
of the r.h.s. of (3.1). Namely, with the above notations:

(3.1)

1
kal,d(@) = Ybr_1- VQO(kal) + ’}/]%/ (1 — t)TI‘(D%D(Xk,l + t’}/kbkfl)bkfl (= bk,1>dt,
0
Tio1.(p) = V0k-1Uk - Voo(Xp—1 + Yibr—1)

1
—i—’yk/ (1-— t)Tr(Dzw(Xk,1 + Yibi—1 + t/VOk—1Uk )01 Ui ® Uk0'271>dt.
0

Hence,
O(Xk) — o(Xp—1) = mAp(Xp-1)

1
+’7]%/ (1- f)Tr<D290(Xk—1 + tyibr—1)bg—1 ® bk—1>dt + VOk—1Uy - V(X1 + Yibr—1)
0
1
+’Yk/ (1- t)Tr<D290(Xk—1 + b1 + t/AROk—1Uk) o1 U @ Upojy_q — D2<P(Xk—1)2k—1)dt
0
1
— ’yk.AgO(Xk_l) + ’Y;%/ (1 — t)TI“ (DZ@(X]C_1 + t’ykbk_l)bk—l (%9 bk_1>dt
0

1
+’7k/0 (1- t)Tr<(D290(Xk—1 + Ybr—1) — DZ@(Xk—l))Ek—l)dt + i (Xp—1, Uk)

(3.2) = YAp(Xp_1) + D5y + D5 sy + tp(Xi—1, Up),
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where

(3.3) Yr(Xp—1,Ur) = /V0Ok—1Up - Voo(Xp—1 + Ybr—1)
+ Vi fol(l —t)Tr (D2(p(Xk_1 4+ vebp_1 + t\/ﬁak_lUk)O'k_lUk @ Upoi_1 — DZ@(Xk_l + ’kak_l)zk_1>dt.

Observe now that, conditionally to Fi_1, the mapping u +— i (Xg_1,u) is Lipschitz continuous: indeed, the
innovation Uy does not appear in the other contributions of the right side of (3.2). Consequently, as ¢ is
Lispchitz continuous we derive, for all (u, ') € (R9)?:

|V (X1, 1) — i (Xi—1, 0)] < VAkllowe-1]l I Velloou — o'].

The result is obtained by summing up the previous identities from k& = 1 to n, observing, with the no-
tations of (2.10), that L, = > ;_; ©o(Xk) — @(Xk-1),D2pn = D py Dl2€,b7 Dosn = >y D’iz, G, =
> he1 Vi (X1, U). [

Proof of Lemma 2. The idea is to use conditionally and iteratively the Gaussian concentration property
(GC) of the innovation. Let us note that this strategy was already the key ingredient in [FM12]. In the
current framework, we exploit that the functions u — Ag(Xgk_1,u) = Y (Xk_1,u) — E [p(Xk—1, Ug)| Fr—_1] are
conditionally independent w.r.t. Fj_; and Lipschitz continuous with constant /7|0 |ls||V¢||ce by Lemma 1.
We thus write:

E exp ( — l(i—AMn> — Eexp (-1@ 3 A(Xit, Uk)>

n n

k=1
= E[es (- %iSAk(Xk_l, Ui) )E[ exp (- l(iiAn(an, Un) 1 Faci |
(3.4) < E[exp ( - 12*)\ nz:lAk(th Uk)) exp (g%lla\lé\\w!ﬁo)},
" k=1 n

where we used (GC) in the third line recalling as well that E [Ay, (X1, Uy)|Frn-1] = 0.
Iterating the process over k, we obtain:

1 n 1
(3.5) (Eexp ( — ?Mn>) - (Eexp ( - qu)\ Z Ap(Xk-1, Uk)>> q < exp (q)\2||0‘|2%”kugo>_

" k=1
Finally,
by A . \)
a q 1 g
e ——] | Ee (— —M ) <e ( ),
o ( \/Fn> ( RN ) =P,
where g : RT — R is defined by g(\) = — \/‘Iﬂ—)\ + %HUHEOHV@H?,O As a > 0, the function attains its minimum
at A\, given in (2.15). This eventually yields the expected bound. O

Proof of Lemma 3. From the definition in (3.3) and the Fubini theorem, we have that for all k € [1,n]:

E [wk(kaly Uk)‘fkfl] = Yk fol(l — t)TI‘(E [DQQO(kal + ’kakfl + t\/’)TkO'kflUk)O'kflUk ® UkUZ_l

(3.6) —D2p( X1 + 'ykbk_l)Ek_ﬂ]-"k_l])dt.
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Recalling that Uy has the same moments as the standard Gaussian random variable up to order three (see
(GC)) and is independent of Fj_1, a Taylor expansion yields:

E [Tr (DQSD(Xk—l + Wbr—1 + tAROK1 U)ok 1Up @ Upoi_y — D*0(Xp 1 + %bk—1)2k—1) ‘}—k—l}

- Tr(DQSO(XkA + Ybr—1)ox1 E U ® Uk]UZ_l)
1
+/ E[Tr((DSSO(Xk—1 + Ykbi—1 + ut\/Vkok—1Up)tx/Ak0k—-1Uk) (0h-1Uk, ® UkUZ»—1)) ‘]:k—l} du
0

—Tr <D2<P(Xk—1 + ’kak;—l)zk;—1>

= TT<D290(Xk71 + Yebr—1)ok-1 (E [Up @ Up] — I) UZ-1>
=0

1
+t\/’7k/ E[Tr<([D380(Xk71 + Ykbi—1 + ut\/Akok—1Ux) — D*p(Xg—1 + Yibe—1)]ok—1Uy)
0

X (op_1Uk ® UkUZ_1)> ’-7:1471} du,

recalling from (GC) that for all (i,7,1) € [1,7], E [U,iUgUﬂfk_l] = E[UiU{U!] = 0 (cancellation argument).
Hence,

1 148 1
|E [ (Xk—1, Up) | Fr—1]| < %/ (1 — )t P PR |, 2 Hffk—l\lswlUleB/ uﬁdU‘fk—l}dt
0 0

gyt [0t [FHE [T 3]
(1+8)2+8)(3B+5) ’

recalling that the third derivatives of ¢ are S-Holder continuous for the first inequality. We thus derive:

= n— (M)
s G 1 & [e®sllo|3PE U B Ty 2 )
1= U S R e Bl < S e e v T

Proof of Proposition 1. First of all, let us decompose the Lyapunov function V with a Taylor expansion
like in Lemma 1. We again use a splitting between the deterministic contributions and those involving the
innovation. We write for all n € N:

1
V(X)) = V(Xno1) = mAV(Xn 1)+ 72/ (1—)Tr (D2V(an1 + tymba1)bnt ® bn,l)dt
0

— 2 Te (DY (Xa-1)Zn-1) + yA0n-1Un - IV (Xt + Yuboc1)

1
v / (1= O)Tr( D2V (Xo1 + b1 + ty/Fn0n 1 Un)on1Un @ Una_y ) dt
0

2
Yy, V(Xn—1) + By + CV%HDQVHOOV(Xn_l)

<
n Tn
+ 1DV [0l + vAnon-1Un - YV (X1 + Ybuo1) + S-ID?V llscllo |2 Unf?
o ~ n
(3.7) < (= FV(Xart) + &) + VAnOn1Un - YV (Xnot + Jubno1) + SID?V oo o] | Unl?

for a constant ¢ := ¢(V, o, By). We have in fact considered the time steps sufficiently small (in (S), we have
chosen for all n € N, ~,, < min( . The two terms involving the innovation U, in the above

2 )
2,/Cy ¢’ 20y [[D*V]|oo
decomposition can be controlled thanks to the Gaussian concentration hypothesis (GC). Let us define for all
z € R% and all v, A > 0 the quantities:

L3, A, 2) = E| exp (A\Fo(2)Us - VV (@ +3b(2)) |, B(7:2) = E | exp (AL DV [l ol U1 %) |
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The first one is directly controlled owing to hypothesis (GC):

A2, |0* (2)VV (x4 nb(z))[? )
2 (

(ool e )y

3.8) Ll Az) < exp( 5

< exp
Lv)
Furthermore, under (GC), for all ¢ < 1, I := E[exp(c|Uy,|?)] < +o0o. Hence, for all A <

2 HDQVIIooIIUIIOOM

Jensen’s inequality yields:

2 2
A D7 V]oollollse
2c

MDY [ooio]12
(3.9) Iy(vn,A) < [Eexp (c]Un|2)} = exp (’Ynln(fc) | 2||c o]l )

These controls allow to prove the integrability statement of the proposition by induction. For n = 0, recalling
from assumption (C1) that for all A < A\g, Eexp(\|Xo|?) < +oc0 and from (S) that V(z) < ¢|x|? outside of a
compact set, we derive that for all A € (0, ’\?0), there exists Oy, € (1,+00) such that

Eexp (AV(Xo)) < CPy.

Set now fy := &+ In(Ip) IPVI=l7le ang Gy = min (1, % — AC, o2, (1 +mC, [+ 212 VI=]y) € (0, 1,
for A < *v

2 .
2CV”O'”2 (1—&—716’ 1 +M])

o «a
Let us assume that for all A < Ay := min (2 QCV”J”&(HMCX L HD;VHOO]), IIDQVHooHGHEOM>’ the property
(Pn-1) Vk € [0,n — 1], Eexp (A\V(X})) < Cy = Cv/\ V exp < fv)
Vv

holds for a fixed n—1 € Ny and let us prove (P,). By inequalities (3.7), (3.8) and (3.9) and the Cauchy-Schwarz
inequality, we derive that for all A < Ay,

Eexp (AV(X,)) = E[exp(AV(Xn_l))E[exp(A(V(Xn)—V(Xn_l)))\}"n_l]}

§ ]E|:eXp ()\[V(anl)(l - OZ?V’WL) + Efyn])ll (7”7 2)‘7 Xn*1)1/212(7n> 2)‘)1/2]

= exp (/\'ynBV)IE[eXp </\(1 - %V%)V(Xn_l) 22,0 |2V (Xy + %bn_l))} .

(Lv),it)
Recall now that V(X,—1 +vnbn—1) < V(Xpn—1) + 7| VV(Xn-1)||bn-1] + §|]D2V|\oo|bn,1|2 < V(Xn-1)(1+

mC, [1+ MD Thus,

E[exp (A\V(X,))] < exp ()\'YnEV)E[eXP (A (1 = ypav) V(anl))}
€l0,1)
< exp (MnBv)E[exp (AV(Xp-1)) < exp ()\%EV)C‘(}’;%&V)

using (P,—1) for the last inequality. From the above equation and the previous definition of Cy, ) we have:

(Jensen) ~ ](1—7n5v)

exp (Mnﬂv) %aV) <Oy <= Cyp > eXp( fv)
\%

Hence, (P,) holds. Taking ¢y < Ay completes the proof. g

Remark 9. Noting that v* = inf ,cpa V(7) > 0, we get that for all (n,€&) € Nx [0,1], and for all A < Ay (v*)17¢:

Eexp(AV$) = Eexp (x\(v*)§ <E>£) <Eexp (Av*)*7'V,) < Cyaee-1 < +00.
———

U*
>1

Thus, we readily get as a byproduct of Proposition 1 that, for all € € [0,1], X < Ay (v*)1 ¢, supneNEexp(Aqu) <
+oo. We refer to Lemaire [LemO5] for additional results in that direction.
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Proof of Lemma 4. Recalling from (Gy) that there exists Cy,, > 0 such that for all z € RY, |p(z)| <

Cve(1++/V(z)), we get for j € {1,2}:

[]E exp (ijn "P(XO)I:H‘P(XH)’)] ﬁ < [E exp (jp)\n CV,cp(Q + \/V(XO) + \/V(Xn)))] »

1%
%
An V(X V(X, P
< exp (2CWF ) [Eexp (270 Crpn F(O)) Eexp (2jp Crphn r( ))]
Write now for i € {0,n} by the Young inequality:
| e (Gp)°C2 0
2 A, YR X;) + 22 ZVetn
IpCrdn = — < evV(Xi)+ T2

where cy is the positive real constant such that I{, = supE [exp(cyV(X,))] < 400 (see Proposition 1). We
n>0
then get

[E exp (jnAn ’(’O(XO)F_,L(’O(XHM e exp (20v7«%”) exp (‘”DC;P*‘;A) (Eexp(evV(Xo)) Z (EexplevV(X.))) %

(7 +DpCi A7 cy
< = T ¥ 7 I O
= exp ( CVF,% exp < p ) ( V)Jp
Proof of Lemma 5.

e Proof of inequalities (2.19) and (2.18).

Write first
L 1
A, i 4pAn & ! 4”
<Eexp ( ?n )) < (E exp ( ?n ;’yz/o (1-— t)"I‘r(Dz(p(Xk,l + tyibg—1)bg—1 ® bkfl) ‘dt)) .
(3.10)

2
-Ifa < 4cc‘/qp ”"M%ﬁ” V( = Xn V(le with the notation introduced in (2.25). We first easily get from the
Vv

assumptions on ¢ and pomt ii) of (EV) that:
1

1 n 4p
<Eexp (4112)\” >> N < <Eexp (2];‘)% ZW}?CVVk—1||D2<P||oo>> )
n k=1

From the Jensen inequality (applied to the exponential function for the measure ﬁ Dy fyzék), we derive:

1
ApAy, ap 2pAn,
<Eexp< 211)\ IDQ,b,n|>> To< ( Z%%E XP( i

1

) 4p
Dl Cy Vi) |

n

We then have from the definition of A, in (2.15) that:

2 2
g 2 e G T 2C0p 1Dl
n - o0 - —
L, ov VT eva [ol&IVel

The Jensen inequality for concave functions yields for all k € [1,n]:

2p\, T2 v

Eexp( T, HDQQDHOOC Vi_ 1) = Eexp (17chVk_1) < (Eexp (CVVk_l))Un.

Thus, setting

- (2)
Un )\ F C,
3.11 Up = — = 00T
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we finally derive,

4pAn
[Eexp( ]IQ‘)\

using again the notations of Proposition 1. This gives (2.19).

ﬁ 1 - 2 Un w 1\v
)] < @ ;Vk(supﬂﬂ [exp(c\/Vl_l)]) = ()" =: CY,

>1

- If | D%p(x)]] < %Ix\ In this case, restarting from (3.10), the idea consists in introducing the partition

{|IXk| < K}U{|Xk| > K} for a given constant K > 0. The Lyapunov function V' is then bounded on the
compact set and for {|Xj| > K} we write:

C
D2p( X, + tvibi)| < )

This control will allow to equilibrate the growth of V. Recall indeed from (Ly) that for a given threshold K > 0
there are constants C,, ¢ := ¢(V, K) > 0 such that for every z€ R?, |z| > K, |V (2)| < ez|?, |b(z)| < /cC, |z]
(see also Remark 1). Hence, since t € [0, 1],

| Xk + tyebr] > (1 Xe| = lok])+ > [Xel(1 — v/ Cy )+

From assumption (S), we have that for k > 1, (1 — v,/cC,,) > 1/2. Thus:

2C
(3.12) |D?*( Xy, + tybi)| < 1D*@llocLjxy <}y + ml{leDK}-

From this inequality, equation (3.10) and applying as above the Jensen inequality, we derive:

<E exp (4];)\”

1 n 2) 4p
+ 1 ) ApA, T 10?0l c
)" <r<2> D ofBexp (3 0 Ve (T B+ [t o))

n

l

< exp (2500, sup V)%l ) Yoo e (20 e, ey )
= o0, V\io<k *\ 1@ & hl

|z < n k=1

recalling that for |z| > K, /V(x) < v/¢|z|. From the Young inequality we obtain:

E exp (4p)\ F( CccC \[W) <exp((2p)\F: Cs@\[> )E[exp(chk,l)].

We finally derive with the notations of Proposition 1:

ApAn
(Eexp( ]I)‘)\
n

= (2) 2 (1242
i ML : PRIPR (CC Py
)7 < e (SR s V) IDFel) e (PG CO)

< exp (02.18 (p)\%(l_‘l;,(f))Q N )\nlf;:(?))) (I‘l/)ﬁ,

n

. C
setting Co.1g := TV(SUngK V(ac))||D2cp||OO vV
PAZ (D)2
T2

(CCy, )%

(2)
T From the Young inequality we finally have % <

+ ip which, plugged in the above control, completes the proof of (2.18). ]
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e Proof of inequality (2.17). We proceed as for the proof of (2.19) and (2.18). Write:

<E exp (411?\”

1

Tr((DzSO(kal + Yrbr—1) — D280(Xk71))2k71> D) K

1
4ip
P2 oo §jwk|bk 11)) (Eexp(”;i"\ [APCINeE }jmvk i ))

1
< <F(2) Vi £ exp (THUHOO[SO( )]1C3|Vk:—1|2) -

_ lollsle ‘2)}2 Sy

Using once again the Young inequality and settlng Coqr7:

(E exp (4];)\n )) g < exp <pi

4. A REFINEMENT WHEN ||o||? — v(||o||?) 1S A COBOUNDARY

, we obtain:

2 (2)

(Y o (o (.

n

))ah#. o

We will assume in this section that there exists a solution 9 of the Poisson problem AY = ||o||? — v(||o|?)
satisfying the assumptions stated in Theorem 2, which is in particular the case if ¢ is smooth enough (namely
o€ CYPRYRI@R"), B € (0,1]) and the coefficients in (1.1) satisfy some non-degeneracy conditions, see e.g.
Theorem 6 below.

In this special case, we have a slightly different concentration result improving our previous ones for a certain
deviation range.

Theorem 3. Under the assumptions of Theorem 2 and with the notations introduced therein, we have that:
(a) For (B € (0,1] and 6 € (5=

! Pk 1]), there exist two explicit monotonic sequences é, < 1 < Cpn, n > 1, with
lim,, C},, = lim,, ¢, = 1 such that for alln > 1 for all a > 0:

PV do)l 2 a] < 2Ge (~5 e (@),

2v(llol®)IVell3

2 s (12, (e
e (“2<1‘1+¢m>>v<“" (-3(2)) )]

2/3

where x4 = max(z,0) and ¢, = (%) v(|la|?)]lo| = 2B, with & being an explicit positive sequence s.t.
(b) For B € (0,1],0 = 2+ﬁ, there exist two explicit monotonic sequences ¢ < 1 < Cpn, n > 1, with lim, C,, =
lim,, &, = 1 such that for alln > 1 for all a > 0:

~ Cn
P[|v/Trvn(Ap) + By gl > a] <2Cpexp <— EBINEE (I)n(a)> :

Remark 10 (About deviation rates). Observe that in order to derive global deviation bounds (valid for every
a > 0) two concentration regimes appear in the previous bounds. For an arbitrary fized a > 0, we have
that for n large enough (depending on a), the Gaussian concentration regime will give the fastest decay, since

2 . . . . . .
———= — 0. Also, when a < +/I',, the two above contributions give a Gaussian bound, with suboptimal
1+1/1+423 T3 " g P

n

constants. Eventually, when a > /'y, for a fired n, we have that the first term is “stuck” at the threshold T'y,
whatever level a is considered, i.e. a?(1 — ——2——) —» c, 3T, whereas the second clearly becomes bigger.
: =) o2 y 99

To summarize, when the Gaussian regime prevails (i.e. when \/‘IE— is small), the results of Theorem 2 have

been improved in the sense that the variance in the deviations is a sharper upper bound of the “carré du champ”
Jga |0*Vp(x)|>v(dz) appearing in the asymptotic Theorem 1. Indeed, we managed to replace the supremum
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norm |o||%, appearing in Theorem 2 by v(||c||?). However, our martingale approach naturally leads to a bound
in [VollZ.

On the other hand, the global double regime seems to be the price to pay to benefit from the better approrimation
of the “carré du champ” in the Gaussian regime.

Proof. We focus on case (a) for 8 € (0,1), 8 € (1/(2+ f3),1]. Case (b) could be derived similarly following the
proof of Theorem 2. We restart from the computations of Section 2.2 that give for all A > 0 the control in
equation (2.12). Let us now deal with the term giving the concentration and write for all p > 1:

Eexp ( — @Mn) < (]Eexp ( — @Mn — M irVkAﬂ(Xk—l)>> ;

T, T, 2I'z
k=1
P* (N[0} & G P
[N VA L N Y _. p p
(4.1) X Eexp<2(p_1)r7% ;%Aﬁ(Xk_l)> =77, ".

Since for all z € RY, A¥(z) = ||o(x)||? — v(]|o||?), we obtain:

[
A = exp

(PO g (2, POV S o ),

oT,, T, ay =

The key idea is that we have exploited the Poisson equation solved by ¥ to replace the previous rough con-

21 12 9
trol exp (%

(pz(qA)Q[@]?V(HGHQ))
2T,

) coming from the martingale increment obtained in equation (2.9) by the above term

exp This last contribution will be part of the optimization procedure over A. This im-

provement will be all the more significant that neighborhoods of the points where the norm of the diffusion
coefficient o attains its supremum are not very much charged by the invariant measure. The point for 77 is
then to prove that the remaining expectation is less than 1. It will be shown by exhibiting an appropriate
underlying supermartingale.

Set to this end ﬁ ‘= exp ( — p2(qA)2[¢]%V(|lal|2)><%. Define now, for a given n € N and m € Ny, 5, =

2T,
exp (—p%Mm - % Yoy 'yk||a(Xk_1)|]2>. From the definition of the martingale (My)g>1 in (2.5) and
the controls of the Lipschitz constants of the functions (¢k(Xk_1, ))k e[Ln] in Lemma 1, we get by iterated

conditioning:

7 < Efswien (- PO oo, ) P)E[ew (oL 00— )|

oT2
p2(qN)?[¢] p2(qA)?

2
1 2
Tl (Xn-1)|12) exp

(GSC) E [Sn_l exp ( —

In other words, (Spm)m>0 is a positive supermartingale. We finally get that, for all p > 1:

(4.2) 7% < exp (p<qx>2[§1§nu<||au2>)

(gN)%p%[e]2
20Dy,

For the term %, we have that setting u := u(q,n, p,\) =
" n
F5 = Eexp (Fn ;%Aﬁ(Xk_l)>,

so that this contribution can be controlled from the previous expansion of Lemma 1 exploiting the technical
lemmas of Section 2.2 replacing A by p and ¢ by 9.
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(1/(2 + B8),1], B € (0,1], the Holder inequalities yield that for all p € Ry and all
1, similarly to (2.12),

Ty = Eexp (Fﬁ i’wffw(Xkl)> < (EeXp <—1(¥LM3)>;
" k=1 "

(4.3) x <Eexp( |Lﬂ|)> ” <Eexp(4rfif\pgbm)>4lp (Eexp( D3 En\))“‘lp,

where the superscripts in ¥ emphasize that the contributions to be analyzed are those associated with the
solution ¥ of the Poisson problem with source || |? — v(||o|?).

Still for simplicity, we assume as well (case (i)) that there exists Cy > 0 such that for all z € RY, |D?9(x)| <
Cy/(1+ |z|). Plugging in (4.3) the controls established in Lemma 4 (with j = 2), Lemma 5 (equations (2.17)
and (2.18)) and (3.5), then replacing A\, by u, we get similarly to the first inequality of (2.21) and with the
notations of Lemma 3:

=2 2 1,912 2 = 2 3902 . 12
% < exp(wlffllooWh)eXp( A _+pan>exp<p vob ﬁy) (I}) %

In case (a), for 6 €
1_
1=

P, € (1,+00), 5 +

2T 2I'np 2 cyl2 7
X exp (Cz,171m2(rrf))2> (1\1/)4% X exp <Cz,18 <:W22(FI;"2))2 + ;p)) (1‘1/)4%
< exp (Fn (CJHUH; 201 +p((réj)2 [Co.a7 + 202‘18] + ifi:) + 21;5)) exp (;(CV . 6’22,18) . ﬁaj)”\l/)’l’
Set now
Cu = e (v + 5+ )b,
(4.4) &y = p((rﬁi)? [Coar + 202,18] + i(ﬁ:) 21]5,

( ‘”)

In the considered case, the exponent p := p,, can again be taken such that p, = 400 and p, L - 0 in order

to have, &, — 0,C,, — 1 with the indicated monotonicity for large enough n.
n n
We derive from the above control and (4.2) that for all ¢, p > 1:

1
M\ - (h N peRlrolD S o1 el
<]E6Xp <—1_‘nMn)> S (Zp% p>q Sexp< 2]1-_‘71 )Cnﬂq exp( o Fﬂ( ;O 1 +€n)>
Plugging this bound in (2.12), using again the controls of Lemmas 4 and 5, eventually yields:

P [VEurn i) 2 o] < oxp (— S ) exp (2 (paleliullol®) + 5)) 0 exp (21 (DL g )

VTn pq T'n 2
A2 (TP)? 3 302 1 c 2 .
X exp (Fp(( T ) (Coar + 502.18) + Cv?p)) exp (; (ev + 22'18) + p;z )(Iv)zl)

(n)

Choosing p := p, - 400 and such that p, = 0, we get by a standard symmetry and with the notations

introduced in the proof of Theorem 2:

P H\/ﬁun(flcp)‘ > a] < 2C’,LC_':P;‘11 exp (—\;%) exp (I{‘z(pq“’ﬁ’;(‘k’”z) + €n)>
< exp (pp—qlé(qlla\lgo[ﬂﬁ +e),

where e, is defined similarly to €, in (4.4) replacing p by p. In particular e, - 0. Note that for the previous

% we are thus

s

choices of p,p, we have that Cn = C,Chp o —> 1 uniformly in p > 1. Recalling that u =



NON-ASYMPTOTIC GAUSSIAN ESTIMATES FOR ERGODIC APPROXIMATIONS 22

led to minimize the polynomial function

ah A2 A
A, + =B
VT, * T, nt rs—m"

where A, = A, (p) = pgn and B,, = B,(p) = ppT:”an with

P:— —

(4.5) A, .= aleliv(lel®) ve, and B, = ol <QHO'||§0[19H +én>-

2 4
Note that both sequences (;{n)nZI and (én)nZI are bounded and bounded away from zero sequences (and do
not depend on p). The function P is clearly convex and coercive so it attains its minimum at Apin, unique zero
of the equation P’(Apin) = 0. This equation reads

5
A, T2 al'2

4.6 A3 nTny_ """ _
(4.6) + 2B, 4B,

which is the canonical form of this third degree equation to apply the Cardan-Tartaglia formula (2) so that

1 1
r, a 2A4,\3 a? : a 24,\3 a? :
4. min = 5 —
(47) Amin(p) = 5 (\/ran + \/(SBn) B > + (N/ran \/(33n> B )

3

In order to derive our non-asymptotic bound, we select two “regimes” based on a first order expansion of Ay

in two cases & % — 0 and B"Tm — 0, assuming that the free parameter p = p, to be specified later on
remains bounded, e.g. p € (1,3] (which implies that both quantities ’gz and B%L remain bounded as well). Also,

note that if p — 1, then Bin and g—z — 0. First, one easily checks that if (z,,)>1 and (a,)n>1 are two sequences
of positive real numbers where (ay,),>1 is bounded, then

3
5 3 22n f — 2 h
(4.8) (gjn_|_ a%+x%>3 I (mn B \/m)g - 3 an 1 i xz, O(GZ) (then x,, — 0),
(2z,)3 if a, =o(z3) (then z, = +00).
3
o If #\/ﬁ = o((%) 2) (hence goes to 0), setting then z, = #\/ﬁ and a,, = % vields
ay/T’
Amin(p) ~ A*(p) = “asn — +oo.
24,

Note that A* := A*(p) corresponds to the optimization of the quadratic part of P. Then

P(m:_a?( _ai)Bn):_ @’ (1-— @ &)
Set now &, := ap"f@f) with ay,(a) = ET%%' Then
* CL2 1-— g
4A, 1+ z—n
It remains to maximize the mapping & — ﬁ over (0,1). Its optimum is attained for & = L

1 b
/1

which in turn yields

(4.9) POy =% |1 2

Bya?

14+4/14+4

2. If the equation 2% 4+ pz + ¢ = 0 has a unique real zero z, then its discriminant A = 4p® 4+ 27¢®> > 0 and 2. = (%( - q+

) (B-a-V2))"
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an(a)

Note that, with the resulting specification of p = p} =1+ & € (1,3] (at least for large enough n), the

3
above condition z, = o(a?) in (4.8) is satisfied a posteriori.
o If —2— — 400, then, still owing to (4.8),

BpvIn
1
N * Fn 2a 3 CLFn 3
) 300 = 5 (2=) = () VI o
n n n

The value \*(p) corresponds to the quartic pseudo-optimum of P (i.e. obtained by neglecting the quadratic
term). This yields, when reintroducing the parameter p,

Ay

(4B,)5 a

(o)) = _girs P =1)
PO () = el p(4B)

The right hand side of this equality is a function of p€ (1, +00). Its analysis yields that the optimum is attained
in (1,3/2] and that it tends asymptotically in n to 3/2 in our considered regime. Taking as suboptimal p = 3/2
gives:

(4.10) P(X*(p)) < —4 (g) (1 - ggm) |

From (4.10), (4.9) and (4.5), we conclude the proof of case (a) by setting &, := A, B,
definition in the statement of the Theorem.

Wl

‘ !
Swie

Wl

(p—1)

Wl
B o

Wl

i

which matches with the

In the biased case, the result follows similarly from the corresponding analysis performed in Section 2 taking
Anlp) = paleliv(llell?) 0
5 .

Remark 11. e When a =< /T, one checks that Apmin(p) < Ty, and P(Anin(p)) < —I'y. This behavior is
consistent with our non-asymptotic bound. However, for practical and numerical purposes observe that the
optimum can be estimated. Namely, plugging the identity (4.6) satisfied by Amin(p) in (4.7) into the definition
of P, yields

P ()‘min (p)) =

Amin (p) (3(1 B Amm(p)pﬁn>

9T, \ 2 VT,

1
VIn (P_l)?’q)n(a’p) (3@_ VIn
4 0 2 2
A 2 % % A 2 % %

a 24,\3 a a 2A4,\3 a

where  ®y,(a,p) = —+ -1 — + = + —— —1H)—=) +=
o= (s (0 0GE) i) ) (e (0065 v i) )

Then, an optimization in p€ (1,400) for given a,T', can be performed (noting that p — (p—1)/3p~1, i € {1,2}
are bounded functions over (1,+00)).

—
hs
|
—
~—
W=

ﬁn%(a,p)> ,

5. PrRACTICAL DEVIATION BOUNDS AND RELATED SMOOTHNESS ISSUES FOR THE P0OISSON PROBLEMS

We begin giving some practical concentration results for the quantity /T, (Vn( ) —v(f )), where the source
f is a given input, and related controls on the associated confidence intervals. For these controls to hold, some
smoothness conditions for the Poisson problem A = f —v(f) and/or A9 = ||o||* — v(||o||?) are needed. These
results are almost direct corollaries of Theorems 2 and 3 above. We then discuss how to obtain the required
smoothness in two cases:

- when some non-degeneracy on the coefficients holds (uniform ellipticity).

- when some confluence conditions are available.

We eventually discuss, in the non-degenerate case, how a smoothing procedure can be developed to get closer
to the assumptions of Lipschitz source which is usually made when using functional inequalities.
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5.1. A first Non-asymptotic confidence interval result.

Theorem 4 (Non-asymptotic confidence intervals without bias). Let f be in CH?(R? R) for some 5 € (0,1).
Assume that the Poisson equation:

Ap(z) = f(z) —v(f), z e RY,
admits a unique solution ¢ € C3P (Rd,R). Suppose as well that there exists a positive constant Cy, such that,
for all z € RY, |D2%p(z)| < Cp/(1 + |z|) and the following gradient bound holds:

6.1) Vel < L 050

We suppose finally that ¢ satisfies (Gy) introduced in Theorem 2.
Assume the step sequence (vi)g>1 is such that vy, < k™ NS (2+B’ 1]. Then, for (cn)n>1,(Cp)n>1 like in
Theorem 2 with lim,, ¢,, = lim,, C;, = 1, we have that for all n > 1 and a > 0:

a?a?
(5.2) P[\/Tolvn(f) pl>a] <20, exp( W)’
(5.3) P [V a”?\';.ih,un(f) + CL';”\;’#H >1-2C, exp (—cna22> .

Proof. Equation (5.2) is a direct consequence of Theorem 2 and the gradient bound (5.1) observing that
vn(f) —v(f) = vn(Ap). To prove (5.3), setting ay fq := al|o||oo UL it suffices to write:

a !

P[VTo|vn(f) —v(f)| > arra] = P[m}un<f—v<f>>}zaa,f,a]:P[m\vnmw\ma,f,a].

Hence:

P[v) € ) = 22 (1) + 2] | = 1= BV TLlbn(AR)| 2 )

v

Conclude by noting that Theorem 2 (a) yields:
2
IP’[\/ITn|Vn(Ag0)‘ > Ao tal < 2Cpexp <—cna2> . O

5.2. A more refined non-asymptotic confidence interval when ||| is a coboundary. We provide here
a kind of Slutsky’s Lemma when ||o||? is a coboundary. The key idea is to apply Theorem 3 discarding a better
concentration rate and to replace the term v(||o||?) appearing there by its ergodic approximation v, (||c||?).

Theorem 5 (Slutsky type concentration result for the coboundary case). Under the assumptions of Theorem
4, for B € (0,1] and 0 € (ﬁ, 1], assuming as well that there is a unique solution ¥ to A9 = ||o|* — v(||o|?)
satisfying the same assumptions as ¢ in Theorem 4, there exist two explicit monotonic sequences ¢, < 1 <
C’n, n > 1, with lim, C,, = lim,, ¢, = 1 such that for all n > 1, for all a > 0, the following bounds hold: if
\/ﬁ —0 (Gaussmn deviations) then,

vn(f) —v(f) o . ot (o 0°
(5.4) P“mimnam |>a] <20, p( nQ[m>,

ar/vn(|lo av/vn(|lo a?
(5.5 Plu<f>e[un<f>— DDy 4 ] ”Z”fh]] > 120,00 (0 ).

Again, the non-asymptotic confidence interval is explicitly computable. It is also sharper than the one in
(5.3).

Proof. First we write:

(5.6) P [ﬁ’w > a] —p [unuuo) >

. un<|ro||2>] |
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We then proceed similarly to Theorem 3, with an exponential Bienaymé-Tchebychev inequality, for all A > 0
we have:

valf) —v(f) a ex _ vn (||o]|?) | exp (Av,
P|VELIAD > o) < e (~ v TIo) exp (Ao |

— oxp (VI ) B exp (- o [Von TIoT) - VoTIoTP)] ) exo (iAo

= exp|— a\ v (lo]2) ) E] exp [ - X v (llo) = v (ll]”) )ex Avp (A
p< ol >) [ p( T e i | e Gt Ae) ]

= ex _a)\ v(|oll? E_ex _a)\ v (AD) )ex vy, (A .
p< ol >) [ p( T e ) S O 4]

3

5

5

By the Holder inequality, for p,q > 1, such that % + % =1

b [ JE ) =) Za]

v (lo]?)
= 1/p 5
oxo [ — a\ o (T | E ex <_ ap vp (A9) )] E exo (Ad (A 1/.q
< oo (g )>[ P\ U Vo e ) (B 040

The proof of Theorem 3 yields:

() ) N S .
Vo ol 2 ] < dtvesp (= Vo) s (At (0 )

B 1/p
(e (R o))
7 ( p( VI o () + /o (oP)

where we recall from identity (4.5):

P

+ _ dleliv(lo]®) = _ Cleli allollZ 0 |
A, = 5 +e, and B,= 4 ( 5 —I—en).

Also, Z, — 1 denotes a “generic” remainder. Observe that thanks to (5.1), we get:
n

_ 2 2
- © o dfivol?) |
2a
_ A9 1/p
Let us now handle the remainder [E exp (— f}% \/un(lla]ngr\}u(loI?))] :
_ e
E exp <_ ap v, (AD) )] /P
I VI /v (o) + Vv (o))

[ 5 1/p
B P ) vy (AV) >1y ot )}
: ( p[ VT Vo TIoT) + (e ) (ontanzo * ducan<o)
[ aPA v (A9) \]77 e
Eexp | 22 P (v, (AW) > 0]/
(- p<¢Fn v<uauz>> n(A9) 2 0)
i af)Q)\ U (.A’lg) 1/p B 1/p
+ Eexp( L >] IP’[Vn(Aﬁ)<O]1/q> )

VT Vo ([o]?)

Let us mention that we introduced the above partition in order to get a sharper constant in the final inequality,
1 below instead of 2, which would follow getting rid of the indicator functions. Now, by Theorem 2 we easily

IN
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get:
£ |exp ( ALY )]W
VTn /v ([0]?) + /v (o)
25 2 112 2 B s
(5.9)  <Rnexp (Fny(‘ﬁ”%g(l! 191 +en>> P lon(dd) > 07+ Bl (4) <]

P

We choose p := p(n) — +o0, such that F‘f — 0, and so (P[v,(AY) > 0] Yy P, (AD) < QVOVP < 21/P 1,

Moreover, exploiting again that for the Gaussian regime, ﬁzr—:? — 0, we obtain by (5.9) and (5.7):

) =) (L ah O
o1 P[m D za| <o (- VPP e (o e+ I B ).

From identity (5.10), the optimization over \ is similar to the one performed in the proof of Theorem 3. This
yields the deviation bound (5.4). The non-asymptotic confidence interval in (5.5) is derived as for Theorem 4
from (5.1) and (5.4). O

5.3. Regularity Issues for the Poisson Problems. We mention carefully that, for our deviation analysis
to work, we need to establish some pointwise controls on the solution of the previously mentioned Poisson
equations. Namely, we need to have quantitative bounds on its derivatives and the associated Holder continuity
modulus up to order 3. In the non-degenerate case, the solvability is usually studied in a Sobolev setting, see
e.g. [PVO01]. To obtain the required smoothness, we use here in the non-degenerate framework some Schauder
estimates, deriving from the work of Krylov and Priola [KP10], which allow to benefit from the parabolic
regularity. Namely, to obtain the mentioned smoothness on ¢ solving Ap = f — v(f), that we expect to be
in C3#(RY R), B € (0,1), we can take a source f € CV#(R? R). The other typical assumption that will yield
the required smoothness on ¢ is a confluence condition provided that the source f and the coefficients b, o are
smooth enough. In this case, the derivatives can be expressed using iterated tangent processes and we cannot
hope, without a priori any non-degeneracy condition, for a smoothing effect to hold. To have ¢ € C*8 (R4, R),
we need to consider a source f € C*?(R%, R) and sufficiently smooth coefficients b, .

We now introduce various types of assumptions that we are going to consider for the remaining of the section:

e Non-degeneracy Conditions. By that, we mean that we assume:
(UE) Uniform ellipticity. We assume that w.l.o.g. that » = d (r > d could also be considered) in (1.1) and that
the diffusion coefficient o is such that

dg >0, V€ €RY, (00" (2)¢,€) > alef*.
e Smoothness of the coefficients and the source. Concerning the smoothness of the coefficients b, o and
the source f, we introduce for k € {1,3} and S € (0, 1) the following condition.

(Ry.5) In equation (1.1), the coefficients b € Ck# (R4 R?), o € Cf’ﬁ(Rd,Rd). Also, the source f for which we
want to estimate v(f) belong to CH#(R? R).

e Confluence Conditions.
(D) We assume that there exists a > 0 and p € [1,2) such that for all z € RY, £ € R?

r

T x)* 0.5\ 2

j=1
where Db stands here for the Jacobian of b, o.; stands for the 4% column of the diffusion matrix ¢ and Do
for its Jacobian matrix.

In the following, we say that (ND) (non-degeneracy) holds when, additionally to (A), (UE) and (R g) are
in force. Similarly, we say that (C) holds when (A), (R33) and (D) are satisfied. Under (ND) or (C), it is
well known that the Poisson equation:

(5.11) Vo € R, Ap(z) = f(z) —v(f),
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admits a unique solution, in H'(R%,R) under (ND) (see [PVO01]), or in C>#(R?, R) under (C) (see [PP12]). In
both cases, we have the following representation:

(5.12) o(zr) = —/R (Ptf(:c) — V(f))dt where P, f(z):=E [f(YtO’x)]

and Yto’x solves (1.1) with Yoo’x = z. To comply with the framework of the above Theorems 4 and 5, the first
step is to establish a pointwise gradient control.

5.3.1. Gradient Control. When the coefficients b, o satisfy at least (R; ) in (1.1), there are two kinds of
assumptions leading to explicit pointwise gradient controls. The first one is confluence condition (C) described
above that gives the expected bound, through controls on the tangent flow, without any a priori uniform
ellipticity condition of type (UE). On the other hand, in the non-degenerate framework, that is under (ND),
when the so-called Bakry and Emery curvature criterion holds, see [BE85, BGL14], the gradient and semi-group
commute up to an exponential multiplicative factor (see equation (5.13) below). It then readily gives the result.

> Bakry and E'mery curvature criterion. First, we recall that the “carré du champ” operator I' of a Markov
process with generator A reads , for every f,¢g in its domain D(.A)

N(f.9) = 3 (A(fg) ~ fAg— 9 Af) and  T(f)=T(7. )

We also need to define the I'y operator

1
Do(f) = 5 (AT() =20 (s, A7)
In our Brownian diffusion setting, we have
vz € RY, T(f)(x) = 0"V f(2)[*.

whereas the computation of I's is significantly more involved. However, if the diffusion matrix > = oo™ is
constant then:

Da(f)(x) == Tr((D* f(2)%)?) + (Vf, DbV f)(2).

With these notations at hand, we say that the semi-group (P)i>0 of A satisfies the Bakry and Emery
curvature criterion with parameter p > 0 if

(BE)) VfeD(A), Taof) = pL(f).
Observe that for 3 = I; the condition (BE,) is actually equivalent to (D) with a@ = p and reads

<Db(x) + Db(x)*
2

5,5> < —ple.

The computation of the 'y for a general non-degenerate diffusion of the form (1.1) is not easy and is discussed
in [ACJ08]. We also refer to [AMTUOI1] if the diffusion matrix is scalar diagonal, i.e. ¥(x) = ¢%(z)Iy, x € RY,
where ¢ is real valued.

An important property when (BE,) holds, see again [BE85], [BGL14], is that the following commutation
inequality holds:

(5.13) vt >0, Vo € RY, D(Pf)(z) < exp(—2pt) BT (f).

Lemma 6 (Pointwise Gradient Bounds). Assume that (C) or (ND) holds. Under (ND), assume furthermore
that either (D) or (BE,) (for some p) is in force. Then

Vgl < L1,
(03

with o as in (D) when this condition holds, and where, under (ND) and (BE,), o = p( )_1/2 ford>2 and

a=p ford=1.

Kk
g
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Proof. Uniformly elliptic framework. Let us start with the proof under (ND) and (BE,). In that case, from
the previous expression of I' and (5.13):

d * 0,z * 0,z\2 1/2
vt >0, Vo € RY |0 (@) VLE [F(Y,7)]| < exp(—pt) (B[l VF(Y)P)
Using the ellipticity and the boundedness of o0o* (see assumptions (UE) p. 26 and (C2) p. 3) yields:

2 0, Vo € RYIVLE ) oo < exp(—pt) (£) 19l

K

~1/2
The representation formula (5.12) then yields the announced result with a = <E> p-

Confluent framework. Assume now that (D) holds. Observe that, under (A), whenever (ND) or (C) holds,
it is well known that that V, Y is well defined and belongs to L2(P), see [[IW80]. Hence, for ¢ > 0, i € [1, d]:

t d t
O E[f (V)N = E[(VF(Y,"), 05, Y,""), 02,V =i + / Db(Y") 0y, Y ds + > / Do (YO")D,, YT W,
0 0

where e; stands for the i*" canonical vector and Db, Do € R? @ R
Let p € (1,2) be given such that (D) holds. Considering the mapping y € R? ~ |y|P, where | - | stands for
the Euclidean norm of R, it is easily seen from It&’s formula that:

t 0,z 0,z
0y, Ys " 0y, Ys"
1+p / (s DY) )0, YO P ds
0

10, V.0 |P
" 10, Y3 100, Y3

d t 0,z 0,z
03, Ys” 0.0y Oz, Ys” 0,
) / <17,D0.- Yo 17>a YO pqwi
j_l |8I}/SO,I| .7( S ) |ax’b}/vs(],x| ‘ x; ’

pZ e
’8 YO$ ‘azii/:so’x‘Zl

X |8in£@ Pds
b 0a Y 0, Vi
= ex L,DbysovxL ds | x E(M

d 0,z 0,22 0,z 0,x 0,2\ |2
Z DU Y20, v 9. YY" Do (Y2™)0,. Y

2 |0, Y52 |0, Y|4

where (My)i>0 = (PZJ e <|gz’§;” Dalj(%o’x)‘ngéw ) W])t>0 is a square integrable martingale with
1 1

bounded integrand and £(M); := exp(M; — 5(M);) denotes the associated Doléans exponential martingale.
From condition (D), we thus get:

|0, Y° P < exp(—apt) x E(My).

We eventually derive:

[ TRt axta < i [ By as i [ ew-ana =0
0 0 0 a

From the above control and equation (5.12), we thus derive:

[/l

o .

(5.14) Vi € [1,d], Vo € R, |0, 0(x)| <
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5.3.2. Additional Smoothness. We have the following regularity result.

Theorem 6. Assume one of the two assumptions below hold:

- (ND) and either (D) or (BE,) for some p > 0 are in force. Suppose as well that, for every (i,7) € [1,d]?,
Bij(x) = Bij(Ting, - s wa)-

- (C) is in force (without additional structure condition on o).

Then, the Poisson Equation (5.11) admits a unique solution ¢ € C3# (R4 R), B € (0,1). Furthermore, there

exists C, > 0 such that for all x € RY, |D?*p(x)| < h(irx',

Proof. Under (C), the statement can be derived by iterating computations similar to the ones performed in
Lemma 6. On the other hand, to have the required smoothness, since we cannot expect some smoothing effect
from a non-degenerate diffusion coefficient, we have to impose that b, o, f themselves lie in C3’5(Rd, R).

We now give the proof under (ND) which requires more sophisticated tools (Schauder estimates for operators
with unbounded coefficients). Let us begin with the scalar case. For d = 1, set for all z € R,

(5.15) v(z) := —/Om At E[W (Y8, Y"] = —/()+°o th{\If(YtO’x)exp (/Ot b’(}{go"”)ds)5</0t a’(YSO’I)dWS)}

where for all y € R, ¥(y) := 0, f(y). We observe that d,¢(z) = v(z). Also, from our assumptions on f, b,0,
we have that ¥, ¥, ¢’ € C?(R% R). Theorems 2.4-2.6 in Krylov and Priola, [KP10] then yield the existence of a
unique solution to the PDE:

(5.16) Aw(z) +V (z)w(z) = U(z), where Aw(z) = Aw(z)+ oo’ (x)w'(z),
belonging to C>#(R?% R) and such that the following Schauder estimate holds:
(5.17) 3C =1, flwllap < C(L+ ([ ¥]|p)-

Indeed, from (D) or (BE,), we get that b/'(z) < —a < 0 and the potential in (5.16) has the good sign. From
(5.15) and the Girsanov theorem, we also get:

“+o00

o) =~ [ e |w e (| t (Tas) |

where dY>" = (b(};so’m) + aa’(ﬁo’z))ds + (Y ")dW,. Note that Y has generator A. A simple identification

procedure, similar to the proof of Theorem I1.1.1 in Bass [Bas97] then gives v = w. The result follows from (5.17).
Let us emphasize that this is a quite deep and involved result for unbounded coefficients.

In the multi-dimensional setting, recalling the technical condition that for all i € [1,d], j > i, ¥;;(z) =
¥ij(xi, -+ ,xq), we have that differentiating formally the PDE (5.11) in the space variable x;, i € [1,d] yields
that 0,,¢ = v; should satisfy:

Awi(x) + Op,bi(x)wi(z) = Tix)— Y Onbj(x)v;(2)
jelLd\{i}
_Z Z 02,3, (2)02,05(x) = Y 0, 5 1 (2)0a; vr(2),

1<]<z 1<j<i,
k>j ki

(5.18) with W;(z) = 0, f(z) and Aw(x)= Awi(x)—i—%@wiil” x)Og, wi(x —1—28%2 i.j ()0, wi ().
J#i

From our current assumptions on f, b and the previous computations on the gradient for the multi-dimensional

case, we easily get that W (z) := Uy () — 221 0z, 0j(z)vj() € CA(R%, R). Indeed, it is easily checked from the

previous computations that Vy is f-Hoélder continuous. Hence, Theorems 2.4-2.6 in Krylov and Priola, [KP10]

still apply and give that there exists a unique solution w; € C?#(R% R) to (5.18) which also satisfies:

(5.19) 3C>1, willeg = > D]l + [DPwr]s < C+ [[T1]|g) =: C(f, (A), B).
a,|al€[0,2]

The identification w; = 9,, = v is standard. The control (5.19) allows to iterate, since it gives that Vw; =
(0,01, ,05,01) = (Opy 01915+ Onyzi ) is B-Holder. We thus get by induction, from the specific chosen
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structure on o and by Theorems 2.4-2.6 in Krylov and Priola, [KP10], that for all ¢ € [1, d] there exists a unique
solution w; € C#(R%,R) to (5.18) such that:

3C > 1, |lwillzp < C(1+[|Tilg) = C(f, (A), B),
(5.20) \T/Z(:c) = (x) — Z Oz, bj(x)vj(x) — Z 02, 5 1(2) 0 vp ().

jelld\{i} 1<) <,
k€ [1,d]\ {i}
The condition on |D?p(z)| follows from the Remark p.7 in [KP10]. Let us anyhow provide a direct proof.
Recalling that d,,¢ = w;, observe from (5.18) that for all x € R%:

(5.21) (b(z), 05, Ve(z)) = Uy(z) — %Tr(E(x)DQ((?xigp(m))).

Now, from (5.14) and (5.20), ¢ is such that Vi, D%p, and D3¢ are bounded. This is also the case for U;.
Equation (5.21) then gives that |b(z) - 0, Vi (z)| is bounded. The Lyapunov condition on b, assumption (Lv),
iii), gives the stated decay.

O

Remark 12 (Practical Application). Under the assumptions of Theorem 6 for the coefficients b,o and the
source f, the required smoothness for ¢ needed in Theorem 4 holds. The non-asymptotic confidence interval
follows. Observe that, in this case, we again have a quantitative control on [|[Vyllc < % from Lemma 6. In
this framework, given the model (1.1) and its coefficients b, o, a fixved source f, the non-asymptotic confidence
interval (5.3) is explicitly computable. Observe as well that, since we also assumed o € C;’ﬁ(Rd,Rd ®R%), then

since o is bounded, ||o||? € C;’ﬂ(]Rd,R). Therefore, still from Theorem 6, the required smoothness for 9 needed
in Theorem 5 holds. Hence, the improved bound (5.5) applies.

Let us also indicate that, under (UE) and either (D) or (BE,) for some p > 0, if f is simply Lipschitz
continuous and b, o as in (R g), we derive below in Theorem 7, following the proof of Theorem 4, that (5.3) still
holds for vy < k=%, k € (1/2,1]. The non-asymptotic confidence interval in (5.3) is again explicitly computable.

Remark 13 (Structure of o). We emphasize that the structure condition on o assumed in Theorem 6 is mainly
technical. It is of course always verified in dimension d = 1. For d > 1 it is motivated by the fact that,
differentiating (5.11) without this assumption yields to consider a system of coupled linear PDEs with growing
coefficients for which the Schauder estimates have not been established yet. Following the existing literature for
Schauder estimates for systems (see e.g. Boccia [Bocl3]), we think that the results of Krylov and Priola should
extend to this case. This would allow to get rid of the indicated condition. Here, the condition simply allows to
decouple the system.

Let us mention too that the results by Priola [Pri09] could also be a starting point to investigate the smoothness
of the Poisson problem for degenerate kinetic models.

These aspects will concern further research.

5.4. Regularization of Lipschitz Sources. We assume here that assumptions (A), (UE) are in force. We
suppose as well that the following smoothness holds for b, o:

(Rp,») Regularity and Structure. We assume that there exists 8 € (0,1) such that b, in (1.1) belong to
ClA (R, RY) and €P (R4, RY @ RY) respectively. Also, for all (i,7) € [1,d]?, i j(z) = Sij(zinj, - »xa)-
Importantly, we are interested, under assumptions (A), (UE), (Rp,), in giving controls for the estimation of
v(f) when the source f is simply Lipschitz continuous. This is indeed the natural framework for the source
which can be handled through functional inequality techniques, see [MTO06], [Boill].

To comply with our previous framework, namely to exploit the smoothness result of Theorem 6, we need
to regularize the source. Let 1 be a mollifier (i.e. a non-negative compactly supported function such that
Jgan(x)dz = 1). Define for § > 0, ns(z) = ﬁn(%). We regularize f introducing f5 := f x ns where x stands for
the convolution on R%. From usual estimates, we obtain:

3C, >0, Ve e RY, |f5(x) — f(x)| < Cpd[fl1,
(5.22) VB e (0,1),  [Vsls < Cylfi6".
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We emphasize here that we will choose 3 later in order to be compatible with a certain range of step sequences.
We assume for simplicity that § € (1/3,1] (no bias). Recall that we want to investigate:

PLEawalf) = v(P) 2 al = B[0n(fs) = v(fo) + Fas(h) 2 =],
(5.23) Rns(f) = [wa(f) = v(f) = walfs) —v(f5))]-
From (5.22), one readily gets:
(5.24) [R5 () < 2C36[f1-

On the other hand, the coefficients b,oc and the source f5 satisfy assumption (R ) (observe indeed that
the mollified function fs € C1#(R? R)). Hence, Theorem 6 yields that there exists a unique solution ps €
C3*P (R4 R) to the equation:

(5.25) Aps = fs — v(fs).
Observe from the proof of Theorem 6 (see equations (5.14) and (5.20)) and (5.22) that:
(5.26)
IVgalloe < a7/l V8 € (0,1), 3Cp >0, Vi € {1,2}, [o§")s < Ca(L+ [V illea) < Cod ™, 5] < ™7,
Cpo=h

RY, |D? < 27

Now, from (5.25) the deviation in (5.23) rewrites:
a

(5.27) B[Vl (1) = () 2 a] = B|va(Aps) + Rusf) 2 7=,

From (5.24), the term R, 5(f) can be seen as a remainder as soon as \/‘L > 2Cp0[f]1 > |Rns(f)]. On the
other hand, the deviations of v,(Ays) can be analyzed as above, reproducing the proofs of Theorems 2 and 3,
replacing the bounds on ([¢]); e{1,2}, ¥ ©) 3 appearing therein by those of equation (5.26). Precisely, we get
from (5.24), similarly to (2.21) (replacing the controls on ¢ by those on ¢s in the proofs of Lemmas 3 and 5):

1
q

a qAn aXy '2C,[f]16
P ||u, . ‘>— <2|E (——Mn) (— 1 ’7 )
ins) + Ros(D)] = 2] < [ exp (-2 ] exp (- g1 - Yol
A2 p(a))? 3pCY A ey
n n I
X exp (2an + 5 ) exp 70{/F72,L + — » ( V)
(2)y2 2 (m(2)y2
pA2(Ty) 1 3pAs () 1 1
(5.28) X exp (Cg.nlﬂ% (Iy) % x exp | €915 (T + %> (Iy) %
_ o 4 2 28
where C§ 1¢ = = Cgé~ B( (Supmq{ Vix )) (Ci’i")% nd C3 ., == HH%CV precisely correspond to the
modifications of the constants C 15 and Cyq17 = w% introduced in the proof of Lemma 5 when

. _ Cgd—
replacing || D%l by [|D%0s]loe < C53~7 and |D2p(w)] < 1S2; by [D2ps(x)| < 0 Ce. Similarly,

) 8)

5 _ et allollS " B0 ] 1 Cp3~lo|[ SB[ jwa*+]

T (1+8)2+8B+0) JF?‘ (1+B)2+8)(3+8) \/ﬁ’

is obtained from the definition of a, in Lemma 3 replacing [¢®)]z by [go((sg)] 3. From the above equation and
Lemma 2 we get:

a

1 q 62
P |l = v 2 e | =B | [oulAga) + Rus)] 2 ] < 200807 exp (e + ] 4 PU020)

o> VIRACy[f110 1 p (6C% o L 1
><exp(‘2q||a||zouwuzo<l‘ T T (T (ot + O+ 308 + D) )
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The Young inequality yields that for all €, > 0:

1 1 05 02
P |l ) 2 =] <2t e (3 fev + ] 4 HBE 4 i, 57)

a? 1 21 12 p 60{2/(,0 ) ) (2)\2 1
<o | ool (U gowal Ui, (57 20 3 md) + )

=:df,

(5.29)
We now want to let p := p(n) — 400, €, — 0 so that the associated contributions in the above equation can
n n

be viewed as remainders. From the previous definitions of CJ 5, C9,,, we see that, to achieve this goal, two
constraints need to be fulfilled: namely, we must choose 9, p such that

e 17,62 - 0 and p(ad)? - 0.

¢_5-8 _ - (2(1=F)=Fe)

Now, if 6 € (1/2,1] there exists 5 € (0, 1) such that 5 < C. Inthat case: af < Vi n — 0
n n
for 0 = ( ™) and e < 25 Taking p := p(n) = Fﬁf(lfﬁ)*&) yields p(ag)? - 0. On the other hand, ¢, =T, ¢
also ylelds e, 0,62 =T,° — 0.
n
(3+B) F(liéﬁ) 1_9(1 B .
For # € (1/3,1/2), T diverges for all 8 € (0,1), we then have e < Cn27%01+32)  Hence, there exists

3+

( )
B € (0,1) such that L = < Cna—00+3) - 0. However, taking § = I',,

“necessary” choice to satisfy the first constralnt £, 11,62 — 0, yields:
n

l
- E), which seems to be an almost

3+5)

— p(+B(G=0+£80-0) , | o
n

so that the second constraint cannot be fulfilled. This means that the regularization induces a constraint on
the time steps which must not be too large. In other words, under the sole Lipschitz assumption on the source
f, the fastest convergence regime is out of reach.

Summing up the previous computations, we have established the following concentration result.

Theorem 7 (Non-asymptotic concentration bounds for Lipschitz functions). Assume (A), (UE), (Ry,) and
either (D) or (BE,) for some p > 0 are in force. Let f be a Lipschitz continuous function. For a time step
sequence (g )i>1 of the form v, < k=%, 0 € (1/2,1], we have that, there exist two explicit monotonic sequences
cn <1< Ch, n>1, with lim, C,, = limy, ¢, = 1 such that for all n > 1 and for every a > 0:

CL2OZ2
P[IV/Tn(vn(f) = v( )’>“]<206Xp< H«rH%.Jﬂ%)

where o s as in Lemma 6.

6. APPLICATIONS

6.1. Non-Asymptotic Deviation Bounds in the Almost Sure CLT. Let (U,),>1 be an i.i.d sequence of
centered d-dimensional random variables with unit covariance matrix. We define the sequence of normalized
partial sums by Zy = 0 and

n

U
7216_1 k,n > 1.

vn
The almost sure Central Limit Theorem (denoted from now on a.s. CLT) describes how the weighted sum of
the renormalized sums Z,, which appear in the usual asymptotic CLT, behaves viewed as a random measure.
Precisely, it states that setting for k > 1, v, = 1/k:

Ly =

\95]2) dx

1 n
z w, a.s. _
(6.1) vy o= T k§:1 Y0z, T G, G(dz) :=exp ( 2 ) @myi
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The above convergence had been established in [LP02], as a by-product of their results concerning the approx-
imation of invariant measures, under the minimal moment condition U; € L?(P), thus weakening the initial
assumptions by Brosamler and Schatte (see [Bro88] and [Sch88]). The underlying idea is to use a reformulation
of the dynamics of (Z,)n>0 in terms of a discretization scheme appearing as a perturbation of (S). One indeed
easily checks that, for n > 0:

n—1|—1 _1+2(n1—1—1) :O(%)'

(6.2)  Zut1 = Zo = 2y + FariUnis + 102, T i= /1=

Thus, the sequence (Z,),>0 appears as a perturbed Euler scheme with decreasing step v, = % of the Ornstein-
Uhlenbeck process dX; = —%Xtdt + dW; whose invariant distribution is G. Then the regular Euler scheme

(63) Xn+1 =X, — ’Yn2+1 Xn + \/'7n+1Un+1>

satisfies (1.3) with v = G. The a.s. weak convergence (6.1) established in [LP02] follows as a consequence of
the (fast enough) convergence of Z,, towards X,, as n goes to infinity.
Moreover, this rate is fast enough to guarantee that the sequence v satisfies the conclusion of Theorem 1

(2)
point (a) (when ~, = 711, \Fﬁ — 0), i.e. its convergence rate is ruled by a CLT at rate y/log(n). In fact this
77« n

holds under a lower moment assumption Uy € L3(P).

Let us mention that the convergence rates related to the a.s. CLT had already been investigated by several
authors. Let us quote among relevant works, Csorgé and Horvath [CH92], for real valued i.i.d. random variables,
Chaabane and Madouia [CMO00], who investigate the convergence rate of the strong quadratic law of large
numbers for some extensions to vector-valued martingales, and Heck [Hec98], for large deviation results. As an
application of our previous results, we will derive some new non-asymptotic Gaussian deviation bounds for the
a.s. CLT, when the involved random variables (Uy),>1 satisfy (GC). We insist here that the sub-Gaussianity
of the innovations is crucial to get a non-asymptotic Gaussian deviation bound. The result readily extends to
the wider class of innovations satisfying the general sub-Gaussian exponential deviation inequality (1.4). Also,
we slightly weaken the regularity assumptions needed on the function f in [LP02] for the associated a.s. CLT
to hold.

6.1.1. Non-Asymptotic Deviation Bounds.
Theorem 8. Assume the innovation sequence (Up)n>1 satisfies (GC) and let f be a Lipschitz continuous

function such that G(f fRd G(dx) = 0. Then, there exist two explicit monotonic sequences ¢, < 1 <
Cp, n>1, with lim, Cn = lim,, cn = 1 Such that for alla > 0 and n > 1:

2
(6.4) [\/log HZ(f)| > a} < 2C,exp <—cn2HVaH2> ,
¥llco

where ¢ denotes the solution of the Poisson equation:

(6.5) Vo € RY, %Acp(m) - %x -Vo(z) = f(z),

which, under the current assumptions, is unique and belongs to H*(RY,R) with ||Vl < 2[f]1-
Proof. For (Zy)n>0 as in (6.2), and (X,)n>0 as in (6.3) we introduce:
AN, = Z,—X,.

With the definition of vZ in (6.1), write vZ(f) = ﬁzzzl Yef(Zr_1). We also have similarly vX(f) :=
ﬁ >y Vef(Xg—1). For all A > 0, we derive similarly to (2.12) (see as well (5.28)) and with the notations of
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(5.23):

P[VT.vZ(f)l = a] = P[VT,

Z'Yk: (Zy—-1) f(Xk—1))+V3f(f)‘2a]

< P[VR, ) - SO) +0 A st 2 ]
< 2exp(_\j%(l_2\/ﬁ§n[f]15)> (Eexp< (|- y)))% (Eexp<_qrq:\Mn>>$;
(6.6 x(Eexp(2 (1Ll + |G |>)>’1’ (Eexw (22 Dasal) ) " (Eex (4§i)\|D2727n|>>4@

for g,q € (1,+00), p — Lp= e —L-. Also, g5 corresponds to the solution of the Poisson equatlon (6.5) obtained
replacing f by its mollified version f5. Now, we need the following lemma to control v2(|-|) := I‘n PR A VAVET B

Lemma 7. There is a non-negative constant Cg 7 such that for all A > 0:

(3) 2 y2p(3)
T, oT2

60)  Bexp (Wil D) =Eexp (2 Y wldial) < exp
" k=1

For clarity, we postpone the proof to the end of the current section.
On the other hand, from Section 5.4 we have that s € C*#(R? R) for all 3 € (0,1). We derive from (6.6), (6.7)
ayTn

similarly to the proof of Theorem 7 by setting \, = @velZ:

PIVTLvZ(f)l 2] < 2exp( - < (1_4¢F70n{fha>)exp(06.7xn[f11E[rU1\]r§>)

24 VoI a T,
(G e (Lo 4 G (28
conn (14 oa(2g + (ot + S0t T ) + 1)
< 2(Ih) exp (;(cv + 032'18) + p(;§)2 + sglrn52>
o L s RGP Ry
<o | ~aggrve (U v T, )|

for €, > 0 and cl‘S as in (5.29). Choose again (p,)n>1 and ¢ as in Section 5.4 so that gy, —> 1 dg — 0 with the
_ n
indicated monotonicity for n large enough. We can now take p := p, - 400 such that l - 0. The above

T,
inequality then gives the result up to a direct modification of the sequences (Cn)n>1, (Cn)n>1- O

Proof of Lemma 7. The definition of A, implies:
An+1 = An<1 ’Yn2+1) + 1 Zn,

where we recall from (6.2) that r, := /1 — n%rl -1+ m = O(%) In particular, there exists C; > 0 such
that for all n > 1,
Cy

Setting now pg = 1 and for n > 1:
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a direct induction on A,, yields:

n

1 1 & " U 1 & i
@ st Sa (S LS

" k=1 " k=1 P N

Also, from the Wallis formula p,, ~,, v/7n, which implies that there exists Cy > 1 such that for all n > 1:

(6.10) Cy'vn < pn < Cov/n.

We now get from (6.9) and the Fubini theorem:

k—1 n
6.11) T ZmAk 1|<Z Tk Z(erm\pm)wly Z[ 3 pzk Z!rmlpm }|U\

1 Pr—1 =1  k=l+1

Combining (6.8) and (6.10), we get that there exist constants Cg, Cy > 0 such that for all k € [l +1,n].

n

Vi |7“m|/7m C_'s Vi |7“m\ﬂm 4
6.12 < %
Plugging this inequality in (6.11), we derive:
A 1\~ M N Irmlom oy - U
(6.13) HEESDS Z ]\Ur_—zlm
n =1 k=g PR =1

For any A > 0, Equation (6.13) and the Gaussian concentration property (GC) of the innovation entail:

Ca) 1, Cy\
E exp ()\Vfﬂ . \)) < H E exp ( ) < H exp <I‘ k%EHUlH + i(F 4]{3)2>
A (3 A2y210)
B CyAE [|Uy |52 Ci Ty,
- eXp( T, oT2 )
This completes the proof. ]

6.2. Numerical Results. We present in this section numerical results associated with the computation of the
empirical measure v, illustrating our previous theorems.

6.2.1. Sub-Gaussian tails. We first consider d = r = 1. Also, for simplicity, the innovations (U;);>1 and Xo are
Bernoulli variables with P(U; = —1) = P(U; = —1) = 1. We illustrate here Theorem 2 taking b(z) = —%, and
o(x) = cos( )in (1.1). Thisis a (weakly) hypoelliptic example. Indeed, setting for x € R, X;(z) = cos(x)d, and
Xo(z) = — 50z, we have span{ X1, [X1, Xo]} = R. We choose as well to compute v, (Ayp) for o(z) = z + ¢ cos(x)
for e = 0. 01 and ¢(z) = cos(z). The function ¢ is here given. The assumptions of Theorem 2 follow from
Theorem 18 in Rotschild and Stein [RS76] (up to the introduction of a suitable partition of unity). From
Theorem 2, for steps of the form (vi)g>1 = (k~%)i>1, 6 € [1/3,1] (corresponding to 3 = 1 in Theorem

tog (BlIV T (Ag)| > a)), 6 € (1/3,1],
log (P[|[vThvn(Ap) + (Bn1 — E})| > dl), 6 =1/3,

@l SR oy o] D)
(FENE) [PRNC) T CXc) R ot

2), the function a € RT — g, ¢9(a) = is such that for

a > an = a,(0) where for 6 € (1/3,1], a,(#) = 0 and for 0 = 1/3, a,(0) =

(afan)2
2002 IVellZ

We plot in Figure 1 the curves of g, ¢ for § varying as 6; = £ +(1— %)%, for j € [1,5], ¢(z) = v +ecos(x) and in
Figure 2 the curve of g, g for § = 6y = 1 and ¢(z) = cos(z). The simulations have been performed for n = 5x10*
in Figure 1, n = 5 x 10% in Figure 2, and the probability estimated by Monte Carlo simulation for MC = 10*
realizations of the random variable |/T,,v;,(Ap)| in the unbiased case and in the biased case of the random
variable |v/Tpvn(Ap) + (Bn1 — EL)M|, where (B, 1 — E})M is obtained from B, ; — E} replacing the integral over
[0,1], that needs to be evaluated at every time step, by a quantization of the uniform law on [0, 1] with M = 10
points. We refer to [GL00] or [Pag97] for details on quantization. We point out that this is one drawback that
appears to obtain the fastest convergence rate, the bias needs to be estimated and therefore the function yin

gnpla) < —c +log(2C,,).
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some sense known (since the approximation of the bias requires to compute its derivatives). The corresponding
95% confidence intervals have size at most of order 0.016. To compare with, we also introduce the functions

a—an(0))? a—an(0))? a—an (0))? . .
Sno(a) = —m, Sno,c(a) == —%, Sno,a(a) == —% and the optimal concentration

P(Amin)(n,0,a, p), obtained in Remark 11, optimizing numerically in p. The quantities v, (02), vy, (JoVe|?) in
the previous expressions actually correspond to the numerical estimation, for n, = 10* and (vi)k>1 = (K~ ) E>1
with ¢ = %—i— 1073, of v(0?), v(|ocVp|?) appearing respectively in the sharper concentration bound of Theorem 3
when 02 — v(0?) is a coboundary and in the asymptotic Theorem 1. In the unbiased case of Figure 1, we plot
the maximum in j of the (Sn,ej )je[[l,B]]: (Sn,ej,c)je[[l,B]]v (Sn,ej,A)jG[[l,B]]a (P()‘min)(na 0;,a, p))je[[l,S}] corresponding
to j = 1. The associated curves are denoted by Sy, Sy ¢, Sn,4 and P(Amin)(n).

The Figures 1 and 2 correspond to the unbiased and biased cases respectively. In the unbiased case, we
observe that the curves almost overlay, the optimal deviation rate P(Apyin) is very close to the empirical data.
It is also below the numerical estimation of the asymptotic threshold given by S,, 9. 4 which is, for our considered
example, almost indistinguishable from the coboundary S, . (indeed, since ¢ = 0.01, |[Vp|%, < 1+ &? and
v(0?)||Vel% =~ v(JoVel?)) and far below from the bounds of S, ¢. In the biased case, P(Amin) stays very close
to the theoretical asymptotic bound given by S, 9 4 up to a certain deviation level a, namely for a € [0,0.5].
It then remains the best bound provided by our results. In this example, the improvement associated with
Sh.0,c is also notable. It is precisely because the source term has a more oscillating gradient that we have also
considered a larger running time, corresponding to n = 109, for the empirical curves. For this choice, we see
relatively good agreement w.r.t. to the asymptotic deviation bounds of S, g, 4.

The figures below thus illustrate that the explicit optimal rate of Remark 11 seems rather appropriate to
capture the deviations of the empirical random measures.

0 e T — 0 =T
-1 i e o -
S B \
2 S
-3 o o
. -4
)
Gnop
9n,6, by N
-5 Gno, —— : - -6
gns(-): T . *
Sl - S—
' -8
7
-8
-10 P(Amin(n, 6))
-9 “_ g:g” R
Sn.e(;,(g
10 12 e R—
0 0.5 1 1.5 2 0 0.5 1 1.5
FIGURE 1. Unbiased Case. Plot of FIGURE 2. Biased Case. Plot of
a = gn,@(a)v for (ak)ke[[l,5]]7 with a— gn,@(a)v for 0y = %a with gp(l') =
o(z)=0(x)=x + ecos(x), e = 0.01. o(x) = cos(z).
We eventually plot below the deviation curves with source p(z) = cos(x) adding a last curve obtained

replacing in the formula for P(Apin) of Remark 11 the ||Vip||% v(0?) by v(JoVe|?). For practical purposes,
this last quantity is again estimated numerically with the same previous parameters. Even if the analysis of
Theorem 3 cannot be extended to justify such a choice, the empirical evidence is rather striking.

6.2.2. Slutsky like result. In this paragraph, we illustrate our results from Theorem 5, which can be viewed as
an extension of the usual Slustky’s Lemma to our current framework, for a multidimensional process, precisely
for r = d = 2 in the case 8 € (0,1). In order to converge as fast as possible without bias, we take 6 = ﬁ + ﬁ.
We also choose a model which satisfies the assumptions of Theorem 6 and Lemma 6. We consider:

|x|1+ﬁ 41 + 629 . cos(z1+x2) +1 sin(x1) sin(z2)
f(x) = W’ b(‘r) = —5x1 — by )’ o0 (IL‘) = sin(:gl)fin(wg) 1— s4in(2$2) :
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P(hin(n))
-10 |- P(Amin(n)) with carre du champ coboundary x
9n,6,
9n,6,
Ono; ~

0 0.5 1 1.5 2

FIGURE 3. Plot of a — g, ¢(a), for

(ek)(ke)[[lﬁ]]v with p(r) = o(z) =

Remark that the non-degeneracy condition (UE) is fulfilled by ¥ = oo™, as well as the condition set in Theorem
6, Xij(x) =3 ;(z,...,2q), for all 1 <i < j <d. Furthermore, from the Cholesky decomposition, we write:

cos(mlerg) +1 0

J($) = sm(m1)sm(:cg _ sin(x1)? sin(w2)? +1— sin(z2)

/cos(acl+952) +1 16(COS(Z%+12) +1) 2

Let us check that (D) is satisfied. Firstly, remark that M is a constant matrix whose eigenvalues are
{—@, @} Direct computations yield that, for all z € R?, ¢ € R%:

<Db()+2Db( > ZIDU (2)¢[* < —3.085/¢].

Also, the condition (R g) is clearly satisfied. In other words, all assumptions of Theorem 5 hold. We set for
the following plot:

(12062
gZ(a) = IOgP[\/ﬁhjnfﬂ > CL], Sa(a) = _2[](»]%’

with o = 3.085, and [f]; = 1.

Unlike in the previous simulations, we do not know here the value of v(f). In fact, in paragraph 6.2.1 we
had chosen to compute the deviation of Ay from 0 = v(Ayp). Here, we estimate from the ergodic theorem v(f),
taking B = .5, by vpe(f) =~ 0.71308 for n¢ = 5-10°. Running MC = 10? samples, we find that the size of the
associated 95% confidence interval is 3.208 - 10~%. Finally, the simulations are performed for n = 5 x 10, and
the probability is calculated by Monte Carlo algorithm for MC = 10? realizations. The maximum size of the
associated 95% confidence interval is 4.75054 - 10~°. The innovations are Gaussian random variables.

In Figure 4, we observe that the curve S, stays above g7 as proved in Theorem 5. However, remark that
the graphs are quite spaced. This can be explained, among other things, by the difference between 1/(||0||2)%

and the asymptotic variance v(|o*V|?). Furthermore we have represented S, which is a kind of asymptotic
version of P(Apin(n)) in the previous plots.
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