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Introduction

More than 40 years ago, Direct Numerical Simulation (DNS) started with the pioneering work of Orszag ( [START_REF] Orszag | Analytical theories of turbulence[END_REF]) and is now widely used as a powerful workbench to study turbulence but more rarely heat and mass transfer. As a generic turbulent wall flow, the channel flow configuration has been extensively investigated by DNS while including the near-wall heat transfer through the consideration of a passive scalar (Kasagi et al. ([2]), Tiselj et al. ([3]), Kawamura et al. ([4])).

Most of the DNS performed with a passive scalar are based on an imposed temperature at the wall as an isothermal, i.e., constant Dirichlet boundary condition for the temperature (Kasagi et al. ([2]), Kawamura et al. ([4])). When the temperature is imposed at the wall, there is a close similarity between thermal and momentum streaks (Abe et al. ([5])). For a temperature subjected to such a boundary condition, the near-wall correlation between the streamwise velocity and the temperature is high, leading to a strong correlation between the scalar dissipation rate and the enstrophy (Abe et al. ([6])).

In a significantly more reduced number of previous DNS, a constant heat flux is imposed at the wall, i.e., constant Neumann boundary condition for the temperature (Tiselj et al. ([3]), ( [START_REF] Tiselj | Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume[END_REF])). Although these previous DNS studies were very helpful to investigate the physical mechanisms responsible of heat transfer, it is widely recognized that neither isothermal nor isoflux boundary conditions can realistically mimic the actual heat transfer in real life, especially when the thermal diffusivity of the solid and the fluid are of the same order of magnitude. In this situation, the thermal interaction between the fluid and the solid must be described. When such a coupling is explicitly considered, it is common to refer to conjugate heat transfer. Tiselj et al. ([3]) were the first to investigate by DNS the influence of the thermal boundary condition through direct comparisons between conjugate heat transfer, imposed temperature and imposed heat flux at the wall.

Conjugate heat transfer simulations are required in industrial applications

where fluctuating thermal stresses are a concern, e.g. in case of a severe emergency cooling or long-term ageing of materials. High Reynolds RANS and LES simulations rely on wall-modeling as the viscous sub-layer is not resolved. DNS is a valuable tool for understanding the flow physics of such complex phenomena and providing fine data in order to improve RANS and LES modelling.

In this paper, budgets of turbulent heat-fluxes and temperature variance are presented for three different boundary conditions (locally imposed temperature (isoT), locally imposed heat flux (isoQ) and heat exchange coefficient (Robin)) as well as for conjugate heat-transfer (Conjug). For the conjugate simulation, the thermal properties are identical for both the solid and the fluid. For the Robin boundary condition, the heat exchange coefficient was designed specifically to mimic an intermediate situation in between the imposed temperature and imposed heat flux cases as explained section 2. ( [START_REF] Laizet | High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy[END_REF], [START_REF] Laizet | Incompact3d: A powerful tool to tackle turbulence problems with up to o(105) computational cores[END_REF]). Sixth-order compact schemes are used on a Cartesian grid stretched in the wall-normal direction. The pressure is computed with a direct solver on a staggered grid while velocity components and temperature are collocated.

Governing equations and numerical setup

The time-advancement used is a second-order hybrid explicit/implicit Adams-Bashforth / Crank-Nicolson scheme implemented by Dairay et al. ([10]).

The mass and momentum equations read

∂ i u i = 0 ∂ t u i = - ∂ j (u i u j ) + u j ∂ j u i 2 -∂ i p + 1 Re ∂ jj u i + f δ i,x (1) 
where δ i,x is the Kronecker symbol and x stands for the streamwise direction.

The convective term is computed using the skew-symetric formulation. The source term driving the channel flow (f δ i,x ) is present only in the streamwise direction: it is a constant in space and time, fitted so that the averaged bulk velocity is 1. The Reynolds number (Re) based on the averaged bulk velocity and the channel half-height (h = 1) is 2280.

The passive scalar conservation equation in the fluid domain reads

∂ t T = -∂ j (T u j ) + 1 ReP r ∂ jj T + f T u x (2) 
The Prandtl number (P r) is equal to 0.71. The scalar equation contains a source term (f T u x ) as defined by Kasagi et al. ([2]). In case of conjugate heat transfer, the passive scalar conservation equation in the solid domain is given by

∂ t T s = 1 GReP r ∂ jj T s (3) 
The ratio of fluid-to-solid thermal diffusivities (G) is 1 in the present simulations.

As pointed out by Tiselj et al. ( [START_REF] Tiselj | Double-sided cooling of heated slab: Conjugate heat transfer dns[END_REF]), a source term can be introduced in the solid domain but its impact is limited to the averaged temperature: it has no influence on the temperature fluctuations. In addition to the scalar conservation equations, the continuity of the scalar and its flux at the interface between both domains reads

T s = T and ∂ y T s = G 2 ∂ y T (4) 
The ratio of fluid-to-solid thermal conductivities (G 2 ) is 1 in the present simulation.

Table 1 gives a comparison for the main parameters between present simulations and their reference counterparts: At the end of the simulation, the averaged quantities are normalized using the friction velocity (u τ ), the channel half-height (h = 1), the kinematic viscosity (ν = 1 Re ) and the friction temperature (T τ ). The friction velocity and temperature are estimated using the y derivative of the averaged streamwise velocity and temperature at the wall, respectively. These derivatives have been computed using the same collocated compact finite difference scheme as the one used in the code to solve the governing equations. The set of coefficients used in the fluid domain with compact finite difference schemes for the collocated derivatives (∂ 1 c ,∂ 2 c ), the staggered derivation (∂ s ) and the staggered interpolation (I s ) are recalled in table 2 using the notations of Lele et al. [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. Only approximated values are given here for the second derivative ∂ 2 c (sixth order scheme in [START_REF] Lamballais | Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation[END_REF] with k " c ∆x 2 = 4π 2 ). In the solid domain, the finite difference scheme used for ∂ 2 c is identical to the fluid one. trated in figure 1. The thermal solver for the solid domain uses the same finite difference schemes as Incompact3d for the wall-parallel diffusion and a spectral method for the wall-normal one. The boundary condition at the outer wall is an imposed heat flux, equal to the one imposed in the isoQ case. The thermal coupling between both solvers is performed as follows. First, the fluid temperature is subjected to a Dirichlet boundary condition:

T n+1 f luid = 1 2 T n solid + T n f luid
where the superscript refers to the time-step number and the temperatures are taken at the wall. Then, the solid temperature is subjected to a Neumann boundary condition:

λ solid ∂ n T n+1 solid = λ f luid ∂ n T n+1
f luid with λ solid = λ f luid for the present computation. Following the work of M.B. Giles ([14]), this approach is stable and first-order accurate in time: the resulting temperature field is slightly discontinuous at the interface while the heat flux is continuous through the Neumann boundary condition.

Impact of the thermal boundary condition. One considers the general linear boundary condition with constant coefficients.

AT + B∂ y T = C at the wall [START_REF] Abe | Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow[END_REF] When B = 0, this is a Dirichlet boundary condition (imposed temperature).

When A = 0, this is a Neumann boundary condition (imposed heat flux). When AB = 0, this is a Robin boundary condition. When B is equal to the thermal conductivity of the fluid, the parameter A is the heat exchange coefficient.

As a consequence of the general boundary condition [START_REF] Abe | Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow[END_REF], it is easy to show that the temperature statistics must satisfy the following linear system

     T ∂ y T -1 T 2 1 2 ∂ y T 2 0 1 2 ∂ y T 2 ∂ y T ∂ y T 0           A B C      =      0 0 0      (6) 
where T and T are the mean and fluctuating parts of the instantaneous T , respectively.

The determinant of the matrix must vanish, otherwise, the coefficients A, B

and C are all zero. This condition provides a compatibility condition given by

T 2 × ∂ y T ∂ y T = 1 2 ∂ y T 2 2 (7) 
that connects the temperature variance and its derivative at the wall with the wall-normal part of the dissipation rate of the temperature variance ( θ ). Dirichlet (Neumann) boundary condition imposes the lack of wall fluctuations for the temperature (heat flux). As a consequence, the temperature variance derivative must vanish at the wall for both boundary conditions as shown by the compatibility condition [START_REF] Tiselj | Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume[END_REF]. This is obviously not the case for the more general Robin boundary condition. Considering the sub-system of the last 2 lines of (6), one can notice that the statistics of the fluctuating temperature field are not directly subjected by C. Assuming AB = 0, only one degree of freedom remains: the

ratio A B A B = ∂ y T 2 2T 2 = 2 ∂ y T ∂ y T ∂ y T 2 ⇒ A 2 T 2 = B 2 ∂ y T ∂ y T (8) 
This condition can be used to define a specific Robin boundary condition where the couple of parameters (A, B) are chosen here using the temperature variance obtained in the isoQ case and the wall-normal part of θ obtained with the isoT case in the r.h.s. of equation ( 8).

Validation

In order to check that the DNS accuracy is ensured in the present study, an extensive comparison with reference results has been carried out for the conventional IsoT and isoQ cases. An excellent agreement was found, as shown for instance in figure 2 for the turbulent heat fluxes and temperature variance. The same level of agreement is recovered for corresponding budgets, as illustrated in figures 3 and 4 for the isoT case.

The main conclusion of this brief validation section is that the present highorder numerical methods (compact finite differences) enable us to provide results with accuracy similar to the reference data obtained using a pseudo-spectral method. The same spatial resolution and physical parameters have been used

for all the calculations presented in this paper, thus, an equivalent accuracy is expected for the new results obtained with the Robin boundary conditions and the conjugate heat transfer. However, as reported in section 4, a specific requirement has been observed for this last case that was found more demanding in terms of numerical resolution. In the rest of the present paper, an extensive comparison between the four cases (referred as isoT, isoQ, Robin and Conjug)

is presented with a focus on the effects of these different sets of boundary conditions on temperature statistics. 
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Results

In figure 5, the strong impact of the thermal boundary condition on the temperature variance is visible in the near-wall layer. As already reported in the literature, this zone of impact is limited to y + 20 when the Prandtl number is The obtained one point correlation coefficients suggest that there is a fundamental difference between conjugate and non-conjugate heat-transfer, as discussed in the next section. In figure 11, the budgets of the temperature variance are suitably balanced and the impact of the thermal boundary condition is significant. Present results for the isoQ case confirm the impact of the thermal boundary condition on the dissipation rate and on the molecular diffusion predicted by Kasagi et al. [START_REF] Kasagi | Numerical investigation of near-wall turbulent heat transfer taking into account the unsteady heat conduction in the solid wall[END_REF] with an unsteady 2D synthetic turbulence model. The results for the Robin case and for the conjugate one are closer to the isoQ case for the dominant terms at the wall (dissipation rate and molecular diffusion). Further away from the wall, the thermal boundary condition impact is lighter. For instance, at y + 10, the thermal dissipation rate in the Robin and conjugate cases is closer to the isoT 240 result.

5. Analysis of the thermal field in the solid domain. In the solid domain, the source of temperature fluctuations is located at the fluid/solid interface. Then, the deeper one goes in the solid domain (i.e. farther from the fluid) obviously as it contains no source of fluctuations, the lower the is well recovered here as shown in figure 12. Naturally, the spatial damping of temperature fluctuations across the solid is strongly dependent on the time and spatial scales involved in the heat conduction process. This selective damping can be easily exhibited through a Fourier and Laplace analysis of an idealized problem.

Fourier and Laplace analysis of the solid heat conduction. One considers a solid domain, infinite in x and z directions and semi-infinite in the y direction, subjected to a thermal load at y = 0, which is statistically stationary and homogeneous in x and z directions. Applying Fourier transform in time and in the homogeneous directions to the solid heat diffusion equation leads to

ik t ρC p λ T s = ∂ yy T s -k 2 x + k 2 z T s (9) 
(hereafter, the temperature in the Fourier space is denoted as

T s and [k x , k z , k t ]
are the wavenumbers associated with the Fourier transforms in x, z and in time, respectively).

Applying a Laplace transform (denoted by an overbar hereafter) in y direction to equation ( 9) leads to

∂ yy T s = r 2 T s (r) -r T s (y = 0) -∂ y T s (y = 0) T s = r T s (y = 0) + ∂ y T s (y = 0) r 2 -(k 2 x + k 2 z ) -ik t ρCp λ (10) 
Hereafter, the complex variable r is the frequency associated with the coordinate y after the Laplace transform.

The denominator can be expressed as

r 2 -R 2 with R 2 = k 2 x + k 2 z + ik t ρCp λ .
Applying partial fraction decomposition and an inverse Laplace transform leads to the temperature in the Fourier space

T s = ∂ y T s (y = 0) + R T s (y = 0) 2R e yR - ∂ y T s (y = 0) -R T s (y = 0) 2R e -yR (11) 
In this equation, one term corresponds to an exponential growth and the other to an exponential decay. As the physical solution of the present heat conduction equation is not unbounded, there is a compatibility condition connecting the heat flux and the temperature at the wall: ∂ y T s ± R T s = 0 (the sign depends on the sign of the real part of R). This compatibility condition is a product in Fourier space, which is equivalent to a convolution in the physical Assuming this compatibility condition is satisfied, one can conclude that there is an exponential decay of temperature fluctuations in the semi-infinite solid domain. The characteristic penetration depth is δ (the inverse of the real

part of R) with 1 δ 4 ∝ k 2 x + k 2 z 2 + ρC p λ k t 2
The implication of such a relation is that only large-scale structures with a long lifetime are able to penetrate deeply inside the solid domain. This conclusion is supported by figure 13 where a high autocorrelation value of the temperature field is found deeply inside the solid domain, even at large separations. This is the signature of very large-scale thermal structures. As the solid heat diffusion equation is linear, those thermal structures, observed deeply inside the solid domain, must be also present at the fluid-solid interface. Therefore, very large-scale thermal structures should be present in the fluid domain, at least in the vicinity of the wall. On the one hand, our domain is not infinite and the periodic boundary condition may artificially promote very large-scale thermal structures.

On the other hand, these very large structures deep inside the solide actually have very low amplitudes as the previous graphs are normalised by the variance at the same depth. For y + = -77, this temperature variance is reduced by a factor 10 -3 compared to the fluid layer value as seen from figure 12, so that the temperature variance in the fluid domain, the turbulent heat fluxes and the associated budgets can be assumed to be weakly impacted by the limited extension of the computational domain.

The present analytical analysis exhibits clearly the link between thermal structures highly localized in space/time (that can be associated with high wavenumbers/frequencies) and the thermal constraint subjected to the solid near the solid/fluid interface. This link can explain the trend for one-dimensional model of solid heat diffusion (i.e. that does not account for the lateral heat condition with k x = k z = 0 in equation ( 9)) to overestimate the penetration depth δ while underestimating the associated thermal constraint in the fluid/solid interface region.

While the focus was on the solid domain, the obtained compatibility condition can be expressed with the fluid temperature and different thermal properties in the fluid and solid domains. Using the continuity of temperature and heat flux at the fluid-solid interface leads to

T s = ± 1 R ∂ y T s ⇐⇒ T f = ± 1 R λ f λ s ∂ y T f with R 2 = k 2 x + k 2 z + ik t GReP r ⇐⇒ R λ s λ f T f = ±∂ y T f (12) 
Hereafter, the temperature in the fluid domain (at the wall) and in the Fourier space is noted T f . The impact of the fluid-to-solid thermal diffusivity ratio can not be isolated easily: R depends only on the solid thermal diffusivity and is involved in a convolution. The analysis is easier for the fluid-to-solid conductivity ratio. When the solid is infinitely conductive (λ s λ f ), the temperature variance vanishes at the wall and the case can be idealised as an imposed temperature case. Oppositely, when the solid consists of insulation (λ s λ f ), the variance of the wall-normal temperature derivative vanishes and the case can be idealised as an imposed heat flux case. Indeed, following the Parseval theorem, a Fourier transform conserves the quadratic norm (L 2 ). If the dependence of R on k x , k z and k t was neglected, the quadratic norm of the spectral compatibility condition would be

T 2 = 1 R 2 λ 2 f λ 2 s (∂ y T ) 2 (13) 
where T 2 is the temperature variance at the wall and (∂ y T ) 2 is the value at the wall of the wall-normal part of θ . This equation is directly connected to the compatibility condition (8) associated with the Robin boundary condition.

Therefore, the assumption that R is constant in the spectral space leads to a direct connection between R, the thermal conductivity ratio and the coefficients used in the Robin boundary condition (A and B):

B 2 A 2 = 1 R 2 λ 2 f λ 2 s ( 14 
)
The Robin boundary condition obtained using T 2 from the isoQ case and (∂ y T ) 2 from the isoT case leads to R ≈ 0.154 while the statistics from the conjugate case lead to R ≈ 0.165. The authors estimate that the relative small difference between those values (6.9%) explains the good agreement between the Robin and conjugate cases considered in this study.

Autocorrelation of the temperature field in the fluid domain. In figure 14, the autocorrelation of the temperature at y + = 15 does not suggest a significant impact of the thermal boundary condition. This impact is more visible at y + = 5, especially for the streamwise autocorrelation.

In figure 15 

  Present simulations are based on the open-source software Incompact3d developed at Université de Poitiers and Imperial College London by Laizet et al.

Figure 1 :

 1 Figure 1: Sketch of the domain.

Figure 2 :

 2 Figure 2: Turbulent heat fluxes and variance of temperature. Line: present. Symbol: ([2]) or ([3]). Top: isoT. Bottom: isoQ. Left: linear scale. Right: logarithmic scale
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  around unity. Present results also suggest that the location and the amplitude of the peak in the temperature variance is impacted by the thermal boundary condition. This behaviour is consistent with the observations of Tiselj et al.([START_REF] Tiselj | Direct numerical simulation of turbulent heat transfer in channel flow with heat conduction in the solid wall[END_REF]). It is remarkable that the present Robin boundary condition gives almost exactly the same temperature variance as the conjugate case. This agreement suggests that the equal weighting of the temperature variance (for the isoQ case) and the wall-normal part of θ (for the isoT case) in equation (8) enables a

Figure 3 :

 3 Figure 3: Budgets of turbulent heat fluxes with an imposed temperature at the wall. Line: present, isoT. Symbol: ([2]), isoT. Left: streamwise turbulent heat flux. Right: Wall-normal turbulent heat flux.

Figure 4 :Figure 5 :Figure 6 :

 456 Figure 4: Budgets of the temperature variance with an imposed temperature at the wall. Line: present, isoT. Symbol: ([2]), isoT.

Figure 7 :

 7 Figure 7: Left: Streamwise turbulent heat flux (< u T >). Right: Associated one point correlation coefficient.

Figure 8 :

 8 Figure 8: Budgets of the turbulent heat fluxes. Line: Conjugate. Line+Symbol: isoT(+), isoQ(x) and Robin(o). Left: streamwise turbulent heat flux. Right: Wall-normal turbulent heat flux.

Figure 9 :Figure 10 :

 910 Figure 9: Budgets of the temperature variance. Line: conjugate. Line+symbol: isoT

Figure 11 :

 11 Figure11: Budgets of the temperature variance. Line: Conjugate. Line+Symbol: isoT(+), isoQ(x) and Robin(o). Left: blended fourth/sixth order scheme for the scalar diffusion on the regular grid. Right: sixth order scheme for the scalar diffusion on the refined grid.

Figure 12 :

 12 Figure 12: Temperature variance. Fluid domain: y + ≥ 0. Solid domain: y + ≤ 0

Figure 13 :

 13 Figure 13: Autocorrelation of the temperature in the solid domain. Left: Streamwise autocorrelation. Right: Spanwise autocorrelation.

Figure 14 :

 14 Figure 14: Autocorrelation of the temperature. Left: Streamwise autocorrelation. Right: Spanwise autocorrelation. Top: y + = 15. Bottom: y + = 5

Table 1 :

 1 Simulation parameters.

	over an

Kasagi et al. ([2]

) for the imposed temperature case and Tiselj et al. (

[START_REF] Tiselj | Direct numerical simulation of turbulent heat transfer in channel flow with heat conduction in the solid wall[END_REF]

) for the imposed heat flux case. In order to ensure a satisfactory statistical convergence deep inside the solid domain for the conjugate heat transfer case, the present statistics already averaged by longitudinal and spanwise average have been also accumulated in time

Table 2 :

 2 Finite difference coefficients.

	Conjugate heat transfer. As already stated, the conjugate heat transfer simula-
	tions were performed with the same thermal properties for the fluid and solid
	domains. The solid domain is on top ([0, 2, 0] ≤ [x, y, z] ≤ [25.6, 3, 8.52]) and on
	the bottom ([0, -1, 0] ≤ [x, y, z] ≤ [25.6, 0, 8.52]) of the fluid domain, as illus-

temperature variance. This behaviour, already reported byTiselj et al. ([3]),
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