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ABSTRACT
This paper focuses on the design of decentralized state observers
based on optimal guaranteed cost control for a class of sys-
tems which are composed of linear subsystems coupled by non-
linear time-varying interconnections. One of the main contri-
butions lies in the use of the differential mean value theorem
(DMVT) to simplify the design of estimation and control ma-
trices gains. This has the advantage of introducing a general
condition on the nonlinear time-varying interconnections func-
tions. To ensure asymptotic stability, sufficient conditions ex-
pressed in terms of linear matrix inequalities (LMIs) are estab-
lished to compute the control and the observation gains of the
overall system. High performances are shown through numerical
simulation of a power system with three interconnected machines.

General Terms
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Keywords
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1. INTRODUCTION
The problem of designing robust state observers/control for large-
scale systems has received considerable attention over the past
few decades. The literature on this subject is very extensive, and
includes a number of comprehensive surveys (see [19], [22] and
the references there in). Indeed, large scale interconnected systems
can be found in different fields as power systems, space structures,
manufacturing processes, transportation networks, communication
and others [15]. Designing a centralized state observers/controller
for these systems may not be efficient due to the complexity/size
of systems and the large number of operations to be performed in

the real-time implementation [14]. These limitations motivate the
design of decentralized control schemes.

In many practical situations, complete state measurements are not
available at each individual subsystem for decentralized control.
Consequently, one has to consider decentralized feedback control
based on measurements only or design decentralized observers to
estimate the state of individual subsystems that can be used for
estimated state feedback control. For more details, the reader can
refer to the works on the topic: [9] [22], [7], [6], [8], [13], [5], [17].

The main problem in the majority of works, using decentralized ob-
servers to estimate state feedback control([19], [22],[15], [12]),...,
is based on the fact that the nonlinear function of interconnection
is uncertain and satisfies some conditions. This add more restric-
tive conditions on the synthesis of the gains of observation / control.

The basic idea of this work is to provide a non restrictive suffi-
cient condition on nonlinear interconnection function which allow
expressing stability conditions in terms of LMIs using the differ-
ential mean value theorem (DMVT)[21]. This sufficient condition
enables to design a decentralized output feedback controller and to
estimate the state of individual subsystems that can be used in the
synthesis of the estimated state feedback control. Stability of the
estimation error is analyzed using the convexity principle and the
Lyapunov stability theory with an optimization of quadratic cost
performance. The observer/control gains guaranteeing the global
convergence of the proposed scheme is computed by LMI that al-
low large values of Lipschitz constants. The idea behind the DMVT
is to assure ∂V/∂t + J < 0 for the well known and widely used
Lyapunov function V (x) = xTPx (where J is quadratic cost per-
formance). The outcome is to ensure asymptotic convergence for a
large scale interconnected systems.
This work is organized as follows. In Section 2, the problem for-
mulation and some limitations of existing works are introduced.
Next, the method of synthesis of the observer/control gain will be
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detailed. This method consists in LMIs feasibility conditions. The
last section is devoted to the well know the performance of the pro-
posed approach through a numerical example with a comparison to
the work of [15], [10], [4] and [16].
Notations: The following notations will be used throughout this
paper .

—AT represents the transposed matrix of A;
—for a square matrix S,S > 0 (S < 0)means that this matrix is

positive definite (negative definite);
—the set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the convex

hull of x, y;

—es(j) =

 jth

0, ..., 0,
︷︸︸︷

1 , 0, ..., 0︸ ︷︷ ︸
s− components


T

∈ Rs , s ≥ 1, is the vector

of the canonical basis of Rs.

2. PROBLEM STATEMENT
Consider a nonlinear interconnected system S composed of a finite
number N of subsystems represented by:

Si : ẋi = Aixi +Biui + hi(t, x), yi = Cixi (1)

where xi ∈ Rni , ui ∈ Rmi and y(t) ∈ Rpi are respectively the
subsystem state, input and output vectors. Ai, Bi and Ci are con-
stant matrices of adequate dimensions. hi(t, x): reflects the inter-
connection term illustrating the nonlinearity of ith subsystem.
The entire interconnected system S can be represented in a compact
form as:

S : ẋ = Ax+Bu+ h(t, x), y = Cx (2)

where xT = (xT1 , ..., x
T
N ), u = (uT

1 , ..., u
T
N ) and y =

(yT1 , ..., y
T
N ) are the global state, input and output vectors, re-

spectively (
∑N

i=1 ni = n,
∑N

i=1mi = m,
∑N

i=1 pi = p).
A = diag{A1, ..., AN}; B = diag{B1, ..., BN}; C =
diag{C1, ..., CN} and h(t, x) = (h1(t, x)T , ...., hN (t, x)T )T is
the global nonlinear interconnection function. The pair (Ai, Bi)
and (Ai, Ci) are assumed to be stabilizable and detectable, respec-
tively. The majority of work, treating the field of control/state ob-
server of nonlinear interconnected systems, are based on the fact
that the function hi(t, x) is uncertain and satisfies:

- Quadratic inequalities ([19], [22], [12]) hi(t, x)Thi(t, x) ≤
α2
ix

THiH
T
i x

- The function norm ([15]) ‖hi(t, x)‖ ≤ αi‖x‖

where αi are interconnection bounds (to be maximized) and Hi

are bounding matrices. This hypothesis, add more restrictive con-
ditions to synthesize the observation/control gains. In the next sec-
tion, the idea is to show that the above general optimal stabilization
problem (the synthesis of an observer/control gains) can also be
formulated as an LMIs problem using the principle of DMVT.

3. OBSERVER/CONTROL GAIN DESIGN
3.1 Synthesis of observer and control gains
This section is dedicated to present some steps to the proposed ap-
proach. First, assume that the Jacobian matrix of hi satisfies the
following condition [21]:

aijk ≤
∂hij (t, x)

∂xk
≤ bijk (3)

where aijk = min
Z∈Rn

(
∂hij

(t,x)

∂xk
(Z)
)

and bijk = max
Z∈Rn

(
∂hij

(t,x)

∂xk
(Z)
)

.

The inequality (3) implies that the differentiable function hi is αi-
Lipschitz where:

αi =

√√√√√j=q∑
j=1

k=n∑
j=1

max(| ajk |2, | bjk |2) (4)

The proposed decentralized observer of the overall system (2),
composed from N local observers, is given by :{

˙̂x = Ax̂+Bu+ L(y − ŷ)
ŷ = Cx̂

(5)

where x̂ is the estimated state of the overall system and L the ob-
servation gain matrix (L = diag{Li}). Let’s consider ε = x − x̂
the estimation error. Then from the observer (5) and the system (2)
the dynamic of the global estimation error is described by:

ε̇ = (A− LC)ε+ h(t, x) (6)

Remark 1 : At this stage the nonlinear function h is not consid-
ered in the synthesis of the observer gain. The knowledge of the
non-linear interconnections is not required for the proposed solu-
tion. The observer structure of the global interconnected nonlinear
system is totally decentralized.
Now, with the same reasoning used in [15], the local control law of
each subsystem is given by:

ui = −Kix̂i (7)

where Ki ∈ Rmi×ni is the control gain matrix of the ith subsys-
tem. The control law of the global system (2) is expressed as

u = −Kx̂ (8)

where K = diag{Ki} is the block diagonal control gain matrix.
The development of the global interconnected nonlinear system,
using the control law (8), leads to{

ẋ = (A−BK)x+BKε+ h(t, x)
y = Cx

(9)

Therefore, the augmented system including the overall system (9)
and the global dynamics observation error system (6) is given by a
state representation as:[

ẋ
ε̇

]
︸ ︷︷ ︸

˙̃x

=

[
A−BK BK

0 A− LC

]
︸ ︷︷ ︸

Ã

·
[
x
ε

]
︸ ︷︷ ︸

x̃

+

[
In
In

]
h(t, x)︸ ︷︷ ︸

h̃(t,x̃)

(10)

The resulting system can be written by the state equations{
˙̃x = Ãx̃+ Ψh(t, x)

x = Lx̃ (11)

where L =
[
In 0

]
and Ψ =

[
In
In

]
The problem is to find a way to obtain the control gain K and the
observation gain L which can achieve the stability of the overall
system. Moreover, the guaranteed cost control of the closed loop
system is ensured.
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3.2 Stability Analysis
This section deals with the stability analysis and the decentralized
guaranteed cost control of the closed loop system. To ensure, the
following criteria (quadratic cost performance) is optimized:

J =

∫ ∞
0

(xTQx+ uTRu)dt (12)

where Q = QT > 0 and R = RT > 0 are given constant
weighting matrices.Then, using the dynamic output feedback con-
trol u = −Kx̂, then the cost function (12) can be rewritten as
follows:

J̃ =

∫ ∞
0

x̃T
[
Q+KTRK −KTRK
−KTRK KTRK

]
︸ ︷︷ ︸

Q̃

x̃

 dt (13)

The decentralized control law based on decentralized state observer
is said to be a quadratic guaranteed cost control with cost matrix
P > 0 for the augmented system (10) and the cost function (13) if
the closed loop system is quadratically stable [18]. The closed loop
value of the cost function (13) satisfies the bound J < J̃ for all
admissible nonlinearities.
Initially, the candidate Lyapunov function V (x̃) is defined by:

V (x̃) = x̃TP x̃ (14)

where Lyapunov matrix P is defined by : P =

[
Pc 0
0 P0

]
. where

Pc = PT
c = diag{Pci} andP0 = PT

0 = diag{P0i} are Lyapunov
positive definite symmetric matrices. The aim, in what follows, is
to determine conditions for which

d

dt
V (x̃) + x̃T Q̃x̃ < 0 (15)

Noting h̃(t, x̃) by h̃. From (14) and according to (15), we have:

(Ãx̃+ h̃)TP x̃+ x̃TP (Ãx̃+ h̃) + x̃T Q̃x̃ < 0 (16)

The equation (16) can be rewritten as:

x̃T (ÃTP + PÃ)x̃+ x̃T Q̃x̃+ h̃TP x̃+ x̃TPh̃ < 0 (17)

Proposition 1 Define the setMN
q,n as follows:

MN
q,n = {v = (v111, ..., v

1
1n, ..., v

1
qn, ..., v

N
qn)

: aijk ≤ vijk ≤ bijk, i = 1, ...,N ; j = 1, ..., q;
k = 1, ..., n, }

(18)

The set MN
q,n is a bounded convex domain of which the set of

vertices is defined by:

VMN
q,n

= {γ = (γ1
11, ..., γ

1
1n, ..., γ

1
qn, ...γ

N
qn) :

γi
ij ∈ {aiij , biij}}

(19)

Proposition 2 (The DMVT for vector valued function [20]). Let
Φ : Rn → Rq . Let a, b ∈ Rn. Φ is assumed to be differentiable on
Co(a, b). Then, there are constant vectors z1, ..., zq ∈ Co(a, b),
zi 6= a, zi 6= b for i = 1, ..., q such that

Φ(a)−Φ(b) =

(
q,n∑

i,j=1

eq(i)eTn (j)
∂Φi

∂xj
(zi)

)
(a− b). (20)

In analogy to the approach of [1] [21] [20], and by applying Propo-
sition 2 on the function hi, there exist zj ∈ Co(x, 0), for all
j = 1...q, such that:

hi(t, x)−hi(t, 0) =

 q,n∑
j,k=1

eq(j)eTn (k)
∂hij

∂xk
(zj)

 (x−0) (21)

Assuming that hi(t, 0) = 0, then using Proposition 1 and (21):

hi(t, x) = Ξzix (22)

where

Ξzi ==

 q,n∑
j,k=1

eq(j)eTn (k)
∂hij

∂xk
(zj)

 (23)

The vector h(t, x) can be written as

h(t, x) = Ξzx (24)

where Ξz =
[

ΞT
z1
, ..., ΞT

zN

]T
Remark 2 : from equation (17), [15] [22] and [12] consider a
transformation of the h̃TP x̃ + x̃TPh̃ to express it in the form of
Quadratic inequalities given in Section 2 (which remains conserva-
tive). To cope with this restriction, and using equation (11),

h̃ = Γx̃ (25)

where Γ = ΨΞzL
Then, the condition for the asymptotic stability (using the assump-
tion of [2]) with a guaranteed level of performance is given by:

x̃T (ÃTP + PÃ+ Q̃+ ΓTP + PΓ)x̃ < 0 (26)

Theorem 1. The global system is stable in the sense of Lyapunov
and the cost performance (12) is guaranteed if there exist matrices
P = PT ,L = diag(L1, ..., LN ) and K = diag(K1, ...,KN ) of
appropriate dimensions such that the following LMI is feasible:

Diag(F (γ1), ..., F (γ2Nqn
)) < 0,

γi ∈ VMN
q,n

for i = 1, ..., 2Nqn

where

F (γi) = ÃTP + PÃ+ Q̃+ ΓT (γi)P + PΓ(γi)

(27)

To ensure it (F (γi) < 0), (27) can be transformed into LMIs,
which can be solved in a computationally efficient manner by using
the LMI optimization technique. The development of (27) leads to:

(
X11 X12

X21 X22

)
< 0 (28)

where:
X11 = ATPc + PcA−KTBTPc − PcBK + ΞT

z Pc + PcΞz

+Q+KTRK

X12 = PcBK −KTRK + ΞT
z P0

X21 = XT
12 = KTBTPc −KTRK + P0Ξz

X22 = ATP0 + P0A−CTLTP0 + P0LC +KTRK

Notice that there are no effective algorithms for solving simulta-
neously the control problem and the observer one. Thus, to solve,
we proceed in two steps (solve the control parameters first and then
solve the observer parameters [15]). The first-step consists in mul-
tiplying the left-hand side and the right-hand side of (28) by:(

W 0
0 I

)
,W = WT = P−1c > 0 (29)

3



International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.14, March 2016

The equation (28) becomes:(
Y11 Y12 +WΞT

z P0

Y21 + P0ΞzW Y22

)
< 0 (30)

Then, using the notations Y = KW and Z = P0L
Y11 = WAT +AW − Y TBT −BY +WΞT

z + ΞzW +WQW

+ Y TRY

Y12 = BK − Y TRK

Y21 = Y T
12

Y22 = ATP0 + P0A−CTZT + ZC +KTRK

Unsing repeatedly the Schur complement formula, (30) can be
transformed into the following inequality:

Y11 Y12 WET
Z 0

Y21 Y22 0 P0

0 P0 −I 0

EZW 0 0 −I

 < 0 (31)

Now, the determination of the control parameters (designed by the
matrices W and Y ) becomes from the resolution of the matrix in-
equality Y11 < 0. Using the Schur complement formula, the in-
equality (Y11 < 0) can be written as: WAT +AW −Y T BT −BY +WΞT

z + ΞzW W Y T

W −Q−1 0

Y 0 −R−1

 < 0 (32)

Thereafter, the control gain matrix is given by:

K = YW−1 (33)

The second step is devoted to find the observation gain L.
Then, the determination of P0 and Z is given by substituting the
parameters obtained from the first step and solving the LMI (31).
The observation gain is given by:

L = P−10 Z (34)

4. APPLICATION OF THE PROPOSED
APPROACH TO A MULTI-MACHINE POWER
SYSTEM

In this section, the efficiency of the proposed distributed dynamic
output feedback controller through a numerical example is shown.
Three machines power systems given in [16], [15] and [11] (shown
in Fig. 1 are given, where generators 2 and 3 are assumed to have
the same dynamics and the same parameters [3].
The following sections present the non-linear model used in this
paper and the simulation results.

Fig. 1: Three-machine power system

4.1 Power system nonlinear model
The state vector of the ith subsystem is defined by (for system Si

given in 1):

xi(t)
T =

[
∆δi(t) wi(t) ∆Pmi(t) ∆Xei(t)

]
where

—∆δi(t) = δi(t)− δi0;
—∆Pmi(t) = Pmi(t)− Pmi0;
—∆Xei(t) = Xei(t)−Xei0;
—ui(t) is the control vector of the ith subsystem, ui(t) =

∆Xei(t);
—yi(t) is the output vector of the ith subsystem, yi(t) = ∆δi(t);
—δi(t) is the rotor angle for the ith machine, in radian;
—wi(t) is the relative speed for the ith machine, in radian;
—Pmi(t) is the mechanical power for the ith machine, in pu;
—Xei(t) is the steam valve for the ith machine, in pu;

—hi(t, x(t)) =
∑N

j=1,j 6=i pijGijgij(xi, xj) is a nonlinear
function vector characterizing the interconnection between sub-
systems;

—δi0, Pmi0,Xei0 are the nominal values of δi(t), Pmi(t) and
Xei(t).

Ai =


0 1 0 0
0 −Dci

2Hi

−w0
2Hi

0

0 0 −1
Tmi

Kmi
Tmi

0 −Kei
TeiRiw0

0 −1
Tei

 Bi =


0
0
0
1

Tei



CT
i =

1
0
0
0

 Gij =


0

w0E
′
qiE

′
qjBij

2Hi

0
0


and gij(xi, xj) = sin(δi(t) − δj(t)) − sin(δi0 − δj0). Where:
pij Constant of either 1 or 0 (Pij = 0 means that jth

machine has no connection withith machine;
Hi Inertia constant for the ith machine, in second;
Dci Damping coefficient for the ith machine, in pu;
Tmi Time constant for ith machine’s turbine, in second;
Kmi Gain of ith machine’s turbine;
Xdi the direct axis reactance of the ith machine, in p.u.
Xi

di
the direct axis transient reactance of the ith machine,
in p.u.

XTi
the transformer reactance of the ith machine, in p.u.

Tei Time constant of the ith machine’s speed governor,
in second;

Kei Gain of the ith machine’s speed governor;
Ri Regulation constant of the ith machine,

in pu;
Bij Nodal susceptance between ith and jth machines,

in pu;
w0 Synchronous machine speed, w0 = 2πf0, in radian/s;
E
′
qi Internal transient voltage for ith machine, in pu,

assumed to be constant;
E
′
qj Internal transient voltage for jth machine, in pu,

assumed to be constant;
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4.2 Simulation Results
The parameters of the three interconnected power systems [16] are
summarized in table I:

Generator1 Generator2 Generator3
Xd(pu) 1.863 2.36 2.36
X
′
d(pu) 0.257 0.319 0.319

XT (pu) 0.129 0.11 0.11
Xad(pu) 1.712 0.712 0.712
T
′
d0(pu) 6.9 7.96 7.96
H(s) 4 5.1 5.1
Dc(pu) 5 3 3
Tm(s) 0.35 0.35 0.35
Te(s) 0.1 0.1 0.1
R 0.05 0.05 0.05
Km 1 1 1
Ke 1 1 1

w0(rad/s) 314.159 314.159 314.159

Table 1. : Parameters of the three interconnected power systems

According to the model, the studied power system can be described
by the following state equations:

.
x1(t) = A1x1(t) +B1u1(t) +G12g12(x1(t), x2(t))

+G13g13(x1(t), x3(t))
.
x2(t) = A2x2(t) +B2u2(t) +G21g21(x2(t), x1(t))

+G23g23(x2(t), x3(t))
.
x3(t) = A3x3(t) +B3u3(t) +G31g31(x3(t), x1(t))

+G32g32(x3(t), x2(t))

(35)

where Gij = [0 αij 0 0]T are given by [4]- [16]:
α12 = α13 = −27.49
α21 = α23 = α31 = α32 = −23.10

with αij , represents the midpoints of
w0E

′
qiE

′
qjBij

2Hi
.

The nonlinear interconnection functions of the three
interconnected machines can be expressed as :

h1(x) =


0
h12

0
0

 ; h2(x) =


0
h22

0
0

 ; h3(x) =


0
h32

0
0


with  h12 = α12g12(x1, x2) + α13g13(x1, x3)

h22 = α21g21(x2, x1) + α23g23(x2, x3)
h32 = α31g31(x3, x1) + α32g32(x3, x2)

(36)

After choosing the weighting matrices of the cost function as
Q = 10−2I12 R = 10−3I3, the control and observer gain ma-
trix found from the resolution of the LMIs problem 32-33-34 are
K = diag{Ki}, i = 1, 2, 3 and L = diag{Li}, i = 1, 2, 3 such
that:
K1 =

[
462.321 81.115 229.122 19.084

]
K2 =

[
459.784 81.491 211.049 18.536

]
K3 =

[
459.784 81.491 211.049 18.536

]

L1 =


99.1663
97.3051
1.5329
−7.6471

 ; L2 =


88.2933
75.1120
1.3593
−6.7894

 ;

L3 =


88.2933
75.1120
1.3593
−6.7894


First, in Fig. 2, the observer error is given (for the rotor angle of the
three subsystems e = x1i − x̂1i).
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1

 e
∆δ

2

 e
∆δ
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Fig. 2: Evolution of the estimation error

Fig.2 shows that the estimation error converges to zero with a very
small variation (0.005). The behavior of the ‖x− x̂‖ is given in
Fig.3. It is clearly that the stability and convergence of the pro-
posed method are ensured.
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Fig. 3: Evolution of ‖x− x̂‖

Secondly, in Fig. 4, the evolution of the estimated rotor angle x̂1
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is presentend and compared with the results of [15]. Fig.4 shows
clearly the contribution added by the method proposed in this pa-
per. Indeed, this method reduces the peaks evolution (during tran-
sitional regime) and the convergence time which is defined as the
time when the value of the state reached a range of ± 5% of the
origin.
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Fig. 4: Evolution of the estimated rotor angle x̂1

Concerning the last point, and in order to prove the contribution ac-
quired on the convergence time (Table II), the results are compared
with other methods ([16]-[10]-[4]-[15]).

Convergence Time (s)
Proposed method 0.3

Wang[16] 1.6
Siljack[10] 1.6

Guo[4] 1.8
Tlili[15] 2.4

Table 2. : Convergence Time

It is demonstrated from Table II that the proposed result ensures
convergence at the least time compared to other methods.
Remark 3 :
The proposed method provides solutions even for huge Lipschitz
constants. In this work, the use of bounds αi > 103 is tolerated by
the system without losing stability, but in [15], a loss of stability is
observed.
Remark 4 :
As it can be seen, the cost of more demanding solve LMI is high.
However, the use of the DMVT approach gives a less restrictive
LMI synthesis condition. For the proposed method (and all LMI-
based approaches), the constant observer gain is computed off line.
Thus, it is suitable to real-time application.
Remark 5 :
In [4] and [10], the local control law of each subsystem needs the
knowledge of the state, while the proposed local control law in this
work is based on the state estimation. The decentralized observers
is designed to estimate the state of individual subsystem which are
used for the feedback controller.

5. CONCLUSIONS
An efficient decentralized controller and observer for a class of
large-scale interconnected nonlinear systems is presented. The use
of the DMVT had ensured that the stability analysis is performed
with non restrictive sufficient condition to ensure asymptotic con-
vergence.
The developed method is then applied to stabilize power systems
with three interconnected machines. Numerical results have con-
firmed the high performances of estimation and control offered by
the proposed DMVT design method. The remaining open questions
are the experimental test of the proposed method and its application
to large scale power systems.
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