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COMPUTING CONNECTION COEFFICIENTS OF COMPACTLYSUPPORTED WAVELETS ON BOUNDED INTERVALSC.H. RomineB.W. PeytonAbstractDaubechies wavelet basis functions have many properties that makethem desirable as a basis for a Galerkin approach to solving PDEs: theyare orthogonal, with compact support, and their connection coe�cientscan be computed. The method developed by Latto et al. [6] to computeconnection coe�cients does not provide the correct inner product near theendpoints of a bounded interval, making the implementation of boundaryconditions problematic. Moreover, the highly oscillatory nature of thewavelet basis functions makes standard numerical quadrature of integralsnear the boundary impractical. We extend the method of Latto et al. toconstruct and solve a linear system of equations whose solution provides theexact computation of the integrals at the boundaries. As a consequence, weprovide the correct inner product for wavelet basis functions on a boundedinterval.
- vii -



1. IntroductionWavelets are receiving increased attention not only as a mechanism for construct-ing �lter banks or compressing data, but as a natural basis for multilevel schemesfor solving PDEs. Several papers in recent years have described the use of waveletbasis functions in solving PDEs, for example Amaratunga et al. [1, 2], Bacry etal. [3], Qian and Weiss [8], and Restrepo and Leaf [9].Wavelet basis functions have many properties that make them desirable as abasis for a Galerkin approach to solving PDEs: they are orthonormal, with com-pact support, and their connection coe�cients (that is, integrals of products ofbasis functions, with or without derivatives) can be computed [6]. However, theseproperties rely on the assumption that the PDE is periodic in the computationaldomain (which is equivalent to the assumption that the domain is unbounded),and do not all carry over when the domain of the PDE is bounded. Orthogo-nality, for example, is lost when the basis functions are truncated at a boundarybecause the domain of integration is a �nite interval.Approaches that assume periodicity complicate the treatment of boundaryconditions for PDEs in a �nite domain. In a Galerkin formulation, the discretizedform of the equation involves connection coe�cients on bounded intervals. Wecall these proper connection coe�cients, since they involve proper integrals. Theusual connection coe�cients computed in Latto et al. with a doubly in�nitedomain of integration will be called improper connection coe�cients. Note thatwhen the support of the integrand lies entirely within the interior of the compu-tational domain, corresponding proper and improper connection coe�cients areequal.The highly oscillatory nature of wavelet basis functions makes standard nu-merical quadrature for computing connection coe�cients impractical. Latto etal. circumvent this problem for improper connection coe�cients by exploitingproperties of the wavelet basis functions to derive a linear system of equationswhose solution has as its components the exact improper connection coe�cients.As far as we know, no one has previously devised a method for computing



- 2 -proper connection coe�cients. As a result, the natural inner product for Galerkinsolution of boundary value problems has been unavailable, and researchers havebeen restricted to more indirect means of resolving the boundary, e.g., the capaci-tance matrix method of Proskurowski and Widlund [7]; see Amaratunga, et al. [2]and Qian and Weiss [8]. Motivated by the need to extend methods for resolvingboundary conditions in a new and natural direction, we address the problem ofcomputing proper connection coe�cients. We adapt the methology of Latto etal., exploiting the properties of the wavelet basis functions to derive two linearsystems whose solutions have as their components the exact proper connectioncoe�cients.The paper is organized as follows. Section 2 presents background and no-tation. Section 3 describes our technique for computing proper connection co-e�cients. In section 4, we use our technique to solve a simple one-dimensionaldi�erential equation with Dirichlet boundary conditions. Section 5 provides afew concluding remarks.2. Background and NotationThe �rst step in developing a basis is to de�ne the underlying scale function. Thescale function satis�es the recursive dilation equation�(x) = N�1Xk=0 ak�(2x� k)where N is an even integer no smaller than two and fakg are the �lter coe�cients.Daubechies [5] imposed conditions on the �lter coe�cients so that the resultingscale functions with Daubechies number N are di�erentiable and the resultingbases are orthonormal and have N2 � 1 vanishing moments (i.e., can be usedto exactly represent polynomials of degree � N2 � 1). We will use all theseimportant properties in our derivations. Throughout we will use the Daubechiesscale functions D4 (N = 4), D6 (N = 6), D8 (N = 8), etc. A graph of the scalefunction � for N = 6 is given in Figure 2.1. Also, to improve our notation we



- 3 -will let �k(x) := �(x� k):For more about Daubechies wavelets and their properties consult Daubechies [5],Strang [10], Strang and Nguyen [11] or Coddington et al. [4].
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Figure 2.1: The scale function for Daubechies number N = 6.The wavelet-Galerkin method for solving PDEs on an unbounded domainproduces improper connection coe�cients as terms in its equations. If we usethe notation �(n) := dn�dxn , then the two-term improper connection coe�cients arede�ned (as in Latto, et al.) as�d1d2j := Z 1�1 �(d1)(x)�(d2)j (x)dx



- 4 -and three-term improper connection coe�cients are de�ned by�d1d2d3j;k := Z 1�1 �(d1)(x)�(d2)j (x)�(d3)k (x)dx:Only the nonzero coe�cients are computed: in the two-term case 2 � N � j �N � 2, and in the three term case 2 � N � j; k � N � 2 and jj � kj � N � 2.There is no loss of generality in �xing the shift on the �rst term at zero because�d1d2i;j = Z 1�1 �(d1)i (x)�(d2)j (x)dx = Z 1�1 �(d1)(x)�(d2)j�i (x)dxand�d1d2d3i;j;k := Z 1�1 �(d1)i (x)�(d2)j (x)�(d3)k (x)dx = Z 1�1 �(d1)(x)�(d2)j�i (x)�(d3)k�i (x)dx:The scale function is the foundation upon which the basis is constructed.Each member of the basis at resolution m is of the form�m;k(x) := 2m=2�(2mx� k) = 2m=2�k(2mx):Each member of the basis is thus a scaled, dilated, and translated version of theunderlying scale function.The wavelet-Galerkinmethod for solving PDEs on a bounded domain producesproper connection coe�cients as terms in its equations. If we assume (in onedimension) that the interval of computation is [0, 1], then for the resolution mbasis, the proper two-term connection coe�cients will be of the formZ 10 �(d1)m;i (x)�(d2)m;j (x)dx:Since the resolution m basis functions are simply scaled, translated, and dilatedversions of the underlying scale function, it is enough to compute proper connec-



- 5 -tion coe�cients of the form:�d1d2i;j := Z N�10 �(d1)i (x)�(d2)j (x)dxThe limits of integration 0 and N � 1 are a natural choice to ensure that thesupport of no basis function in the integrand crosses both limits of integration.Once the proper connection coe�cients �d1d2i;j have been tabulated, all connectioncoe�cients at resolution m can be derived. For example, if the computationaldomain is [0, 1] then assuming 2m > N � 1,Z 10 �(d1)m;�1�(d2)m;�2dx= Z 2m0 �(d1)(y + 1)�(d2)(y + 2)dy; (where y = 2mx)= Z N�10 �(d1)(y + 1)�(d2)(y + 2)dy= �d1d2�1;�2;since the support of �(d1)(y + 1)�(d2)(y + 2) is [-1, N � 3]. Similarly,Z 10 �(d1)m;2m�1�(d2)m;2m�2dx= Z N�1�2m+(N�1) �(d1)(y � (N � 2))�(d2)(y � (N � 3))dy;(where y = 2mx� 2m + (N � 1))= Z N�10 �(d1)(y � (N � 2))�(d2)(y � (N � 3))dy= �d1d2N�2;N�3;since the support of �(d1)(y� (N �2))�(d2)(y� (N�3)) is [N � 2, 2N � 4]. Notethat if the support of the integrand lies entirely within the computational domain,the corresponding proper and improper connection coe�cients are equal; that is,�d1d2i;j = �d1d2j�i (using the notation in Latto, et al.). Two basis functions for aproper two-term connection coe�cient that involves a boundary are illustratedin Figure 2.2.



- 6 -Three-term proper connection coe�cients are de�ned by�d1d2d3i;j;k := Z N�10 �(d1)i (x)�(d2)j (x)�(d3)k (x)dxand similar de�nitions apply for higher numbers of terms. In the two-term casewe can restrict our attention to proper connection coe�cients for which either2 � N � i; j � �1, or 1 � i; j � N � 2. All others are either zero, or areequivalent to some improper connection coe�cient. Similarly, for the three-termcase we restrict our attention to proper connection coe�cients for which either2�N � i; j; k � �1, or 1 � i; j; k � N � 2.
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Figure 2.2: Basis functions for a proper connection coe�cientNote that the integrals can no longer be shifted to reduce the total number ofdistinct proper connection coe�cients by assigning a zero shift to the �rst term.



- 7 -Moreover, the truncation of a basis function is not arbitrary, but occurs at oneof the dyadic points (i=2m) in the given resolution. Equivalently, the truncationoccurs at an integer value at the resolution of the scale function. The interval ofintegration ([0, N � 1]) combined with all possible integer shifts cover all possibletruncations at integer points of shifted products of the scale function.3. Computing Proper Connection Coe�cientsWe illustrate our technique by computing the three-term proper connection coef-�cients. The same technique is easily applied to the two-term proper connectioncoe�cients. Our approach is based on suitable modi�cations of the scaling equa-tions, moment equations, and the normalization equation, described in Latto, etal. [6].3.1. Scaling equationsWe begin this section by deriving a relationship among the unknowns �d1d2d3i;j;kthat will eliminate half of them. We note �rst that the support of �(d)i is[i, i+ (N � 1)]. Then for 1 � i; j; k � N � 2 we have:�d1d2d3i;j;k := Z N�10 �d1i �d2j �d3k dxand �d1d2d3i�(N�1);j�(N�1);k�(N�1) := Z N�10 �d1i�(N�1)�d2j�(N�1)�d3k�(N�1)dx= Z 2N�2N�1 �d1i �d2j �d3k dx:Hence, since the support of �d1i �d2j �d3k is completely contained in the interval[0, 2N � 2], we have the identity�d1d2d3i;j;k + �d1d2d3i�(N�1);j�(N�1);k�(N�1) = �d1d2d3j�i;k�i; (3.1)



- 8 -where �d1d2d3`;m denotes the improper connection coe�cient described in Latto etal. [6].We now derive the scaling equations. If 2�N � i � �1, then since�i(x) = �(x� i) = N�1Xp=0 ap�(2x� (2i+ p))we have �(d1)i (x) = 2d1 N�1Xp=0 ap�(d1)(2x� (2i+ p)):Similarly, with 2�N � j; k � �1 we have�(d2)j (x) = 2d2 N�1Xq=0 aq�(d2)(2x � (2j + q))and �(d3)k (x) = 2d3 N�1Xr=0 ar�(d3)(2x� (2k + r)):Hence,�d1d2d3i;j;k = 2d N�1Xp=0 N�1Xq=0 N�1Xr=0 apaqar�Z N�10 �(d1)(2x � (2i+ p))�(d2)(2x� (2j + q))�(d3)(2x� (2k + r))dx;(where d = d1 + d2 + d3), or�d1d2d3i;j;k = 2d N�1Xp=0 N�1Xq=0 N�1Xr=0 apaqar�Z 2N�20 �(d1)(y � (2i+ p))�(d2)(y � (2j + q))�(d3)(y � (2k + r))dy;



- 9 -or �d1d2d3i;j;k = 2d N�1Xp=0 N�1Xq=0 N�1Xr=0 apaqar�(Z N�10 �(d1)(y � (2i+ p))�(d2)(y � (2j + q))�(d3)(y � (2k + r))dy+ Z N�10 �(d1)(y � (2i+ p � (N � 1)))�(d2)(y � (2j + q � (N � 1)))��(d3)(y � (2k + r � (N � 1)))dy);or �d1d2d3i;j;k = 2d�1 N�1Xp=0 N�1Xq=0 N�1Xr=0 apaqar� (3.2)(�d1d2d32i+p;2j+q;2k+r + �d1d2d32i+p�(N�1);2j+q�(N�1);2k+r�(N�1))Note that some of the terms on the right hand side of (3.2) are equal to improperconnection coe�cients, since the entire support of some of the integrands lieswithin the bounds of integration. These terms are known (thanks to Latto,et. al.), and hence can be moved to the other side. Moreover, we exploit theidentity (3.1) to eliminate the unknowns corresponding to 1 � i; j; k � N � 2,producing a matrix equation of the form:(I � 2d�1A)�d1d2d3 = R (3.3)in (N �2)2 unknowns, where R is a vector accumulating the known values in thesum (3.2). A similar treatment holds for the proper connection coe�cients �d1d2d3i;j;kwith 1 � i; j; k � N �2, though as noted, these can be computed from (3.1) oncethe values of �i;j;k for �(N � 2) � i; j; k � �1 are known.The linear system (3.3) is inhomogeneous; however, the coe�cient matrixI � 2d�1A in (3.3) may not be of full rank. Indeed, our observations of thespectrum of I � 2d�1A indicate that it has a zero eigenvalue with multiplicity d,



- 10 -which would imply that the rank de�ciency of the coe�cient matrix in (3.3) is d.3.2. Moment EquationsIf the coe�cient matrix in (3.3) is singular, we augment the matrix by addingd1 + d2 + d3 moment equations to the linear system in (3.3), which are derivedas follows (see Latto, et al. [6]). We assume that the Daubechies number issu�ciently high that we have maxfd1; d2; d3g vanishing moments. Then for eachq < d1 there exist coe�cients fM qi g such thatxq = 1Xi=�1M qi �i(x):The set fM qi g are called the moments of � and its translates, and the reader isreferred to Latto et al. [6] for details on how to compute them.On the closed interval [0, N � 1], we have the identityxq = N�2Xi=2�N M qi �i(x); (3.4)where we have included all terms in the sum whose support intersects the giveninterval. Di�erentiating (3.4) d1 times yields0 = N�2Xi=2�N M qi �d1i (x): (3.5)If we then multiply both sides of (3.5) by �d2j �d3k for some �xed j and k andintegrate over [0, N � 1], we obtain0 = N�2Xi=2�NM qi �d1d2d3i;j;k : (3.6)Again, some of the entries on the right hand side of (3.6) are equal to improperconnection coe�cients, and hence can be moved to the other side. Others canbe eliminated via the identity (3.1). This provides d1 further (inhomogeneous)



- 11 -linear equations in the unknowns �d1d2d3i;j;k , one for each value of q. Similarly, wecan derive d2 further moment equations0 = N�2Xj=2�NM qj �d1d2d3i;j;k :and d3 moment equations 0 = N�2Xk=2�N M qk�d1d2d3i;j;k :3.3. Normalization EquationThe rectangular system of linear equations derived from the scaling equationsand moment equations for the improper connection coe�cients is homogeneous,and hence require a nonhomogeneous equation to \normalize" the solution [6].The rectangular system of equations described above for the proper connectioncoe�cients is already nonhomogeneous; however, the matrix may still be rank-de�cient. We now derive the normalization equation for the proper connectioncoe�cients, and include it in the system of equations. We conjecture (and ourtests indicate) that the rectangular system of equations containing the scalingequations, the moment equations and the normalization equation is of full rank,and therefore the nonhomogeneous linear system has a unique solution.If we assume that the basis functions have maxfd1; d2; d3g vanishing moments,then we have the following: xd1 = 1Xi=�1Md1i �i:Di�erentiating d1 times, we obtaind1! = 1Xi=�1Md1i �d1i :Including only those basis functions whose support intersects the interval [0, N � 1],



- 12 -we have the identity: d1! = N�2Xi=2�NMd1i �d1i on [0, N � 1]: (3.7)Similarly, d2! = N�2Xj=2�N Md2j �d2j on [0, N � 1] (3.8)and d3! = N�2Xk=2�N Md3k �d3k on [0, N � 1]: (3.9)Multiplying equations (3.7), (3.8) and (3.9) together, and integrating over [0, N � 1]we obtain(N � 1)d1!d2!d3! = N�2Xi=2�N N�2Xj=2�N N�2Xk=2�NMd1i Md2j Md3k �d1d2d3i;j;k : (3.10)Again, some of the terms in (3.10) are either known, or can be eliminated via theidentity (3.1).We provide tables of proper connection coe�cients in the appendix for thetwo cases (N = 6, d1 = 0, d2 = 2) and (N = 6, d1 = 1, d2 = 0 and d3 = 0), thesame two cases provided by Latto et al. in [6]. Although the values of �d1d2d3i;j;kfor 1 � i; j; k � N � 2 can be computed indirectly using the identity (3.1) wecompute both tables of proper connection coe�cients independently and use 3.1as an accuracy check. For the tables provided in the appendix, the identity (3.1)is satis�ed to within approximately 10�15.Since the multiresolution wavelet basis f m;kg is de�ned in terms of the scalefunction, the proper connection coe�cients derived here can also be used for mul-tiresolution analysis. Speci�cally, if the multiresolution wavelet basis is used ina Galerkin formulation for the solution of PDEs, the necessary wavelet connec-tion coe�cients can be computed directly from the proper connection coe�cientsgiven here.



- 13 -4. ResultsIn this section, we demonstrate the applicability of proper connection coe�cientsby solving a simple one-dimensional di�erential equation on the bounded domain[0, 1]. We use the 1-D Poisson problemuxx � f = 0; (4.1)and impose Dirichlet boundary conditions at the endpoints:u(0) = � and u(1) = �:The Galerkin approach approximates u and f with linear combinations of basisfunctions: u �Xi ui�m;i; and f �Xi fi�m;i:The left hand side of (4.1) is now approximated byuxx � f �Xui�00m;i �X fi�m;i: (4.2)In general, these approximations will not satisfy the di�erential equation exactly;however, we can �nd the orthogonal projection onto the space spanned by f�jgby ensuring that (4.2) is orthogonal to each so-called \test function" �j. That is,we de�ne an inner product h�m;i; �ji = Z 10 �m;i�j dxand solve the following linear equations for the unknowns ui:Xuih�00i ; �ji � fih�i; �ji = 0: (4.3)If the test functions and the basis functions coincide (the choice for Galerkin testfunctions), the linear system will have a square coe�cient matrix.



- 14 -One approach to imposing Dirichlet boundary conditions in a Galerkin formu-lation is to replace two of the rows in (4.3) with the two linear equations derivedfrom the two boundary conditions, preserving a square coe�cient matrix. Analternative, and the approach we chose, is to append the two boundary equationsto the matrix, and solve the resulting rectangular system.Our test problem isuxx = �4�2 sin(2�x); u(0) = 1; u(1) = 2whose exact solution is u = sin(2�x)+x+1. Figure 4.1 is a graph of the error as afunction of resolution on a log-log scale for Daubechies numberN = 6. The slopeof the resulting line demonstrates cubic convergence with increase in resolution.
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Figure 4.1: Illustration of convergence rate



- 15 -5. SummaryProper connection coe�cients are important for the solution of nonperiodic PDEs.We have demonstrated a technique for deriving a linear system whose solutionis the set of proper connection coe�cients needed to compute the natural innerproduct on bounded intervals. The ability to compute proper connection co-e�cients provides a natural mechanism for imposing boundary conditions. Weexhibited a simple one-dimensional test problem that illustrates the use of properconnection coe�cients for PDE's on bounded domains with Dirichlet boundaryconditions. We showed that convergence of the solution using Daubechies D6basis functions was cubic with increasing resolution.The wavelet-Galerkin approach for solving PDEs has su�ered from the inabil-ity to properly set PDE problems on bounded domains and to impose boundaryconditions in a straightforward way. We have shown that this drawback canbe eliminated when the proper connection coe�cients can be computed. More-over, these proper connection coe�cients can also be used to compute the properwavelet connection coe�cients arising from a multiresolution analysis of PDEs.6. AcknowledgementsWe are grateful to John Drake and Bill Lawkins for our introduction to waveletsfor solving PDEs and for many helpful conversations.
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- 18 -A. Tables of Proper Connection Coe�cientsj = �4 �3 �2 �1i = �4 -0.00038529074526 -0.00386035962858 0.01423373435011 -0.01534522683341�3 -0.00573652265285 -0.09863430110098 0.33947817016054 -0.35475020354956�2 0.02181281253982 0.33904059142268 -1.37506723951242 1.77076145459755�1 -0.06519463330387 -0.90634814610999 4.01066114451254 -5.67304693652727Table A.1: Table of �02i;j := RN�10 �i(x)�(2)j (x)dx for N = 6
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i = �4k = �4 �3 �2 �1j = �4 -0.00000002530682 -0.00000068992720 0.00000306963647 -0.00001055718019�3 -0.00000068992720 -0.00002337260152 0.00010672670559 -0.00037345654025�2 0.00000306963647 0.00010672670559 -0.00048341871765 0.00168470385967�1 -0.00001055718019 -0.00037345654025 0.00168470385967 -0.00585973132675i = �3k = �4 �3 �2 �1j = �4 -0.00000032826247 -0.00000752895920 0.00003138211915 -0.00010322628046�3 -0.00000752895920 -0.00028821307592 0.00136993458233 -0.00488523455350�2 0.00003138211915 0.00136993458233 -0.00714394837814 0.02677812707263�1 -0.00010322628046 -0.00488523455350 0.02677812707263 -0.10280576120976i = �2k = �4 �3 �2 �1j = �4 0.00000077866139 0.00001753615235 -0.00007347449696 0.00024195517558�3 0.00001753615235 0.00076195056336 -0.00351927324338 0.01231761138106�2 -0.00007347449696 -0.00351927324338 0.01914653677375 -0.07281061430283�1 0.00024195517558 0.01231761138106 -0.07281061430283 0.28689868099225i = �1k = �4 �3 �2 �1j = �4 -0.00000194921939 -0.00004221923539 0.00017491280955 -0.00057333107231�3 -0.00004221923539 -0.00190418619493 0.00818703214249 -0.02741471871558�2 0.00017491280955 0.00818703214249 -0.04587567964823 0.17576474944728�1 -0.00057333107231 -0.02741471871558 0.17576474944728 -0.70948149953627Table A.2: Table of �100i;j;k := RN�10 �(1)i (x)�j(x)�k(x)dx for N = 6


