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Abstract 

In this paper we present a new methodology based on the wavelet packet concept, in order to define an adaptive method for 
the approximation of partial differential equations. The wavelet packet framework allows us to define the notion of a minimal 
basis that has proven to be an efficient procedure for data compression. The purpose here is tQ take benefit of this compression to 
represent accurately and economically the solution of a time dependent POE. The time discretization is a standard multistep 
scheme. The spacial discretization is defined by inferring a reduced basis for the solution at the new time step, from the 
knowledge of the previous ones. 

1. Introduction 

The theory of orthonormal wavelet bases has been developed by Meyer [1] and his group. It allows 
an efficient representation to be given to characterize isolated defects of some (otherwise regular) 
function, thanks to a particularly good localization both in space and scale of each element of the basis. 
The decomposition of such a function is lacunary, in the sense that very few coefficients of its 
decomposition on a wavelet basis are non-negligible. This allows compressed approximations to be 
defined by getting rid of the coefficients that are smaller than a prescribed threshold. The natural 
applications of these bases are in image analysis and data compression. The next candidate for 
application of this theory is to define efficient adaptive methods for the approximation of non-stationary 
partial differential equations. We refer for example, to [2, 3] for more details on the definition of the 
algorithms and their implementation, and to [4] for some details on the numerical analysis of the 
method. The central idea in the previous papers is to infer the position or the creation of the (isolated) 
defect of the solution at some time step by knowing the wavelet decomposition of the solution at the 
previous time steps. This adaptive method is promising in the case where one can predict that the defect 
in the solution (sharp gradients or discontinuities) are the exception. Indeed, with application of this 
method to approximate the solution of the one-dimensional Burger's equation, a reduction factor of 
one-eighth has been observed for the number of degrees of freedom, with respect to a standard uniform 
representation. This reduction factor is maintained, in each dimension, in multidimensional examples. 

The domain of application of this type of adaptive method is certainly reduced and cannot be used in 
approximations where defects are not the exception. This is the case for instance if one wants to 
simulate turbulent flows. In this direction, one can notice the recent work of Farge et al. [5] that 
compares the analysis of a turbulent field by spectral and wavelet packet decompositions. The previous 
reduction factor in representative coefficients is observed for the wavelet packet decomposition. The 
concept of wavelet packets has been introduced by Coifman et al. [ 6] as a generalization of the wavelet 
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bases. It relies on the definition of a library of orthonormal bases depending on three parameters 
(space, scale and frequency) of the same dimensional space, and a procedure to choose, among all of 
these, the best candidate for the most economical way to represent a given function. This best basis is 
chosen by minimizing some given entropy attached to the coefficients in each basis of the library. 

In this paper, we generalize the notion of an adaptive method to the wavelet packet framework, in 
the same spirit as [2, 3]. In Section 2, we recall the main notion on wavelet packets required for the 
paper and define the basics of the adaptive algorithm introducing the concept of neighbors. In Section 
3, we detail this notion of neighbouring elements in space, scale and frequency. Finally, in Section 4, we 
illustrate the potentiality of the method by several numerical examples. 

2. Presentation of the method 

For the sake of simplicity, we present the basics of the method applied to the case where periodic 
boundary conditions are prescribed to the solution of a partial differential equation. This allows us to 
skip the treatment of some boundary conditions of Dirichlet or Neumann type. Let T be the torus 
[0, 1]. The wavelet framework involves at the very beginning the decomposition of the Lebesgue space 
L 2(T) into the scale of increasing finite dimensional subsets: 

V C V C · · · c V c · · · C L 2(T) 0 I p • 

Each finite dimensional space VP has dimension 2P and is provided with a library of orthonormal bases, 
that are constructed from the elements w~.k defined as 

.,~ . . . 

V'xEIR w~ .. k(x)=2 1 -w,(2 1x-k), O~j~p. O~n~2p-1 -1, O~k~2 1 -l. 

The elements w, are given in [6] and ordered by increasing frequency as explained in [7]. In the 
previous notation, j is a scaling index that changes by dilation of the elements of the basis, n is the 
frequency index and finally, k is the position index that changes by translation. In particular, for any 
fixed j, the set 

i!!Ji = { w ~ •. k, 0 ~ n ~ 2 P-i - 1, 0 ~ k ~ 2 i - 1} , 

is a basis of VP, but many other bases can be constructed by associating these elements in different ways 
[6]. 

Among all the possible choices, the 'best one' for some particular function cpP of VP, will be the one in 
which some entropy is minimized. Here, the entropy we use is the number of coefficients in the 
expansion of cpP larger than a prescribed threshold E. These coefficients will correspond to the degrees of 
freedom for the approximation of the solution; this legitimates our choice of entropy (see Section 4). 
Note that our definition does not coincide with the standard one, which allows us to optimize some 
other criteria of the representation [7]. 

The wavelet packets that are used in this paper are those associated with the cubic spline functions of 
T. The torus [0, 1] is decomposed into 2P equidistant points, the space VP is then the set of cubic spline 
functions associated with this partition. 

REMARK 2.1. The definition of the best basis for a function is not a continuous procedure. Indeed, let 
"' be close to cp in L 2(T). Then the respective best bases may be quite different. Nevertheless, the 
entropy of the decomposition of"' in the best basis associated with cp (denoted as i!JJ(cp)) is only slightly 
larger than the entropy of the decomposition of"' in its best basis i!JJ("'). Hence, it is reasonable to use 
i!IJ(cp) to decompose "'· It can also be noticed that the basis functions in i!JJ(cp) that are really 
representative of"' (i.e. the corresponding coefficient is >E) can be recognized as 'neighbours' which 
are really representative of cp; the notion of neighbours will be clarified in Section 4. 

NOT A TION 2.2. The approximation of a given function cp E L 2(T) by an element of VP relies on three 
steps: 
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( i) projection of cp in VP resulting in 'Pp; 
(ii) definition of the best basis associated with cpP, 1.e. IJJ(cpP) and the corresponding set of indices 

A(cpp) = {(j,n,k), w~.k E IJJ(cpP)} so that 

m - " 01 i wi . 
T'p - L.. n,k n,k ' 

(j.n.k)EA(<Pp) 

(iii) filteringyrocedure that consists of getting rid of the coefficients smaller thanE, i.e. from A(cpp), we 
define A(cpp) as 

A(cpp) = {(j, n, k) E A(cpp), i01~ •. ki > E}. 

The approximation of cp is then given by (j;P = Eu.n.klEA(<Ppl Ol~,.kw~ •. k· With these notations, we easily 
obtain the following lemma. 

LEMMA 2.3. For any function cp E L 2(T), 

li'P- iPPIIL2(T) ~ inf II'P- t/IPIIL2<n + V2PE 
1/lpEVP 

The two previous statements lead naturally to the following numerical algorithm for the approxi­
mation of the solution of some partial differential equation. As is standard, the model equation is the 
Burgers' equation with periodic boundary conditions: Find u, such that 

au 1 au a2u 
-+-2 u-=v-2 t""'O, xE[O,l], at ax ax , (1) 

with initial condition 

and viscosity parameter equal to v = 1 I 400TI. The approximation involves a discrete parameter in time 
!:::..t that is a positive real number, and a discrete parameter in space p. The solution u(m !:::..t, ·) is 
approximated by an element u"' = u; of VP defined by the following algorithm. 

ALGORITHM 
Initial st~p. I.::et 0A(u~) be the indexes of the best associated to u~, if/, and A(u~) stand as in Notation 

2.2. Set A = A(uP). 
(m + l)th step. Let u"' be given by 

j,(m) j 
01 n,k W n,k ' 

(j,n,k)EA"' 

where A"' C A(u~). 
(i) Define first ii"' and A:"' as explained in Notation 2.2(iii). 

(ii) Define A"'+ 1 as follows: 

A"'+ 1 = {(j, n, k) E A(u~) that are neighbours of (j', n', k') E A"'}, 

where the definition of neighbours has been suggested in Remark 2.1 and will be detailed in 
Section 3. 

(iii) Compute u"'+ 1 written as 

j,(m+ I) j 
01 n,k W n,k 

(j,n,k)EA"'+I 

and such that it satisfies the discrete problem 

ft um+t- ii"' ,. ft du"'+t dw~ •. k - __ I ft d(ii'")z ,. 
't:l(j·, n, k) E Am+l dx + dx dx 

0 f:::..t W n.k V 0 dx dx - 2 0 dx W n,k • 
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The time discretization that is presented here is the simplest one and, of course can be easily improved, 
but this is not the point of this paper. 

REMARK 2.4. The previous algorithm will certainly lead to increase in the dimension of A"'+ 1 and in 
order to minimize the basis for the representation of u, we certainly have to re-compute the best basis 
of u"' from time to time and use the set of indexes A(u"') in place of A(u~) for further time steps. 

3. Topology of the wavelet packets in the position-frequency space 

As explained in the previous section, the adaptive procedure is based on the notion of neighbours. 
This has to be well suited in order to be able to fit, at best, the evolution of the elements of the best 
basis that are important to represent the solution well. Let us indicate now that each element w~ •. k is 
associated with a particular point of discretization x1 = 112 P, 0,;;; I,;;; 2P - 1. The choice of best basis 
induces numbering of these points in a particular way, since each element w~ •. k is associated with a 
'centre' x1 = x1<J.n.k) as will be detailed in [8]. 

Let (j0 , n 0 , k0 ) E A(u~) be a particular index, the neighbours of which have to be determined. Recall 
that the frame within which the neighbours will be chosen, is the best basis B(u~) of u~. In a 
preliminary stage, the elements w~.k• (j, n, k) E A(u~) are grouped by Fourier localization [7] in sets 
b Q=:;;;q=:;;;2P -I 

q' ' 

bq = {w~•.k• (j, n, k) E A(u~), n2 1 = q}. 

Note that some of the bq can be empty, the others group elements of A(u~) localized around the same 
point in Fourier space. 

These two considerations allow for defining, in a position-frequency diagram, the influence rectangle 
of each element w~ •. k of the basis, centred around the point (x1<f.n.kP n2 1); see for instance the 
representation in Fig. 1. 

Let q0 = n 021" be the Fourier localization of w~," k • The neighbours of this basis function are those 
0 tl· II 

elements of A(up), . . 
- either in the same group bq : w~," k _ 1 and w~," k + 1 the centre of which is on both sides of x1< ,. " k >, 

o o· n o· n o· o· o 

Fig. 1. Representation in a position-frequency diagram of the best basis associated with the function plotted at the top. The black 
rectangles are those for which the related coefficients are >10-". 
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or in the previous (non-empty) group b q·: corresponding to the one or both elements w~.k the centre 
of which is (are) the closest to X1uo.no.kol' . 

or in the next (non-empty) group bP .. : corresponding to the one or both elements w~.k the centre of 
which is (are) the closest to X1uo.no,koJ· 

We can notice that the number of neighbours is ~6. Nevertheless, this induces a small increase in 
dimension between Am and Am+ 1 since most of the neighbours are already elements of .A"'. 

In order to check that the notion of neighbours we have defined is accurate, we perform some 
preliminary numerical experiments in the last section. The global algorithm will be reported in [8]. 

4. Numerical experiments 

4.1. Comparison of the entropy condition 

Recall first that our choice of entropy condition is in order to minimize the number of degrees of 
freedom to represent the solution. The definition we have introduced involves a threshold parameter 
E = 10- 6 and differs from the standard entropy of [7]. In order to justify our definition, we compare the 
two entropies and also the plain wavelet approximation. The comparison is performed on the evolution 
of the solution of the viscous Burgers' equation (computed by some accurate scheme). The analysis is 
done in the space vp with 2p::: 512. 

The first results are related to the solution with initial condition equal to u0 (x) = sin(21rx) that 
develops only one sharp gradient at time t = 2111'. In Fig. 2(a) we have plotted the evolution in time of 
the number of coefficients of the solution larger than the threshold e for the three bases. It is immediate 
to notice that our definition of the entropy induces a net win in the number of degrees of freedom. Note 
also that the plain wavelet representation is as good as the wavelet packet one. This is in agreement 
with our discussion in the introduction. 

The next example confirms the previous conclusion as regards the choice of entropy and justifies the 
potential win of the wavelet paquet with respect to the plain wavelet representation in the case where 
the initial condition induces many singular regions. In this case, the initial condition is u0(x) =sin (81rx) 
with the same amount of viscosity that leads to four sharp gradients. 

Note also that in all cases, the error in the L 2 -norm behaves similarly and is about 3e. 

(a) 
....... el CoefiiCIIftll 

(b) .,, "tt bnll : t'Nfllcltfttl ... . .. ...... ef c.ttlctMtt ..., ..... I aet'UCI .... I 41S .......... : ,, ...... "'""-' ............... ~ ... ... .. " ... ... .... et. ... ... ... ... ... - ... - -liS liS ,,. liS ,. lSI - -- ,.. ,.. -,.. - -"' Ill 

"" "" "" 
Ill m 
Itt 

•• # .. ,. ... ----················-

Ill 

"' . liS liS . 
IU . · IU 1M . 
lB . us 18 

I. .. · 1 • 1. 

" IS " IS 

• .. .. 
"' "' ,. 

II• 

1/011'1 liP I )Ill' I In& 

Fig. 2. Evolution of the number of coefficients larger than 10-o for the solution of Burger's equation: (a) with initial condition 
u"(x) =sin (21rx), (b) with initial condition u"(x) =sin (81rx). 
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Fig. 3. Stability of the best under translation: the rectangles symbolize the position-frequency location of basis functions which 
represent the solution: the black ones arc those required by the tr<tnslated solution and not by 11, ., while the grey ones are those 
used by u," and not by the translated solution. 

REMARK 4.1. It is interesting to notice also that in both figures, the number of degrees of freedom 
increases initially when the effects of non-linear terms are predominant and then (between t = 1!1r and 
t = 2/31T in Fig. 2(a) and slightly before t = 1121T in Fig. 2(b)) the viscosity effects retain the sharpening 
of the gradients. 

4.2. Stability of the best basis 

The stability of the best basis is illustrated here for both translation and sharpening of gradients. We 
have first defined the best basis 8 0 9 of the solution 11 0 9 at timet= 91T/ 10 for the Burgers' equation with 
initial condition 1/(x) =sin (2m·). Then we decompose 11 0 9 (x- 1rl 10) in 8 9 . The number of coefficients 
larger than E is about the same as for the original solution although the best basis is different; in 

Fig. 4. Stability of the best basis under sharpening of gradients. 

6



addition, the coefficients involved are all neighbours in the position of those of u0 _9 . The same 
conclusion holds for the analysis of the solution u 1 of the Burgers equation at time t = 'TT that presents a 
larger gradient than u0 _9 : the coefficients which appear in the decomposition are neighbours in space 
and frequency to those of u0 _9 . Note that the difference in time between the two functions u0 _9 and u 1 

corresponds to 100 D.t in our experiment. These results are plotted iri Figs. 3 and 4, respectively. This 
confirms the stability of the best basis for these two types of evolution. 

These two experiments show the viability of our approach, based on the concept of neighbours we 
have introduced. More experiments are in progress to prove that such a Galerkin approach leads to an 
effective numerical scheme. 
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