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Abstract

In this paper we present a new methodology based on the wavelet packet concept, in order to define an adaptive method for
the approximation of partial differential equations. The wavelet packet framework allows us to define the notion of a minimal
basis that has proven to be an efficient procedure for data compression. The purpose here is tg take benefit of this compression to
represent accurately and economically the solution of a time dependent PDE. The time discretization is a standard multistep
scheme. The spacial discretization is defined by inferring a reduced basis for the solution at the new time step, from the
knowledge of the previous ones.

1. Introduction

The theory of orthonormal wavelet bases has been developed by Meyer [1] and his group. It allows
an efficient representation to be given to characterize isolated defects of some (otherwise regular)
function, thanks to a particularly good localization both in space and scale of each element of the basis.
The decomposition of such a function is lacunary, in the sense that very few coefficients of its
decomposition on a wavelet basis are non-negligible. This allows compressed approximations to be
defined by getting rid of the coefficients that are smaller than a prescribed threshold. The natural
applications of these bases are in image analysis and data compression. The next candidate for
application of this theory is to define efficient adaptive methods for the approximation of non-stationary
partial differential equations. We refer for example, to [2, 3] for more details on the definition of the
algorithms and their implementation, and to [4] for some details on the numerical analysis of the
method. The central idea in the previous papers is to infer the position or the creation of the (isolated) -
defect of the solution at some time step by knowing the wavelet decomposition of the solution at the
previous time steps. This adaptive method is promising in the case where one can predict that the defect
in the solution (sharp gradients or discontinuities) are the exception. Indeed, with application of this
method to approximate the solution of the one-dimensional Burger’s equation, a reduction factor of
one-eighth has been observed for the number of degrees of freedom, with respect to a standard uniform
representation. This reduction factor is maintained, in each dimension, in multidimensional examples.

The domain of application of this type of adaptive method is certainly reduced and cannot be used in
approximations where defects are not the exception. This is the case for instance if one wants to
simulate turbulent flows. In this direction, one can notice the recent work of Farge et al. [5] that
compares the analysis of a turbulent field by spectral and wavelet packet decompositions. The previous
reduction factor in representative coefficients is observed for the wavelet packet decomposition. The
concept of wavelet packets has been introduced by Coifman et al. [6] as a generalization of the wavelet









The time discretization that is presented here is the simplest one and, of course can be easily improved,
but this is not the point of this paper.

REMARK 2.4. The previous algorithm will certainly lead to increase in the dimension of A”*' and in
order to minimize the basis for the representation of u, we certainly have to re-compute the best basis
of u™ from time to time and use the set of indexes A(«™) in place of A(u ) for further time steps.

3. Topology of the wavelet packets in the position-frequency space

As explained in the previous section, the adaptive procedure is based on the notion of neighbours.
This has to be well suited in order to be able to fit, at best, the evolution of the elements of the best
basis that are important to represent the solution well. Let us indicate now that each element w/ , is
associated with a particular point of discretization x, =1/2”, 0=</=<2” — 1, The choice of best basis
induces numbering of these points in a particular way, since each element w’ , is associated with a
‘centre’ x; = X,(; ,«, as will be detailed in [8].

Let (jy. ny, ko) € A(uo) be a particular index, the neighbours of which have to be determmed Recall
that the frame within Wthh the neighbours will be chosen, is the best basis B(u ) of u . In a
preliminary stage, the elements w/ ., (j, n, k)EA(u ) are grouped by Fourier locallzatlon [7] in sets
b, 0=<q=2’-1,

bq = {w{l.k’ (.’v n, k) EA(MS), n2/ = q} .

Note that some of the b, can be empty, the others group elements of A(ug) localized around the same
point in Fourier space.

These two considerations allow for defining, in a position-frequency diagram, the influence rectangle
of each element w) , of the basis, centred around the point (x;;, ), n2’); see for instance the
representation in Fig. 1. .

Let g, =n,2’° be the Fourier localization of w. «,- The neighbours of this basis function are those
elements of A(uﬁ),

~ either in the same group b, wio

Moo= 1 and w't

x,+1 the centre of which is on both sides of x; ; . &),

"l)
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Fig. 1. Representation in a position-frequency diagram of the best basis associated with the function plotted at the top. The black
rectangles are those for which the related coefficients are >10""






Fig. 3. Stability of the best under translation: the rectangles symbolize the position-frequency location of basis functions which
represent the solution: the black ones are those required by the translated solution and not by «,,, while the grey ones are those
used by u,, and not by the translated solution.

REMARK 4.1. It is interesting to notice also that in both figures, the number of degrees of freedom
increases initially when the effects of non-linear terms are predominant and then (between +=1/m and
t =2/3m in Fig. 2(a) and slightly before ¢ = 1/2m in Fig. 2(b)) the viscosity effects retain the sharpening
of the gradients.

4.2. Stability of the best basis

The stability of the best basis is illustrated here for both translation and sharpening of gradients. We
have first defined the best basis B, , of the solution u, , at time ¢ = 97/ 10 for the Burgers’ equation with
initial condition u"(x) = sin (2mx). Then we decompose 1, ,(x — w/10) in B,. The number of coefficients
larger than e is about the same as for the original solution although the best basis is different; in

rosition

Fig. 4. Stability of the best basis under sharpening of gradients.








