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This is the second of two papers in which we determine all 242 Wilf classes of triples of 4-letter permutation patterns

by showing that there are 32 non-singleton Wilf classes. There are 317 symmetry classes of triples of 4-letter patterns

and after computer calculation of initial terms, the problem reduces to showing that counting sequences that appear

to be the same (i.e., agree in the first 16 terms) are in fact identical. This amounts to counting avoiders for 107

representative triples. The insertion encoding algorithm (INSENC) applies to many of them and some others have

been previously counted. There remain 36 triples and the first paper dealt with the first 18. In this paper, we find

the generating function for the last 18 triples which turns out to be algebraic in each case. Our methods are both

combinatorial and analytic, including decompositions by left-right maxima and by initial letters. Sometimes this leads

to an algebraic equation for the generating function, sometimes to a functional equation or a multi-index recurrence

that succumbs to the kernel method. A particularly nice so-called cell decomposition is used in one of the cases (Case

238).

Keywords: pattern avoidance, Wilf equivalence, kernel method, insertion encoding algorithm

1 Introduction

In recent decades pattern avoidance has received a lot of attention. It has a prehistory in the work of

MacMahon [16] and Knuth [12], but the paper that really sparked the current interest is by Simion and

Schmidt [25]. They thoroughly analyzed 3-letter patterns in permutations, including a bijection between

123- and 132-avoiding permutations, thereby explaining the first (nontrivial) instance of what is, in mod-

ern terminology, a Wilf class. Since then the problem has been addressed on several other discrete struc-

tures, such as compositions, k-ary words, and set partitions; see, e.g., the texts [10, 17] and references

contained therein.
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Permutations avoiding a single 4-letter pattern have been well studied (see, e.g., [27,28,31,33]). There

are 56 symmetry classes of pairs of 4-letter patterns, for all but 8 of which the avoiders have been enu-

merated. Le [15] established that these 56 symmetry classes form 38 distinct Wilf classes. Vatter [30]

showed that of these 38, 12 can be enumerated with so-called regular insertion encodings (the INSENC

algorithm, see also [1]). These generating functions were computed in part by hand by Kremer and

Shiu [13]. See [34] for results concerning the enumeration of permutations avoiding a 3-letter and/or a

4-letter pattern, and also the references [2, 21–23, 29, 32] for further related results.

Much less is known about larger sets/longer patterns. Here, we consider the 317 symmetry classes of

triples of 4-letter patterns and determine their Wilf classes. First, we used the software of Kuszmaul [14]

to compute the initial terms {|Sn(T )|}16n=1 for a choice of T in each of the 317 symmetry classes. These

results are available for reference in Table 2 in the Appendix of the arXiv full-length version [8] of the

paper. There are 242 distinct 16-term sequences among the 317. This gives a lower bound of 242 on the

number of Wilf classes, but we will show that whenever two sequences in Table 2 [8] agree in the first 16

terms, they are in fact identical, and so there are exactly 242 Wilf classes. To do so, we find the generating

function for every triple whose 16-term counting sequence is repeated in Table 2 [8]. Thirty-eight of them

can be found by INSENC; some others have already been counted and are referenced in Table 1 of the

arXiv version [8]. We remark that in fact the first 9 terms of {|Sn(T )|}n≥1 suffice to distinguish the Wilf

classes for triples of 4-letter patterns; see concluding section for a further discussion.

There remain 36 triples to enumerate with 15 distinct counting sequences (cases). The first 9 cases (50,

55, 166, 171, 174, 177, 191, 196, 201 in the full table of 242 counting sequences [8]), treated in the first

paper, cover 18 of these 36 triples. In this paper, we treat the remaining 6 cases (203, 218, 229, 234, 235,

238) which cover the last 18 triples, see Table 1 below.

To summarize, we say a Wilf class (of triples of 4-letter patterns) is small if it contains just one sym-

metry class and large if it contains more than one symmetry class. There are then 242 Wilf classes of

triples of 4-letter patterns, of which 210 are small and 32 are large. All 32 generating functions for

large Wilf classes turn out to be algebraic but the generating function for at least one small Wilf class –

Sn(4123, 4231, 4312)– is conjectured not to be differentiably finite (D-finite) and hence not algebraic [9].

Enumeration of some other small Wilf classes will be treated in forthcoming work; see [4, 5] for partial

results.

Theorem 1 (Main Theorem). There are exactly 242 Wilf classes of triples of 4-letter permutation pat-

terns. Of these 242 Wilf classes, 210 consist of a single symmetry class and 32 consist of two or more

symmetry classes.

Tab. 1: Large Wilf classes of three 4-letter patterns from Case 203 to Case 239,

numbering taken from Table 2 [8].

Start of Table

No. T
∑

n≥0 |Sn(T )|xn Reference

203 {3142,1432,1324}, {3124,1423,1234} 1−x

2−2x−(1−x−x2)C(x)
Thm. 2, 5

215 {1243,2134,2143}, {1234,1243,2143}
{1423,2314,2413}, {1423,1432,4123}

1−4x+2x2

(1−x)(1−4x+x2)
INSENC

218 {1342,2314,2413}, {3142,1324,1423}
{3124,1423,1243}

(1−2x)(1+
√

1−4x)

x2+(2−4x+x2)
√

1−4x
Thm. 6, 7, 10
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Continuation of Table 1

No. T
∑

n≥0 |Sn(T )|xn Reference

221 {2413,3142,1324}, {2143,3142,1324}
{2143,1324,1423}, {3142,4132,1243}
{3142,4123,1423}, {4132,1432,1243} 1 + 1−2x

2(1−x)

(

1√
1−4x

− 1
)

[3]

{4132,1342,1324}
229 {2413,3142, 2341}, {2143,1342,1423}

{2134,1342,1423}
1−2x+2x2−

√
1−8x+20x2−24x3+16x4−4x5

2x(1−x+x2)
Thm. 11, 14, 17

233 {2143,1324,1243}, {2134,1324,1243}
{2134,1243,1234}, {3142,4132,1432}
{3142,4132,1342}, {3142,4132,1423}
{3142,1342,1324}, {3124,1342,1324}

2(1−4x)

2−9x+4x2−x
√
1−4x

[7]

{3124,1324,1423}, {4132,1432,1324}
{4132,4123,1423}, {1342,4123,1423}

234 {2143,2413,2314}, {3142,1342,1243} (1−x)2−
√

(1−x)4−4x(1−2x)(1−x)

2x(1−x)
Thm. 18, 19

235 {1423,1432,2143}, {3142,1432,1423} FT (x) = 1− x+ xFT (x)
{1234,1243,2314} +x(1− 2x)F 2

T (x) + x2F 3
T (x)

Thm. 23, 24, 27

236 {1423,3124,4123}, {1342,1432,4132}
{1324,1423,1432}, {1243,1324,1423} 1−5x+(1+x)

√
1−4x

1−5x+(1−x)
√

1−4x
[6]

{1234,1243,1423}
238 {1423,2413,3142}, {2134,2143,2413}

{1342,1423,1234}, {1342,1423,1324} 3−2x−
√

1−4x−
√

2−16x+4x2+(2+4x)
√

1−4x

2(1−
√

1−4x)
Thm. 28, 29,

{1342,1423,1243} 32, 33, 34

239 {2413,3412,3142}, {4312,3412,4132}
{3412,3142,1342}, {3142,1432,1342}
{3142,1342,1423}, {3124,1324,1243}

2

1+x+
√

1−6x+5x2
[20]

{1432,1423,1243}, {1324,1423,1234}
{4123,1423,1243}

End of Table

2 Preliminaries and Notation

We say a permutation is standard if its support set is an initial segment of the positive integers, and for

a permutation π whose support is any set of positive integers, St(π) denotes the standard permutation

obtained by replacing the smallest entry of π by 1, the next smallest by 2, and so on. As usual, a standard

permutation π avoids a standard permutation τ if there is no subsequence ρ of π for which St(ρ) = τ . In

this context, τ is called a pattern, and for a list T of patterns, Sn(T ) denotes the set of permutations of

[n] = {1, 2, . . . , n} that avoid all the patterns in T .

A permutation has an obvious representation as a matrix diagram,

•

•
•

matrix diagram of the permutation 312
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and it will often be convenient to use such diagrams where shaded areas always indicate regions that

contain no entries (blank regions may generally contain entries but in a few cases, as noted and clear from

the context, they don’t).

The eight symmetries of a square, generated by rotation and reflection, partition patterns and sets of

patterns into symmetry classes on each of which the counting sequence for avoiders is obviously constant.

Thus if π avoids τ then, for example, π−1 avoids τ−1 since inversion corresponds to flipping the matrix

diagram across a diagonal. It sometimes happens (and remarkably often) that different symmetry classes

have the same counting sequence, and all symmetry classes with a given counting sequence form a Wilf

class. Thus Wilf classes correspond to counting sequences.

Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function for the Catalan numbers Cn :=

1
n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n−1

)

. As is well known [34], C(x) is the generating function for (|Sn(π)|)n≥0

where π is any one of the six 3-letter patterns.

A permutation π expressed as π = i1π
(1)i2π

(2) · · · imπ(m) where i1 < i2 < · · · < im and ij >
max(π(j)) for 1 ≤ j ≤ m is said to have m left-right maxima (at i1, i2, . . . , im). Given nonempty sets

of numbers S and T , we will write S < T to mean max(S) < min(T ) (with the inequality vacuously

holding if S or T is empty). In this context, we will often denote singleton sets simply by the element in

question. Also, for a number k, S − k means the set {s− k : s ∈ S}. An ascent in π is a pair of adjacent

increasing entries, thus 413625 has 3 ascents, 13, 36 and 25.

Our approach is ultimately recursive. In each case, we examine the structure of an avoider, usually

by splitting the class of avoiders under consideration into subclasses according to a judicious choice

of parameters which may involve, for example, left-right maxima, initial letters, ascents, and whether

resulting subpermutations are empty or not. The choice is made so that each member of a subclass can

be decomposed into independent parts. The generating function for the subclass (a summand of the full

generating function) is then the product of the generating functions for the parts, and we speak of the

“contribution” of the various parts to the generating function for that subclass. For Case 238, we use a cell

decomposition, described in that subsection. From the structure, we are able to find an equation for the

generating function FT (x) :=
∑

n≥0 |Sn(T )|xn, where T is the triple under consideration. This equation

is often algebraic and, if linear or quadratic, as it is here in all but one case, easy to solve explicitly once

found (the exception being the cubic equation for the triples in Case 235). It also frequently comes in the

form of a functional equation requiring the kernel method (see, e.g., [11] for an exposition). In every case,

the generating function turns out to be algebraic.

Furthermore, in several cases, especially those where recurrences are made use of, we have in fact

counted members of the avoidance class in question according to the distribution of one or more statistics,

specific to the class, and have assumed particular values of the parameters to obtain the avoidance result.

In some of these cases, to aid in solving the recurrence, certain auxiliary arrays related to the statistic are

introduced. This leads to systems of linear functional equations to which we apply the kernel method,

adapted for a system. See, for example, the proof below of the first triple in Case 235. Also, in instances

where the kernel method is used, it is usually possible (if desired) to solve the functional equation in its

full generality yielding a polynomial generalization of the avoidance result.

We now proceed to the proofs for the 6 cases listed in the Introduction.
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3 Proofs

3.1 Case 203

The two representative triples T are:

{1324,1432,3142} (Theorem 2)

{1234,1342,2314} (Theorem 5)

3.1.1 T = {1324, 1432, 3142}
Theorem 2. Let T = {1324, 1432, 3142}. Then

FT (x) =
1− x

2− 2x− (1− x− x2)C(x)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. Suppose π =
i1π

(1)i2π
(2) · · · imπ(m) is a permutation that avoids T with m ≥ 2 left-right maxima. Then π(j) avoids

132 for all j = 1, 2, . . . ,m − 1 or else im is the 4 of a 1324. All the letters greater than i1 in π(m) are

increasing (to avoid 1432) and all the letters less than i1 in π(m) are < all letters in other π’s (to avoid

3142), and i1 > π(1) > π(2) > · · · > π(m−1) (see figure, where the shaded regions are empty to avoid

the indicated pattern with the gray bullets).

i1

im−1

im

. . .

. .
.

13
•
24

3
•
14

•
2

3
•
14

•
2

π(1)

π(m−1)

Also, at most one of the m− 1 rectangles covered by the arrow can be occupied: ab in π(m) with b in

a higher such rectangle than a makes ab the 24 of a 1324, and b in a lower rectangle than a makes ab the

32 of a 1432. So we distinguish two cases:

• all of these rectangles except possibly the top one are empty, i.e., there is no letter in π(m) between

i1 and im−1. In this case π(m) can be decomposed as

β(1)(im−1 + 1)β(2)(im−1 + 2) · · ·β(im−im−1−1)(im − 1)β(im−im−1)

such that π(m−1) > β(1) > · · · > β(im−im−1), β(j) avoids 132 for j = 1, 2, . . . , im − im−1 − 1
and β(im−im−1) avoids T . Since β(j) avoids 132, each β(j)(im−1 + j) contributes xC(x) and

since there are zero or more of them, their contribution is 1
1−xC(x) . Hence, this case contributes

xmC(x)m−1FT (x)
1−xC(x) .
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• There is a letter in π(m) between ip and ip+1 for some p ∈ [m−2]. Then π(p+1) = · · · = π(m−1) =
∅ (3142) and π(m) can be decomposed as

β(1)(ip + 1)β(2)(ip + 2) · · ·β(ip+1−ip−1)(ip+1 − 1)β(ip+1−ip)

such that π(p) > β(1) > · · · > β(ip+1−ip) where all except the last β(j) avoid 132 and β(ip+1−ip)

avoids T . This time there is at least one β(j)(ip + j) and so we have an overall contribution of
xm+1C(x)p+1FT (x)

1−xC(x) .

Since C(x) = 1
1−xC(x) , we find that

Gm(x) = xmC(x)mFT (x) +
m−2
∑

p=1

xm+1C(x)p+2FT (x), m ≥ 2,

with G1(x) = xFT (x) and G0(x) = 1.

From FT (x) =
∑

m≥0 Gm(x), we deduce

FT (x) = 1 + xFT (x) + x2C(x)3FT (x)−
x2C(x)FT (x)

1− x
+ x2C(x)2FT (x),

with solution

FT (x) =
1− x

2− 2x− (1− x− x2)C(x)
.

3.1.2 T = {1234, 1342, 2314}
A permutation π = π1π2 · · ·πn is said to have an ascent at index i if πi < πi+1, where 1 ≤ i ≤ n − 1.

The letter πi+1 is called an ascent top. In order to count the members of Sn(T ), we categorize them by

the nature of their leftmost ascent (i.e., smallest i such that πi < πi+1). If n ≥ 2 and 1 ≤ i ≤ n − 1, let

a(n; i) denote the number of T -avoiding permutations of length n whose leftmost ascent occurs at index

i, with a(n;n) = 1 for n ≥ 1 (this accounts for the permutation n(n − 1) · · · 1, which is understood to

have an ascent at index n). Let a(n) =
∑n

i=1 a(n; i) for n ≥ 1, with a(0) = 1.

We now consider various restrictions on the ascent top corresponding to the leftmost ascent which

will prove helpful in determining a recurrence for a(n; i). Let An,i denote the subset of permutations of

Sn(T ) enumerated by a(n; i). If 1 ≤ i ≤ n−1, let b(n; i) be the number of members of An,i in which the

leftmost ascent top equals n. If 1 ≤ i ≤ n− 2, let c(n; i) be the number of members of An,i not starting

with n in which the leftmost ascent top equals n− 1. Finally, for 1 ≤ i ≤ n− 2, let d(n; i) be the number

of members of An,i not starting with n in which the leftmost ascent top is less than n−1. For example, we

have b(4; 2) = 3, the enumerated permutations being 2143, 3142 and 3241, c(4; 1) = 2, the permutations

being 1324 and 2341 (note that 1342 and 2314 are excluded), and d(5; 3) = 2, the permutations being

42135 and 43125. Note that by the definitions, we have

a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1, (1)

upon considering whether or not a member of An,i starts with n. The arrays b(n; i), c(n; i) and d(n; i)
are determined recursively as follows.
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Lemma 3. We have

b(n; i) =

n−1
∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1, (2)

c(n; i) =

n−i−1
∑

j=1

a(j − 1), 1 ≤ i ≤ n− 2, (3)

and

d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2. (4)

Proof: Let Bn,i, Cn,i and Dn,i denote the subsets of Sn(T ) enumerated by b(n; i), c(n; i) and d(n; i),
respectively. For (2), observe that members of Bn,i can be obtained by inserting n directly after the i-th
letter of a member of ∪n−1

j=i An−1,j , with such an insertion seen not to introduce an occurrence of any of

the patterns in T (since the “4” does not correspond to the first ascent within these patterns). This insertion

operation is seen to be a bijection and hence (2) follows. To show (3), note that members π ∈ Cn,i must

be of the form

π = αj(n− 1)βnγ,

where α = j + i − 1, j + i − 2, . . . , j + 1 for some j ∈ [n − i − 1], β = n − 2, n − 3, . . . , j + i, and

γ is a T -avoider (on the letters in [j − 1]). The section α if nonempty consists of a decreasing string of

consecutive numbers ending in j + 1 in order to avoid 2314, with all letters in [j + i, n − 2] required to

be to the left of n and all letters in [j − 1] required to be to the right, in order to avoid 1342 or 2314,

respectively. That β is decreasing is required in order to avoid 1234. Furthermore, one may verify that

all permutations π of the stated form above avoid the patterns in T . Considering all possible j, we get
∑n−i−1

j=1 a(j − 1) possibilities for π, which gives (3).

Finally, to show (4), first note that one can express σ ∈ Dn,i as

σ = σ(1)jkσ(2)σ(3)σ(4),

where σ(1) is a decreasing sequence of length i− 1 in [j+1, n− 1], 1 ≤ j < k < n− 1, σ(2) is contained

within [j + 1, k − 1], σ(3) is a sequence in [k + 1, n] that contains n, and σ(4) is a permutation of [j − 1].
Observe that σ(3) must decrease in order to avoid 1234 and hence starts with n. If n− 1 belongs to σ(3),

then removing n is seen to define a bijection with Cn−1,i∪Dn−1,i. If n−1 belongs to σ(1), then removing

n − 1, and replacing n with n − 1, defines a bijection with Cn−1,i−1 ∪ Dn−1,i−1. Combining the two

previous cases implies (4) and completes the proof.

Let an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u) =

∑n−1
i=1 b(n; i)ui for n ≥ 2, cn(u) =

∑n−2
i=1 c(n; i)ui

for n ≥ 3, and dn(u) =
∑n−2

i=1 d(n; i)ui for n ≥ 3. For convenience, we take a0(u) = 1.

Then recurrences (1) and (2) imply

an(u) = uan−1(u) + bn(u) + cn(u) + dn(u), n ≥ 1, (5)
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and

bn(u) =

n−1
∑

i=1

ui

n−1
∑

j=i

a(n− 1; j) =

n−1
∑

j=1

a(n− 1; j)

j
∑

i=1

ui

=
u

1− u
(an−1(1)− an−1(u)), n ≥ 2. (6)

Multiplying both sides of (3) by ui, and summing over 1 ≤ i ≤ n− 2, yields

cn(u) =
n−2
∑

j=1

a(j − 1)

n−j−1
∑

i=1

ui

=
u

1− u

n−2
∑

j=1

a(j − 1)− 1

1− u

n−2
∑

j=1

a(j − 1)un−j, n ≥ 3. (7)

Finally, recurrence (4) gives

dn(u) = (1 + u)(cn−1(u) + dn−1(u)), n ≥ 3. (8)

Let a(x;u) =
∑

n≥0 an(u)x
n. It is determined by the following functional equation.

Lemma 4. We have
(

1 +
xu2

1− u

)

a(x;u) = 1 + xu

(

1

1− u
+

x2

(1 − x)(1 − xu)(1− x− xu)

)

a(x; 1). (9)

Proof: Let b(x;u) =
∑

n≥2 bn(u)x
n, c(x;u) =

∑

n≥3 cn(u)x
n, and d(x;u) =

∑

n≥3 dn(u)x
n. Rewrit-

ing recurrences (5)–(8) in terms of generating functions yields the following:

a(x;u) = 1 + xua(x;u) + b(x;u) + c(x;u) + d(x;u),

b(x;u) =
xu

1− u
(a(x; 1) − a(x;u)),

c(x;u) =
x3u

(1− x)(1 − xu)
a(x; 1),

d(x;u) = x(1 + u)(c(x;u) + d(x;u)).

Noting

c(x;u) + d(x;u) = c(x;u) +
x(1 + u)

1− x(1 + u)
c(x;u) =

c(x;u)

1− x(1 + u)
,

and using the expressions for b(x;u) and c(x;u) in the equation for a(x;u), gives (9).

We can now determine the generating function for the sequence a(n).

Theorem 5. Let T = {1234, 1342, 2314}. Then

FT (x) =
1− x

2− 2x− (1− x− x2)C(x)
.
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Proof: In the present notation, we must find a(x; 1). Applying the kernel method to (9), and setting

u = C(x), gives

a(x; 1) = − (1− x)(1− u)(1− xu)(1− x− xu)

xu(1− x)(1 − xu)(1 − x− xu) + x3u(1− u)

=
xu(1− x− xu)(1 − x)

x(1 − x)2 − x2(1− x)u + x3u(1− u)

=
(1− x)(1 − xu)

x+ (1 − x)2 − 2x(1− x)u
,

where we have used the fact xu2 = u − 1 several times. Multiplying the numerator and denominator of

the last expression by u gives

a(x; 1) =
(1− x)(u − xu2)

(1− x+ x2)u− 2(1− x)(u − 1)
=

1− x

2− 2x− (1− x− x2)u
,

as desired.

3.2 Case 218

The three representative triples T are:

{1342,2314,2413} (Theorem 6)

{1324,1423,3142} (Theorem 7)

{1243,1342,2314} (Theorem 10)

3.2.1 T = {1342, 2314, 2413}
Theorem 6. Let T = {1342, 2314, 2413}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2 − 4x+ x2)
√
1− 4x

.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, suppose π = iπ′nπ′′ ∈ Sn(T ) has two left-right maxima. In π′′ all letters > i occur

before all letters < i, for otherwise π′′ contains letters a, b with a < i < b and inab is a 2413. Thus,

π = iπ′nβ′β′′ with β′ > i > β′′:

π′

β′

β′′

i

n

If β′ is decreasing, then π = iπ′n(n − 1) · · · (i + 1)β′′ and π′iβ′′ ∈ Si(T ), giving a contribution of
x

1−x
(FT (x)− 1).
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If β′ is not decreasing, then π′ > β′′ (or an ascent ab in β′ would be the 34 of a 1342); π′ avoids 231 (or

n is the 4 of a 2314); β′ avoids 231 (or i is the 1 of a 1342), and β′′ avoids T . Since β′ is not decreasing,

its contribution is C(x) − 1
1−x

, and the overall contribution of this case is x2C(x)
(

C(x) − 1
1−x

)

FT (x).
Thus,

G2(x) =
x

1− x
(FT (x)− 1) + x2C(x)

(

C(x) − 1

1− x

)

FT (x) .

Now, let m ≥ 3 and suppose π = i1π
(1)i2π

(2) · · · imπ(m) is a permutation that avoids T with m left-

right maxima. Let α (resp. β) denote the list of letters in π(m) that are greater than (resp. less than) i1.

All letters of α occur before all letters of β in π(m) (or i1im−1 are the 23 of a 2314) and so π(m) = αβ;

π(1) > β (or a ∈ π(1), b ∈ β with a < b makes ai2imb a 1342); π(j) > ij−1 for j = 2, . . . ,m − 1 (or

ij−1ijim are the 234 of a 2314); α > im−1 (or i1im−1im are the 134 of a 1342). Thus, π has the form

pictured.

π(1)

π(2)

π(m−1)

. .
.

α

β

i1

i2

im−1

im

Also, πj avoids 231, j = 1, 2, . . . ,m − 1 (or im is the 4 of a 2314); α avoids 231 (or im−1 is the 1 of a

1342); β avoids T . Hence,

Gm(x) = xmCm(x)FT (x) .

From FT (x) =
∑

m≥0 Gm(x), we obtain

FT (x) = 1+xFT (x)+
x

1− x
(FT (x)−1)+x2C(x)

(

C(x) − 1

1− x

)

FT (x)+
∑

m≥3

xmCm(x)FT (x) .

Solving for FT (x) yields

FT (x) =
(1− 2x)(1 − xC(x))

(1− 2x)(1− x) − x(1− 2x)(1 − x)C(x) − x2(1− 2x)C2(x) − x4C3(x)
,

which is equivalent to the desired expression.

3.2.2 T = {1324, 1423, 3142}
Theorem 7. Let T = {1324, 1423, 3142}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2 − 4x+ x2)
√
1− 4x

.
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Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 2 left-right

maxima. Then i1 > π(j) for all j = 1, 2, . . . ,m − 1 to avoid 1324, and the letters > i1 in π(m) are

decreasing to avoid 1423. We consider two cases for π(m):

• Each letter of π(m) is either greater than im−1 or smaller than i1. In this case,

π(m) = β(1)(n− 1) · · ·β(n−1−im−1)(im−1 + 1)β(n−im−1),

where π(1) > · · · > π(m−1) > β(1) > · · · > β(n−im−1) and π(j) avoids 132 for j = 1, 2, . . . ,m−
1, β(j) avoids 132 for j = 1, 2, . . . , n− 1− im−1 and β(n−im−1) avoids T . There are zero or more

factors of the form βj(n− j), each contributing xC(x). Hence, the contribution is

xmC(x)m−1FT (x)

1− xC(x)
= xmC(x)mFT (x) .

• π(m) has a letter between i1 and im−1 (this case only arises for m ≥ 3). Let s ∈ [m − 2 ] be the

smallest index such that π(m) has a letter between is and is+1. Then π(s+1) = · · · = π(m−1) = ∅
to avoid 3142, and π has the form

π(1)

π(s)

γ

β1

βr

. .
.

. . .

. . .

. . .

i1

is

is+1

im

,

where blank regions are empty and there is one β for each of the r := is+1 − is − 1 letters in

[is + 1, is+1 − 1], the π’s and β’s all avoid 132 (due to 1324), γ avoids T , and the arrows indicate

decreasing entries. The π’s contribute C(x)s; each β and its associated letter between is and is+1

contributes xC(x) and there are one or more β’s, so they contribute
xC(x)

1−xC(x) ; each of the m− 1− s

arrows contributes 1
1−x

; γ contributes FT (x). Thus, for given s ∈ [m− 2], the contribution is

xmC(x)sFT (x)

(1− x)m−1−s

xC(x)

1− xC(x)
=

xm+1C(x)s+2FT (x)

(1 − x)m−1−s
.
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Hence, from FT (x) =
∑

m≥0 Gm(x), we have

FT (x) = 1 + xFT (x) +
∑

m≥2

(

xmC(x)mFT (x) + xm+1C(x)2FT (x)
m−2
∑

s=1

C(x)s

(1− x)m−1−s

)

,

with solution

FT (x) =
(1− 2x)(1 − xC(x))

(1− 2x)(1− x) − x(1− 2x)(1 − x)C(x) − x2(1− 2x)C(x)2 − x4C(x)3
,

which simplifies to the desired expression.

3.2.3 T = {1243, 1342, 2314}
We will employ an approach similar to that used for the second triple in case 203 above and make use of

the same notation. As before, we have

a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1, (10)

with a(n;n) = 1 for n ≥ 1. The arrays b(n; i), c(n; i) and d(n; i) are determined recursively as follows

and a similar proof applies.

Lemma 8. We have

b(n; i) =

n−1
∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1, (11)

c(n; i) = a(n− i− 2) +

n−i−2
∑

j=1

2n−i−j−2a(j − 1), 1 ≤ i ≤ n− 2, (12)

d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2. (13)

Note that the recurrences in Lemma 8 are the same as those in Lemma 3 except for a factor of 2n−i−j−2

appearing in the formula for c(n; i). This accounts for the fact that within the decomposition of a T -

avoiding permutation π = αj(n−1)βnγ enumerated by c(n; i), where α = j+ i−1, j+ i−2, . . . , j+1
for some i, the section β is now a permutation of [j+i, n−2] that avoids the patterns 132 and 231 (instead

of just being a decreasing sequence as it was previously). Thus, there are 2n−i−j−2 possibilities for β
whenever it is nonempty. Note that a comparison of the recurrences shows that there are strictly more

permutations of length n that avoid {1243, 1342, 2314} than there are that avoid {1234, 1342, 2314} for

n ≥ 5.

If a(x;u) =
∑

n≥0 an(u)x
n as before, then one gets the following functional equation whose proof

we omit.

Lemma 9. We have

(

1 +
xu2

1− u

)

a(x;u) = 1 + xu

(

1

1− u
+

x2(1− x)

(1− 2x)(1− xu)(1− x− xu)

)

a(x; 1). (14)
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We can now determine the generating function FT (x).

Theorem 10. Let T = {1243, 1342, 2314}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2 − 4x+ x2)
√
1− 4x

.

Proof: Setting u = C(x) in (14), and using the fact xu2 = u− 1, gives

a(x; 1) = − (1 − 2x)(1− u)(1− xu)(1 − x− xu)

xu(1− 2x)(1− xu)(1 − x− xu) + x3u(1− x)(1 − u)

=
x(1− 2x)(1 − xu)

x(1 − 2x)(1− x− xu) + x2(1 − x)(1 − u+ xu)

=
(1 − 2x)(1 +

√
1− 4x)

(1− 2x)(1 − 2x+
√
1− 4x) + (1− x)(3x − 1 + (1− x)

√
1− 4x)

=
(1 − 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

,

as desired.

3.3 Case 229

The three representative triples T are:

{2341,2413,3142} (Theorem 11)

{1342,1423,2143} (Theorem 14)

{1342,1423,2134} (Theorem 17)

3.3.1 T = {2341, 2413, 3142}
Theorem 11. Let T = {2341, 2413, 3142}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose m ≥ 2 and π = i1π

(1) · · · imπ(m) avoids T . Clearly, there is no

letter smaller than i1 in π(3) · · ·π(m) (such a letter would be the “1” of a 2341). Moreover, to avoid 2413

and 3142, π(1)i2π
(2) has the form β′i2β′′β′′′ with β′′ > i1 > β′ > β′′′:

β′

β′′

β′′′

i1

i2

.

If β′′′ = ∅, then we have a contribution of xFT (x)Gm−1(x). Otherwise, π has the form
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β′′′

π(3)

π(m)

. .
.

234
•
1

241
•
3i1

i2

i3

im

,

where dark bullets indicate mandatory entries, shaded regions are empty (gray bullets would form part of

a forbidden pattern as indicated), β′ is decreasing (b < c in β′ implies bci2a is a 2341 for a in β′′′), and

β′′ is decreasing (b < c in β′′ implies i1bca is a 2341).

Thus, we have a contribution of x2

(1−x)2 (FT (x) − 1)Gm−2(x). Hence, for m ≥ 2,

Gm(x) = xFT (x)Gm−1(x) +
x2

(1− x)2
(FT (x) − 1)Gm−2(x) .

By summing over m ≥ 2, we obtain

FT (x) − 1− xFT (x) = xFT (x)(FT (x)− 1) +
x2

(1 − x)2
(FT (x)− 1)FT (x) .

Solving this quadratic for FT (x) completes the proof.

3.3.2 T = {1342, 1423, 2143}
Here, and in the subsequent subsection, let a(n; i1, i2, . . . , ik) denote the number of T -avoiding permu-

tations of length n starting with i1, i2, . . . , ik. Let a(n) =
∑n

i=1 a(n; i) for n ≥ 1 be the total number

of T -avoiders, with a(0) = 1, and Ti,j be the set of permutations enumerated by a(n; i, j). Clearly,

a(n;n) = a(n;n−1) = a(n−1) for all n ≥ 2. We have the following recurrence for the array a(n; i, j).

Lemma 12. If n ≥ 3, then

a(n; i, j) = a(n− j + i+ 1; i+ 1, i) +

i−1
∑

ℓ=1

a(n− j + i+ 1; i, ℓ), i+ 2 ≤ j ≤ n, (15)

a(n; i, i− 1) = a(n− 1; i; i− 1) +
i−2
∑

ℓ=1

a(n− 1; i− 1, ℓ), 2 ≤ i ≤ n− 1, (16)

and

a(n; i, j) = a(n− 1; i− 1, j) +

i−j
∑

r=2

a(n− r; j + 1, j) +

i−j
∑

r=1

j−1
∑

ℓ=1

a(n− r; j, ℓ) (17)

for 3 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 2, with a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1.
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Proof: Clearly, we have |Ti,i+1| = a(n − 1; i), as the letter i + 1 may be deleted. Let x denote the

third letter of a member of Ti,j . To show (16), first note that members of Ti,i−1 must have x = i + 1
or x < i − 1. In the first case, the letter i + 1 may be deleted, implying a(n − 1; i, i − 1) possibilities,

while in the latter, the letter i may be, which gives
∑i−2

ℓ=1 a(n − 1; i − 1, ℓ) possibilities. We now show

(15). Note first that one cannot have x > j or x < i within members of Ti,j if j ≥ i + 3, lest there be an

occurrence of 1342 or 1423 (as witnessed by ijx(j − 1) or ij(j − 2)(j − 1), respectively). So we must

have x ∈ [i+ 1, j − 1] and thus x = j − 1 in order to avoid 1423. By similar reasoning, the fourth letter

must be x − 1 if x ≥ i + 3. Repeating this argument shows that the block of letters j, j − 1, . . . , i + 2
must occur. The next letter z must be i + 1 or less than i (so as to avoid 1342). If z = i + 1, then

all members of [i + 3, j], along with i, are seen to be irrelevant concerning avoidance of T and hence

may be deleted, while if z < i, then all members of [i + 2, j] may be deleted (note that i, z imposes the

same requirement on subsequent letters as does i, i + 2 and i + 2, z, together). It follows that there are

a(n− j + i+ 1; i+ 1, i) +
∑i−1

ℓ=1 a(n− j + i+ 1; i, ℓ) members of Ti,j when j ≥ i+ 2.

For (17), we consider the following cases for x: (i) x = j + 1, (ii) x < j, (iii) j + 1 < x < i, and (iv)

x = i+ 1. There are clearly a(n− 1; i− 1, j) possibilities in (i) and
∑j−1

ℓ=1 a(n− 1; j, ℓ) possibilities in

(ii). Reasoning as in the previous paragraph shows in case (iii) that the block of letters x, x− 1, . . . , j+2
must occur directly following j. The next letter z may either equal j + 1 or be less than j. Thus, all

members of [j + 3, x], along with i, may be deleted in either case. Furthermore, the letter j may also be

deleted if z = j + 1 (since j + 2, j + 1 is more restrictive than i, j), while the letter j + 2 may be deleted

if z < j (since j + 2 is redundant in light of j, z). Considering all possible x, and letting r = x − j, one

gets
∑i−j−1

r=2 a(n− r; j +1, j) possibilities if z = j +1, and
∑i−j−1

r=2

∑j−1
ℓ=1 a(n− r; j, ℓ) possibilities if

z < j. If x = i + 1, then the block x, x − 2, x− 3, . . . , j + 2 must occur with the next letter z as in case

(iii) above. This implies that there are a(n− i+ j; j+1, j)+
∑j−1

ℓ=1 a(n− i+ j; j, ℓ) possibilities in (iv).

Combining all of the previous cases gives (17) and completes the proof.

In order to solve the recurrence in Lemma 12, we introduce the following auxiliary functions: bn,i(v) =
∑i−1

j=1 a(n; i, j)v
j for 2 ≤ i ≤ n − 1, cn,i(v) =

∑n

j=i+1 a(n; i, j)v
j for 1 ≤ i ≤ n − 1, bn(u, v) =

∑n−2
i=2 bn,i(v)u

i for n ≥ 4, cn(u, v) =
∑n−2

i=1 cn,i(v)u
i for n ≥ 3, and dn(u) =

∑n−1
i=2 a(n; i, i − 1)ui

for n ≥ 3. Let an(u, v) =
∑n

i=1

∑n

j=1,j 6=i a(n; i, j)u
ivj for n ≥ 2, with a1(u, v) = u. Note that by the

definitions, we have

an(u, v) = un−1(1+u)an−1(v, 1)−(uv)n−1(1−v)an−2(1, 1)+bn(u, v)+cn(u, v), n ≥ 2. (18)

By (16) and (17), we have for 2 ≤ i ≤ n− 2,

bn,i(v) = bn−1,i−1(v) + a(n− 1; i, i− 1)vi−1 +

i−1
∑

j=1

bn−1,j(1)v
j +

i−2
∑

j=1

vj
i−j
∑

r=2

a(n− r; j + 1, j)

+

i−2
∑

j=1

vj
i−j
∑

r=2

bn−r,j(1).



16 David Callan, Toufik Mansour, Mark Shattuck

Multiplying both sides of the last recurrence by ui, and summing over 2 ≤ i ≤ n− 2, yields

bn(u, v) = ubn−1(u, v) +
1

v
dn−1(uv) +

n−3
∑

j=1

bn−1,j(1)

(

uj+1 − un−1

1− u

)

vj

+
n−4
∑

j=1

vj
n−j−1
∑

r=2

a(n− r; j + 1, j)

(

uj+r − un−1

1− u

)

+
n−4
∑

j=1

vj
n−j−2
∑

r=2

bn−r,j(1)

(

uj+r − un−1

1− u

)

= ubn−1(u, v) +
1

v
dn−1(uv) +

u

1− u
bn−1(uv, 1)−

un−1

1− u
bn−1(v, 1)

+
1

uv(1− u)

n−2
∑

r=2

(dn−r(uv)u
r + a(n− r − 2)unvn−r)

− un−1

v(1− u)

n−2
∑

r=2

(dn−r(v) + a(n− r − 2)vn−r) +
1

1− u

n−3
∑

r=2

bn−r(uv, 1)u
r

− un−1

1− u

n−3
∑

r=2

bn−r(v, 1)

= ubn−1(u, v) +
1

v
dn−1(uv) +

1

1− u

n−1
∑

r=3

br(u, v)u
n−r − un−1

1− u

n−1
∑

r=3

br(v, 1)

+
1

uv(1− u)

n−2
∑

r=2

dr(uv)u
n−r − un−1

v(1− u)

n−2
∑

r=2

dr(v), n ≥ 4. (19)

By (15), we have

cn,i(v) = a(n− 1; i)vi+1 +

n−i
∑

j=2

a(n− j + 1; i+ 1, i)vi+j +

n−i
∑

j=2

bn−j+1,i(1)v
i+j , 1 ≤ i ≤ n− 2,

and thus

cn(u, v)

= v

n−2
∑

i=1

a(n− 1; i)(uv)i +

n−1
∑

j=2

vj
n−j
∑

i=1

a(n− j + 1; i+ 1, i)(uv)i

+
n−1
∑

j=2

vj
n−j
∑

i=1

bn−j+1,i(1)(uv)
i

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1
∑

j=2

vj−1(dn−j+1(uv) + a(n− j − 1)(uv)n−j+1)

+

n−1
∑

j=2

vj(bn−j+1(uv, 1) + (a(n− j)− a(n− j − 1))(uv)n−j),
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which leads to

cn(u, v)

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1
∑

j=2

dj(uv)v
n−j +

n−1
∑

j=2

bj(uv, 1)v
n−j+1

+ vn
n−2
∑

j=1

a(j)uj , n ≥ 3. (20)

Multiplying both sides of (16) by ui, and summing over 2 ≤ i ≤ n− 1, gives

dn(u) = un−1a(n− 2) + ubn−1(u) + dn−1(u), n ≥ 3. (21)

Define generating functions a(x;u, v) =
∑

n≥1 an(u, v)x
n, b(x;u, v) =

∑

n≥4 bn(u, v)x
n, c(x;u, v)

=
∑

n≥3 cn(u, v)x
n, and d(x;u) =

∑

n≥3 dn(u)x
n. Rewriting recurrences (18)–(21) in terms of gener-

ating functions yields the following system of functional equations.

Lemma 13. We have

a(x;u, v) = xu(1− xv + xv2) + b(x;u, v) + c(x;u, v) + x(1 + u)a(xu; v, 1)

− x2uv(1− v)a(xuv; 1, 1), (22)

(1− xu)b(x;u, v) =
x

(1 − u)(1− xu)
(ub(x;uv, 1)− b(xu; v, 1)) +

x(1− u+ xu2)

v(1 − u)(1− xu)
d(x;uv)

− x2u

v(1 − u)(1− xu)
d(xu; v), (23)

c(x;u, v) = −x2uv2 + xva(x;uv, 1) +

(

x2v2

1− xv
− x2uv2

)

a(xuv; 1, 1) +
xv2

1− xv
b(x;uv, 1)

+
xv

u(1− xv)
d(x;uv), (24)

(1− x)d(x;u) = x2ua(xu; 1, 1) + xub(x;u, 1). (25)

We can now determine the generating function FT (x).

Theorem 14. Let T = {1342, 1423, 2143}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.
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Proof: In the notation above, we seek to determine 1 + a(x; 1, 1). Setting u = v = 1 in (22), (24) and

(25), and solving the resulting system for b(x; 1, 1), c(x; 1, 1) and d(x; 1), yields

b(x; 1, 1) =
(1− 5x+ 7x2 − 5x3 + x4)a(x; 1, 1)− x(1 − x)3

1− x+ x2
,

c(x; 1, 1) =
x(2− 2x+ x2)((1− x)a(x; 1, 1)− x)

1− x+ x2
,

d(x; 1) =
x(1− x)2((1 − x)a(x; 1, 1)− x)

1− x+ x2
.

Substituting the expression for d(x;u) from (25) into (23) at v = 1, we find

(

1− x− x

(1− u)(1 − x)
− x2(1− u+ xu)

(1− u)(1− x)(u − x)

)

b(x/u;u, 1)

=
x3(1− u+ xu)

u(1− u)(1− x)(u − x)
a(x; 1, 1)− x

u(1− u)(1− x)
b(x; 1, 1)− x2

u(1− u)(1− x)
d(x; 1).

Applying the kernel method to the preceding equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0 + xu0)

u0 − x
a(x; 1, 1)− xd(x; 1).

Substituting out the expressions above for b(x; 1, 1) and d(x; 1), and then solving the equation that results

for a(x; 1, 1), yields

a(x; 1, 1) =
x(1− x)2(u0 − x)

(1− 4x+ 4x2 − 2x3)u0 − x(1 − x)3
.

Substituting the expression for u0 into the last equation gives the desired formula for 1 + a(x; 1, 1) and

completes the proof.

Remark: Once a(x; 1, 1) is known, it is possible to find b(x;u, 1), and thus d(x;u), a(x;u, 1) and

c(x;u, 1). This in turn allows one to solve the system (22)–(25) for all u and v, and thus obtain a gener-

ating function formula for the joint distribution of the statistics recording the first two letters.

3.3.3 T = {1342, 1423, 2134}
Clearly, a(n;n) = a(n− 1) for all n ≥ 1. We have the following recurrence for the array a(n; i, j) where

i < n.

Lemma 15. If n ≥ 3, then

a(n; i, n) = a(n− 1; i, n− 1) +

i−1
∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2, (26)
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a(n; i, i− 1) = a(n− 1; i− 1, n− 1) +

i−2
∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1, (27)

and

a(n; i, j) = a(n− 1, i− 1, j) + a(n− 1; j, n− 1) +

j−1
∑

ℓ=1

a(n− 1; j, ℓ)

+

i−j−1
∑

ℓ=2

a(n− ℓ; j + 1, j), 1 ≤ j ≤ i− 2 and 3 ≤ i ≤ n− 1. (28)

Furthermore, we have a(n; i, i+1) = a(n−1; i) for 1 ≤ i ≤ n−1 and a(n; i, j) = a(n−j+i+1; i+1, i)
for i+ 2 ≤ j ≤ n− 1.

Proof: Throughout, let x denote the third letter of a member of Ti,j . To show (26), first note that for

members of Ti,n, we must have x = n − 1 or x < i. There are a(n − 1; i, n − 1) possibilities in

the first case as the letter n is extraneous concerning avoidance of T , whence it may be deleted, and
∑i−1

j=1 a(n− 1; i, j) possibilities in the latter case as again n may be deleted (note that the presence of i, j
imposes a stronger restriction on the order of subsequent letters than does i, n). To show (27), first note

that members of Ti,i−1 for 2 ≤ i ≤ n− 1 must have x = n or x < i− 1. There are a(n− 1; i− 1, n− 1)

possibilities in the former case and
∑i−2

j=1 a(n− 1; i− 1, j) possibilities in the latter since the letter i may

be deleted in either case as the restriction it imposes is redundant.

Next, we show (28). For this, we consider the following cases: (i) x = j + 1, (ii) x = n, (iii) x < j,

and (iv) j + 1 < x < i. The first three cases are readily seen to be enumerated by the first three terms,

respectively, on the right-hand side of (28). For case (iv), let y denote the fourth letter of π ∈ Ti,j . First

note that one cannot have y > x, for otherwise π would contain 1342 as witnessed by the subsequence

jxy(x − 1). It is also not possible to have y < j, for otherwise π would again contain 1342, this time

with the subsequence jxn(j + 1), since all letters to the right of y and larger than j would have to occur

in decreasing order (due to the presence of j, y). So we must have j < y < x and thus y = x− 1 in order

to avoid 1423. By similar reasoning, the next letter must be x− 2 if x > j + 2. Repeating this argument

shows that the block x, x− 1, . . . , j+1 must occur directly following j, with each of these letters, except

the last two, seen to be extraneous concerning the avoidance or containment of patterns in T . Note further

that the presence of j + 2, j + 1 imposes a stricter requirement on subsequent letters than does i, j when

i ≥ j + 3, whence the i and j are also extraneous. Deleting all members of [j + 3, x] from π, along with

i and j, implies that there are a(n− ℓ; j + 1, j) possibilities where ℓ = x− j. Summing over all possible

values of ℓ gives the last term on the right-hand side of (28).

There are clearly a(n−1; i) members of Ti,j if j = i+1, as the letter i+1 may be deleted. If j ≥ i+2,

then similar reasoning as before shows that the block j, j − 1, . . . , i+1 must occur when j < n, and thus

all members of [i+3, j], along with i, may be deleted. This implies that there are a(n− j+ i+1; i+1, i)
members of Ti,j in this case, which completes the proof.

In order to solve the recurrence in Lemma 15, we introduce the following functions: bn,i(v) =
∑i−1

j=1 a(n; i, j)v
j for 2 ≤ i ≤ n − 1, cn,i(v) =

∑n−1
j=i+1 a(n; i, j)v

j for 1 ≤ i ≤ n − 2, bn(u, v) =
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∑n−1
i=2 bn,i(v)u

i for n ≥ 3, cn(u, v) =
∑n−2

i=1 cn,i(v)u
i for n ≥ 3, and dn(u) =

∑n−1
i=1 a(n; i, n)ui for

n ≥ 2. Let an(u, v) =
∑n

i=1

∑n

j=1,j 6=i a(n; i, j)u
ivj for n ≥ 2, with a1(u, v) = u. Note that by the

definitions, we have

an(u, v) = unan−1(v, 1) + bn(u, v) + cn(u, v) + vndn(u), n ≥ 2. (29)

In order to determine a formula for bn(u, v), first note that (27) and (28) imply

bn,i(v) = bn−1,i−1(v) +
i−1
∑

j=1

a(n− 1; j, n− 1)vj +
i−1
∑

j=1

bn−1,j(1)v
j

+

i−3
∑

j=1

vj
i−j−1
∑

ℓ=2

a(n− ℓ; j, n− ℓ), 2 ≤ i ≤ n− 1,

where we have used the fact a(m; j + 1, j) = a(m; j,m) in the last sum. Multiplying both sides of the

last recurrence by ui, and summing over 2 ≤ i ≤ n− 1, gives

bn(u, v) = ubn−1(u, v) +

n−2
∑

j=1

a(n− 1; j, n− 1)

(

uj+1 − un

1− u

)

vj +

n−2
∑

j=1

bn−1,j(1)

(

uj+1 − un

1− u

)

vj

+

n−4
∑

j=1

vj
n−j−1
∑

ℓ=2

a(n− ℓ; j, n− ℓ)

(

uj+ℓ+1 − un

1− u

)

= ubn−1(u, v) +
u

1− u
(dn−1(uv)− un−1dn−1(v)) +

u

1− u
(bn−1(uv, 1)− un−1bn−1(v, 1))

+
u

1− u

n−2
∑

ℓ=2

dℓ(uv)u
n−ℓ − un

1− u

n−2
∑

ℓ=2

dℓ(v), n ≥ 3, (30)

where we have replaced the index ℓ by n− ℓ in the last sum.

By Lemma 15, we have

cn,i(v) = a(n− 1; i)vi+1 +

n−1
∑

j=i+2

a(n− j + i+ 1; i+ 1, i)vj , 1 ≤ i ≤ n− 2,

and thus

cn(u, v) =

n−2
∑

i=1

a(n− 1; i)uivi+1 +

n−3
∑

i=1

ui

n−i−1
∑

j=2

a(n− j + 1; i+ 1, i)vi+j

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2
∑

j=2

vj
n−j−1
∑

i=1

a(n− j + 1; i, n− j + 1)(uv)i,
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which implies

cn(u, v) = v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2
∑

j=2

vj(dn−j+1(uv)− (uv)n−ja(n− j − 1))

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−1
∑

j=3

vn−j+1(dj(uv)− (uv)j−1a(j − 2)), n ≥ 3.

(31)

Multiplying both sides of (26) by ui, and summing over 1 ≤ i ≤ n− 2 implies

dn(u) = un−1a(n− 2) + bn−1(u, 1) + dn−1(u), n ≥ 2. (32)

Define generating functions

a(x;u, v) =
∑

n≥1

an(u, v)x
n, b(x;u, v) =

∑

n≥3

bn(u, v)x
n,

c(x;u, v) =
∑

n≥3

cn(u, v)x
n, d(x;u) =

∑

n≥2

dn(u)x
n.

Rewriting recurrences (29)–(32) in terms of generating functions yields the following system of functional

equations.

Lemma 16. We have

a(x;u, v) = xu+ xua(xu; v, 1) + b(x;u, v) + c(x;u, v) + d(xv;u), (33)

(1− xu)b(x;u, v) =
xu

1− u
(b(x;uv, 1)− b(xu; v, 1)) +

xu(1− xu + xu2)

(1− u)(1− xu)
d(x;uv)

− xu

(1 − u)(1− xu)
d(xu; v), (34)

c(x;u, v) = xva(x;uv, 1)− x2uv2

1− xv
(a(xuv; 1, 1) + 1) +

xv2

1− xv
d(x;uv), (35)

(1− x)d(x;u) = x2u(a(xu; 1, 1) + 1) + xb(x;u, 1). (36)

We can now determine the generating function FT (x).

Theorem 17. Let T = {1342, 1423, 2134}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.
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Proof: In the notation above, we seek to determine 1 + a(x; 1, 1). By (36), we have

d(x;u) =
x2u

1− x
(a(xu; 1, 1) + 1) +

x

1− x
b(x;u, 1).

Thus, equation (34) with v = 1 gives

(

1− x− x

1− u
− x2(1− x+ xu)

(1 − u)(1− x)(u − x)

)

b(x/u;u, 1)

= −
(

x

1− u
+

x2

(1− u)(1− x)2

)

b(x; 1, 1)

+

(

x3(1 − x+ xu)

(1− u)(1− x)(u − x)
− x3

(1− u)(1− x)2

)

(a(x; 1, 1) + 1).

Applying the kernel method to this last equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0)(a(x; 1, 1) + 1)

u0 − x
.

Note that c(x; 1, 1) = x((1−2x)a(x;1,1)−x+d(x;1))
1−x

by (35), and

a(x; 1, 1) = x+ xa(x; 1, 1) + b(x; 1, 1) + c(x; 1, 1) + d(x; 1)

by (33). Substituting out c(x; 1, 1), and then d(x; 1) and b(x; 1, 1), in the preceding equation and solving

the equation that results for a(x; 1, 1) yields

a(x; 1, 1) =
x3 + x(1− x)2u0

x(2x2 − 2x+ 1)− (1− x)3u0
.

Substituting the expression for u0 into the last equation gives the desired formula for 1 + a(x; 1, 1) and

completes the proof.

3.4 Case 234

The two representative triples T are:

{2143,2314,2413} (Theorem 18)

{1243,1342,3142} (Theorem 19)

Theorem 18. Let T = {2143, 2314, 2413}. Then

FT (x) =
(1− x)2 −

√

(1− x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.
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Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose π = i1π

(1) · · · imπ(m) is a permutation that avoids T with m ≥ 2
left-right maxima. Then π(m) has the form βmβm−1 · · ·β1 with β1 < i1 < β2 < i2 < · · · < βm < im
because c < d in π(m) with c < ij < d implies ijimcd is a 2413.

If π(1) = · · · = π(m−1) = ∅, the contribution is (xFT (x))
m. Otherwise, let k be minimal such that

π(k) 6= ∅. Then π has the form

π(k) βk

βk−1

β1

. . .

,

23
•
14

214
•
3

i1

ik−2

ik−1

ik

ik+1

ik+2

im

where dark bullets indicate mandatory entries and some shaded regions are empty because the gray bullet

would form part of the indicated pattern, π(k)imβk avoids T and does not start with its largest entry,

and βk−1, . . . , β1 all avoid T . Thus, the contribution for fixed k ∈ [m] is given by xm−1(FT (x) − 1 −
xFT (x))FT (x)

k−1.

Hence, for m ≥ 2,

Gm(x) = (xFT (x))
m + xm−1(FT (x) − 1− xFT (x))

m−1
∑

k=0

FT (x)
k.

Summing over m ≥ 0, we obtain

FT (x) = 1 +
xFT (x)

1− xFT (x)
+

(

FT (x)− 1− xFT (x)
)

(

x
1−x

− xFT (x)
1−xFT (x)

)

1− FT (x)
,

which has the desired solution.

Theorem 19. Let T = {1243, 1342, 3142}. Then

FT (x) =
(1− x)2 −

√

(1 − x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). For m = 2, suppose π = iπ′nπ′′ is a permutation in Sn(T ) with two left-right

maxima. Let β denote the subsequence of letters less than i in π′′. Then β < π′ (a ∈ π′ and b ∈ β with

a < b implies ianb is a 3142) and so π is as in the figure.
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α

β

π′
i

n

If α = ∅, then π′ and β avoid T and the contribution is x2FT (x)
2. If α 6= ∅ so that i + 1 ∈ α, then π′ is

decreasing (or n(i + 1) would be the 43 of a 1243), and St(iπ′′) is a T -avoider that does not start with its

maximal element. Hence, the contribution is x
1−x

(

FT (x)− 1− xFT (x)
)

. Thus,

G2(x) = x2FT (x)
2 +

x

1− x

(

FT (x) − 1− xFT (x)
)

.

For m ≥ 3, π has the form

. . .

π(1)
π(2)

π(3)

π(m)

i1

i2

i3

im

134
•
2

124
•
3

,

where some shaded regions are empty to avoid the indicated pattern and the π’s are in their relative

positions to avoid 3142. Hence, Gm(x) = G2(x)(xFT (x))
m−2.

Summing over m ≥ 0, we obtain

FT (x) = 1 + xFT (x) +
x2FT (x) +

x
1−x

(FT (x) − 1− xFT (x))

1− xFT (x)
,

which has the desired solution.

3.5 Case 235

The three representative triples T are:

{1423,1432,2143} (Theorem 23)

{1423,1432,3142} (Theorem 24)

{1234,1243,2314} (Theorem 27)

3.5.1 T = {1423, 1432, 2143}
Let a(n; i1, i2, . . . , ik), a(n) and Ti,j be as in the second class in case 229 above. Note here that a(n;n) =
a(n;n−1) = a(n−1) for n ≥ 2. It is convenient to consider separately the case of a permutation starting

i, j, j + 2, where j ≤ i − 3. Define f(n; i, j) = a(n; i, j, j + 2) for 4 ≤ i ≤ n and 1 ≤ j ≤ i − 3. The

arrays a(n; i, j) and f(n; i, j) are determined recursively as follows.
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Lemma 20. We have

a(n; i, i+ 2) = a(n− 1; i, i+ 2) + a(n− 1; i+ 1, i) +
i−1
∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2, (37)

a(n; i, i− 1) = a(n− 1; i, i− 1) +

i−2
∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1, (38)

a(n; i, i−2) = a(n−1; i, i−2)+a(n−1; i−1, i−2)+

i−3
∑

j=1

a(n−1; i−2, j), 3 ≤ i ≤ n−1, (39)

a(n; i, j) = a(n− 1; i− 1, j) + f(n; i, j) +

j−1
∑

ℓ=1

a(n− 1; j, ℓ), 1 ≤ j ≤ i− 3, (40)

and

f(n; i, j) = f(n− 1; i− 1, j) + a(n− 2; j + 1, j) +

j−1
∑

ℓ=1

a(n− 2; j, ℓ), 1 ≤ j ≤ i− 4, (41)

with f(n; i, i− 3) = a(n− 1; i− 1, i− 3) for 4 ≤ i ≤ n, a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1,

and a(n; i, j) = 0 for 1 ≤ i ≤ j − 3 ≤ n− 3.

Proof: The formulas for f(n; i, i− 3) and a(n; i, i + 1), and for a(n; i, j) when i ≤ j − 3, follow from

the definitions. In the cases that remain, let x denote the third letter of a T -avoiding permutation. For

(37), first note that members of Ti,i+2 where i < n − 2 must have x = i + 3, x = i + 1 or x < i, lest

there be an occurrence of 1423 or 1432. The letter i+ 2 can be deleted in the first case, while the letter i
can in the second, giving a(n− 1; i, i+ 2) and a(n− 1; i+ 1, i) possibilities, respectively. If x < i, then

i, x imposes a stricter requirement on subsequent letters than does i + 2, x, whence i+ 2 may be deleted

in this case. This gives
∑i−1

j=1 a(n − 1; i, j) possibilities, which implies (37) when i < n − 2. Equation

(37) is also seen to hold when i = n− 2 since then there is no x = i+ 3 case with a(n− 1; i, i+ 2) = 0
accordingly. For (38), note that members of Ti,i−1 where i < n must have x = i + 1 or x < i − 2 so

as to avoid 2143. This yields a(n − 1; i, i − 1) and
∑i−2

j=1 a(n − 1; i − 1, j) possibilities, respectively,

which implies (38). For (39), note that members of Ti,i−2 where i < n must have x = i + 1, x = i − 1

or x < i− 2, yielding a(n− 1; i, i− 2), a(n− 1; i− 1, i− 2) and
∑i−3

j=1 a(n− 1; i− 2, j) possibilities,

respectively.

To show (40), first observe that members of Ti,j where j ≤ i − 3 must have x = j + 1, x = j + 2
or x < j, lest there be an occurrence of 1423 or 1432. If x = j + 1, then there are a(n − 1; i − 1, j)
possibilities since the letter j + 1 is extraneous and may be deleted. If x = j +2, then there are f(n; i, j)
possibilities, by definition. If x < j, then the letter i may be deleted, which gives the last term on the

right-hand side of (40). Finally, to show (41), let y denote the fourth letter of a permutation enumerated

by f(n; i, j) where j < i − 3. Then we must have y = j + 3, y = j + 1 or y < j. If y = j + 3, then y
may be deleted, yielding f(n− 1; i− 1, j) possibilities, by definition. If y = j + 1, then the occurrence
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of j + 2, j + 1 is seen to impose a stricter requirement on subsequent letters than does i, j with regard to

2143, with j +1 also making j redundant concerning 1423 or 1432. Thus, both i and j may be deleted in

this case, giving a(n− 2; j+1, j) possibilities. Finally, if y < j, then both the i and j+2 may be deleted

and thus there are
∑j−1

ℓ=1 a(n− 2; j, ℓ) possibilities, which implies (41) and completes the proof.

To aid in solving the recurrences of the prior lemma, we define the following auxiliary functions:

b(n; i) =
∑i−1

j=1 a(n; i, j), c(n; i) = a(n; i, i − 2), d(n; i) = a(n; i, i − 1) and e(n; i) = a(n; i, i + 2).
Assume functions are defined on the natural range for i, given n, and are zero otherwise. For example,

c(n; i) is defined for 3 ≤ i ≤ n, with c(n; 1) = c(n; 2) = 0. Let f(n; i) =
∑i−3

j=1 f(n; i, j) for 4 ≤ i ≤ n.

The recurrences in the previous lemma may be recast as follows.

Lemma 21. We have

a(n; i) = a(n− 1; i) + b(n; i) + e(n; i), 1 ≤ i ≤ n− 1, (42)

b(n; i) = c(n; i) + d(n; i) + b(n− 1; i− 1)− d(n− 1; i− 1) + f(n; i)

+

i−3
∑

j=1

b(n− 1; j), 2 ≤ i ≤ n− 1, (43)

c(n; i) = b(n− 1; i− 2) + c(n− 1; i) + d(n− 1; i− 1), 3 ≤ i ≤ n− 1, (44)

d(n; i) = b(n− 1; i− 1) + d(n− 1; i), 2 ≤ i ≤ n− 1, (45)

e(n; i) = b(n− 1; i) + d(n− 1; i+ 1) + e(n− 1; i), 1 ≤ i ≤ n− 2, (46)

and

f(n; i) = c(n− 1; i− 1)+ f(n− 1; i− 1)+

i−4
∑

j=1

b(n− 2; j)+

i−4
∑

j=1

d(n− 2; j+1), 4 ≤ i ≤ n. (47)

Proof: For (42), note that by the definitions, we have

a(n; i) =
n
∑

i=1,i6=j

a(n; i, j) =
i−1
∑

j=1

a(n; i, j) + a(n; i, i+ 1) + a(n; i, i+ 2)

= b(n; i) + a(n− 1; i) + e(n; i).
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For (43), note that by summing (40) over j and the definitions, we have

b(n; i) = a(n; i, i− 2) + a(n; i, i− 1) +

i−3
∑

j=1

a(n; i, j)

= a(n; i, i− 2) + a(n; i, i− 1) +

i−3
∑

j=1

a(n− 1; i− 1, j) +

i−3
∑

j=1

f(n; i, j) +

i−3
∑

j=1

b(n− 1; j)

= c(n; i) + d(n; i) + (b(n− 1; i− 1)− d(n− 1; i− 1)) + f(n; i) +

i−3
∑

j=1

b(n− 1; j).

Next, observe that formulas (44), (45) and (46) follow directly from the definitions and recurrences (39),

(38) and (37), respectively. Finally, formula (47) follows from summing (41) over 1 ≤ j ≤ i − 4 and

noting f(n; i, i− 3) = c(n− 1; i− 1).

Define

an(u) =

n
∑

i=1

a(n; i)ui for n ≥ 1, bn(u) =

n−1
∑

i=2

b(n; i)ui for n ≥ 3,

cn(u) =

n−1
∑

i=3

c(n; i)ui for n ≥ 4, dn(u) =

n−1
∑

i=2

d(n; i)ui for n ≥ 3,

en(u) =

n−2
∑

i=1

e(n; i)ui for n ≥ 3, fn(u) =

n
∑

i=4

f(n; i)ui for n ≥ 4.

Assume all functions take the value zero if n is such that the sum in question is empty. Note that a1(u) =
u, with b3(u) = d3(u) = u2.

Multiplying both sides of (42) by ui, and summing over 1 ≤ i ≤ n− 1, yields

an(u) = a(n− 1)un + an−1(u) + bn(u) + en(u), n ≥ 2. (48)

Note that, by the definitions,

f(n;n) =

n−3
∑

j=1

f(n;n, j) =

n−3
∑

j=1

a(n− 1; j, j + 2) =

n−3
∑

j=1

e(n− 1; j) = en−1(1), n ≥ 4,

and

b(n;n− 1) = a(n;n− 1)− a(n;n− 1, n) = a(n− 1)− a(n− 2), n ≥ 2.
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By recurrence (43), we then have

bn(u) = cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− f(n;n)un +

n−3
∑

j=1

b(n− 1; j)

n−1
∑

i=j+3

ui

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u3

1− u
(bn−1(u)− (a(n− 2)− a(n− 3))un−2)

− un

1− u
(bn−1(1)− (a(n− 2)− a(n− 3)))

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u

1− u
(u2bn−1(u)− un−1bn−1(1)) + (a(n− 2)− a(n− 3))un, n ≥ 3. (49)

From recurrence (44), we get

cn(u) = u2(bn−1(u)− b(n− 1;n− 2)un−2) + cn−1(u) + c(n− 1;n− 1)un−1 + udn−1(u)

= u2bn−1(u)− una(n− 2) + un−1(1 + u)a(n− 3) + cn−1(u) + udn−1(u), n ≥ 4. (50)

By (45) and (46), we have

dn(u) = a(n− 3)un−1 + ubn−1(u) + dn−1(u), n ≥ 3, (51)

and

en(u) = a(n− 3)un−2 + bn−1(u) +
1

u
dn−1(u) + en−1(u), n ≥ 3. (52)

Finally, multiplying both sides of (47) by ui, and summing over 4 ≤ i ≤ n, yields

fn(u) = u(c(n− 1;u) + a(n− 3)un−1) + ufn−1(u)

+

n−3
∑

j=1

b(n− 2; j)

n
∑

i=j+4

ui +

n−4
∑

j=1

d(n− 2; j + 1)

n
∑

i=j+4

ui

= a(n− 3)un + ucn−1(u) + ufn−1(u)

+
u3

1− u
(ubn−2(u) + dn−2(u)− un−2(bn−2(1) + dn−2(1))), n ≥ 4. (53)

Define the generating functions a(x;u) =
∑

n≥1 an(u)x
n, b(x;u) =

∑

n≥3 bn(u)x
n, c(x;u) =

∑

n≥4 cn(u)x
n, d(x;u) =

∑

n≥3 dn(u)x
n, e(x;u) =

∑

n≥3 en(u)x
n and f(x;u) =

∑

n≥4 fn(u)x
n.

Recall that a(n) = an(1) for n ≥ 1, with a(0) = 1. Rewriting recurrences (48)–(53) in terms of generat-

ing functions yields the following system of functional equations.

Lemma 22. We have

(1− x)a(x;u) = xu(1 + a(xu; 1)) + b(x;u) + e(x;u), (54)
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(1− xu)b(x;u) = −x3u3 + c(x;u) + (1 − xu)d(x;u)− xue(xu; 1) + f(x;u)

+ x2u2(1 − xu)a(xu; 1) +
xu

1− u
(u2b(x;u)− b(xu; 1)), (55)

(1− x)c(x;u) = x3u3 − x2u2(1− x− xu)a(xu; 1) + xu2b(x;u) + xud(x;u), (56)

(1− x)d(x;u) = x3u2(1 + a(xu; 1)) + xub(x;u), (57)

(1− x)e(x;u) = x3u(1 + a(xu; 1)) + xb(x;u) +
x

u
d(x;u), (58)

and

(1− xu)f(x;u) = x3u3a(xu; 1) + xuc(x;u)

+
x2u3

1− u
(ub(x;u) + d(x;u)− b(xu; 1)− d(xu; 1)). (59)

We now determine the generating function FT (x).

Theorem 23. Let T = {1423, 1432, 2143}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.

Proof: By solving (54), (57) and (58) with u = 1 for b(x; 1), d(x; 1) and e(x; 1), we obtain

b(x; 1) =
1− 4x+ 5x2 − 3x3

1− x+ x2
a(x; 1)− x(1 − 2x+ 2x2)

1− x+ x2
,

d(x; 1) =
x(1 − x)3

1− x+ x2
a(x; 1)− x2(1− x)2

1− x+ x2
,

e(x; 1) =
x(1 − x)2

1− x+ x2
a(x; 1)− x2(1− x)

1− x+ x2
.

Define K(x;u) = u2(1 − u) − xu(2 − u2) + x2(1 + 2u− 2u2) − x3. Substituting the expressions for

b(x; 1), d(x; 1) and e(x; 1) into (55)–(59), and then solving for b(x/u;u), c(x/u;u), d(x/u;u), e(x/u;u)
and f(x/u;u), yields

K(x;u)b(x/u;u) = x(−u2 + 2xu(u+ 1)− x2(u2 + 3u+ 1) + x3(2u+ 1))a(x; 1)

+ x2u(2x2 − xu − x+ u),

K(x;u)e(x/u;u) = x2(1− x)(x − u)a(x; 1) + x3(1 − x).

Multiplying both sides of (54) by K(x;u), and then substituting the expressions of K(x;u)b(x/u;u) and

K(x;u)e(x/u;u), gives

(1 − x/u)K(x;u)a(x/u;u) = x(x − u)(u2 + x(1 − u− u2) + x2(2u− 1))a(x; 1)

+ x(1 − u)(u2 − xu(2 + u) + x2(2 + 3u)− 2x3).
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To solve this last equation, we let u = u0 = u0(x) such that K(x;u0(x)) = 0. Then

FT (x) = 1 + a(x; 1) =
(1− x)(x2 − xu0 + u2

0)

(u0 − x)(x(1 − x)− x(1 − 2x)u0 + (1 − x)u2
0)
.

Using the fact that u3
0 = u2

0(1− u0)− xu0(2− u2
0) + x2(1 + 2u0 − 2u2

0), we obtain

1− x− (1 − x)FT (x) + x(1− 2x)F 2
T (x) + x2F 3

T (x)

=
(1− x)2K(x;u0)V (x;u0)

(x− u0)3(x(1 − x)− x(1 − 2x)u0 + (1− x)u2
0)

3
= 0,

where

V (x;u) = −x5(2x4 + 7x2(1− x)− 5x+ 2) + x2(x+ 1)(4x4 − 7x3 + 8x2 − 5x+ 1)(u− x)

− (7x6 + 2x5(1− x2)− x4 − 37x3(1− x) + 24x2(1 − x2)− 8x+ 1)(u − x)2.

Hence, the generating function FT (x) satisfies

FT (x) = 1− x+ xFT (x) + x(1− 2x)F 2
T (x) + x2F 3

T (x),

as desired.

3.5.2 T = {1423, 1432, 3142}
Theorem 24. Let T = {1423, 1432, 3142}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2 left-right

maxima. Since π avoids 1423 and 1432, we have that either i2 = i1 + 1 or i2 = i1 + 2.

• The case i2 = i1 + 1. Since π avoids 3142, we see that there is no element between the minimal

element of π(1) and i1 in π(2)π(3) · · ·π(m). Thus, the contribution in this case is xFT (x)Gm−1(x),
where xFT (x) accounts for the section i1π

(1) and Gm−1(x) for i2π
(2) · · · imπ(m).

• The case i2 = i1 + 2. Let j be the index with i1 + 1 ∈ π(j). Then π has the form
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π(1)

α

β

1423, 1432

3
•
142

i1

i2 = i1+2

ij

ij+1

i1+1

im

with π(1) > α > β to avoid 3142, where i1π
(1)αβ spans an interval of integers, also to avoid 3142,

and the other shaded regions are empty to avoid the indicated patterns.

Thus, for given j, we have a bijection between such permutations and triples

(π(1), α, ijβij+1π
(j+1) · · · imπ(m)),

where π(1) and α avoid T , and ijβij+1π
(j+1) · · · imπ(m) avoids T with exactly m − (j − 1)

left-right maxima. Hence, the contribution in this case is given by xjF 2
T (x)Gm−j+1(x), where

j = 2, 3, . . . ,m.

By adding all the contributions, we get

Gm(x) = xFT (x)Gm−1 +
m
∑

j=2

xjF 2
T (x)Gm−j+1(x), m ≥ 2,

which implies

Gm(x)− xGm−1(x) = xFT (x)Gm−1 − x2FT (x)Gm−2(x) + x2F 2
T (x)Gm−1(x)

with G0(x) = 1 and G1(x) = xFT (x). By summing this recurrence over all m ≥ 2, we have

FT (x)− 1− xFT (x) − x(FT (x) − 1) = xFT (x)(FT (x) − 1)− x2F 2
T (x) + x2F 2

T (x)(FT (x) − 1),

which leads to

FT (x) = 1− x+ xFT (x) + x(1− 2x)F 2
T (x) + x2F 3

T (x),

as required.
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3.5.3 T = {1234, 1243, 2314}
To enumerate the members of Sn(T ), we categorize them by their first letter and the position of the

leftmost ascent. More precisely, given 1 ≤ j ≤ i ≤ n, let a(n; i, j) be the number of T -avoiding

permutations of length n starting with the letter i whose leftmost ascent is at index j. For example, we

have a(4; 3, 2) = 3, the enumerated permutations being 3124, 3142 and 3241. If 1 ≤ i ≤ n, then let

a(n; i) =
∑i

j=1 a(n; i, j) and let a(n) =
∑n

i=1 a(n; i) for n ≥ 1, with a(0) = 1. The array a(n; i, j)
satisfies the following recurrence relations.

Lemma 25. If n ≥ 3, then

a(n; i, j) =

n−i
∑

ℓ=1

i
∑

k=j

a(n− ℓ; i, k), 1 ≤ j ≤ i ≤ n− 2. (60)

If 2 ≤ j ≤ n− 1, then a(n;n− 1, j) =
∑n−2

i=j−1 a(n − 1; i, j − 1), with a(n;n − 1, 1) = a(n − 2) for

n ≥ 2. If 2 ≤ j ≤ n, then a(n;n, j) =
∑n−1

i=j−1 a(n− 1; i, j − 1), with a(n;n, 1) = δn,1 for n ≥ 1.

Proof: Let An,i,j denote the subset of Sn(T ) enumerated by a(n; i, j). First note that removing the initial

letter n from members of An,n,j for 2 ≤ j ≤ n defines a bijection with ∪n−1
i=j−1An−1,i,j−1 (where An,n,n

is understood to be the singleton set consisting of the decreasing permutation n(n−1) · · · 1). This implies

the formula for a(n;n, j) for j > 1, with the condition a(n;n, 1) = δn,1 following from the definitions.

Similarly, removing n− 1 from members of An,n−1,j when j > 1 implies the formula for a(n;n− 1, j)
in this case. That a(n;n− 1, 1) = a(n− 2) follows from the fact that one may safely delete both n− 1
and n from members of Sn(T ) starting with these letters.

To show (60), we first consider the possible values of πj+1 within π = π1π2 · · ·πn ∈ An,i,j where

i < n − 1. Note that if πj+1 < n − 1, then π would contain either 1234 or 1243, as witnessed by the

subsequences πjπj+1(n − 1)n or πjπj+1n(n − 1), which is impossible. Thus, we must have πj+1 =
n − 1 or n. If πj+1 = n − 1, consider further the sequence of letters πj+1πj+2 · · ·πr, where r is such

that πr = n. If r > j + 2, then each letter πs for j + 2 ≤ s ≤ r − 1 must satisfy πs > i, for

otherwise π would contain 2314 (with the subsequence i(n − 1)xn for some x < i). Furthermore, if

r > j + 2 and πj+2 < n− 2, then iπj+2 would be the first two letters in an occurrence of 1234 or 1243,

which is impossible. Thus, we must have πj+2 = n − 2. Similarly, by an inductive argument, we get

πj+1πj+2 · · ·πr−1πr = (n−1)(n−2) · · · (n−r+j+1)n. Note that each of these ℓ letters, where ℓ = r−j,

is seen to be extraneous concerning avoidance of T and thus may be deleted. The remaining letters

comprise a member of An−ℓ,i,k for some k ∈ [j, i] and hence there are
∑i

k=j a(n − ℓ; i, k) possibilities

for these letters. Since each letter of the section πj+1 · · ·πr belongs to [i + 1, n], its length ℓ can range

from 1 to n − i, with the contents of the section determined by its length. Allowing ℓ to vary implies

formula (60) and completes the proof.

Let an,i(v) =
∑i

j=1 a(n; i, j)v
j for 1 ≤ i ≤ n and an(u, v) =

∑n

i=1 an,i(v)u
i for n ≥ 1. Multiplying
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both sides of (60) by vj , and summing over 1 ≤ j ≤ i, gives

an,i(v) =

i
∑

j=1

vj
n−i
∑

ℓ=1

i
∑

k=j

a(n− ℓ; i, k) =

n−i
∑

ℓ=1

i
∑

k=1

a(n− ℓ; i, k)

(

v − vk+1

1− v

)

=
v

1− v

n−i
∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)), 1 ≤ i ≤ n− 2,

with

an,n−1(v)− a(n− 2)v =

n−1
∑

j=2

vj
n−2
∑

i=j−1

a(n− 1; i, j − 1) =

n−2
∑

i=1

i+1
∑

j=2

a(n− 1; i, j − 1)vj

= v

n−2
∑

i=1

an−1,i(v) = v(an−1(1, v)− an−1,n−1(v))

= v(an−1(1, v)− van−2(1, v)), n ≥ 2,

and

an,n(v) =

n−1
∑

i=1

i+1
∑

j=2

a(n− 1; i, j − 1)vj = v

n−1
∑

i=1

an−1,i(v) = van−1(1, v), n ≥ 1.

The preceding equations then imply

an(u, v) =
v

1− v

n−2
∑

i=1

ui

n−i
∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)) + un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1
∑

ℓ=1

n−ℓ
∑

i=1

(an−ℓ,i(1)− an−ℓ,i(v))u
i − un−1v

1− v
(an−1,n−1(1)− an−1,n−1(v))

+ un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1
∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v))−
un−1v

1− v
(a(n− 2)− van−2(1, v))

+ un−1v(an−1(1, v)− van−2(1, v)) + un−1va(n− 2) + unvan−1(1, v)

=
v

1− v

n−1
∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v)) + un−1v(1 + u)an−1(1, v)

− un−1v2

1− v
(a(n− 2)− van−2(1, v)), n ≥ 2, (61)

with a0(u, v) = 1 and a1(u, v) = uv.

Let a(x;u, v) =
∑

n≥1 an(u, v)x
n. Multiplying both sides of (61) by xn, and summing over n ≥ 2,

yields the following functional equation.
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Lemma 26. We have

a(x;u, v) = xuv(1− xv) +
xv

(1− x)(1 − v)
(a(x;u, 1)− a(x;u, v)) + xv(1 + u)a(xu; 1, v)

− x2uv2

1− v
(a(xu; 1, 1)− va(xu; 1, v)). (62)

We now determine the generating function FT (x).

Theorem 27. Let T = {1234, 1243, 2314}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.

Proof: In the current notation, we need to determine 1+a(x; 1, 1). Letting u = 1 in (62), and rearranging,

gives

(

(1− v)(1 − 2xv)− x2v3 +
xv

1− x

)

a(x; 1, v) = xv(1− v)(1− xv) +

(

xv

1− x
− x2v2

)

a(x; 1, 1).

(63)

Setting v = v0 in (63) such that

1− x− (1− 2x2)v0 + 2x(1− x)v20 = x2(1 − x)v30 ,

and solving for a(x; 1, 1), implies

1 + a(x; 1, 1) =
x+ (1− x)v0 − x(1 − x)v20

1− x(1− x)v0
.

Let f(v) = 1− x− (1 − 2x2)v + 2x(1− x)v2 − x2(1 − x)v3 and h(v) = f(v)g(v), where

g(v) = (1 − x)(1 + x3 − x(2− 3x+ 2x2)v − 2x3(1 − x)v2 + x3(1− x)v3).

Then y = 1 + a(x; 1, 1) is a solution of the equation

1− x− (1 − x)y + x(1 − 2x)y2 + x2y3 = 0

if and only if h(v) = 0 at v = v0, which is the case since f(v0) = 0, by definition. This implies FT (x) is

a solution of the equation stated above, as desired.

3.6 Case 238

The five representative triples T are:

{1423,2413,3142} (Theorem 28)

{2134,2143,2413} (Theorem 29)

{1234,1342,1423} (Theorem 32)

{1324,1342,1423} (Theorem 33)

{1243,1342,1423} (Theorem 34)
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3.6.1 T = {1423, 2413, 3142}
Theorem 28. Let T = {1423, 2413, 3142}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof: We say that a permutation π has (m, k) left-right maxima, 1 ≤ k ≤ m, if it has m left-right

maxima i1, i2, . . . , im of which the last k are consecutive, that is,

i1 < · · · < im−k < im−k+1 = n− k + 1 < im−k+2 = n− k + 2 < · · · < im−1 = n− 1 < im = n,

where n is maximal letter of π. Let Gm,k(x) be the generating function for T -avoiders with (m, k)
left-right maxima. Define G0,0(x) = 1. To find an equation for Gm,k(x), 1 ≤ k ≤ m, let π =
i1π

(1) · · · imπ(m) be a permutation that avoids T with (m, k) left-right maxima. If k = m, then it is easy

to see that π(1) > π(2) > · · · > π(m), where each π(j) avoids T . Thus, Gm,m(x) = (xFT (x))
m.

So suppose 1 ≤ k ≤ m− 1. Since π avoids 1423, all the letters in I = {im−k + 1, . . . , n− k} appear

in decreasing order in π . Since π avoids 2413, only left-right maxima can appear between letters that

belong to I . If I = ∅, then the contribution is given by Gm,k+1(x). Otherwise, there exists a largest

s ∈ [n− k + 1, n] such that π(s) contains at least one letter from I . By the preceding observations,

π(n−k+1) · · ·π(s) = (n− k)(n− k − 1) · · · (im−k + 1)π′(s),

where im−k > π′(s). We can now safely delete the left-right maxima n− k + 2, n− k + 3, . . . , s and all

elements of I . The deleted left-right maxima contributexs−(n−k)−1, the deleted im−k+1 ∈ I (necessarily

present) contributes x, and the other elements of I , which amount to distributing an arbitrary number of

balls (possibly none) among the s−(n−k) boxes π(n−k+1), . . . , π(s), contribute 1/(1−x)s−(n−k). After

the deletion, we have a T -avoider with m− (s−n+ k− 1) left-right maxima of which the last n− s+2
are guaranteed consecutive, and so it contributes Gm+1−s+n−k,n+2−s(x). Hence, the contribution for a

given s equals

xs−(n−k)

(1− x)s−(n−k)
Gm+1−s+n−k,n+2−s(x) .

By summing over all s = n− k + 1, . . . , n, we see that the contribution for the case I 6= ∅ is given by

k
∑

j=1

xj

(1− x)j
Gm+1−j,k+2−j(x) .

Combining all the contributions, we obtain for 1 ≤ k < m,

Gm,k(x) = Gm,k+1(x) +
x

1− x

k−1
∑

j=0

xj

(1 − x)j
Gm−j,k+1−j(x) ,

with Gm,m(x) = (xFT (x))
m.
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In order to determine an equation for FT (x), we define G(t, u) = 1 +
∑

m≥1

∑m

k=1 Gm,k(x)u
k−1tm.

By multiplying the above recurrence by tmuk−1 and summing over k = 1, 2, . . . ,m− 1 and m ≥ 1, we

find

G(t, u) = 1 +
xFT (x)

1− tuxFT (x)
+

G(t, u)−G(t, 0)

u
+

x(G(t, u) −G(t, 0))

u(1− x− xut)
.

Note that G(1, 0) = 1 +
∑

m≥0Gm,1(x) = FT (x). Hence,

G(1, u) = 1 +
xFT (x)

1− uxFT (x)
+

G(1, u)− FT (x)

u
+

x(G(1, u)− FT (x))

u(1− x− xu)
.

To solve this functional equation, we apply the kernel method and take u = C(x), which is seen to cancel

out G(1, u). Thus,

0 = 1 +
xFT (x)

1− xC(x)FT (x)
− FT (x)

C(x)
− xFT (x))

C(x)(1 − x− xC(x))
,

which, using the identity C(x) = 1 + xC2(x), is equivalent to

FT (x) = 1 +
xFT (x)

1− xC(x)FT (x)
.

Solving this last equation completes the proof.

3.6.2 T = {2134, 2143, 2413}
Theorem 29. Let T = {2134, 2143, 2413}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof: Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly, G0(x) =
1 and G1(x) = xFT (x). Now let us write an equation for Gm(x). If π is a permutation that avoids T
with m left-right maxima, then, to avoid 2134, π has the form

π = i1i2 · · · im−1π
′imπ′′

with i1 < i2 < · · · < im = n (n is the maximal letter of π), im−1 > π′, and im > π′′.
If π′ is empty, then since π avoids 2413, we see that π′′ can be decomposed as π′′

mπ′′
m−1 · · ·π′′

1 , where

π′′
j > ij−1 > π′′

j−1, j = 2, . . . ,m, and π′′
j avoids T .

If π′ is not empty, then with i0 = 0, there is a maximal integer s such that is−1 < π′. Since π avoids

2413, we see that π′ = π′
m−1 · · ·π′

s+1π
′
s and π′′ = π′′

s · · ·π′′
1 , where

π′
m−1 > im−2 > π′

m−2 > · · · > is+1 > π′
s+1 > is > π′

sπ
′′
s > is−1 > π′′

s−1 > · · · > i1 > π′′
1 .

This means that π has the following diagrammatic shape.
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b

b

b

b

b

b

b

b

π′
m−1

π′
s+1

π′
s π′′

s

π′′
s−1

π′′
1

i1

is−2

is−1

is

is+1

im−2

im−1

im = n

. .
.

. .
. . . .

. . .

Decomposition of T -avoider, case π′ 6= ∅
Furthermore, π′

j avoids 213 for j = m− 1,m− 2, . . . , s + 1 or else n is the 4 of a 3124; π′
snπ

′′
s avoids

T and, since π′
s is not empty, it does not start with its largest letter; π′′

j avoids T for j = s− 1, . . . , 1.

Hence, the contribution in the case π′ is empty is xmFm
t (x); otherwise, the contribution for given

s, 1 ≤ s ≤ m, is

xm−1Cm−1−s(x)(FT (x) − 1− xFT (x))F
s−1
T (x) .

Combining all the contributions, we obtain

FT (x) = 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

m−1
∑

s=1

xm−1Cm−1−s(x)F s−1
T (x)

= 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

xm−1C
m−1(x) − Fm−1

T (x)

C(x) − FT (x)
,

and, using C(x) = 1 + xC2(x), we find that

FT (x) = 1− x2C2(x)FT (x) + xC(x)F 2
T (x),

which yields the stated generating function.

For the remaining three cases, we consider (right-left) cell decompositions. So suppose

π = π(m)imπ(m−1)im−1 · · ·π(1)i1 ∈ Sn

has m ≥ 2 right-left maxima n = im > im−1 > · · · > i1 ≥ 1. The right-left maxima determine a cell

decomposition of the matrix diagram of π as illustrated in the figure below for m = 4. There are
(

m+1
2

)

cells Cij , i, j ≥ 1, i+ j ≤ m+ 1, indexed by (x, y) coordinates, for example, C21 and C32 are shown.
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C21

C32

i4

i3

i2

i1

Cell decomposition

Cells with i = 1 or j = 1 are boundary cells, the others are interior. A cell is occupied if it contains at

least one letter of π, otherwise it is empty. Let αij denote the subpermutation of entries in Cij .

We now consider R = {1342, 1423}, a subset of the pattern set in the remaining three cases. The reader

may check the following characterization of R-avoiders in terms of the cell decomposition. A permutation

π is an R-avoider if and only if

1. For each occupied cell C, all cells that lie both strictly east and strictly north of C are empty.

2. For each pair of occupied cells C,D with D directly north of C (same column), all entries in C lie

to the right of all entries in D.

3. For each pair of occupied cells C,D with D directly east of C (same row), all entries in C are larger

than all entries in D.

4. αij avoids R for all i, j.

Condition (1) imposes restrictions on occupied cells as follows. A major cell for π is an interior cell C
that is occupied and such that all cells directly north or directly east of C are empty. The set of major cells

(possibly empty) determines a (rotated) Dyck path of semilength m− 1 with valley vertices at the major

cells as illustrated in the figure below. (If there are no major cells, the Dyck path covers the boundary

cells and has no valleys.)

b

b

b

b

b

b

b

b

b

b

b

b

b

rotate

(rotated) Dyck path

= major cell

Dyck path

= valley vertex

If π avoids R, then condition (1) implies that all cells not on the Dyck path are empty, and condition (4)

implies St(αij ) is an R-avoider for all i, j. Conversely, if n = im > im−1 > · · · > i1 ≥ 1 are given and
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we have a Dyck path in the associated cell diagram, and an R-avoider πC is specified for each cell C on

the Dyck path, with the additional proviso πC 6= ∅ for valley cells, then conditions (2) and (3) imply that

an R-avoider with this Dyck path is uniquely determined.

It follows that an R-avoider π avoids the pattern τk where τ ∈ Sk−1 if and only if all the subpermuta-

tions αij avoid R and τ . We use this observation in the next two results. As an immediate consequence,

we have

Proposition 30. Let τ and τ ′ be two patterns in Sk−1. If F{1342,1423,τ}(x) = F{1342,1423,τ ′}(x), then

F{1342,1423,τk}(x) = F{1342,1423,τ ′k}(x).

We can now find a recurrence for avoiders of the pattern set R ∪ {12 · · ·k}.

Proposition 31. Let Tk = {1342, 1423, 12 · · ·k}. Then

FTk
(x) =

1 + (x− 2)FTk−1
(x) +

√

(

1 + xFTk−1
(x)
)2 − 4xF 2

Tk−1
(x)

2
(

1− FTk−1
(x)
) .

Proof: For brevity, set Fk = FTk
(x). So, for m right-left maxima and an associated Dyck path of

semilength m − 1, the contribution to Fk is xm for the right-left maxima, Fk−1 − 1 for each valley

vertex, and Fk−1 for every other vertex. Let ℓ denote the number of peaks in the Dyck path, so that ℓ− 1
is the number of valleys. Recall that the Narayana number Nm,ℓ = 1

m

(

m
ℓ

)(

m
ℓ−1

)

counts Dyck paths of

semilength m with ℓ peaks (see [26, Seq. A001263]). Hence, summing over m,

Fk = 1 + xFk−1 +
∑

m≥2

xm

m−1
∑

ℓ=1

Nm−1,ℓ (Fk−1 − 1)ℓ−1F 2m−ℓ
k−1

= 1 + xFk−1 +
xF 2

k−1

Fk−1 − 1

∑

m≥1

m
∑

ℓ=1

Nm,ℓ

(

xF 2
k−1

)m

(

1− 1

Fk−1

)ℓ

= 1 + xFk−1 +
xF 2

k−1

Fk−1 − 1
N
(

xF 2
k−1, 1− 1/Fk−1

)

,

where N(x, y) :=
∑

m≥1

∑m

ℓ=1 Nm,ℓx
myℓ is the generating function the Narayana numbers. It is known

that

N(x, y) =
1− x(1 + y)−

√

(1− x(1 + y))2 − 4x2y

2x

and the theorem follows.

3.6.3 T = {1234, 1342, 1423}
Theorem 32. Let T = {1234, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.
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Proof: Since F{1342,1423,123}(x) = F{123}(x) = C(x), we get by Proposition 31 that

FT (x) = 1 + xC(x) +
xC2(x)

C(x)− 1
N
(

xC2(x), 1− 1/C(x)
)

,

which, after some algebraic manipulation, agrees with the desired expression.

3.6.4 T = {1324, 1342, 1423}
Theorem 33. Let T = {1324, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof: Since F{1342,1423,132}(x) = F{132}(x) = C(x) and F{1342,1423,123}(x) = F{123}(x) = C(x),
we get by Proposition 30 with τ = 132 and τ ′ = 123 that F{1342,1423,1324}(x) = F{1342,1423,1234}(x).
Now apply Theorem 32.

3.6.5 T = {1243, 1342, 1423}
Theorem 34. Let T = {1243, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof: A permutation π ∈ ST (n) with m ≥ 2 right-left maxima avoids R and so the cell decomposition

of π has an associated Dyck path that covers all occupied cells. To also avoid 1243, all the Dyck path cells

except those incident with a right-left maximum, that is, cells Cij with i+ j = m+ 1, must avoid 12 for

otherwise some two right-left maxima would form the 43 of a 1243. Other cells need only avoid 1243.

The cells Cij with i+ j = m+1 consist of the extremities C1m and Cm1 together with all the low valleys

in the Dyck path (a low valley is one incident with ground level, the line joining the path’s endpoints).

Suppose the Dyck path has ℓ low valleys and h high valleys. The contribution of the right-left maxima is

xm. Since F{12}(x) = 1/(1 − x), the contributions of the 2m − 1 Dyck path cells are as follows. The

two extremities contribute F 2
T (x), the ℓ low valleys contribute (FT (x)− 1)ℓ, the h high valleys contribute

(

1
1−x

− 1
)h

=
(

x
1−x

)h
, and the remaining cells contribute

(

1
1−x

)2m−3−ℓ−h
.

Let Mm,ℓ,h denote the number of Dyck paths of semilength m containing ℓ low valleys and h high

valleys, with generating function M(x, y, z) =
∑

m,ℓ,h≥0Mm,ℓ,hx
myℓzh. Then, by the first return de-

composition of the Dyck paths, we obtain

M(x, 1, z) = 1 + xM(x, 1, z) + xzM(x, 1, z)(M(x, 1, z)− 1)

and

M(x, y, z) = 1 + xM(x, 1, z) + xyM(x, 1, z)(M(x, y, z)− 1) .
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Thus,

M(x, y, z) =
y − 2z − 1 + x(1 − y)(1− z) + (1− y)

√

1− 2x(1 + z) + x2(1 − z)2

(1− x)y + (xy − 2)z − y
√

1− 2x(1 + z) + x2(1− z)2
.

Hence, summing over m and over all Dyck paths gives

FT (x) = 1 + xFT (x) +
∑

m≥2

∑

ℓ,h≥0

Mm−1,ℓ,hx
m+hF 2

T (x)
(

FT (x)− 1
)ℓ 1

(1 − x)2m−3−ℓ
.

After several algebraic steps and solving for FT (x), one obtains the desired formula.

The preceding theorem can be extended to the case Tk = {1342, 1423, τk(k − 1)} with k ≥ 4 as

follows.

Theorem 35. Let k ≥ 4 and τ ∈ Sk−2. Let Tk = {1342, 1423, τk(k− 1)} and T ′
k = {1342, 1423, τ}.

Then

FTk
(x) =

(2− x)(1 − t)− x2F 2
T ′

k

(x)(1 + (x− 2)FT ′

k
(x)) +

√

2x(a− bt)

2(1− xF 2
T ′

k

(x) + x2F 3
T ′

k

(x) − t)
,

where

t =
√

(1 − xF 2
T ′

k

(x))2 − x2F 3
T ′

k

(x)(2 − 2xF 2
T ′

k

(x) + x2F 3
T ′

k

(x)),

a = (x− 4)(1 + x4F 6
T ′

k
(x)) + 2xF 2

T ′

k
(x)(1 + (1 − x)F 2

T ′

k
(x) + x2F 3

T ′

k
(x)) + x3F 4

T ′

k
(x),

b = (4 − x)(1 + x2F 3
T ′

k
(x)) + x(2 − x)F 2

T ′

k
(x).

Proof: The proof follows along the same lines as in the preceding theorem except that FT (x) is replaced

by FTk
(x) and F{12}(x) by FT ′

k
(x). The details are left to the reader.

4 Concluding remarks

No one technique seemed to have solved all of the (4, 4, 4)-cases, with more than one technique often

required for triples in the same symmetry class. This is frequently the case for the problem of avoidance

on permutations and also other discrete structures. It is well known that there is no general procedure for

countingT -avoiding permutations, which is why it might be described as an art. The often complementary

methods seen here included use of initial letters, left-right maxima, lattice paths (in conjunction with the

cell decomposition used in Case 238), combinatorial statistics and auxiliary arrays. The last method,

which was applied in such cases as 229B and 235A above, could rightfully be termed the method of

multiple arrays. For it entailed defining several arrays enumerating various subsets of the class of avoiders

in question and then finding recurrences for these arrays, which were often intertwined. These recurrences

would then lead to a system of functional equations satisfied by the corresponding generating functions,

which was often easier to solve than the single functional equation for the entire class (if it could even be

found).

An integer sequence {an} is called polynomially recursive, or P -recursive (or D-finite), if it satisfies a

nontrivial linear recurrence relation of the form q0(n)an + q1(n)an−1 + · · ·+ qk(n)an−k = 0 for some



42 David Callan, Toufik Mansour, Mark Shattuck

polynomials q1(x), . . . , qk(x) having integer coefficients. A D-finite function is one satisfying a linear

differential equation having polynomial coefficients. In 1996, Noonan and Zeilberger [24] conjectured

that the sequence |Sn(T )| is P -recursive in n for any set of permutation patterns T . In 2015, this conjec-

ture was disproved by Garrabrant [9, Chapter 2] in his thesis. Thus, there is interest as to whether or not a

sequence |Sn(T )| is P -recursive, or if the corresponding generating function FT (x) =
∑

n≥0 |Sn(T )|xn

is algebraic or not. Note that every algebraic function is D-finite (Abel’s theorem). In this paper, we have

demonstrated that the generating function FT (x) is algebraic for any set T of three patterns in S4, where

T belongs to a large Wilf class. But in general this is not the case, see [9].

We have made use of software from [14] in computing the initial terms of the sequence {|Sn(T )|}n≥1

on which we based our assumptions for the various equivalences prior to proving them. One might wonder

how many terms of this sequence were required to distinguish the various Wilf classes. Let us say that the

Wilf classification of all sets of k patterns in S4 has a depth d = d(k) if sets T and T ′ each containing

k patterns belong to the same Wilf class if and only if |Sn(T )| = |Sn(T
′)| for all n = 1, . . . , d. As a

preliminary step, we created the sequences {|Sn(T )|}16n=1 for all sets T containing three patterns in S4.

After doing so, we noticed that d(3) = 9. Below are the values we have found for 1 ≤ k ≤ 23:

k 1 2 3 4 5 6 7 8 9 10 11 12

d(k) 7 8 9 10 10 11 11 11 10 10 10 10

k 13 14 15 16 17 18 19 20 21 22 23

d(k) 9 9 9 8 8 7 7 7 7 6 5

Tab. 2: Values of d(k).

The values d(10), d(11), . . . , d(23) above follow from the work in [18], while d(8) and d(9) follow

from [19]. The values for d(4) through d(7) are conjectural and will be an object of forthcoming work.

Once the Wilf classification for sets of patterns in S4 of size four through seven is settled, so will be the

complete classification of all subsets of S4. This would represent a significant extension of the comparable

result of Simion and Schmidt [25] for S3.
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