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WILF CLASSIFICATION OF TRIPLES OF 4-LETTER PATTERNS II

DAVID CALLAN, TOUFIK MANSOUR, AND MARK SHATTUCK

Abstract. This is the second of two papers in which we determine all 242 Wilf classes of triples
of 4-letter patterns by showing that there are 32 non-singleton Wilf classes. There are 317 sym-
metry classes of triples of 4-letter patterns and after computer calculation of initial terms, the
problem reduces to showing that counting sequences that appear to be the same (agree in the
first 16 terms) are in fact identical. This amounts to counting avoiders for 107 representative
triples. The insertion encoding algorithm (INSENC) applies to many of them and some others
have been previously counted. There remain 36 triples and the first paper dealt with the first
18. In this paper, we find the generating function for the last 18 triples which turns out to be
algebraic in each case. Our methods are both combinatorial and analytic, including decomposi-
tions by left-right maxima and by initial letters. Sometimes this leads to an algebraic equation
for the generating function, sometimes to a functional equation or a multi-index recurrence that
succumbs to the kernel method. A particularly nice so-called cell decomposition is used in one
of the cases (Case 238).

Keywords: pattern avoidance, Wilf-equivalence, kernel method, insertion encoding algorithm

1. Introduction

In recent decades pattern avoidance has received a lot of attention. It has a prehistory in the work
of MacMahon [13] and Knuth [9] but the paper that really sparked the current interest is by Simion
and Schmidt [16]. They thoroughly analyzed 3-letter patterns, including a bijection between 123-
and 132-avoiding permutations, thereby explaining the first (nontrivial) instance of what is, in
modern terminology, a Wilf class. Since then the problem has been addressed on several other
discrete structures, such as compositions, k-ary words, and set partitions; see, e.g., the texts [7,14]
and references contained therein.

Permutations avoiding a single 4-letter pattern have been well studied (see, e.g., [18,19,21]). There
are 56 symmetry classes of pairs of 4-letter patterns, for all but 8 of which the avoiders have been
enumerated [1]. Le [12] established that these 56 symmetry classes form 38 distinct Wilf classes.
Vatter [20] showed that of these 38, 12 can be enumerated with regular insertion encodings (the
INSENC algorithm). Some of these generating functions were computed by hand by Kremer and
Shiu [10].

Much less is known about larger sets/longer patterns. Here, we consider the 317 symmetry classes
of triples of 4-letter patterns and determine their Wilf classes. First, we used the software of
Kuszmaul [11] to compute the initial terms {|Sn(T )|}16n=1 for a choice of T in each of the 317
symmetry classes. These results are available for reference in Table 2 in the Appendix of the arXiv
full length version [6] of the paper. There are 242 distinct 16-term sequences among the 317, giving
a lower bound of 242 on the number of Wilf classes. We will show that whenever two sequences in
Table 2 [6] agree in the first 16 terms, they are in fact identical, and so 242 is also an upper bound.
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To do so, we will find the generating function for every triple whose 16-term counting sequence is
repeated in Table 2 [6]. Thirty-eight of them can be found by INSENC, while some others have
been previously counted. There remain 36 triples to enumerate with 15 distinct counting sequences
(cases). The first 9 cases (50, 55, 166, 171, 174, 177, 191, 196, 201 in the full table of 242 counting
sequences [6]), treated in the first paper, cover 18 of these 36 triples. In this paper, we treat the
remaining 6 cases (203, 218, 229, 234, 235, 238) which cover the last 18 triples, see Table 1 below.

Summarizing, there are 242 Wilf classes of triples of 4-letter patterns, of which 210 are singleton
(trivial) and 32 contain more than one symmetry class (nontrivial). Enumeration of the trivial
Wilf classes will be treated in a forthcoming paper.

Theorem 1 (Main Theorem). There are exactly 242 Wilf classes (32 nontrivial Wilf classes)
of triples of 4-letter patterns in permutations.

Table 1: Nontrivial Wilf classes of three 4-letter patterns from Case 203 to
Case 239 , numbering taken from Table 2 [6].

Start of Table

No. T
∑

n≥0 |Sn(T )|xn Reference

203 {3142,1432,1324}, {3124,1423,1234} 1−x

2−2x−(1−x−x2)C(x)
Thm. 2, 5

215 {1243,2134,2143}, {1234,1243,2143}
{1423,2314,2413}, {1423,1432,4123}

1−4x+2x2

(1−x)(1−4x+x2)
INSENC

218 {1342,2314,2413}, {3142,1324,1423}
{3124,1423,1243}

(1−2x)(1+
√

1−4x)

x2+(2−4x+x2)
√

1−4x
Thm. 6, 7, 10

221 {2413,3142,1324}, {2143,3142,1324}
{2143,1324,1423}, {3142,4132,1243}
{3142,4123,1423}, {4132,1432,1243} 1 + 1−2x

2(1−x)

(

1√
1−4x

− 1
)

[4]

{4132,1342,1324}
229 {2413,3142, 2341}, {2143,1342,1423}

{2134,1342,1423}
1−2x+2x2−

√
1−8x+20x2−24x3+16x4−4x5

2x(1−x+x2)
Thm. 11, 14, 17

233 {2143,1324,1243}, {2134,1324,1243}
{2134,1243,1234}, {3142,4132,1432}
{3142,4132,1342}, {3142,4132,1423}
{3142,1342,1324}, {3124,1342,1324}

2(1−4x)

2−9x+4x2−x
√
1−4x

[5]

{3124,1324,1423}, {4132,1432,1324}
{4132,4123,1423}, {1342,4123,1423}

234 {2143,2413,2314}, {3142,1342,1243} (1−x)2−
√

(1−x)4−4x(1−2x)(1−x)

2x(1−x)
Thm. 18, 19

235 {1423,1432,2143}, {3142,1432,1423} FT (x) = 1− x+ xFT (x)
{1234,1243,2314} +x(1− 2x)F 2

T (x) + x2F 3
T (x)

Thm. 23, 24, 27

236 {1423,3124,4123}, {1342,1432,4132}
{1324,1423,1432}, {1243,1324,1423} 1−5x+(1+x)

√
1−4x

1−5x+(1−x)
√

1−4x
[3]

{1234,1243,1423}
238 {1423,2413,3142}, {2134,2143,2413}

{1342,1423,1234}, {1342,1423,1324} 3−2x−
√

1−4x−
√

2−16x+4x2+(2+4x)
√
1−4x

2(1−
√

1−4x)
Thm. 28, 29, 32, 33, 34

{1342,1423,1243}
239 {2413,3412,3142}, {4312,3412,4132}

{3412,3142,1342}, {3142,1432,1342}
2

1+x+
√

1−6x+5x2
[15]

{3142,1342,1423}, {3124,1324,1243}
{1432,1423,1243}, {1324,1423,1234}
{4123,1423,1243}

End of Table
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2. Preliminaries and Notation

We say a permutation is standard if its support set is an initial segment of the positive integers,
and for a permutation π whose support is any set of positive integers, St(π) denotes the standard
permutation obtained by replacing the smallest entry of π by 1, the next smallest by 2, and so on.
As usual, a standard permutation π avoids a standard permutation τ if there is no subsequence ρ
of π for which St(ρ) = τ . In this context, τ is called a pattern, and for a list T of patterns, Sn(T )
denotes the set of permutations of [n] = {1, 2, . . . , n} that avoid all the patterns in T .

A permutation has an obvious representation as a matrix diagram,

•

•

•

matrix diagram of the permutation 312

and it will often be convenient to use such diagrams where shaded areas always indicate regions
that contain no entries (blank regions may generally contain entries but in a few cases, as noted
and clear from the context, they don’t).

The eight symmetries of a square, generated by rotation and reflection, partition patterns and sets
of patterns into symmetry classes on each of which the counting sequence for avoiders is obviously
constant. Thus if π avoids τ then, for example, π−1 avoids τ−1 since inversion corresponds to
flipping the matrix diagram across a diagonal. It sometimes happens (and remarkably often) that
different symmetry classes have the same counting sequence, and all symmetry classes with a given
counting sequence form a Wilf class. Thus Wilf classes correspond to counting sequences.

Throughout, C(x) = 1−
√
1−4x
2x denotes the generating function for the Catalan numbers Cn :=

1
n+1

(

2n
n

)

=
(

2n
n

)

−
(

2n
n−1

)

. As is well known [2], C(x) is the generating function for (|Sn(π)|)n≥0

where π is any one of the six 3-letter patterns. Occasionally, we need the generating function for
avoiders of a 3-letter and a 4-letter pattern; see [2] for a comprehensive list.

A permutation π expressed as π = i1π
(1)i2π

(2) · · · imπ(m) where i1 < i2 < · · · < im and ij >

max(π(j)) for 1 ≤ j ≤ m is said to have m left-right maxima (at i1, i2, . . . , im). Given nonempty
sets of numbers S and T , we will write S < T to mean max(S) < min(T ) (with the inequality
vacuously holding if S or T is empty). In this context, we will often denote singleton sets simply
by the element in question. Also, for a number k, S − k means the set {s− k : s ∈ S}. An ascent

in π is a pair of adjacent increasing entries, thus 413625 has 3 ascents, 13, 36 and 25.

Our approach is ultimately recursive. In each case, we examine the structure of an avoider, usu-
ally by splitting the class of avoiders under consideration into subclasses according to a judicious
choice of parameters which may involve, for example, left-right maxima, initial letters, ascents, and
whether resulting subpermutations are empty or not. The choice is made so that each member of
a subclass can be decomposed into independent parts. The generating function for the subclass
(a summand of the full generating function) is then the product of the generating functions for
the parts, and we speak of the “contribution” of the various parts to the generating function for
that subclass. For Case 238, we use a cell decomposition, described in that subsection. From the
structure, we are able to find an equation for the generating function FT (x) :=

∑

n≥0 |Sn(T )|xn,
where T is the triple under consideration. This equation is often algebraic and, if linear or qua-
dratic, as it is here in all but one case, easy to solve explicitly once found (the exception being the



4 D. CALLAN, T. MANSOUR, AND M. SHATTUCK

cubic equation for the triples in Case 235). It also often comes in the form of a functional equation
requiring the kernel method (see, e.g., [8] for an exposition). In every case, the generating function
turns out to be algebraic.

Furthermore, in several cases, especially those where recurrences are made use of, we have in fact
counted members of the avoidance class in question according to the distribution of one or more
statistics, specific to the class, and have assumed particular values of the parameters to obtain the
avoidance result. In some of these cases, to aid in solving the recurrence, certain auxiliary arrays
related to the statistic are introduced. This leads to systems of linear functional equations to which
we apply the kernel method, adapted for a system. See, for example, the proof below of the first
triple in Case 235. Also, in instances where the kernel method is used, it is usually possible (if
desired) to solve the functional equation in its full generality yielding a polynomial generalization
of the avoidance result.

We now proceed to the proofs for the 6 cases listed in the Introduction.

3. Proofs

3.1. Case 203. The two representative triples T are:

{1324,1432,3142} (Theorem 2)

{1234,1342,2314} (Theorem 5)

3.1.1. T = {1324,1432,3142}.

Theorem 2. Let T = {1324, 1432, 3142}. Then

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2. Suppose
π = i1π

(1)i2π
(2) · · · imπ(m) is a permutation that avoids T with m ≥ 2 left-right maxima. Then

π(j) avoids 132 for all j = 1, 2, . . . ,m− 1 or else im is the 4 of a 1324. All the letters greater than
i1 in π(m) are increasing (to avoid 1432) and all the letters less than i1 in π(m) are < all letters
in other π’s (to avoid 3142), and i1 > π(1) > π(2) > · · · > π(m−1) (see figure, where the shaded
regions are empty to avoid the indicated pattern with the gray bullets).

i1

im−1

im

. . .

. .
.

13
•
24

3
•
14

•
2

3
•
14

•
2

π(1)

π(m−1)
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Also, at most one of the m− 1 rectangles covered by the arrow can be occupied: ab in π(m) with
b in a higher such rectangle than a makes ab the 24 of a 1324, and b in a lower rectangle than a
makes ab the 32 of a 1432. So we distinguish two cases:

• all of these rectangles except possibly the top one are empty, i.e., there is no letter in π(m)

between i1 and im−1. In this case π(m) can be decomposed as β(1)(im−1 + 1)β(2)(im−1 +
2) · · ·β(im−im−1−1)(im − 1)β(im−im−1) such that π(m−1) > β(1) > · · · > β(im−im−1), β(j)

avoids 132 for j = 1, 2, . . . , im − im−1 − 1 and β(im−im−1) avoids T . Since β(j) avoids 132,
each β(j)(im−1 + j) contributes xC(x) and since there are zero or more of them, their

contribution is 1
1−xC(x) . So, this case contributes xmC(x)m−1FT (x)

1−xC(x) .

• There is a letter in π(m) between ip and ip+1 for some p ∈ [m − 2]. Then π(p+1) = · · · =
π(m−1) = ∅ (3142) and π(m) can be decomposed as

β(1)(ip + 1)β(2)(ip + 2) · · ·β(ip+1−ip−1)(ip+1 − 1)β(ip+1−ip)

such that π(p) > β(1) > · · · > β(ip+1−ip) where all except the last β(j) avoid 132 and
β(ip+1−ip) avoids T . This time there is at least one β(j)(ip + j) and so we have an overall

contribution of xm+1C(x)p+1FT (x)
1−xC(x) .

Since C(x) = 1
1−xC(x) , we find that

Gm(x) = xmC(x)mFT (x) +

m−2
∑

p=1

xm+1C(x)p+2FT (x),

for m ≥ 2, with G1(x) = xFT (x) and G0(x) = 1.

From FT (x) =
∑

m≥0 Gm(x), we deduce

FT (x) = 1 + xFT (x) + x2C(x)3FT (x) −
x2C(x)FT (x)

1− x
+ x2C(x)2FT (x),

with solution

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.

�

3.1.2. T = {1234,1342,2314}. A permutation π = π1π2 · · ·πn is said to have an ascent at index
i if πi < πi+1, where 1 ≤ i ≤ n − 1. The letter πi+1 is called an ascent top. In order to count
the members of Sn(T ), we categorize them by the nature of their leftmost ascent (i.e., smallest i
such that πi < πi+1). If n ≥ 2 and 1 ≤ i ≤ n − 1, let a(n; i) denote the number of T -avoiding
permutations of length n whose leftmost ascent occurs at index i, with a(n;n) = 1 for n ≥ 1 (this
accounts for the permutation n(n−1) · · · 1, which is understood to have an ascent at index n). Let
a(n) =

∑n

i=1 a(n; i) for n ≥ 1, with a(0) = 1.

We now consider various restrictions on the ascent top corresponding to the leftmost ascent which
will prove helpful in determining a recurrence for a(n; i). Let An,i denote the subset of permutations
of Sn(T ) enumerated by a(n; i). If 1 ≤ i ≤ n− 1, let b(n; i) be the number of members of An,i in
which the leftmost ascent top equals n. If 1 ≤ i ≤ n− 2, let c(n; i) be the number of members of
An,i not starting with n in which the leftmost ascent top equals n− 1. Finally, for 1 ≤ i ≤ n− 2,
let d(n; i) be the number of members of An,i not starting with n in which the leftmost ascent top
is less than n − 1. For example, we have b(4; 2) = 3, the enumerated permutations being 2143,
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3142 and 3241, c(4; 1) = 2, the permutations being 1324 and 2341 (note that 1342 and 2314 are
excluded), and d(5; 3) = 2, the permutations being 42135 and 43125. Note that by the definitions,
we have

(1) a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1,

upon considering whether or not a member of An,i starts with n. The arrays b(n; i), c(n; i) and
d(n; i) are determined recursively as follows.

Lemma 3. We have

(2) b(n; i) =

n−1
∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1,

(3) c(n; i) =

n−i−1
∑

j=1

a(j − 1), 1 ≤ i ≤ n− 2,

and

(4) d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2.

Proof. Let Bn,i, Cn,i and Dn,i denote the subsets of Sn(T ) enumerated by b(n; i), c(n; i) and
d(n; i), respectively. For (2), observe that members of Bn,i can be obtained by inserting n directly

after the i-th letter of a member of ∪n−1
j=i An−1,j , with such an insertion seen not to introduce an

occurrence of any of the patterns in T (since the “4” does not correspond to the first ascent within
these patterns). This insertion operation is seen to be a bijection and hence (2) follows. To show
(3), note that members π ∈ Cn,i must be of the form

π = αj(n− 1)βnγ,

where α = j+ i− 1, j+ i− 2, . . . , j +1 for some j ∈ [n− i− 1], β = n− 2, n− 3, . . . , j+ i, and γ is
a T -avoider (on the letters in [j − 1]). The section α if nonempty consists of a decreasing string of
consecutive numbers ending in j+1 in order to avoid 2314, with all letters in [j+ i, n− 2] required
to be to the left of n and all letters in [j − 1] required to be to the right, in order to avoid 1342 or
2314, respectively. That β is decreasing is required in order to avoid 1234. Furthermore, one may
verify that all permutations π of the stated form above avoid the patterns in T . Considering all

possible j, we get
∑n−i−1

j=1 a(j − 1) possibilities for π, which gives (3).

Finally, to show (4), first note that one can express σ ∈ Dn,i as

σ = σ(1)jkσ(2)σ(3)σ(4),

where σ(1) is a decreasing sequence of length i − 1 in [j + 1, n − 1], 1 ≤ j < k < n − 1, σ(2)

is contained within [j + 1, k − 1], σ(3) is a sequence in [k + 1, n] that contains n, and σ(4) is a
permutation of [j − 1]. Observe that σ(3) must decrease in order to avoid 1234 and hence starts
with n. If n− 1 belongs to σ(3), then removing n is seen to define a bijection with Cn−1,i∪Dn−1,i.

If n− 1 belongs to σ(1), then removing n− 1, and replacing n with n− 1, defines a bijection with
Cn−1,i−1 ∪Dn−1,i−1. Combining the two previous cases implies (4) and completes the proof. �

Let an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u) =

∑n−1
i=1 b(n; i)ui for n ≥ 2, cn(u) =

∑n−2
i=1 c(n; i)ui

for n ≥ 3, and dn(u) =
∑n−2

i=1 d(n; i)ui for n ≥ 3. For convenience, we take a0(u) = 1.
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Then recurrences (1) and (2) imply

(5) an(u) = uan−1(u) + bn(u) + cn(u) + dn(u), n ≥ 1,

and

bn(u) =

n−1
∑

i=1

ui

n−1
∑

j=i

a(n− 1; j) =

n−1
∑

j=1

a(n− 1; j)

j
∑

i=1

ui

=
u

1− u
(an−1(1)− an−1(u)), n ≥ 2.(6)

Multiplying both sides of (3) by ui, and summing over 1 ≤ i ≤ n− 2, yields

cn(u) =
n−2
∑

j=1

a(j − 1)

n−j−1
∑

i=1

ui

=
u

1− u

n−2
∑

j=1

a(j − 1)− 1

1− u

n−2
∑

j=1

a(j − 1)un−j, n ≥ 3.(7)

Finally, recurrence (4) gives

(8) dn(u) = (1 + u)(cn−1(u) + dn−1(u)), n ≥ 3.

Let a(x;u) =
∑

n≥0 an(u)x
n. It is determined by the following functional equation.

Lemma 4. We have

(9)

(

1 +
xu2

1− u

)

a(x;u) = 1 + xu

(

1

1− u
+

x2

(1− x)(1 − xu)(1 − x− xu)

)

a(x; 1).

Proof. Let b(x;u) =
∑

n≥2 bn(u)x
n, c(x;u) =

∑

n≥3 cn(u)x
n, and d(x;u) =

∑

n≥3 dn(u)x
n.

Rewriting recurrences (5)–(8) in terms of generating functions yields the following:

a(x;u) = 1 + xua(x;u) + b(x;u) + c(x;u) + d(x;u),

b(x;u) =
xu

1− u
(a(x; 1)− a(x;u)),

c(x;u) =
x3u

(1− x)(1 − xu)
a(x; 1),

d(x;u) = x(1 + u)(c(x;u) + d(x;u)).

Noting

c(x;u) + d(x;u) = c(x;u) +
x(1 + u)

1− x(1 + u)
c(x;u) =

c(x;u)

1− x(1 + u)
,

and using the expressions for b(x;u) and c(x;u) in the equation for a(x;u), gives (9). �

We can now determine the generating function for the sequence a(n).

Theorem 5. Let T = {1234, 1342, 2314}. Then

FT (x) =
1− x

2− 2x− (1 − x− x2)C(x)
.
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Proof. In the present notation, we must find a(x; 1). Applying the kernel method to (9), and
setting u = C(x), gives

a(x; 1) = − (1− x)(1 − u)(1− xu)(1 − x− xu)

xu(1− x)(1 − xu)(1− x− xu) + x3u(1− u)

=
xu(1− x− xu)(1 − x)

x(1 − x)2 − x2(1− x)u + x3u(1− u)

=
(1 − x)(1 − xu)

x+ (1− x)2 − 2x(1− x)u
,

where we have used the fact xu2 = u−1 several times. Multiplying the numerator and denominator
of the last expression by u gives

a(x; 1) =
(1 − x)(u − xu2)

(1− x+ x2)u− 2(1− x)(u − 1)
=

1− x

2− 2x− (1− x− x2)u
,

as desired. �

3.2. Case 218. The three representative triples T are:

{1342,2314,2413} (Theorem 6)

{1324,1423,3142} (Theorem 7)

{1243,1342,2314} (Theorem 10)

3.2.1. T = {1342,2314,2413}.
Theorem 6. Let T = {1342, 2314, 2413}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x) with m ≥ 2.

For m = 2, suppose π = iπ′nπ′′ ∈ Sn(T ) has two left-right maxima. In π′′ all letters > i occur
before all letters < i for else π′′ contains letters a, b with a < i < b and inab is a 2413. Thus,
π = iπ′nβ′β′′ with β′ > i > β′′:

π′

β′

β′′

i

n

If β′ is decreasing, then π = iπ′n(n− 1) · · · (i + 1)β′′ and π′iβ′′ ∈ Si(T ), giving a contribution of
x

1−x
(FT (x)− 1).

If β′ is not decreasing, then π′ > β′′ (or an ascent ab in β′ would be the 34 of a 1342); π′ avoids
231 (or n is the 4 of a 2314); β′ avoids 231 (or i is the 1 of a 1342), and β′′ avoids T . Since
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β′ is not decreasing, its contribution is C(x) − 1
1−x

, and the overall contribution of this case is

x2C(x)
(

C(x)− 1
1−x

)

FT (x). Thus,

G2(x) =
x

1− x
(FT (x) − 1) + x2C(x)

(

C(x) − 1

1− x

)

FT (x) .

Now, let m ≥ 3 and suppose π = i1π
(1)i2π

(2) · · · imπ(m) is a permutation that avoids T with m
left-right maxima. Let α (resp. β) denote the list of letters in π(m) that are greater than (resp.
less than) i1. All letters of α occur before all letters of β in π(m) (or i1im−1 are the 23 of a 2314)
and so π(m) = αβ; π(1) > β (or a ∈ π(1), b ∈ β with a < b makes ai2imb a 1342); π(j) > ij−1 for
j = 2, . . . ,m− 1 (or ij−1ijim are the 234 of a 2314); α > im−1 (or i1im−1im are the 134 of a 1342).
Thus, π has the form pictured.

π(1)

π(2)

π(m−1)

. .
.

α

β

i1

i2

im−1

im

Also, πj avoids 231, j = 1, 2, . . . ,m− 1 (or im is the 4 of a 2314); α avoids 231 (or im−1 is the 1
of a 1342); β avoids T . Hence,

Gm(x) = xmCm(x)FT (x) .

From FT (x) =
∑

m≥0 Gm(x), we obtain

FT (x) = 1 + xFT (x) +
x

1− x
(FT (x)− 1) + x2C(x)

(

C(x) − 1

1− x

)

FT (x) +
∑

m≥3

xmCm(x)FT (x) .

Solving for FT (x) yields

FT (x) =
(1 − 2x)(1− xC(x))

(1 − 2x)(1− x)− x(1 − 2x)(1 − x)C(x) − x2(1− 2x)C2(x)− x4C3(x)
,

which is equivalent to the desired expression. �

3.2.2. T = {1324,1423,3142}.
Theorem 7. Let T = {1324, 1423, 3142}. Then

FT (x) =
(1 − 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) has m ≥ 2

left-right maxima. Then i1 > π(j) for all j = 1, 2, . . . ,m− 1 to avoid 1324, and the letters > i1 in
π(m) are decreasing to avoid 1423. We consider two cases for π(m):
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• Each letter of π(m) is either greater than im−1 or smaller than i1. In this case, π(m) =
β(1)(n − 1) · · ·β(n−1−im−1)(im−1 + 1)β(n−im−1), where π(1) > · · · > π(m−1) > β(1) >
· · · > β(n−im−1) and π(j) avoids 132 for j = 1, 2, . . . ,m − 1, β(j) avoids 132 for j =
1, 2, . . . , n− 1− im−1 and β(n−im−1) avoids T . There are zero or more factors of the form
βj(n− j), each contributing xC(x). Hence, the contribution is

xmC(x)m−1FT (x)

1− xC(x)
= xmC(x)mFT (x) .

• π(m) has a letter between i1 and im−1 (this case only arises for m ≥ 3). Let s ∈ [m− 2 ] be
the smallest index such that π(m) has a letter between is and is+1. Then π(s+1) = · · · =
π(m−1) = ∅ to avoid 3142, and π has the form

π(1)

π(s)

γ

β1

βr

. .
.

. . .

. . .

. . .

i1

is

is+1

im

,

where blank regions are empty and there is one β for each of the r := is+1 − is − 1 letters
in [is +1, is+1− 1], the π’s and β’s all avoid 132 (due to 1324), γ avoids T , and the arrows
indicate decreasing entries. The π’s contribute C(x)s; each β and its associated letter
between is and is+1 contributes xC(x) and there are one or more β’s, so they contribute
xC(x)

1−xC(x) ; each of the m − 1 − s arrows contributes 1
1−x

; γ contributes FT (x). Thus, for

given s ∈ [m− 2], the contribution is

xmC(x)sFT (x)

(1− x)m−1−s

xC(x)

1− xC(x)
=

xm+1C(x)s+2FT (x)

(1− x)m−1−s
.

Hence, from FT (x) =
∑

m≥0Gm(x), we have

FT (x) = 1 + xFT (x) +
∑

m≥2

(

xmC(x)mFT (x) + xm+1C(x)2FT (x)

m−2
∑

s=1

C(x)s

(1− x)m−1−s

)

,

with solution

FT (x) =
(1 − 2x)(1− xC(x))

(1− 2x)(1 − x)− x(1 − 2x)(1− x)C(x) − x2(1− 2x)C(x)2 − x4C(x)3
,

which simplifies to the desired expression. �
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3.2.3. T = {1243,1342,2314}. We will employ an approach similar to that used for the second
triple in case 203 above and make use of the same notation. As before, we have

(10) a(n; i) = a(n− 1; i− 1) + b(n; i) + c(n; i) + d(n; i), 1 ≤ i ≤ n− 1,

with a(n;n) = 1 for n ≥ 1. The arrays b(n; i), c(n; i) and d(n; i) are determined recursively as
follows and a similar proof applies.

Lemma 8. We have

b(n; i) =

n−1
∑

j=i

a(n− 1; j), 1 ≤ i ≤ n− 1,(11)

c(n; i) = a(n− i− 2) +
n−i−2
∑

j=1

2n−i−j−2a(j − 1), 1 ≤ i ≤ n− 2,(12)

d(n; i) = c(n− 1; i) + c(n− 1; i− 1) + d(n− 1; i) + d(n− 1; i− 1), 1 ≤ i ≤ n− 2.(13)

Note that the recurrences in Lemma 8 are the same as those in Lemma 3 except for a factor
of 2n−i−j−2 appearing in the formula for c(n; i). This accounts for the fact that within the
decomposition of a T -avoiding permutation π = αj(n − 1)βnγ enumerated by c(n; i), where
α = j + i − 1, j + i − 2, . . . , j + 1 for some i, the section β is now a permutation of [j + i, n− 2]
that avoids the patterns 132 and 231 (instead of just being a decreasing sequence as it was pre-
viously). Thus, there are 2n−i−j−2 possibilities for β whenever it is nonempty. Note that a
comparison of the recurrences shows that there are strictly more permutations of length n that
avoid {1243, 1342, 2314} than there are that avoid {1234, 1342, 2314} for n ≥ 5.

If a(x;u) =
∑

n≥0 an(u)x
n as before, then one gets the following functional equation whose proof

we omit.

Lemma 9. We have

(14)

(

1 +
xu2

1− u

)

a(x;u) = 1 + xu

(

1

1− u
+

x2(1 − x)

(1 − 2x)(1− xu)(1 − x− xu)

)

a(x; 1).

We can now determine the generating function FT (x).

Theorem 10. Let T = {1243, 1342, 2314}. Then

FT (x) =
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

.

Proof. Setting u = C(x) in (14), and using the fact xu2 = u− 1, gives

a(x; 1) = − (1− 2x)(1 − u)(1− xu)(1− x− xu)

xu(1− 2x)(1 − xu)(1− x− xu) + x3u(1− x)(1 − u)

=
x(1 − 2x)(1 − xu)

x(1− 2x)(1 − x− xu) + x2(1− x)(1 − u+ xu)

=
(1− 2x)(1 +

√
1− 4x)

(1− 2x)(1− 2x+
√
1− 4x) + (1− x)(3x− 1 + (1 − x)

√
1− 4x)

=
(1− 2x)(1 +

√
1− 4x)

x2 + (2− 4x+ x2)
√
1− 4x

,

as desired. �
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3.3. Case 229. The three representative triples T are:

{2341,2413,3142} (Theorem 11)

{1342,1423,2143} (Theorem 14)

{1342,1423,2134} (Theorem 17)

3.3.1. T = {2341,2413,3142}.
Theorem 11. Let T = {2341, 2413, 3142}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose m ≥ 2 and π = i1π

(1) · · · imπ(m) avoids T .
Clearly, there is no letter smaller than i1 in π(3) · · ·π(m) (such a letter would be the “1” of a 2341).
Moreover, to avoid 2413 and 3142, π(1)i2π

(2) has the form β′i2β′′β′′′ with β′′ > i1 > β′ > β′′′:

β′

β′′

β′′′

i1

i2

.

If β′′′ = ∅, then we have a contribution of xFT (x)Gm−1(x). Otherwise, π has the form

β′′′

π(3)

π(m)
. .
.

234
•
1

241
•
3i1

i2

i3

im

,

where dark bullets indicate mandatory entries, shaded regions are empty (gray bullets would form
part of a forbidden pattern as indicated), β′ is decreasing (b < c in β′ implies bci2a is a 2341 for a
in β′′′), and β′′ is decreasing (b < c in β′′ implies i1bca is a 2341).

Thus, we have a contribution of x2

(1−x)2 (FT (x) − 1)Gm−2(x). Hence, for m ≥ 2,

Gm(x) = xFT (x)Gm−1(x) +
x2

(1− x)2
(FT (x)− 1)Gm−2(x) .

By summing over m ≥ 2, we obtain

FT (x)− 1− xFT (x) = xFT (x)(FT (x) − 1) +
x2

(1− x)2
(FT (x) − 1)FT (x) .
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Solving this quadratic for FT (x) completes the proof. �

3.3.2. T = {1342,1423,2143}. Here, and in the subsequent subsection, let a(n; i1, i2, . . . , ik) de-
note the number of T -avoiding permutations of length n starting with i1, i2, . . . , ik. Let a(n) =
∑n

i=1 a(n; i) for n ≥ 1 be the total number of T -avoiders, with a(0) = 1, and Ti,j be the set of
permutations enumerated by a(n; i, j). Clearly, a(n;n) = a(n;n− 1) = a(n− 1) for all n ≥ 2. We
have the following recurrence for the array a(n; i, j).

Lemma 12. If n ≥ 3, then

(15) a(n; i, j) = a(n− j + i+ 1; i+ 1, i) +

i−1
∑

ℓ=1

a(n− j + i+ 1; i, ℓ), i+ 2 ≤ j ≤ n,

(16) a(n; i, i− 1) = a(n− 1; i; i− 1) +

i−2
∑

ℓ=1

a(n− 1; i− 1, ℓ), 2 ≤ i ≤ n− 1,

and

(17) a(n; i, j) = a(n− 1; i− 1, j) +

i−j
∑

r=2

a(n− r; j + 1, j) +

i−j
∑

r=1

j−1
∑

ℓ=1

a(n− r; j, ℓ)

for 3 ≤ i ≤ n− 1 and 1 ≤ j ≤ i− 2, with a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1.

Proof. Let x denote the third letter of a member of Ti,j . Clearly, we have |Ti,i+1| = a(n− 1; i), as
the letter i+ 1 may be deleted. To show (16), first note members of Ti,i−1 must have x = i+ 1 or
x < i− 1. In the first case, the letter i+ 1 may be deleted, implying a(n− 1; i, i− 1) possibilities,

while in the latter, the letter i may be, which gives
∑i−2

ℓ=1 a(n − 1; i − 1, ℓ) possibilities. We now
show (15). Note first that one cannot have x > j or x < i within members of Ti,j if j ≥ i+ 3, lest
there be an occurrence of 1342 or 1423 (as witnessed by ijx(j−1) or ij(j−2)(j−1), respectively).
So we must have x ∈ [i+1, j − 1] and thus x = j − 1 in order to avoid 1423. By similar reasoning,
the fourth letter must be x−1 if x ≥ i+3. Repeating this argument shows that the block of letters
j, j− 1, . . . , i+2 must occur. The next letter z must be i+1 or less than i (so as to avoid 1342). If
z = i+1, then all members of [i+3, j], along with i, are seen to be irrelevant concerning avoidance
of T and hence may be deleted, while if z < i, then all members of [i+ 2, j] may be deleted (note
that i, z imposes the same requirement on subsequent letters as does i, i+2 and i+2, z, together).

It follows that there are a(n− j + i+ 1; i+ 1, i) +
∑i−1

ℓ=1 a(n− j + i+ 1; i, ℓ) members of Ti,j when
j ≥ i+ 2.

For (17), we consider the following cases for x: (i) x = j + 1, (ii) x < j, (iii) j + 1 < x < i,

and (iv) x = i + 1. There are clearly a(n − 1; i − 1, j) possibilities in (i) and
∑j−1

ℓ=1 a(n − 1; j, ℓ)
possibilities in (ii). Reasoning as in the previous paragraph shows in case (iii) that the block of
letters x, x− 1, . . . , j + 2 must occur directly following j. The next letter z may either equal j + 1
or be less than j. Thus, all members of [j + 3, x], along with i, may be deleted in either case.
Furthermore, the letter j may also be deleted if z = j + 1 (since j + 2, j + 1 is more restrictive
than i, j), while the letter j + 2 may be deleted if z < j (since j + 2 is redundant in light of j, z).

Considering all possible x, and letting r = x − j, one gets
∑i−j−1

r=2 a(n − r; j + 1, j) possibilities

if z = j + 1, and
∑i−j−1

r=2

∑j−1
ℓ=1 a(n − r; j, ℓ) possibilities if z < j. If x = i + 1, then the block

x, x− 2, x− 3, . . . , j + 2 must occur with the next letter z as in case (iii) above. This implies that
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there are a(n − i + j; j + 1, j) +
∑j−1

ℓ=1 a(n − i + j; j, ℓ) possibilities in (iv). Combining all of the
previous cases gives (17) and completes the proof. �

In order to solve the recurrence in Lemma 12, we introduce the following auxiliary functions:

bn,i(v) =
∑i−1

j=1 a(n; i, j)v
j for 2 ≤ i ≤ n − 1, cn,i(v) =

∑n

j=i+1 a(n; i, j)v
j for 1 ≤ i ≤ n −

1, bn(u, v) =
∑n−2

i=2 bn,i(v)u
i for n ≥ 4, cn(u, v) =

∑n−2
i=1 cn,i(v)u

i for n ≥ 3, and dn(u) =
∑n−1

i=2 a(n; i, i − 1)ui for n ≥ 3. Let an(u, v) =
∑n

i=1

∑n

j=1,j 6=i a(n; i, j)u
ivj for n ≥ 2, with

a1(u, v) = u. Note that by the definitions, we have

(18) an(u, v) = un−1(1+u)an−1(v, 1)− (uv)n−1(1− v)an−2(1, 1)+ bn(u, v)+ cn(u, v), n ≥ 2.

By (16) and (17), we have for 2 ≤ i ≤ n− 2,

bn,i(v) = bn−1,i−1(v) + a(n− 1; i, i− 1)vi−1 +

i−1
∑

j=1

bn−1,j(1)v
j +

i−2
∑

j=1

vj
i−j
∑

r=2

a(n− r; j + 1, j)

+

i−2
∑

j=1

vj
i−j
∑

r=2

bn−r,j(1).

Multiplying both sides of the last recurrence by ui, and summing over 2 ≤ i ≤ n− 2, yields

bn(u, v) = ubn−1(u, v) +
1

v
dn−1(uv) +

n−3
∑

j=1

bn−1,j(1)

(

uj+1 − un−1

1− u

)

vj

+

n−4
∑

j=1

vj
n−j−1
∑

r=2

a(n− r; j + 1, j)

(

uj+r − un−1

1− u

)

+

n−4
∑

j=1

vj
n−j−2
∑

r=2

bn−r,j(1)

(

uj+r − un−1

1− u

)

= ubn−1(u, v) +
1

v
dn−1(uv) +

u

1− u
bn−1(uv, 1)−

un−1

1− u
bn−1(v, 1)

+
1

uv(1− u)

n−2
∑

r=2

(dn−r(uv)u
r + a(n− r − 2)unvn−r)

− un−1

v(1− u)

n−2
∑

r=2

(dn−r(v) + a(n− r − 2)vn−r) +
1

1− u

n−3
∑

r=2

bn−r(uv, 1)u
r

− un−1

1− u

n−3
∑

r=2

bn−r(v, 1)

= ubn−1(u, v) +
1

v
dn−1(uv) +

1

1− u

n−1
∑

r=3

br(u, v)u
n−r − un−1

1− u

n−1
∑

r=3

br(v, 1)

+
1

uv(1− u)

n−2
∑

r=2

dr(uv)u
n−r − un−1

v(1 − u)

n−2
∑

r=2

dr(v), n ≥ 4.(19)

By (15), we have

cn,i(v) = a(n− 1; i)vi+1 +

n−i
∑

j=2

a(n− j + 1; i+ 1, i)vi+j +

n−i
∑

j=2

bn−j+1,i(1)v
i+j , 1 ≤ i ≤ n− 2,
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and thus

cn(u, v) = v

n−2
∑

i=1

a(n− 1; i)(uv)i +

n−1
∑

j=2

vj
n−j
∑

i=1

a(n− j + 1; i+ 1, i)(uv)i +

n−1
∑

j=2

vj
n−j
∑

i=1

bn−j+1,i(1)(uv)
i

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1
∑

j=2

vj−1(dn−j+1(uv) + a(n− j − 1)(uv)n−j+1)

+

n−1
∑

j=2

vj(bn−j+1(uv, 1) + (a(n− j)− a(n− j − 1))(uv)n−j)

= v(an−1(uv, 1)− a(n− 2)(uv)n−1) +
1

u

n−1
∑

j=2

dj(uv)v
n−j +

n−1
∑

j=2

bj(uv, 1)v
n−j+1

+ vn
n−2
∑

j=1

a(j)uj , n ≥ 3.(20)

Multiplying both sides of (16) by ui, and summing over 2 ≤ i ≤ n− 1, gives

(21) dn(u) = un−1a(n− 2) + ubn−1(u) + dn−1(u), n ≥ 3.

Define generating functions a(x;u, v) =
∑

n≥1 an(u, v)x
n, b(x;u, v) =

∑

n≥4 bn(u, v)x
n, c(x;u, v) =

∑

n≥3 cn(u, v)x
n, and d(x;u) =

∑

n≥3 dn(u)x
n. Rewriting recurrences (18)–(21) in terms of gen-

erating functions yields the following system of functional equations.

Lemma 13. We have

a(x;u, v) = xu(1− xv + xv2) + b(x;u, v) + c(x;u, v) + x(1 + u)a(xu; v, 1)

− x2uv(1− v)a(xuv; 1, 1),(22)

(1− xu)b(x;u, v) =
x

(1− u)(1− xu)
(ub(x;uv, 1)− b(xu; v, 1)) +

x(1 − u+ xu2)

v(1− u)(1 − xu)
d(x;uv)

− x2u

v(1− u)(1− xu)
d(xu; v),(23)

c(x;u, v) = −x2uv2 + xva(x;uv, 1) +

(

x2v2

1− xv
− x2uv2

)

a(xuv; 1, 1) +
xv2

1− xv
b(x;uv, 1)

+
xv

u(1− xv)
d(x;uv),(24)

(25) (1− x)d(x;u) = x2ua(xu; 1, 1) + xub(x;u, 1).

We can now determine the generating function FT (x).

Theorem 14. Let T = {1342, 1423, 2143}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.



16 D. CALLAN, T. MANSOUR, AND M. SHATTUCK

Proof. In the notation above, we seek to determine 1 + a(x; 1, 1). Setting u = v = 1 in (22), (24)
and (25), and solving the resulting system for b(x; 1, 1), c(x; 1, 1) and d(x; 1), yields

b(x; 1, 1) =
(1 − 5x+ 7x2 − 5x3 + x4)a(x; 1, 1)− x(1− x)3

1− x+ x2
,

c(x; 1, 1) =
x(2 − 2x+ x2)((1 − x)a(x; 1, 1)− x)

1− x+ x2
,

d(x; 1) =
x(1 − x)2((1 − x)a(x; 1, 1)− x)

1− x+ x2
.

Substituting the expression for d(x;u) from (25) into (23) at v = 1, we find
(

1− x− x

(1− u)(1− x)
− x2(1 − u+ xu)

(1 − u)(1− x)(u − x)

)

b(x/u;u, 1)

=
x3(1− u+ xu)

u(1− u)(1− x)(u − x)
a(x; 1, 1)− x

u(1− u)(1− x)
b(x; 1, 1)− x2

u(1− u)(1− x)
d(x; 1).

Applying the kernel method to the preceding equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0 + xu0)

u0 − x
a(x; 1, 1)− xd(x; 1).

Substituting out the expressions above for b(x; 1, 1) and d(x; 1), and then solving the equation that
results for a(x; 1, 1), yields

a(x; 1, 1) =
x(1 − x)2(u0 − x)

(1 − 4x+ 4x2 − 2x3)u0 − x(1− x)3
.

Substituting the expression for u0 into the last equation gives the desired formula for 1+ a(x; 1, 1)
and completes the proof. �

Remark: Once a(x; 1, 1) is known, it is possible to find b(x;u, 1), and thus d(x;u), a(x;u, 1) and
c(x;u, 1). This in turn allows one to solve the system (22)–(25) for all u and v, and thus obtain a
generating function formula for the joint distribution of the statistics recording the first two letters.

3.3.3. T = {1342,1423,2134}. Clearly, a(n;n) = a(n − 1) for all n ≥ 1. We have the following
recurrence for the array a(n; i, j) where i < n.

Lemma 15. If n ≥ 3, then

(26) a(n; i, n) = a(n− 1; i, n− 1) +

i−1
∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2,

(27) a(n; i, i− 1) = a(n− 1; i− 1, n− 1) +

i−2
∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1,
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and

a(n; i, j) = a(n− 1, i− 1, j) + a(n− 1; j, n− 1) +

j−1
∑

ℓ=1

a(n− 1; j, ℓ)

+

i−j−1
∑

ℓ=2

a(n− ℓ; j + 1, j), 1 ≤ j ≤ i− 2 and 3 ≤ i ≤ n− 1.(28)

Furthermore, we have a(n; i, i+1) = a(n−1; i) for 1 ≤ i ≤ n−1 and a(n; i, j) = a(n−j+i+1; i+1, i)
for i+ 2 ≤ j ≤ n− 1.

Proof. Throughout, let x denote the third letter of a member of Ti,j . To show (26), first note that
for members of Ti,n, we must have x = n−1 or x < i. There are a(n−1; i, n−1) possibilities in the
first case as the letter n is extraneous concerning avoidance of T , whence it may be deleted, and
∑i−1

j=1 a(n− 1; i, j) possibilities in the latter case as again n may be deleted (note that the presence

of i, j imposes a stronger restriction on the order of subsequent letters than does i, n). To show
(27), first note that members of Ti,i−1 for 2 ≤ i ≤ n− 1 must have x = n or x < i− 1. There are

a(n− 1; i− 1, n− 1) possibilities in the former case and
∑i−2

j=1 a(n− 1; i− 1, j) possibilities in the
latter since the letter i may be deleted in either case as the restriction it imposes is redundant.

Next, we show (28). For this, we consider the following cases: (i) x = j + 1, (ii) x = n, (iii) x < j,
and (iv) j + 1 < x < i. The first three cases are readily seen to be enumerated by the first three
terms, respectively, on the right-hand side of (28). For case (iv), let y denote the fourth letter of
π ∈ Ti,j . First note that one cannot have y > x, for otherwise π would contain 1342 as witnessed
by the subsequence jxy(x − 1). It is also not possible to have y < j, for otherwise π would again
contain 1342, this time with the subsequence jxn(j+1), since all letters to the right of y and larger
than j would have to occur in decreasing order (due to the presence of j, y). So we must have
j < y < x and thus y = x − 1 in order to avoid 1423. By similar reasoning, the next letter must
be x− 2 if x > j +2. Repeating this argument shows that the block x, x− 1, . . . , j +1 must occur
directly following j, with each of these letters, except the last two, seen to be extraneous concerning
the avoidance or containment of patterns in T . Note further that the presence of j+2, j+1 imposes
a stricter requirement on subsequent letters than does i, j when i ≥ j + 3, whence the i and j are
also extraneous. Deleting all members of [j + 3, x] from π, along with i and j, implies that there
are a(n− ℓ; j + 1, j) possibilities where ℓ = x− j. Summing over all possible values of ℓ gives the
last term on the right-hand side of (28).

There are clearly a(n − 1; i) members of Ti,j if j = i + 1, as the letter i + 1 may be deleted. If
j ≥ i+2, then similar reasoning as before shows that the block j, j − 1, . . . , i+1 must occur when
j < n, and thus all members of [i+3, j], along with i, may be deleted. This implies that there are
a(n− j + i+ 1; i+ 1, i) members of Ti,j in this case, which completes the proof. �

In order to solve the recurrence in Lemma 15, we introduce the following functions: bn,i(v) =
∑i−1

j=1 a(n; i, j)v
j for 2 ≤ i ≤ n − 1, cn,i(v) =

∑n−1
j=i+1 a(n; i, j)v

j for 1 ≤ i ≤ n − 2, bn(u, v) =
∑n−1

i=2 bn,i(v)u
i for n ≥ 3, cn(u, v) =

∑n−2
i=1 cn,i(v)u

i for n ≥ 3, and dn(u) =
∑n−1

i=1 a(n; i, n)ui for
n ≥ 2. Let an(u, v) =

∑n

i=1

∑n

j=1,j 6=i a(n; i, j)u
ivj for n ≥ 2, with a1(u, v) = u. Note that by the

definitions, we have

(29) an(u, v) = unan−1(v, 1) + bn(u, v) + cn(u, v) + vndn(u), n ≥ 2.
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In order to determine a formula for bn(u, v), first note that (27) and (28) imply

bn,i(v) = bn−1,i−1(v) +
i−1
∑

j=1

a(n− 1; j, n− 1)vj +
i−1
∑

j=1

bn−1,j(1)v
j

+

i−3
∑

j=1

vj
i−j−1
∑

ℓ=2

a(n− ℓ; j, n− ℓ), 2 ≤ i ≤ n− 1,

where we have used the fact a(m; j + 1, j) = a(m; j,m) in the last sum. Multiplying both sides of
the last recurrence by ui, and summing over 2 ≤ i ≤ n− 1, gives

bn(u, v) = ubn−1(u, v) +
n−2
∑

j=1

a(n− 1; j, n− 1)

(

uj+1 − un

1− u

)

vj +
n−2
∑

j=1

bn−1,j(1)

(

uj+1 − un

1− u

)

vj

+

n−4
∑

j=1

vj
n−j−1
∑

ℓ=2

a(n− ℓ; j, n− ℓ)

(

uj+ℓ+1 − un

1− u

)

= ubn−1(u, v) +
u

1− u
(dn−1(uv)− un−1dn−1(v)) +

u

1− u
(bn−1(uv, 1)− un−1bn−1(v, 1))

+
u

1− u

n−2
∑

ℓ=2

dℓ(uv)u
n−ℓ − un

1− u

n−2
∑

ℓ=2

dℓ(v), n ≥ 3,(30)

where we have replaced the index ℓ by n− ℓ in the last sum.

By Lemma 15, we have

cn,i(v) = a(n− 1; i)vi+1 +

n−1
∑

j=i+2

a(n− j + i + 1; i+ 1, i)vj , 1 ≤ i ≤ n− 2,

and thus

cn(u, v) =
n−2
∑

i=1

a(n− 1; i)uivi+1 +
n−3
∑

i=1

ui

n−i−1
∑

j=2

a(n− j + 1; i+ 1, i)vi+j

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2
∑

j=2

vj
n−j−1
∑

i=1

a(n− j + 1; i, n− j + 1)(uv)i

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−2
∑

j=2

vj(dn−j+1(uv)− (uv)n−ja(n− j − 1))

= v(an−1(uv, 1)− (uv)n−1a(n− 2)) +

n−1
∑

j=3

vn−j+1(dj(uv)− (uv)j−1a(j − 2)), n ≥ 3.(31)

Multiplying both sides of (26) by ui, and summing over 1 ≤ i ≤ n− 2 implies

(32) dn(u) = un−1a(n− 2) + bn−1(u, 1) + dn−1(u), n ≥ 2.

Define generating functions a(x;u, v) =
∑

n≥1 an(u, v)x
n, b(x;u, v) =

∑

n≥3 bn(u, v)x
n, c(x;u, v) =

∑

n≥3 cn(u, v)x
n, and d(x;u) =

∑

n≥2 dn(u)x
n. Rewriting recurrences (29)–(32) in terms of gen-

erating functions yields the following system of functional equations.
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Lemma 16. We have

(33) a(x;u, v) = xu + xua(xu; v, 1) + b(x;u, v) + c(x;u, v) + d(xv;u),

(1− xu)b(x;u, v) =
xu

1− u
(b(x;uv, 1)− b(xu; v, 1)) +

xu(1 − xu+ xu2)

(1 − u)(1− xu)
d(x;uv)

− xu

(1− u)(1− xu)
d(xu; v),(34)

(35) c(x;u, v) = xva(x;uv, 1)− x2uv2

1− xv
(a(xuv; 1, 1) + 1) +

xv2

1− xv
d(x;uv),

(36) (1− x)d(x;u) = x2u(a(xu; 1, 1) + 1) + xb(x;u, 1).

We can now determine the generating function FT (x).

Theorem 17. Let T = {1342, 1423, 2134}. Then

FT (x) =
1− 2x+ 2x2 −

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2x(1− x+ x2)
.

Proof. In the notation above, we seek to determine 1 + a(x; 1, 1). By (36), we have d(x;u) =
x2u
1−x

(a(xu; 1, 1) + 1) + x
1−x

b(x;u, 1). Thus, equation (34) with v = 1 gives
(

1− x− x

1− u
− x2(1− x+ xu)

(1− u)(1− x)(u − x)

)

b(x/u;u, 1)

= −
(

x

1− u
+

x2

(1 − u)(1− x)2

)

b(x; 1, 1)

+

(

x3(1− x+ xu)

(1− u)(1− x)(u − x)
− x3

(1 − u)(1− x)2

)

(a(x; 1, 1) + 1).

Applying the kernel method to this last equation, and setting

u = u0 =
1− 2x+

√
1− 8x+ 20x2 − 24x3 + 16x4 − 4x5

2(1− x)2
,

we obtain

b(x; 1, 1) =
x2(1− u0)(a(x; 1, 1) + 1)

u0 − x
.

Note that c(x; 1, 1) = x((1−2x)a(x;1,1)−x+d(x;1))
1−x

by (35), and

a(x; 1, 1) = x+ xa(x; 1, 1) + b(x; 1, 1) + c(x; 1, 1) + d(x; 1)

by (33). Substituting out c(x; 1, 1), and then d(x; 1) and b(x; 1, 1), in the preceding equation and
solving the equation that results for a(x; 1, 1) yields

a(x; 1, 1) =
x3 + x(1 − x)2u0

x(2x2 − 2x+ 1)− (1 − x)3u0
.

Substituting the expression for u0 into the last equation gives the desired formula for 1+ a(x; 1, 1)
and completes the proof. �
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3.4. Case 234. The two representative triples T are:

{2143,2314,2413} (Theorem 18)

{1243,1342,3142} (Theorem 19)

Theorem 18. Let T = {2143, 2314, 2413}. Then

FT (x) =
(1 − x)2 −

√

(1− x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1) · · · imπ(m) is a permutation that avoids
T with m ≥ 2 left-right maxima. Then π(m) has the form βmβm−1 · · ·β1 with β1 < i1 < β2 < i2 <
· · · < βm < im because c < d in π(m) with c < ij < d implies ijimcd is a 2413.

If π(1) = · · · = π(m−1) = ∅, the contribution is (xFT (x))
m. Otherwise, let k be minimal such that

π(k) 6= ∅. Then π has the form

π(k) βk

βk−1

β1

. . .

,

23
•
14

214
•
3

i1

ik−2

ik−1

ik

ik+1

ik+2

im

where dark bullets indicate mandatory entries and some shaded regions are empty because the
gray bullet would form part of the indicated pattern; π(k)imβk avoids T and does not start with
its largest entry, and βk−1, . . . , β1 all avoid T . Thus, the contribution for fixed k ∈ [m] is given by
xm−1(FT (x)− 1− xFT (x))FT (x)

k−1.

Hence, for m ≥ 2,

Gm(x) = (xFT (x))
m + xm−1(FT (x)− 1− xFT (x))

m−1
∑

k=0

FT (x)
k.

Summing over m ≥ 0, we obtain

FT (x) = 1 +
xFT (x)

1− xFT (x)
+

(

FT (x)− 1− xFT (x)
)

(

x
1−x

− xFT (x)
1−xFT (x)

)

1− FT (x)
,

which has the desired solution. �

Theorem 19. Let T = {1243, 1342, 3142}. Then

FT (x) =
(1 − x)2 −

√

(1− x)4 − 4x(1− 2x)(1 − x)

2x(1− x)
.
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Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). For m = 2, suppose π = iπ′nπ′′ is a permutation in Sn(T )
with two left-right maxima. Let β denote the subsequence of letters less than i in π′′. Then
β < π′ (a ∈ π′ and b ∈ β with a < b implies ianb is a 3142) and so π is as in the figure.

α

β

π′
i

n

If α = ∅, then π′ and β avoid T and the contribution is x2FT (x)
2. If α 6= ∅ so that i+1 ∈ α, then

π′ is decreasing (or n(i+ 1) would be the 43 of a 1243), and St(iπ′′) is a T -avoider that does not
start with its maximal element. Hence, the contribution is x

1−x

(

FT (x)− 1− xFT (x)
)

. Thus,

G2(x) = x2FT (x)
2 +

x

1− x

(

FT (x)− 1− xFT (x)
)

.

For m ≥ 3, π has the form

. . .

π(1)
π(2)

π(3)

π(m)

i1

i2

i3

im

134
•
2

124
•
3

,

where some shaded regions are empty to avoid the indicated pattern and the π’s are in their relative
positions to avoid 3142. Hence, Gm(x) = G2(x)(xFT (x))

m−2.

Summing over m ≥ 0, we obtain

FT (x) = 1 + xFT (x) +
x2FT (x) +

x
1−x

(FT (x)− 1− xFT (x))

1− xFT (x)
,

which has the desired solution. �

3.5. Case 235. The three representative triples T are:

{1423,1432,2143} (Theorem 23)

{1423,1432,3142} (Theorem 24)

{1234,1243,2314} (Theorem 27)
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3.5.1. T = {1423,1432,2143}. Let a(n; i1, i2, . . . , ik), a(n) and Ti,j be as in the second class in
case 229 above. Note here that a(n;n) = a(n;n − 1) = a(n − 1) for n ≥ 2. It is convenient
to consider separately the case of a permutation starting i, j, j + 2, where j ≤ i − 3. Define
f(n; i, j) = a(n; i, j, j + 2) for 4 ≤ i ≤ n and 1 ≤ j ≤ i− 3. The arrays a(n; i, j) and f(n; i, j) are
determined recursively as follows.

Lemma 20. We have

(37) a(n; i, i+ 2) = a(n− 1; i, i+ 2) + a(n− 1; i+ 1, i) +

i−1
∑

j=1

a(n− 1; i, j), 1 ≤ i ≤ n− 2,

(38) a(n; i, i− 1) = a(n− 1; i, i− 1) +

i−2
∑

j=1

a(n− 1; i− 1, j), 2 ≤ i ≤ n− 1,

(39) a(n; i, i−2) = a(n−1; i, i−2)+a(n−1; i−1, i−2)+

i−3
∑

j=1

a(n−1; i−2, j), 3 ≤ i ≤ n−1,

(40) a(n; i, j) = a(n− 1; i− 1, j) + f(n; i, j) +

j−1
∑

ℓ=1

a(n− 1; j, ℓ), 1 ≤ j ≤ i− 3,

and

(41) f(n; i, j) = f(n− 1; i− 1, j) + a(n− 2; j + 1, j) +

j−1
∑

ℓ=1

a(n− 2; j, ℓ), 1 ≤ j ≤ i− 4,

with f(n; i, i− 3) = a(n− 1; i− 1, i− 3) for 4 ≤ i ≤ n, a(n; i, i+ 1) = a(n− 1; i) for 1 ≤ i ≤ n− 1,
and a(n; i, j) = 0 for 1 ≤ i ≤ j − 3 ≤ n− 3.

Proof. The formulas for f(n; i, i− 3) and a(n; i, i+1), and for a(n; i, j) when i ≤ j− 3, follow from
the definitions. In the cases that remain, let x denote the third letter of a T -avoiding permutation.
For (37), first note that members of Ti,i+2 where i < n− 2 must have x = i+3, x = i+1 or x < i,
lest there be an occurrence of 1423 or 1432. The letter i+ 2 can be deleted in the first case, while
the letter i can in the second, giving a(n− 1; i, i+2) and a(n− 1; i+1, i) possibilities, respectively.
If x < i, then i, x imposes a stricter requirement on subsequent letters than does i + 2, x, whence

i + 2 may be deleted in this case. This gives
∑i−1

j=1 a(n − 1; i, j) possibilities, which implies (37)

when i < n− 2. Equation (37) is also seen to hold when i = n− 2 since then there is no x = i+ 3
case with a(n− 1; i, i+2) = 0 accordingly. For (38), note that members of Ti,i−1 where i < n must

have x = i+1 or x < i−2 so as to avoid 2143. This yields a(n−1; i, i−1) and
∑i−2

j=1 a(n−1; i−1, j)

possibilities, respectively, which implies (38). For (39), note that members of Ti,i−2 where i < n
must have x = i + 1, x = i − 1 or x < i − 2, yielding a(n − 1; i, i − 2), a(n − 1; i − 1, i − 2) and
∑i−3

j=1 a(n− 1; i− 2, j) possibilities, respectively.

To show (40), first observe that members of Ti,j where j ≤ i − 3 must have x = j + 1, x = j + 2
or x < j, lest there be an occurrence of 1423 or 1432. If x = j + 1, then there are a(n− 1; i− 1, j)
possibilities since the letter j + 1 is extraneous and may be deleted. If x = j + 2, then there are
f(n; i, j) possibilities, by definition. If x < j, then the letter i may be deleted, which gives the
last term on the right-hand side of (40). Finally, to show (41), let y denote the fourth letter of a
permutation enumerated by f(n; i, j) where j < i− 3. Then we must have y = j + 3, y = j + 1 or
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y < j. If y = j + 3, then y may be deleted, yielding f(n − 1; i − 1, j) possibilities, by definition.
If y = j + 1, then j + 2, j + 1 is seen to impose a stricter requirement on subsequent letters than
does i, j with regard to 2143, with j + 1 also making j redundant concerning 1423 or 1432. Thus,
both i and j may be deleted in this case, giving a(n − 2; j + 1, j) possibilities. Finally, if y < j,

then both the i and j+2 may be deleted and thus there are
∑j−1

ℓ=1 a(n− 2; j, ℓ) possibilities, which
implies (41) and completes the proof. �

To aid in solving the recurrences of the prior lemma, we define the following auxiliary functions:

b(n; i) =
∑i−1

j=1 a(n; i, j), c(n; i) = a(n; i, i − 2), d(n; i) = a(n; i, i − 1) and e(n; i) = a(n; i, i + 2).
Assume functions are defined on the natural range for i, given n, and are zero otherwise. For

example, c(n; i) is defined for 3 ≤ i ≤ n, with c(n; 1) = c(n; 2) = 0. Let f(n; i) =
∑i−3

j=1 f(n; i, j)
for 4 ≤ i ≤ n.

The recurrences in the previous lemma may be recast as follows.

Lemma 21. We have

(42) a(n; i) = a(n− 1; i) + b(n; i) + e(n; i), 1 ≤ i ≤ n− 1,

b(n; i) = c(n; i) + d(n; i) + b(n− 1; i− 1)− d(n− 1; i− 1) + f(n; i)

+

i−3
∑

j=1

b(n− 1; j), 2 ≤ i ≤ n− 1,(43)

(44) c(n; i) = b(n− 1; i− 2) + c(n− 1; i) + d(n− 1; i− 1), 3 ≤ i ≤ n− 1,

(45) d(n; i) = b(n− 1; i− 1) + d(n− 1; i), 2 ≤ i ≤ n− 1,

(46) e(n; i) = b(n− 1; i) + d(n− 1; i+ 1) + e(n− 1; i), 1 ≤ i ≤ n− 2,

and

(47) f(n; i) = c(n− 1; i− 1)+ f(n− 1; i− 1)+

i−4
∑

j=1

b(n− 2; j)+

i−4
∑

j=1

d(n− 2; j+1), 4 ≤ i ≤ n.

Proof. For (42), note that by the definitions, we have

a(n; i) =

n
∑

i=1,i6=j

a(n; i, j) =

i−1
∑

j=1

a(n; i, j) + a(n; i, i+ 1) + a(n; i, i+ 2)

= b(n; i) + a(n− 1; i) + e(n; i).
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For (43), note that by summing (40) over j and the definitions, we have

b(n; i) = a(n; i, i− 2) + a(n; i, i− 1) +

i−3
∑

j=1

a(n; i, j)

= a(n; i, i− 2) + a(n; i, i− 1) +
i−3
∑

j=1

a(n− 1; i− 1, j) +
i−3
∑

j=1

f(n; i, j) +
i−3
∑

j=1

b(n− 1; j)

= c(n; i) + d(n; i) + (b(n− 1; i− 1)− d(n− 1; i− 1)) + f(n; i) +

i−3
∑

j=1

b(n− 1; j).

Next, observe that formulas (44), (45) and (46) follow directly from the definitions and recurrences
(39), (38) and (37), respectively. Finally, formula (47) follows from summing (41) over 1 ≤ j ≤ i−4
and noting f(n; i, i− 3) = c(n− 1; i− 1). �

Define an(u) =
∑n

i=1 a(n; i)u
i for n ≥ 1, bn(u) =

∑n−1
i=2 b(n; i)ui for n ≥ 3, cn(u) =

∑n−1
i=3 c(n; i)ui

for n ≥ 4, dn(u) =
∑n−1

i=2 d(n; i)ui for n ≥ 3, en(u) =
∑n−2

i=1 e(n; i)ui for n ≥ 3, and fn(u) =
∑n

i=4 f(n; i)u
i for n ≥ 4. Assume all functions take the value zero if n is such that the sum in

question is empty. Note that a1(u) = u, with b3(u) = d3(u) = u2.

Multiplying both sides of (42) by ui, and summing over 1 ≤ i ≤ n− 1, yields

(48) an(u) = a(n− 1)un + an−1(u) + bn(u) + en(u), n ≥ 2.

Note that, by the definitions,

f(n;n) =

n−3
∑

j=1

f(n;n, j) =

n−3
∑

j=1

a(n− 1; j, j + 2) =

n−3
∑

j=1

e(n− 1; j) = en−1(1), n ≥ 4,

and

b(n;n− 1) = a(n;n− 1)− a(n;n− 1, n) = a(n− 1)− a(n− 2), n ≥ 2.

By recurrence (43), we then have

bn(u) = cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− f(n;n)un +

n−3
∑

j=1

b(n− 1; j)

n−1
∑

i=j+3

ui

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u3

1− u
(bn−1(u)− (a(n− 2)− a(n− 3))un−2)− un

1− u
(bn−1(1)− (a(n− 2)− a(n− 3)))

= cn(u) + dn(u) + u(bn−1(u)− dn−1(u)) + fn(u)− en−1(1)u
n

+
u

1− u
(u2bn−1(u)− un−1bn−1(1)) + (a(n− 2)− a(n− 3))un, n ≥ 3.(49)

From recurrence (44), we get

cn(u) = u2(bn−1(u)− b(n− 1;n− 2)un−2) + cn−1(u) + c(n− 1;n− 1)un−1 + udn−1(u)

= u2bn−1(u)− una(n− 2) + un−1(1 + u)a(n− 3) + cn−1(u) + udn−1(u), n ≥ 4.(50)

By (45) and (46), we have

(51) dn(u) = a(n− 3)un−1 + ubn−1(u) + dn−1(u), n ≥ 3,
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and

(52) en(u) = a(n− 3)un−2 + bn−1(u) +
1

u
dn−1(u) + en−1(u), n ≥ 3.

Finally, multiplying both sides of (47) by ui, and summing over 4 ≤ i ≤ n, yields

fn(u) = u(c(n− 1;u) + a(n− 3)un−1) + ufn−1(u)

+

n−3
∑

j=1

b(n− 2; j)

n
∑

i=j+4

ui +

n−4
∑

j=1

d(n− 2; j + 1)

n
∑

i=j+4

ui

= a(n− 3)un + ucn−1(u) + ufn−1(u)

+
u3

1− u
(ubn−2(u) + dn−2(u)− un−2(bn−2(1) + dn−2(1))), n ≥ 4.(53)

Define the generating functions a(x;u) =
∑

n≥1 an(u)x
n, b(x;u) =

∑

n≥3 bn(u)x
n, c(x;u) =

∑

n≥4 cn(u)x
n, d(x;u) =

∑

n≥3 dn(u)x
n, e(x;u) =

∑

n≥3 en(u)x
n and f(x;u) =

∑

n≥4 fn(u)x
n.

Recall that a(n) = an(1) for n ≥ 1, with a(0) = 1. Rewriting recurrences (48)–(53) in terms of
generating functions yields the following system of functional equations.

Lemma 22. We have

(54) (1 − x)a(x;u) = xu(1 + a(xu; 1)) + b(x;u) + e(x;u),

(1 − xu)b(x;u) = −x3u3 + c(x;u) + (1− xu)d(x;u) − xue(xu; 1) + f(x;u)

+ x2u2(1− xu)a(xu; 1) +
xu

1− u
(u2b(x;u)− b(xu; 1)),(55)

(56) (1− x)c(x;u) = x3u3 − x2u2(1 − x− xu)a(xu; 1) + xu2b(x;u) + xud(x;u),

(57) (1− x)d(x;u) = x3u2(1 + a(xu; 1)) + xub(x;u),

(58) (1− x)e(x;u) = x3u(1 + a(xu; 1)) + xb(x;u) +
x

u
d(x;u),

and

(1 − xu)f(x;u) = x3u3a(xu; 1) + xuc(x;u)

+
x2u3

1− u
(ub(x;u) + d(x;u)− b(xu; 1)− d(xu; 1)).(59)

We now determine the generating function FT (x).

Theorem 23. Let T = {1423, 1432, 2143}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.
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Proof. By solving (54), (57) and (58) with u = 1 for b(x; 1), d(x; 1) and e(x; 1), we obtain

b(x; 1) =
1− 4x+ 5x2 − 3x3

1− x+ x2
a(x; 1)− x(1 − 2x+ 2x2)

1− x+ x2
,

d(x; 1) =
x(1 − x)3

1− x+ x2
a(x; 1)− x2(1 − x)2

1− x+ x2
,

e(x; 1) =
x(1 − x)2

1− x+ x2
a(x; 1)− x2(1− x)

1− x+ x2
.

Define K(x;u) = u2(1 − u) − xu(2 − u2) + x2(1 + 2u − 2u2) − x3. Substituting the expressions
for b(x; 1), d(x; 1) and e(x; 1) into (55)–(59), and then solving for b(x/u;u), c(x/u;u), d(x/u;u),
e(x/u;u) and f(x/u;u), yields

K(x;u)b(x/u;u) = x(−u2 + 2xu(u+ 1)− x2(u2 + 3u+ 1) + x3(2u+ 1))a(x; 1)

+ x2u(2x2 − xu− x+ u),

K(x;u)e(x/u;u) = x2(1 − x)(x − u)a(x; 1) + x3(1− x).

Multiplying both sides of (54) byK(x;u), and then substituting the expressions ofK(x;u)b(x/u;u)
and K(x;u)e(x/u;u), gives

(1− x/u)K(x;u)a(x/u;u) = x(x − u)(u2 + x(1 − u− u2) + x2(2u− 1))a(x; 1)

+ x(1 − u)(u2 − xu(2 + u) + x2(2 + 3u)− 2x3).

To solve this last equation, we let u = u0 = u0(x) such that K(x;u0(x)) = 0. Then

FT (x) = 1 + a(x; 1) =
(1− x)(x2 − xu0 + u2

0)

(u0 − x)(x(1 − x)− x(1 − 2x)u0 + (1− x)u2
0)
.

Using the fact that u3
0 = u2

0(1− u0)− xu0(2− u2
0) + x2(1 + 2u0 − 2u2

0), we obtain

1− x− (1− x)FT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x)

=
(1− x)2K(x;u0)V (x;u0)

(x− u0)3(x(1 − x)− x(1 − 2x)u0 + (1− x)u2
0)

3
= 0,

where

V (x;u) = −x5(2x4 + 7x2(1− x)− 5x+ 2) + x2(x+ 1)(4x4 − 7x3 + 8x2 − 5x+ 1)(u− x)

− (7x6 + 2x5(1− x2)− x4 − 37x3(1− x) + 24x2(1− x2)− 8x+ 1)(u− x)2.

Hence, the generating function FT (x) satisfies

FT (x) = 1− x+ xFT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x),

as desired. �

3.5.2. T = {1423,1432,3142}.
Theorem 24. Let T = {1423, 1432, 3142}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now suppose π = i1π

(1)i2π
(2) · · · imπ(m) ∈ Sn(T ) with m ≥ 2

left-right maxima. Since π avoids 1423 and 1432, we have that either i2 = i1 + 1 or i2 = i1 + 2.
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• The case i2 = i1 + 1. Since π avoids 3142, we see that there is no element between
the minimal element of π(1) and i1 in π(2)π(3) · · ·π(m). Thus, the contribution in this
case is xFT (x)Gm−1(x), where xFT (x) accounts for the section i1π

(1) and Gm−1(x) for
i2π

(2) · · · imπ(m).
• The case i2 = i1 + 2. Let j be the index with i1 + 1 ∈ π(j). Then π has the form

π(1)

α

β

1423, 1432

3
•
142

i1

i2 = i1+2

ij

ij+1

i1+1

im

with π(1) > α > β to avoid 3142, where i1π
(1)αβ spans an interval of integers, also to

avoid 3142, and the other shaded regions are empty to avoid the indicated patterns.
Thus, for given j, we have a bijection between such permutations and triples

(π(1), α, ijβij+1π
(j+1) · · · imπ(m)), where π(1) and α avoid T , and ijβij+1π

(j+1) · · · imπ(m)

avoids T with exactly m− (j − 1) left-right maxima. Hence, the contribution in this case
is given by xjF 2

T (x)Gm−j+1(x), where j = 2, 3, . . . ,m.

By adding all the contributions, we get

Gm(x) = xFT (x)Gm−1 +
m
∑

j=2

xjF 2
T (x)Gm−j+1(x), m ≥ 2,

which implies

Gm(x) − xGm−1(x) = xFT (x)Gm−1 − x2FT (x)Gm−2(x) + x2F 2
T (x)Gm−1(x)

with G0(x) = 1 and G1(x) = xFT (x). By summing this recurrence over all m ≥ 2, we have

FT (x) − 1− xFT (x) − x(FT (x)− 1) = xFT (x)(FT (x) − 1)− x2F 2
T (x) + x2F 2

T (x)(FT (x) − 1),

which leads to

FT (x) = 1− x+ xFT (x) + x(1 − 2x)F 2
T (x) + x2F 3

T (x),

as required. �

3.5.3. T = {1234,1243,2314}. To enumerate the members of Sn(T ), we categorize them by their
first letter and the position of the leftmost ascent. More precisely, given 1 ≤ j ≤ i ≤ n, let a(n; i, j)
be the number of T -avoiding permutations of length n starting with the letter i whose leftmost
ascent is at index j. For example, we have a(4; 3, 2) = 3, the enumerated permutations being 3124,
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3142 and 3241. If 1 ≤ i ≤ n, then let a(n; i) =
∑i

j=1 a(n; i, j) and let a(n) =
∑n

i=1 a(n; i) for

n ≥ 1, with a(0) = 1. The array a(n; i, j) satisfies the following recurrence relations.

Lemma 25. If n ≥ 3, then

(60) a(n; i, j) =

n−i
∑

ℓ=1

i
∑

k=j

a(n− ℓ; i, k), 1 ≤ j ≤ i ≤ n− 2.

If 2 ≤ j ≤ n− 1, then a(n;n− 1, j) =
∑n−2

i=j−1 a(n− 1; i, j − 1), with a(n;n− 1, 1) = a(n− 2) for

n ≥ 2. If 2 ≤ j ≤ n, then a(n;n, j) =
∑n−1

i=j−1 a(n− 1; i, j − 1), with a(n;n, 1) = δn,1 for n ≥ 1.

Proof. Let An,i,j denote the subset of Sn(T ) enumerated by a(n; i, j). First note that removing

the initial letter n from members of An,n,j for 2 ≤ j ≤ n defines a bijection with ∪n−1
i=j−1An−1,i,j−1

(where An,n,n is understood to be the singleton set consisting of the decreasing permutation n(n−
1) · · · 1). This implies the formula for a(n;n, j) for j > 1, with the condition a(n;n, 1) = δn,1
following from the definitions. Similarly, removing n − 1 from members of An,n−1,j when j > 1
implies the formula for a(n;n− 1, j) in this case. That a(n;n− 1, 1) = a(n − 2) follows from the
fact that one may safely delete both n−1 and n from members of Sn(T ) starting with these letters.

To show (60), we first consider the possible values of πj+1 within π = π1π2 · · ·πn ∈ An,i,j where
i < n − 1. Note that if πj+1 < n − 1, then π would contain either 1234 or 1243, as witnessed
by the subsequences πjπj+1(n− 1)n or πjπj+1n(n− 1), which is impossible. Thus, we must have
πj+1 = n− 1 or n. If πj+1 = n− 1, consider further the sequence of letters πj+1πj+2 · · ·πr, where
r is such that πr = n. If r > j+2, then each letter πs for j+2 ≤ s ≤ r− 1 must satisfy πs > i, for
otherwise π would contain 2314 (with the subsequence i(n− 1)xn for some x < i). Furthermore,
if r > j + 2 and πj+2 < n − 2, then iπj+2 would be the first two letters in an occurrence of
1234 or 1243, which is impossible. Thus, we must have πj+2 = n − 2. Similarly, by an inductive
argument, we get πj+1πj+2 · · ·πr−1πr = (n− 1)(n− 2) · · · (n− r+ j+1)n. Note that each of these
ℓ letters, where ℓ = r − j, is seen to be extraneous concerning avoidance of T and thus may be
deleted. The remaining letters comprise a member of An−ℓ,i,k for some k ∈ [j, i] and hence there are
∑i

k=j a(n− ℓ; i, k) possibilities for these letters. Since each letter of the section πj+1 · · ·πr belongs

to [i+ 1, n], its length ℓ can range from 1 to n− i, with the contents of the section determined by
its length. Allowing ℓ to vary implies formula (60) and completes the proof. �

Let an,i(v) =
∑i

j=1 a(n; i, j)v
j for 1 ≤ i ≤ n and an(u, v) =

∑n

i=1 an,i(v)u
i for n ≥ 1. Multiplying

both sides of (60) by vj , and summing over 1 ≤ j ≤ i, gives

an,i(v) =

i
∑

j=1

vj
n−i
∑

ℓ=1

i
∑

k=j

a(n− ℓ; i, k) =

n−i
∑

ℓ=1

i
∑

k=1

a(n− ℓ; i, k)

(

v − vk+1

1− v

)

=
v

1− v

n−i
∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)), 1 ≤ i ≤ n− 2,
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with

an,n−1(v) − a(n− 2)v =

n−1
∑

j=2

vj
n−2
∑

i=j−1

a(n− 1; i, j − 1) =

n−2
∑

i=1

i+1
∑

j=2

a(n− 1; i, j − 1)vj

= v

n−2
∑

i=1

an−1,i(v) = v(an−1(1, v)− an−1,n−1(v))

= v(an−1(1, v)− van−2(1, v)), n ≥ 2,

and

an,n(v) =

n−1
∑

i=1

i+1
∑

j=2

a(n− 1; i, j − 1)vj = v

n−1
∑

i=1

an−1,i(v) = van−1(1, v), n ≥ 1.

The preceding equations then imply

an(u, v) =
v

1− v

n−2
∑

i=1

ui

n−i
∑

ℓ=1

(an−ℓ,i(1)− an−ℓ,i(v)) + un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1
∑

ℓ=1

n−ℓ
∑

i=1

(an−ℓ,i(1)− an−ℓ,i(v))u
i − un−1v

1− v
(an−1,n−1(1)− an−1,n−1(v))

+ un−1an,n−1(v) + unan,n(v)

=
v

1− v

n−1
∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v))−
un−1v

1− v
(a(n− 2)− van−2(1, v))

+ un−1v(an−1(1, v)− van−2(1, v)) + un−1va(n− 2) + unvan−1(1, v)

=
v

1− v

n−1
∑

ℓ=1

(aℓ(u, 1)− aℓ(u, v)) + un−1v(1 + u)an−1(1, v)

− un−1v2

1− v
(a(n− 2)− van−2(1, v)), n ≥ 2,(61)

with a0(u, v) = 1 and a1(u, v) = uv.

Let a(x;u, v) =
∑

n≥1 an(u, v)x
n. Multiplying both sides of (61) by xn, and summing over n ≥ 2,

yields the following functional equation.

Lemma 26. We have

a(x;u, v) = xuv(1− xv) +
xv

(1− x)(1 − v)
(a(x;u, 1)− a(x;u, v)) + xv(1 + u)a(xu; 1, v)

− x2uv2

1− v
(a(xu; 1, 1)− va(xu; 1, v)).(62)

We now determine the generating function FT (x).

Theorem 27. Let T = {1234, 1243, 2314}. Then y = FT (x) satisfies the equation

y = 1− x+ xy + x(1 − 2x)y2 + x2y3.
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Proof. In the current notation, we need to determine 1 + a(x; 1, 1). Letting u = 1 in (62), and
rearranging, gives

(63)

(

(1− v)(1 − 2xv)− x2v3 +
xv

1− x

)

a(x; 1, v) = xv(1−v)(1−xv)+

(

xv

1− x
− x2v2

)

a(x; 1, 1).

Setting v = v0 in (63) such that

1− x− (1− 2x2)v0 + 2x(1− x)v20 = x2(1− x)v30 ,

and solving for a(x; 1, 1), implies

1 + a(x; 1, 1) =
x+ (1− x)v0 − x(1− x)v20

1− x(1 − x)v0
.

Let f(v) = 1− x− (1− 2x2)v + 2x(1− x)v2 − x2(1 − x)v3 and h(v) = f(v)g(v), where

g(v) = (1− x)(1 + x3 − x(2 − 3x+ 2x2)v − 2x3(1− x)v2 + x3(1− x)v3).

Then y = 1 + a(x; 1, 1) is a solution of the equation

1− x− (1− x)y + x(1 − 2x)y2 + x2y3 = 0

if and only if h(v) = 0 at v = v0, which is the case since f(v0) = 0, by definition. This implies
FT (x) is a solution of the equation stated above, as desired. �

3.6. Case 238. The five representative triples T are:

{1423,2413,3142} (Theorem 28)

{2134,2143,2413} (Theorem 29)

{1234,1342,1423} (Theorem 32)

{1324,1342,1423} (Theorem 33)

{1243,1342,1423} (Theorem 34)

3.6.1. T = {1423,2413,3142}.
Theorem 28. Let T = {1423, 2413, 3142}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof. We say that a permutation π has (m, k) left-right maxima, 1 ≤ k ≤ m, if it has m left-right
maxima i1, i2, . . . , im of which the last k are consecutive, that is,

i1 < i2 < · · · < im−k < im−k+1 = n−k+1 < im−k+2 = n−k+2 < · · · < im−1 = n−k+1 < im = n,

where n is maximal letter of π. Let Gm,k(x) be the generating function for T -avoiders with (m, k)
left-right maxima. Define G0,0(x) = 1. To find an equation for Gm,k(x), 1 ≤ k ≤ m, let π =

i1π
(1) · · · imπ(m) be a permutation that avoids T with (m, k) left-right maxima. If k = m, then it is

easy to see that π(1) > π(2) > · · · > π(m), where each π(j) avoids T . Thus, Gm,m(x) = (xFT (x))
m.

So suppose 1 ≤ k ≤ m− 1. Since π avoids 1423, all the letters in I = {im−k +1, . . . , n− k} appear
in decreasing order in π . Since π avoids 2413, only left-right maxima can appear between letters
that belong to I. If I = ∅, then the contribution is given by Gm,k+1(x). Otherwise, there exists
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a largest s ∈ [n − k + 1, n] such that π(s) contains at least one letter from I. By the preceding
observations,

π(n−k+1) · · ·π(s) = (n− k)(n− k − 1) · · · (im−k + 1)π′(s),

where im−k > π′(s). We can now safely delete the left-right maxima n− k+2, n− k+3, . . . , s and
all elements of I. The deleted left-right maxima contribute xs−(n−k)−1, the deleted im−k + 1 ∈ I
(necessarily present) contributes x, and the other elements of I, which amount to distributing an
arbitrary number of balls (possibly none) among the s−(n−k) boxes π(n−k+1), . . . , π(s), contribute
1/(1−x)s−(n−k). After the deletion, we have a T -avoider with m−(s−n+k−1) left-right maxima
of which the last n−s+2 are guaranteed consecutive, and so it contributes Gm+1−s+n−k,n+2−s(x).
Hence, the contribution for given s equals

xs−(n−k)

(1− x)s−(n−k)
Gm+1−s+n−k,n+2−s(x) .

By summing over all s = n− k + 1, . . . , n, we see that the contribution for the case I 6= ∅ is given
by

k
∑

j=1

xj

(1− x)j
Gm+1−j,k+2−j(x) .

Combining all the contributions, we obtain for 1 ≤ k < m,

Gm,k(x) = Gm,k+1(x) +
x

1− x

k−1
∑

j=0

xj

(1− x)j
Gm−j,k+1−j(x) ,

with Gm,m(x) = (xFT (x))
m.

In order to determine an equation for FT (x), we define G(t, u) = 1+
∑

m≥1

∑m

k=1 Gm,k(x)u
k−1tm.

By multiplying the above recurrence by tmuk−1 and summing over k = 1, 2, . . . ,m− 1 and m ≥ 1,
we find

G(t, u) = 1 +
xFT (x)

1− tuxFT (x)
+

G(t, u)−G(t, 0)

u
+

x(G(t, u)−G(t, 0))

u(1− x− xut)
.

Note that G(1, 0) = 1 +
∑

m≥0 Gm,1(x) = FT (x). Hence,

G(1, u) = 1 +
xFT (x)

1− uxFT (x)
+

G(1, u)− FT (x)

u
+

x(G(1, u)− FT (x))

u(1− x− xu)
.

To solve this functional equation, we apply the kernel method and take u = C(x), which is seen
to cancel out G(1, u). Thus,

0 = 1 +
xFT (x)

1− xC(x)FT (x)
− FT (x)

C(x)
− xFT (x))

C(x)(1 − x− xC(x))
,

which, using the identity C(x) = 1 + xC2(x), is equivalent to

FT (x) = 1 +
xFT (x)

1− xC(x)FT (x)
.

Solving this last equation completes the proof. �
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3.6.2. T = {2134,2143,2413}.

Theorem 29. Let T = {2134, 2143, 2413}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof. Let Gm(x) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(x) = 1 and G1(x) = xFT (x). Now let us write an equation for Gm(x). If π is a permutation
that avoids T with m left-right maxima, then, to avoid 2134, π has the form

π = i1i2 · · · im−1π
′imπ′′

with i1 < i2 < · · · < im = n (n is the maximal letter of π), im−1 > π′, and im > π′′.

If π′ is empty, then since π avoids 2413 we see that π′′ can be decomposed as π′′
mπ′′

m−1 · · ·π′′
1 , where

π′′
j > ij−1 > π′′

j−1, j = 2, . . . ,m, and π′′
j avoids T .

If π′ is not empty, then with i0 = 0, there is a maximal integer s such that is−1 < π′. Since π
avoids 2413, we see that π′ = π′

m−1 · · ·π′
s+1π

′
s and π′′ = π′′

s · · ·π′′
1 , where

π′
m−1 > im−2 > π′

m−2 > · · · > is+1 > π′
s+1 > is > π′

sπ
′′
s > is−1 > π′′

s−1 > · · · > i1 > π′′
1 .

This means that π has the following diagrammatic shape.

b

b

b

b

b

b

b

b

π′
m−1

π′
s+1

π′
s π′′

s

π′′
s−1

π′′
1

i1

is−2

is−1

is

is+1

im−2

im−1

im = n

. .
.

. .
. . . .

. . .

Decomposition of T -avoider, case π′ 6= ∅

Furthermore, π′
j avoids 213 for j = m−1,m−2, . . . , s+1 for else n is the 4 of a 3124; π′

snπ
′′
s avoids

T and, since π′
s is not empty, it does not start with its largest letter; π′′

j avoids T for j = s−1, . . . , 1.

Hence, the contribution in the case π′ is empty is xmFm
t (x); otherwise, the contribution for given

s, 1 ≤ s ≤ m, is

xm−1Cm−1−s(x)(FT (x) − 1− xFT (x))F
s−1
T (x) .
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Combining all the contributions, we obtain

FT (x) = 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

m−1
∑

s=1

xm−1Cm−1−s(x)F s−1
T (x)

= 1 +
∑

j≥1

(xjF j
T (x)) + (FT (x)− 1− xFT (x))

∑

m≥2

xm−1C
m−1(x)− Fm−1

T (x)

C(x) − FT (x)
,

and, using C(x) = 1 + xC2(x), we find that

FT (x) = 1− x2C2(x)FT (x) + xC(x)F 2
T (x),

which yields the stated generating function. �

For the remaining three cases, we consider (right-left) cell decompositions. So suppose

π = π(m)imπ(m−1)im−1 · · ·π(1)i1 ∈ Sn

has m ≥ 2 right-left maxima n = im > im−1 > · · · > i1 ≥ 1. The right-left maxima determine a
cell decomposition of the matrix diagram of π as illustrated in the figure below for m = 4. There
are

(

m+1
2

)

cells Cij , i, j ≥ 1, i + j ≤ m + 1, indexed by (x, y) coordinates, for example, C21 and
C32 are shown.

C21

C32

i4

i3

i2

i1

Cell decomposition

Cells with i = 1 or j = 1 are boundary cells, the others are interior. A cell is occupied if it contains
at least one letter of π, otherwise it is empty. Let αij denote the subpermutation of entries in Cij .

We now consider R = {1342, 1423}, a subset of the pattern set in the remaining three cases. The
reader may check the following characterization of R-avoiders in terms of the cell decomposition.
A permutation π is an R-avoider if and only if

(1) For each occupied cell C, all cells that lie both strictly east and strictly north of C are
empty.

(2) For each pair of occupied cells C,D with D directly north of C (same column), all entries
in C lie to the right of all entries in D.

(3) For each pair of occupied cells C,D with D directly east of C (same row), all entries in C
are larger than all entries in D.

(4) αij avoids R for all i, j.

Condition (1) imposes restrictions on occupied cells as follows. A major cell for π is an interior cell
C that is occupied and such that all cells directly north or directly east of C are empty. The set
of major cells (possibly empty) determines a (rotated) Dyck path of semilength m− 1 with valley
vertices at the major cells as illustrated in the figure below. (If there are no major cells, the Dyck
path covers the boundary cells and has no valleys.)
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b

b

b

b

b

b

b

b

b

b

b

b

b

rotate

(rotated) Dyck path

= major cell

Dyck path

= valley vertex

If π avoidsR, then condition (1) implies that all cells not on the Dyck path are empty, and condition
(4) implies St(αij) is an R-avoider for all i, j. Conversely, if n = im > im−1 > · · · > i1 ≥ 1 are
given and we have a Dyck path in the associated cell diagram, and an R-avoider πC is specified for
each cell C on the Dyck path, with the additional proviso πC 6= ∅ for valley cells, then conditions
(2) and (3) imply that an R-avoider with this Dyck path is uniquely determined.

It follows that an R-avoider π avoids the pattern τk where τ ∈ Sk−1 if and only if all the subper-
mutations αij avoid R and τ . We use this observation in the next two results. As an immediate
consequence, we have

Proposition 30. Let τ and τ ′ be two patterns in Sk−1. If F{1342,1423,τ}(x) = F{1342,1423,τ ′}(x),
then F{1342,1423,τk}(x) = F{1342,1423,τ ′k}(x). �

We can now find a recurrence for avoiders of the pattern set R ∪ {12 · · ·k}.
Proposition 31. Let Tk = {1342, 1423, 12 · · ·k}. Then

FTk
(x) =

1 + (x− 2)FTk−1
(x) +

√

(

1 + xFTk−1
(x)
)2 − 4xF 2

Tk−1
(x)

2
(

1− FTk−1
(x)
) .

Proof. For brevity, set Fk = FTk
(x). So, for m right-left maxima and an associated Dyck path of

semilength m− 1, the contribution to Fk is xm for the right-left maxima, Fk−1 − 1 for each valley
vertex, and Fk−1 for every other vertex. Let ℓ denote the number of peaks in the Dyck path, so
that ℓ − 1 is the number of valleys. Recall that the Narayana number Nm,ℓ =

1
m

(

m

ℓ

)(

m

ℓ−1

)

counts

Dyck paths of semilength m with ℓ peaks (see [17, Seq. A001263]). Hence, summing over m,

Fk = 1 + xFk−1 +
∑

m≥2

xm

m−1
∑

ℓ=1

Nm−1,ℓ (Fk−1 − 1)ℓ−1F 2m−ℓ
k−1

= 1 + xFk−1 +
xF 2

k−1

Fk−1 − 1

∑

m≥1

m
∑

ℓ=1

Nm,ℓ

(

xF 2
k−1

)m

(

1− 1

Fk−1

)ℓ

= 1 + xFk−1 +
xF 2

k−1

Fk−1 − 1
N
(

xF 2
k−1, 1− 1/Fk−1

)

,



WILF CLASSIFICATION OF TRIPLES OF 4-LETTER PATTERNS II 35

where N(x, y) :=
∑

m≥1

∑m

ℓ=1 Nm,ℓx
myℓ is the generating function the Narayana numbers. It is

known that

N(x, y) =
1− x(1 + y)−

√

(1 − x(1 + y))2 − 4yx2

2x
and the theorem follows. �

3.6.3. T = {1234,1342,1423}.
Theorem 32. Let T = {1234, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof. Since F{1342,1423,123}(x) = F{123}(x) = C(x), we get by Prop. 31 that

FT (x) = 1 + xC(x) +
xC2(x)

C(x) − 1
N
(

xC2(x), 1 − 1/C(x)
)

,

which, after some algebraic manipulation, agrees with the desired expression. �

3.6.4. T = {1324,1342,1423}.
Theorem 33. Let T = {1324, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof. Since F{1342,1423,132}(x) = F{132}(x) = C(x) and F{1342,1423,123}(x) = F{123}(x) = C(x),
we get by Prop. 30 with τ = 132 and τ ′ = 123 that F{1342,1423,1324}(x) = F{1342,1423,1234}(x).
Apply Theorem 32. �

3.6.5. T = {1243,1342,1423}.
Theorem 34. Let T = {1243, 1342, 1423}. Then

FT (x) =
3− 2x−

√
1− 4x−

√

2− 16x+ 4x2 + (2 + 4x)
√
1− 4x

2(1−
√
1− 4x)

.

Proof. A permutation π ∈ ST (n) with m ≥ 2 right-left maxima avoids R and so the cell decom-
position of π has an associated Dyck path that covers all occupied cells. To also avoid 1243, all
the Dyck path cells except the cells incident with a right-left maximum, that is, cells Cij with
i + j = m + 1, must avoid 12 for else some two right-left maxima would form the 43 of a 1243.
Other cells need only avoid 1243. The cells Cij with i + j = m + 1 consist of the extremities
C1m and Cm1 together with all the low valleys in the Dyck path (a low valley is one incident with
ground level, the line joining the path’s endpoints). Suppose the Dyck path has ℓ low valleys and
h high valleys. The contribution of the right-left maxima is xm. Since F{12}(x) = 1/(1 − x), the

contributions of the 2m− 1 Dyck path cells are as follows. The two extremities contribute F 2
T (x),

the ℓ low valleys contribute (FT (x)− 1)ℓ, the h high valleys contribute
(

1
1−x

− 1
)h

=
(

x
1−x

)h
, and

the remaining cells contribute
(

1
1−x

)2m−3−ℓ−h
.
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Let Mm,ℓ,h denote the number of Dyck paths of semilength m containing ℓ low valleys and h high
valleys, with generating function M(x, y, z) =

∑

m,ℓ,h≥0Mm,ℓ,hx
myℓzh. Then, by the first return

decomposition of the Dyck paths, we obtain

M(x, 1, z) = 1 + xM(x, 1, z) + xzM(x, 1, z)(M(x, 1, z)− 1)

and
M(x, y, z) = 1 + xM(x, 1, z) + xyM(x, 1, z)(M(x, y, z)− 1) .

Thus,

M(x, y, z) =
y − 2z − 1 + x(1− y)(1− z) + (1− y)

√

1− 2x(1 + z) + x2(1− z)2

(1− x)y + (xy − 2)z − y
√

1− 2x(1 + z) + x2(1− z)2
.

Hence, summing over m and over all Dyck paths gives

FT (x) = 1 + xFT (x) +
∑

m≥2

∑

ℓ,h≥0

Mm−1,ℓ,hx
m+hF 2

T (x)
(

FT (x) − 1
)ℓ 1

(1− x)2m−3−ℓ
.

After several algebraic steps and solving for FT (x), one obtains the desired formula. �

The preceding theorem can be extended to the case Tk = {1342, 1423, τk(k − 1)} with k ≥ 4 as
follows.

Theorem 35. Let k ≥ 4 and τ ∈ Sk−2. Let Tk = {1342, 1423, τk(k−1)} and T ′
k = {1342, 1423, τ}.

Then

FTk
(x) =

(2 − x)(1 − t)− x2F 2
T ′

k
(x)(1 + (x − 2)FT ′

k
(x)) +

√

2x(a− bt)

2(1− xF 2
T ′

k

(x) + x2F 3
T ′

k

(x)− t)
,

where

t =
√

(1− xF 2
T ′

k

(x))2 − x2F 3
T ′

k

(x)(2 − 2xF 2
T ′

k

(x) + x2F 3
T ′

k

(x)),

a = (x− 4)(1 + x4F 6
T ′

k
(x)) + 2xF 2

T ′

k
(x)(1 + (1− x)F 2

T ′

k
(x) + x2F 3

T ′

k
(x)) + x3F 4

T ′

k
(x),

b = (4− x)(1 + x2F 3
T ′

k
(x)) + x(2− x)F 2

T ′

k
(x).

Proof. The proof follows the same lines as in the preceding theorem except that FT (x) is replaced
by FTk

(x) and F{12}(x) is replaced by FT ′

k
(x). The details are left to the reader. �
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