
HAL Id: hal-01321448
https://hal.science/hal-01321448v1

Submitted on 25 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mine ’Em All: A Note on Mining All Graphs
Ondřej Kuželka, Jan Ramon

To cite this version:
Ondřej Kuželka, Jan Ramon. Mine ’Em All: A Note on Mining All Graphs. 25th International
Conference on Inductive Logic Programming, Katsumi Inoue, Hayato Ohwada, Akihiro Yamamoto,
Aug 2015, Kyoto, Japan. �hal-01321448�

https://hal.science/hal-01321448v1
https://hal.archives-ouvertes.fr

Mine ’Em All: A Note on Mining All Graphs

Ondřej Kuželka1 and Jan Ramon2,3

1 School of Computer Science & Informatics, Cardiff University, UK
KuzelkaO@cardiff.ac.uk

2 Department of Computer Science, KU Leuven, Belgium
3 INRIA, Lille, France

jan.ramon@cs.kuleuven.be

Abstract. We study the complexity of the problem of enumerating all
graphs with frequency at least 1 and computing their support. We show
that there are hereditary classes of graphs for which the complexity of
this problem depends on the order in which the graphs should be enu-
merated (e.g. from frequent to infrequent or from small to large). For
instance, the problem can be solved with polynomial delay for databases
of planar graphs when the enumerated graphs should be output from
large to small but it cannot be solved even in incremental-polynomial
time when the enumerated graphs should be output from most frequent
to least frequent (unless P=NP).

1 Introduction

In this paper we study graph mining problems from a nontraditional perspec-
tive. We are inspired by the question which properties of the problem make
some graph mining problems solvable in incremental polynomial time or with
polynomial delay. Here, we do not require the discovered graph patterns to be
frequent and we want to output all patterns occurring in at least one database
graph. However, we still want to also output their occurrences. In addition, we
constrain the order in which the patterns should be printed, e.g. from most fre-
quent patterns to least frequent patterns, which allows us to connect our results
to results on (in)frequent graph mining. Surprisingly, for several graph classes,
we show that different orders lead to very different computational complexities.
For instance mining planar graphs cannot be done in incremental-polynomial
time when the output graphs should be ordered by frequency but it can be done
with polynomial delay when they should be ordered from largest to smallest.

2 Preliminaries

In this section we first briefly review some basic concepts and fix the notations
used in this paper. We start with some standard definitions from graph theory.

2 O. Kuželka and J. Ramon

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. Two vertices are said to be adjacent
(in G) if they are connected by an edge (of the graph G). A labeled undirected
graph is a triple (V,E, λ), where (V,E) is an undirected graph and λ : V ∪E → Σ
is a function assigning a label from an alphabet Σ to every element of V ∪ E.
We will denote the set of vertices, the set of edges, and the labeling function of a
graph G by V (G), E(G), and λG, respectively. We define |G| = |V (G)|+ |E(G)|
and call this the order of G. Note that in graph theory, often other notions of
’order’ are used, measuring only the number of edges or the number of vertices.
A graph G′ is a subgraph of a graph G, if V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
λG′(x) = λG(x) for every x ∈ V (G′) ∪ E(G′); G′ is an induced subgraph of G if
it is a subgraph of G satisfying {u, v} ∈ E(G′) if and only if {u, v} ∈ E(G) for
every u, v ∈ V (G′). For a subset S ⊆ V (G), G[S] denotes the (unique) induced
subgraph of G with vertex set S. A contraction of an edge e = {u, v} in a graph
G is an operation which produces a new graph by replacing u and v in V (G) as
well as in all {x, y} ∈ E(G) by a new vertex w (pictorially, this can be imagined
as shrinking the edge). A subdivision of an edge e = {u, v} is an operation which
produces a new graph by removing e and adding a path connecting u and v.

Tree decomposition, tree-width. The notion of tree-width was reintroduced in
[11, 3]. It proved to be a useful parameter of graphs in algorithmic graph theory.
A tree-decomposition of a graph G, denoted TD(G), is a pair (T,X), where T
is a rooted unordered tree and X = (Xz)z∈V (T) is a family of subsets of V (G)
satisfying

(i) ∪z∈V (T)Xz = V (G),

(ii) for every {u, v} ∈ E(G), there is a z ∈ V (T) such that u, v ∈ Xz, and

(iii) Xz1 ∩ Xz3 ⊆ Xz2 for every z1, z2, z3 ∈ V (T) such that z2 is on the simple
path connecting z1 with z3 in T .

The set Xz associated with a node z of T is called the bag of z. The nodes of
T will often be referred to as the nodes of TD(G). The tree-width of TD(G)
is maxz∈V (T) |Xz| − 1, and the tree-width of G, denoted tw(G), is the minimum
tree-width over all tree-decompositions of G. By graphs of bounded tree-width
we mean graphs of tree-width at most k, where k is some constant.

A class of graphs G is called hereditary if for any graph G ∈ G all its subgraphs
also belong to G. The class of graphs of treewidth at most k is hereditary. The
same also holds for planar graphs (as clearly any subgraph of a planar graph is
still planar).

Graph isomorphism, Graph canonization. Graphs G and G′ are isomorphic if
there exists a bijection π : V (G) → V (G′) such that {u, v} ∈ E(G) if and
only if {π(u), π(v)} ∈ E(G′). Graph canonization is a function from graphs to
strings such that two graphs have the same canonization if and only if they are
isomorphic.

A Note on Mining All Graphs 3

Subgraph isomorphism and induced subgraph isomorphism. We say that a graph
G1 is subgraph isomorphic to a graph G2 if G1 is isomorphic to a subgraph of
G2. We say that a graph G1 is induced subgraph isomorphic to a graph G2 if
G1 is isomorphic to an induced subgraph of G2. Deciding whether a graph is
(induced) subgraph isomorphic to another graph is NP-complete and it remains
NP-complete even for bounded-treewidth graphs [10]. Note that there are graph
classes, e.g. bounded-treewidth graphs or planar graphs, for which isomorphism
can be decided in polynomial time but for which subgraph isomorphism is NP-
complete. We are mostly interested in such classes because for them it is not
obvious whether fast graph mining algorithms exist.

Homeomorphism and induced homeomorphism. We say that a graph G1 is home-
omorphic to a graph G2 if there is a graph G′1 which can be obtained from G1

by subdividing its edges and G′1 is subgraph isomorphic to G2. We say that a
graph G1 is induced homeomorphic to a graph G2 if there is a graph G′1 which
can be obtained from G1 by subdividing its edges and G′1 is induced subgraph
isomorphic to G2. Deciding if a graph is homeomorphic to another graph is
NP-complete even for graphs of bounded treewidth and unbounded maximum
degree [10].

Minor embedding and induced minor embedding. We say that a graph G1 is
minor-embeddable to a graph G2 if there is a graph G′1 isomorphic to G1 which
can be obtained from a subgraph of G2 by contracting edges and deleting loops
and multiple-edges thus produced. We say that a graph G1 is induced minor-
embeddable to a graph G2 if there is a graph G′1 isomorphic to G1 which can
be obtained from an induced subgraph of G2 by contracting edges and deleting
loops and multiple-edges thus produced. Deciding if a graph is minor-embeddable
to another graph is NP-complete even for graphs of bounded treewidth and
unbounded maximum degree [10].

Fixed-parameter tractability. Formally, a parameterized decision problem is a
language L ⊆ Σ∗ ×N where Σ is a finite alphabet and N is the set of natural
numbers [1]. An instance of a parametrized problem is a pair (x, k) where k ∈ N
is called parameter of the problem. A problem is fixed-parameter tractable (ab-
breviated FPT) if there exists an algorithm for solving instances of it which runs
in time |x|O(1) · f(k) where f is a computable function. Notice that whether a
problem is fixed-parameter tractable depends on the selected parameterization.
For instance, when the parameter of the problem is |x|, i.e. the actual size of
the problem, then any problem e.g. from classes such as e.g. NP, EXP, NEXP is
fixed-parameter tractable with such a parameterization. On the other hand, it is
widely believed that e.g. the clique problem is not fixed-parameter tractable with
the parameter being size of the clique. To capture a conjectured intractability
hierarchy, the W-hierarchy is used which consists of an infinite number of in-
creasingly more intractable classes W[1], W[2], etc. The W-hierarchy is based
on fixed-parameter reductions. A problem LA is fixed-parameter reducible to a

4 O. Kuželka and J. Ramon

problem LB if there exists an algorithm for transforming instances (x, k)A of the
problem LA to instances (x′, k′)B of the problem B such that:

(i) the transformation algorithm runs in time |x|O(1) · f(k) where f is a com-
putable function,

(ii) k′ ≤ g(k) where g is a computable function,
(iii) (x, k)A ∈ LA if and only if (x′, k′)B ∈ LB (informally, (x, k)A has a ’yes’

solution if and only if (x′, k′)B has a ’yes’ solution).

3 Graph Mining Problems

In this section, we define the mining problems studied in this paper and describe
their basic properties. We start with the definition of the classical frequent con-
nected graph mining problem.

A transaction database is a a multiset of graphs from a given class G. Given a
pattern matching operator 4 (subgraph isomorphism or induced subgraph iso-
morphism), the frequency of a graph G in a transaction database DB, denoted
by freq(G,DB), is given as freq(G,DB) = |{G′ ∈ DB|G 4 G′}|. Given a thresh-
old t, G is said to be frequent if freq(G,DB) ≥ t. The elements of the multiset
{G′ ∈ DB|G 4 G′} are called occurrences of the graph G in the database DB.
We will often represent the set of occurrences also just by names or IDs of the
graphs contained in it (e.g. G1 will be represented just by “1”).

Definition 1 (The Frequent Connected Graph Mining (FCGM) Prob-
lem). Given a class G of graphs, a transaction database DB of graphs from G,
a pattern matching operator 4, and frequency threshold, list the set of frequent
connected graphs G ∈ G and their occurrences.

In this paper, we are interested in another closely related type of problem which
is to mine all graphs with frequency at least one in certain order.

Definition 2 (The Ordered Mining Problems). Given a class G of graphs,
a transaction database DB of graphs from G and a pattern matching operator 4,
list the set of connected graphs G ∈ G with freq(G,DB) ≥ 1 and their occurrences
in the transactions in the given order4:

– from most frequent to least frequent (ALLF→I problem),
– from least frequent to most frequent (ALLI→F problem),
– from smallest size to largest size (ALLS→L problem),
– from largest size to smallest size (ALLL→S problem).

Here size of a graph G refers to |E(G)| when 4 is subgraph isomorphism and to
|V (G)| when 4 is induced subgraph isomorphism.

4 ALLF→I stands for ’frequent to infrequent’, ALLI→F stands for ’infrequent to fre-
quent’, ALLS→L stands for ’small to large’ and ALLL→S stands for ’large to small’.

A Note on Mining All Graphs 5

The parameter of the above problems is the size of DB. One can easily
construct examples for which the number of frequent connected subgraphs is
exponential in this parameter. Thus, in general, the set of all frequent connected
subgraphs cannot be computed in time polynomial only in the size of DB. Since
this is a common feature of many listing problems, the following problem classes
are usually considered in the literature (see, e.g., [6]). For some input I, let O
be the output set of some finite cardinality N . Then the elements of O, say
o1, . . . , oN , are listed with:

– polynomial delay if the time before printing o1, the time between printing oi
and oi+1 for every i = 1, . . . , N − 1, and the time between printing oN and
the termination is bounded by a polynomial of the size of I,

– incremental polynomial time if o1 is printed with polynomial delay, the time
between printing oi and oi+1 for every i = 1, . . . , N − 1 (resp. the time
between printing oN and the termination) is bounded by a polynomial of
the combined size of I and the set {o1, . . . , oi} (resp. O),

– output polynomial time (or polynomial total time) if O is printed in time
polynomial in the combined size of I and the entire output O.

Clearly, polynomial delay implies incremental polynomial time, which, in
turn, implies output polynomial time. Furthermore, in contrast to incremental
polynomial time, the delay of an output polynomial time algorithm may be
exponential in the size of the input even before printing the first element of the
output.

Example 1. Let us have graphs G1 = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}) and G2 =
({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}), DB = {G1, G2} and let t = 2. A solution of
the FCGM problem is

H1 = ({1}, {}), OCC1 = {1, 2}
H2 = ({1, 2}, {{1, 2}}), OCC2 = {1, 2}
H3 = ({1, 2, 3}, {{1, 2}, {2, 3}}), OCC3 = {1, 2}

where OCCi denotes the occurrences of the graph Hi. A solution of the problem
ALLF→I is

H1 = ({1}, {}), OCC1 = {1, 2}
H2 = ({1, 2}, {{1, 2}}), OCC2 = {1, 2}
H3 = ({1, 2, 3}, {{1, 2}, {2, 3}}), OCC3 = {1, 2}
H4 = ({1, 2, 3}, {{1, 2}, {2, 3}, {3, 1}}), OCC4 = {1}
H5 = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}}), OCC4 = {2}

Remark 1. There is an incremental-polynomial-time algorithm for the FCGM
(FCIGM) problem if and only if there is an incremental-polynomial time algo-
rithm for ALLF→I with (induced) subgraph isomorphism as a pattern matching
operator.

6 O. Kuželka and J. Ramon

In general, we will see in the next sections that the different ordered mining
problems possess different computational complexities under standard complex-
ity theoretic assumptions.

4 Mining All (Induced) Subgraphs

4.1 Negative Results

In this section, we provide several negative results regarding complexity of some
of the enumeration problems considered in this paper. The first theorem connects
the hardness of the frequent subgraph enumeration problem to fixed-parameter
tractability of the pattern matching operator (subgraph isomorphism or induced
subgraph isomorphism).

Theorem 1. Let G be a class of graphs. Let 4 be either subgraph isomorphism or
induced subgraph isomorphism. If deciding H 4 G where G,H ∈ G is not fixed-
parameter tractable with the parameter |H| then there is no output-polynomial-
time algorithm for enumerating frequent connected graphs from databases con-
sisting of graphs from G.

Proof. Let us suppose that there is an algorithm for mining frequent connected
graphs from databases of graphs from G which runs in output-polynomial time.
Let G,H ∈ G. We show that then it is always possible to decide whether H 4 G
holds in time f(|H|) · |G|O(1). If |H| > |G| then H 64 G and we can finish.
If |H| ≤ |G|, we set DB = {H,G} and we let the pattern mining algorithm
run on DB with minimum frequency t = 2. Since there are at most 2|E(H)|

connected subgraphs of H, the mining algorithm will produce an output of length
at most |H| ·2|E(H)| in time poly

(
|H|+ |G|, |H| · 2|E(H)|). If the output contains

a frequent graph F such that |V (F)| = |V (H)| and |E(F)| = |E(H)| (such a
graph F must be isomorphic to H), we return true. Otherwise, we return false.
Now, if we return true then H 4 G must hold because if a graph F isomorphic
to H is frequent, it must hold F 4 G and therefore also H 4 G. Similarly, if we
return false then there is no frequent graph F isomorphic to H and therefore
H 64 G. This all put together runs in time f(|H|)·|G|O(1) where f is a computable
function. However, then the just described procedure would give us an algorithm
for the pattern matching operator which would be fixed-parameter tractable with
the parameter |H| which is a contradiction. ut

From the proof of the above theorem, we can obtain the following corollary5.

5 The hardness for the ALLF→I problem follows from Theorem 1 together with Remark
1, whereas hardness of the ALLS→L problem follows from a simple modification of
the proof of Theorem 1 where we use a hypothetic incr.-poly.-time algorithm for
solving the ALLS→L problem and stop it after printing the first graph with more
edges than H (or more vertices than H in the case of induced subgraph mining).

A Note on Mining All Graphs 7

Corollary 1. Let G be a class of graphs. Let 4 be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H 4 G where G,H ∈ G is not fixed-
parameter tractable with the parameter |H| then ALLF→I and ALLS→L cannot
be solved in incremental polynomial time.

However, there are also graph classes with FPT subgraph isomorphism, e.g.
planar graphs [9], for which ALLF→I cannot be solved in incr.-poly. time6.

Theorem 2. The problem ALLF→I cannot be solved in incremental polynomial
time for the class G of planar graphs and subgraph isomorphism as pattern match-
ing operator.

Proof. We can use NP-hardness of Hamiltonian cycle problem [2], similarly as [5].
We construct a database consisting of a given graph G and a cycle C on |V (G)|
vertices. A graph isomorphic to C with frequency 2 (recall that frequency is given
implicitly by the printed occurrences) is output by the mining algorithm among
the first |V (G)| + 1 graphs if and only if G contains a Hamiltonian cycle. It is
easy to see that we could then use an incremental-polynomial time algorithm for
the ALLF→I problem to solve the Hamitonian cycle problem. Therefore there
is no incremental-polynomial time algorithm for the ALLF→I problem (unless
P=NP). ut

This theorem is interesting because in Section 4.2, we will see that the problem
ALLL→S can be solved with polynomial delay for planar graphs.

Even stronger negative result can be obtained for the problem ALLI→F .

Theorem 3. Let G be a class of graphs. Let 4 be either subgraph isomorphism
or induced subgraph isomorphism. If deciding H 4 G where G,H ∈ G is NP-hard
then ALLI→F cannot be solved in incremental polynomial time (unless P = NP).

Proof. Let H and G be graphs from G. We will show how to use an incremental-
polynomial-time algorithm for the problem ALLI→F to decide whether H 4 G
in polynomial time. We construct a database of graphs DB = {H,G,G} and
let the algorithm for the problem ALLI→F run until it outputs a graph and
its occurrences (implicitly giving us also the frequency) and then we stop it (it
follows from definition of incremental-polynomial time that this will run only for
time polynomial in the sizes of H and G). It is easy to see that the output graph
has frequency 1 if and only if H 64 G. Thus, if the frequency of the output graph
is 1 we return ’not (induced) subgraph isomorphic’ and if the frequency of the
output graph is greater than 1 then we return ’(induced) subgraph isomorphic’.
Therefore if deciding H 4 G is NP-hard for graphs from G there cannot be
an incremental-polynomial-time algorithm for the problem ALLI→F (unless P =
NP). ut

Using the fact that (induced) subgraph isomorphism is NP-complete even for
bounded-treewidth graphs [10] and planar graphs [9], we can obtain the follow-
ing.

6 The complexity of the ALLS→L problem in these cases remains an interesting open
problem.

8 O. Kuželka and J. Ramon

Corollary 2. The problem ALLI→F cannot be solved in incremental polynomial
time for the class of planar graphs and for the class of bounded-treewidth graphs.

Note that Theorem 1 cannot be made as strong as Theorem 3 (i.e. showing
that ALLF→I cannot be solved in incremental-polynomial time if the pattern
matching operator is NP-hard) because the results of Horváth and Ramon from
[5] demonstrate that even if the pattern matching operator is NP-hard there can
be an incremental-polynomial-time algorithm for mining frequent subgraphs.
Theorem 3 shows that we cannot expect such a result for mining infrequent
subgraphs (i.e. subgraphs with frequency below a threshold).

4.2 Positive Results for ALLF→I and ALLS→L

Before presenting our new results for ALLL→S in the next section, we note that
there exists the following positive result for frequent graph mining from bounded-
treewidth graphs, which was presented in [4, 5].

Theorem 4 (Horváth and Ramon [5], Horváth, Otaki and Ramon [4]).
The FCGM and FCIGM problems can be solved in incremental-polynomial time
for the class of bounded-treewidth graphs.

This result directly translates to a positive result for the problem ALLF→I

summarized in the following corollary (recall that we have shown in the previ-
ous section that ALLI→F cannot be solved in incremental-polynomial time for
bounded-tree-width graphs) and to a result for the problem ALLS→L (this other
result follows from the fact that the respective algorithms are level-wise).

Corollary 3. The problems ALLF→Iand ALLS→L can be solved in incremental-
polynomial time for the class of bounded-treewidth graphs.

4.3 Positive Results for ALLL→S

In this section, we describe an algorithm called LargerToSmaller (Alg. 1)
which, when given a class of graphs G in which isomorphism can be decided in
polynomial time, solves the problem ALLL→S in incremental-polynomial time,
or with polynomial delay if G also admits a polynomial-time canonization. The
main employed trick is the observation that for the problem ALLL→S it is not
necessary to use subgraph isomorphism explicitly for computing occurrences.

The algorithm maintains a data structure ALL storing key-value pairs where
keys are graphs and values are sets of IDs7 of graphs in which the given key
graph is contained either as a subgraph or as an induced subgraph (depending
on whether we are mining subgraphs or induced subgraphs). The data struc-
ture provides four functions/procedures: ADD(K,OCC,ALL), GET(K,ALL),
KEYS(n,ALL), and DELETE(n,ALL) .

7 Here, IDs are just some identifiers given to the database graphs.

A Note on Mining All Graphs 9

The procedure ADD(K,OCC,ALL) adds the IDs contained in OCC to the
set associated with a key contained in ALL which is isomorphic to K or, if no
such key is contained in ALL, the procedure stores K in ALL and associates
OCC with it. If we restrict attention to graphs from a class G for which a
polynomial-time canonization function running in O(p(|H|)) exists (where p is
a polynomial) then the procedure ADD(K,OCC,ALL) can be implemented to
run in time O(p(|K|)) (we can just store the key graphs as canonical strings,
therefore a hashtable with constant-time methods for finding and adding values
by their keys can be used). If a polynomial-time canonization function does not
exist but graph isomorphism can be decided in time O(piso(|K|)) where piso is a
polynomial then the procedure ADD(K,OCC,ALL) can be implemented to run
in time O(|{K ′ ∈ KEY S(ALL) : |V (K ′)| = |V (K)| and |E(K ′)| = |E(K)|}| ·
piso(|K|)).

The function GET(K,ALL) returns all IDs associated with a key isomorphic
to K. The exactly same considerations as for the procedure ADD apply also for
this function.

The function KEYS(n,ALL) returns a pointer to a linked list containing all
key graphs stored in ALL which have size n. Since the data structure ALL does
not allow deletion of individual keys, it is easy to maintain such a linked list8.

Finally, the procedure DELETE(n,ALL) removes the pointer9 to the linked
list containing all key graphs of order n stored in ALL.

The algorithm LargerToSmaller fills in the data structure ALL, starting
with the largest graphs and proceeding to the smaller ones. When it processes
a graph H, it first prints it and the IDs of the graphs associated to it in the
data structure ALL, and then it calls the function REFINE which returns all
connected subgraphs H ′ of H which can be obtained from H by removing an
edge or an edge and its incedent vertex of degree one, in the case of subgraph
mining, or just by removing a vertex and all its incident edges, in the case of
induced subgraph mining. It then associates all occurrences of the graph H with
the graphs H ′ in the datastructure ALL using the procedure ADD. Since the
same graph H ′ may be produced from different graphs H, the occurrences of H ′

accumulate and we can prove that when a graph H is printed, the data structure
ALL already contains all IDs of graphs in which H is contained.

Theorem 5. Let G be a hereditary class of graphs with isomorphism decidable
in polynomial time. Given a database DB of graphs from G, the algorithm Larg-
erToSmaller solves the problem ALLL→S in incremental polynomial time. If
the graphs from G also admit a poly-time canonization then the algorithm Larg-
erToSmaller solves the problem ALLL→S with polynomial delay.

8 The reason why the function KEYS does not just return all the key graphs but rather
a pointer to the linked list is that if it did otherwise, Algorithm 1 could never run
with polynomial delay

9 Note that we just remove the pointer and do not actually “free” the memory occupied
by the graphs. For the practical implementation, we used a programming language
with a garbage collector.

10 O. Kuželka and J. Ramon

Algorithm 1 LargerToSmaller

Require: database DB of transaction graphs
Ensure: all connected (induced) subgraphs and their occurrences

1: let ALL be a data structure for storing graphs and their occurrences (as described
in the main text).

2: for G ∈ DB do
3: ADD(G, {ID(G)}, ALL)
4: endfor
5: let m := maxG∈DB |E(G)| (m := maxG∈DB |V (G)| for induced subgraph mining).
6: for (l := m; l > 0; l := l − 1) do
7: for H ∈ KEYS(l, ALL) do
8: OCC ← GET(H,ALL)
9: PRINT(H,OCC)

10: for H ′ ∈ REFINE(H) do
11: if H ′ is connected then
12: ADD(H ′, OCC,ALL)
13: endif
14: endfor
15: endfor
16: DELETE(l, ALL)
17: endfor

Proof. First, we show that the algorithm prints every (induced) subgraph of the
graphs in DB. Let us assume, for contradiction, that this is not the case and let
G∗ be a maximal connected graph which is a (induced) subgraph of a graph in the
database and such that no graph isomorphic to it is printed by the algorithm. It
is easy to verify that such a graph G∗ cannot be isomorphic to any graph in DB.
Since G∗ is not isomorphic to a graph from DB and since it is a maximal graph
not printed, there must be a supergraph G′ of G∗ such that |E(G∗)|+1 = |E(G′)|
in the case of subgraph isomorphism (|V (G∗)|+1 = |V (G′)| in the case of induced
subgraph isomorphism, respectively) and such that a graph isomorphic to it is
printed by the algorithm. However, if such a graph was printed then a graph
isomorphic to G∗ would have to be in REFINE(G′) and would have to be printed
eventually, which is a contradiction.

Second, we show that the occurrences printed with each graph are correct.
First, if a printed graph G does not have any strict supergraph in the database
then it must be equivalent to one or more database graphs. However, it is easy
to check by simple inspection of the algorithm that the occurrences must be
correct in this case. For the rest of the printed graphs (i.e. graphs which have
strict supergraphs in the databse), let us assume, for contradiction, that G∗ is a
maximal graph printed by the algorithm for which the printed occurrences are
not correct, i.e. either there is an ID of a database graph printed for G∗ of which
G∗ is not an (induced) subgraph or there is an ID of a database graph not printed
for G∗ of which G∗ is actually an (induced) subgraph. (False occurrence:) If there
is an ID of a database graph of which G∗ is not a (induced) subgraph then at

A Note on Mining All Graphs 11

least one of the graphs from which G∗ can be obtained by refinement must have
an ID associated which it should not have. But then G∗ could not be maximal
graph with this property, which is a contradiction. (Missing occurrence:) If there
is a missing ID of a database graph of which G∗ is a (induced) subgraph then
one of the following must be true: (i) G∗ is isomorphic to the database graph
but then it is easily seen by inspection of the algorithm that the ID of this graph
cannot be missing from the occurrences of G∗, (ii) there is a strict supergraph
G′ of G∗ which is (induced) subgraph isomorphic to the database graph and
which is not printed (and therefore its occurrences are not added to the data
structure ALL), but this is not possible as the first part of the proof shows, (iii)
there is a strict supergraph G′ of G∗ which is (induced) subgraph isomorphic to
the database graph and the respective ID was not associated to it, but then G∗

could not be a maximal graph with this property. Thus, we have a contradiction.
Third, we show that if there is a polynomial-time isomorphism algorithm

then the algorithm LargerToSmaller runs in incremental-polynomial time.
First, notice that the first for-loop takes only polynomial time in the size of the
database. We can see easily that the time before printing the first graph is also
bounded by a polynomial in the size of the database. Next, the for-loop on line
10 is repeated at most |H|-times for any graph H. Adding a graph H ′ to the
data structure ALL or getting occurrences of a graph H ′ from the data structure
ALL takes time polynomial in the number of graphs already stored in it and
the size of the graph being stored (which is discussed in the main text). The
number of graphs already stored in the data structure ALL is bounded by P ·M
where P is the number of already printed graphs and M is the maximum size
of a graph in the database. Thus, we have that the time between printing two
consecutive graphs is bounded by a polynomial in the size of the database and
in the number of already printed graphs, i.e. the algorithm runs in incremental
polynomial time.

Fourth, we can show using essentially the same reasoning that if there is
a polynomial-time graph canonization algorithm then the algorithm runs with
polynomial delay. ut

Using the results on complexity of graph canonization for planar [12] and
bounded-treewidth graphs [7], we can get the following corollary.

Corollary 4. The problem ALLL→S can be solved with polynomial delay for the
classes of planar and bounded-treewidth graphs.

In fact, there are many other classes of graphs for which graph isomorphism
is known to be decidable in polynomial time, e.g. graphs of bounded degree [8].
One can easily use the theorems presented in this section for such classes too as
long as they are hereditary, as is the case for bounded-degree graphs.

4.4 Other Negative Results

The following theorem asserts that the results for the problem ALLL→S are es-
sentially optimal in the sense that existence of a polynomial-time algorithm for

12 O. Kuželka and J. Ramon

graph isomorphism is both sufficient and necessary for existence of an incremental-
polynomial-time algorithm for the problem ALLL→S .

Theorem 6. The problem ALLL→S can be solved in incremental-polynomial
time for graphs from a hereditary class G if and only if graph isomorphism can
be decided in polynomial-time for graphs from G.

Proof. (⇒) The proof idea is similar to the idea of the proof of Theorem 3.
Let H and G be graphs from G. We will show how to use an incremental-
polynomial-time algorithm for the problem ALLL→S to decide whether H and
G are isomorphic in polynomial time. If |V (H)| 6= |V (G)| or |E(H) 6= |E(G)|,
we return ’not isomorphic’. Otherwise, we construct a database of graphs DB =
{H,G} and let the algorithm for the problem ALLL→S run until it outputs a
graph and its occurrences (implicitly giving us also the frequency) and then we
stop it (it follows from definition of incremental-polynomial time that this will
run only for time polynomial in the sizes of H and G). Then the output graph
has frequency 1 if and only if H and G are not isomorphic. So, if the frequency
of the output graph is 1 we return ’not isomorphic’ and if the frequency of the
output graph is greater than 1 then we return ’isomorphic’. This gives us an
algorithm for deciding isomorphism of graphs which runs in polynomial time.

(⇐) This direction is explicitly shown in Theorem 5. ut

The next theorem indicates that ALLL→S is the simplest (complexity-wise)
from the enumeration problems considered in this paper because e.g. the prob-
lems ALLF→I and ALLI→F may be unsolvable in incremental-polynomial time
even if a polynomial-time graph isomorphism algorithm existed.

Theorem 7. If GI ∈ P and P 6= NP was true then there would be an incremental-
polynomial-time algorithm for the problem ALLL→S for the class G of all graphs
but no incremental-polynomial-time algorithm for the problems ALLI→F and
ALLF→I for the class of all graphs.

Proof. The positive result for the problem ALLL→S follows from Theorem 5. The
hardness of FCGM and FCIGM has been shown in [5] and in [4] using reduc-
tions from Hamiltonian cycle problem (for mining under subgraph isomorphism)
and from maximum clique problem (for mining under induced subgraph isomor-
phism), from which the hardness result for the ALLF→I problem follows. The
hardness of the ALLI→F problem follows from Theorem 3. ut

For now, we leave open the question of complexity of the ALLS→L problem condi-
tioned only on the pattern matching operator not being in P. Theorem 1 asserts
that solving this problem in incremental polynomial time is not possible if the
pattern matching operator is not fixed-parameter tractable with the parameter
being the size of the pattern graph, which is a widely believed conjecture.

A Note on Mining All Graphs 13

5 Mining under Homeomorphism and Minor Embedding

Many of the results presented in this paper may be generalized to mining with
other important pattern matching operators: (induced) homeomorphism and (in-
duced) minor embedding. In this section, we briefly discuss these generalizations.
Here, we only consider mining from unlabeled graphs because there is no gen-
erally agreed-upon definition of homeomorphism or minor embedding of labeled
graphs for pattern mining10.

The ideas from Theorem 1 are not relevant for mining under minor embedding
or homeomorphism because minor embedding and homeomorphism are fixed-
parameter tractable with the parameter being the size of the pattern graph as
shown in [11, 3]. However, it can be used together with the following theorem
to show hardness of the ALLS→L problem under induced homeomorphism and
induced minor embedding.

Theorem 8. Deciding induced homeomorphism or induced minor embedding
G1 4 G2 is not fixed-parameter tractable with the size of G1 as the parame-
ter (unless FPT = W[1]).

Proof. This can be shown by reduction from the k-independent set problem
parameterized by k which follows from the following simple observation. Let G
be a graph. G contains an independent set of size k if and only if H 4 G where
H is a graph consisting of k isolated vertices. Notice that this theorem holds
also when we restrict G1 and G2 to be connected graphs. The basic idea of the
proof is then the same. The reduction from k-independent set problem is then
as follows. We create a new graph G′ by taking the graph G from the proof,
adding a new vertex and connecting it to all vertices of G. Instead of taking H
as a set of k isolated vertices we let H be a star on k + 1 vertices (i.e. a tree in
which all vertices are connected to one vertex v). We then again have H 4 G′ if
and only if G contains an independent set of size k. ut

Ideas analogical to those from Theorems 1, 2, 3 and 8 can be used to obtain
the following negative results for mining under (induced) homeomorphism and
(induced) minor embedding.

Theorem 9. The problem ALLS→L under induced homeomorphism or induced
minor embedding cannot be solved in incremental-polynomial time for the class
of all graphs (unless FPT = W[1]). The problems ALLF→I under (induced)
homeomorphism or (induced) minor embedding cannot be solved in incremental-
polynomial time for the class of all graphs (unless P = NP). The problem ALLI→F

under (induced) homeomorphism or (induced) minor embedding cannot be solved
in incremental-polynomial time for the class of bounded-treewidth graphs (unless
P = NP).

10 For homeomorphism, for instance, we could allow the subdivided edges to have
different labels or, to the contrary, we could require them all to have the same label
etc. Then another question could be how we should treat labels of vertices etc. While
these considerations are interesting even for practice, they are out of the scope of
this paper.

14 O. Kuželka and J. Ramon

The positive results from Section 4.2 may be adapted for mining under (in-
duced) homeomorphism and (induced) minor embedding as follows. We can es-
sentially use the algorithm LargerToSmaller as is, but we need to modify the
procedure REFINE(H) (the modified algorithm will be denoted as LargerTo-
Smaller∗ to avoid confusion). For mining under minor embedding, when given
a graph H, the procedure REFINE should return all graphs H ′ which can be
obtained from H by removing an edge or by contracting an edge and removing
loops and multiple edges thus produced. For mining under homeomorphism, it
should return all graphs H ′ which can be obtained from H by removing an edge
or by contracting an edge incident to a vertex of degree 2. For mining under
induced minor embedding, it should return all graphs H ′ which can be obtained
from H by removing a vertex and all its incident edges or by contracting an edge
and removing loops and multiple edges thus produced. Finally, for mining under
induced homeomorphism, it should return all graphs H ′ which can be obtained
from H by removing a vertex and all its incident edges or by contracting an edge
incident to a vertex of degree 2.

Theorem 10. Let G be a class of graphs closed under formation of minors ad-
mitting a polynomial-time isomorphism algorithm and let the pattern matching
operator 4 be either (induced) homeomorphism of (induced) minor embedding.
Given a database DB of graphs from G, the algorithm LargerToSmaller∗

solves the problem ALLL→S in incremental polynomial time. If the graphs from
G also admit a poly-time canonization then the algorithm LargerToSmaller∗

solves the problem ALLL→S with polynomial delay.

Proof (Sketch). We can essentially use the reasoning from the proof of Theo-
rem 5. We only need to notice that 4 is transitive and that if H 4 G then a graph
isomorphic to H can be obtained from G by a repeated application of the proce-
dure REFINE. For instance, to show that all graphs homeomorphic to at least one
database graph will be printed eventually, we can reason as follows. We can show
using Theorem 5 that every graph which is subgraph isomorphic to at least one
database graph must also be printed by the algorithm LargerToSmaller∗.
If a graph H is homeomorphic to a database graph G then G has a subgraph
G′, which must be printed at some point, which is isomorphic to a graph which
can be obtained from H by subdividing its edges. But this also means that H
can be obtained from G′ by repeatedly contracting some of its edges incident
to a vertex of degree 2 and removing the loops produced by this process. Thus,
any graph homeomorphic to at least one of the database graphs will be printed
eventually. It is also not difficult to see that all graphs produced by the refine-
ment function REFINE must be homeomorphic to the graph being refined. Since
homeomorphism is transitive any of the produced graphs will be homeomorphic
to at least one of the database graphs. Finally, to show that the occurrences
printed for every output graph are correct, we can repeat the reasoning from
Theorem 5 (which we omit here due to space constraints). ut

A Note on Mining All Graphs 15

Using the fact that bounded-treewidth and planar graphs are closed under
formation of graph minors and that they also admit a polynomial-time isomor-
phism algorithm, we can obtain the following corollary.

Corollary 5. The problem ALLL→S under (induced) homeomorphism or (in-
duced) minor embedding can be solved with polynomial delay for the classes of
planar and bounded-treewidth graphs.

6 Conclusions and Future Work

In this paper, we have shown how different orders in which graphs are enumer-
ated affect computational complexity of the mining problem. We have presented
several negative results. We have also described a positive result which shows
that it is possible to mine all graphs from a database of bounded-treewidth or
planar graphs with polynomial delay under any of the following six different
pattern matching operators: (induced) isomorphism, (induced) homeomorphism
and (induced) minor embedding. Here, by mining all graphs, we mean enumer-
ating all graphs which have frequency at least one and printing their occurrences
in the database. This result holds despite the fact that deciding any of the six
pattern matching operators is NP-hard. However, since the positive result de-
pends heavily on mining all graphs and not just the frequent ones, the question
whether frequent graph mining is achievable with polynomial delay for an NP-
hard pattern matching operator, remains open. In fact, as we have shown, e.g.
for planar graphs the latter problem of mining frequent graphs cannot be done
even in incremental polynomial time, whereas mining all graphs can be done
with polynomial delay.

Lastly, it is worth noting that when we performed preliminary experiments
with a simple implementation of the algorithm for the ALLL→S problem, we were
able to mine completely about 70% molecules from NCI GI dataset consisting of
approximately three and half thousand organic molecules. This suggests that the
techniques presented in this paper might also lead to development of practical
graph mining algorithms. For instance, it would not be difficult to obtain a graph
mining algorithm, having similar positive complexity guarantees as the Larg-
erToSmaller algorithm, for mining graphs of bounded radius (from database
graphs of arbitrary radius) or with constraints on minimum vertex degree11 etc.
Exploring these and similar ideas is left for future work.

Acknowledgement. This work has been supported by ERC Starting Grant
240186 “MiGraNT: Mining Graphs and Networks, a Theory-based approach”.

11 The latter constraint on degrees would not probably be very relevant for bounded-
treewidth graphs or planar graphs. This is because any graph of treewidth k must
always have at least one vertex of degree at most k and because any planar graph
must always have at least one vertex of degree at most 5. However, isomorphism
algorithms are extremely fast in practice, despite not being polynomial in the worst
case, so the algorithm that we would obtain for general graphs could still be practical.

16 O. Kuželka and J. Ramon

The first author is supported by a grant from the Leverhulme Trust (RPG-2014-
164).

References

1. J. Flum and M. Grohe. Parameterized Complexity Theory. Berlin: Springer Verlag,
2006.

2. M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar hamiltonian circuit
problem is np-complete. SIAM J. Comput., 5(4):704–714, 1976.

3. M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. CoRR, abs/1111.1109, 2011.

4. T. Horváth, K. Otaki, and J. Ramon. Efficient frequent connected induced sub-
graph mining in graphs of bounded tree-width. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2013, pages
622–637, 2013.

5. T. Horváth and J. Ramon. Efficient frequent connected subgraph mining in graphs
of bounded tree-width. Theor. Comput. Sci., 411(31-33):2784–2797, 2010.

6. D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maxi-
mal independent sets. Information Processing Letters, 27(3):119 – 123, 1988.

7. D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
pages 186–195, 2014.

8. E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences, 25(1):42 – 65, 1982.

9. D. Marx and M. Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). In
31st International Symposium on Theoretical Aspects of Computer Science (STACS
2014), STACS 2014, pages 542–553, 2014.

10. J. Matoušek and R. Thomas. On the complexity of finding iso- and other mor-
phisms for partial k-trees. Discrete Mathematics, 108(1-3):343–364, 1992.

11. N. Robertson and P. D. Seymour. Graph minors .xiii. the disjoint paths problem.
J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

12. J. Torán and F. Wagner. The complexity of planar graph isomorphism. Bulletin
of the EATCS, 97:60–82, 2009.

