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Abstract—Traffic offloading using opportunistic device-to-
device (D2D) communications is a new and exciting opportunity
for cellular operators to cope with the unprecedented mobile data
growth. A limitation of existing proposals is that they assume that
all terminals are, by default, involved in the D2D forwarding
process. In particular, they do not capture the need to reward
seed users. For this reason, we include a rewarding cost in the
design of the opportunistic offloading strategy. In our solution, we
make the difference between nodes that receive content through
the cellular channel only (leechers) and nodes that take part in the
forwarding process (seeders). The key point for an operator is to
design a global strategy to select which nodes act as seeders and
which ones as leechers, in order to reduce the total dissemination
cost. We formulate this question as a stochastic control problem
that we solve using an application of Pontryagin’s Maximum
Principle. We provide a mathematical framework to devise the
optimal strategy for opportunistic offloading under a generic cost
model. First, we show that an optimal solution exists; then, from
this policy, we extract some insights to develop heuristics. Finally,
we discuss the advantages of the proposed model compared to
the classic seeder-only model. We demonstrate that separating
seeders/leechers leads to better incentive strategies in the most
demanding cases of content with a large span of delivery delays.

Index Terms—Data offloading, optimal control, device-to-
device communications, epidemics.

I. INTRODUCTION

Device-to-device (D2D) communications are a well-timed
strategy for operators to face the ever-increasing mobile
data demand by offloading part of the traffic from their
cellular infrastructure. Motivated by the delay-tolerance and
redundancy of some types of content, operators may send
data only to a subset of requesting users (seeders), which act
as opportunistic forwarders to help propagate content using
D2D communications. The combination of two complementary
channels (cellular and D2D) provides extra capacity, helping
reduce the impact of redundant traffic.

Several past works demonstrated that opportunistic D2D
offloading does help relieve congested cellular networks [1],
[2], [3]. Nevertheless, the effectiveness of this strategy revolves
around the willingness of users to cooperate as forwarders.
Incentives are then needed to stimulate participation, and to
reward users that act as data relays. Existing proposals assume
that all users are, by default, also seeders in the D2D domain
(i.e., potential forwarders). Such an assumption may lead to
suboptimal results when seeders are rewarded for transmitting
content on behalf of the infrastructure. In those scenarios,
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Fig. 1. Offloading process: the infrastructure selects two nodes as content
initial leechers (Fig. 1(a)), deciding that one of the leechers should be promoted
as seeder (Fig. 1(b)). Later on, the infrastructure estimates that it is worth
promoting another node because the D2D transmissions are not enough to
guarantee sufficient dissemination (Fig. 1(c)).

uncontrolled D2D communications may generate additional
costs without necessarily bringing dissemination gains.

By borrowing the concept from the peer-to-peer jargon, we
introduce a clear separation between leechers and seeders,
as shown in Fig. 1. Leechers receive content via the cellular
infrastructure, but only nodes promoted to the seeder state
are allowed to forward the content opportunistically. The
separation between leechers and seeders provides operators
with an additional degree of freedom. The balance between
instantaneous cost and future benefits of leech and seed
decisions is strategic to data dissemination, given that the
available resources (cellular bandwidth and rewards) are limited.
Following the terminology introduced in [4], data dissemination
follows a ”push-pull” model, where receivers can be both
consumers and disseminators of data.

We investigate the following problem: which fraction of
leechers should be promoted as seeders and when should
this happen? We provide an answer to this question using
a mathematical support that leads to an optimal solution.
Content diffusion in opportunistic networks is comparable
to the spreading of a disease in a population. We model
the dissemination process using a variant of the classic
Susceptible-Infected-Recovered (SIR) epidemic model from
Kermack-McKendrick [5]. Since operators strive to optimize
the distribution cost, we translate the possible decisions they
can take into a cost function. We apply Pontryagin’s Maximum
Principle to minimize the cost function subject to the state-
equations that govern content distribution. How to select the
best seeders has been considered in the literature from the
spatial re-use, throughput, and interference points of view,



rather than from an incentive/economic perspective. As far as
we know, no existing work on D2D offloading contemplates
the difference between leechers and seeders, failing thus to
quantify the trade-off that exists between performance and
cost in more realistic systems. Performance evaluation of
truly opportunistic forwarding has been treated extensively by
means of ordinary differential equations (ODEs) [6] or Markov
chains [7]. Instead, we propose an extended model that couples
opportunistic dissemination with infrastructure control. Indeed,
a central offloading coordinator controls the cellular injections
and the promotion of users to the seeder state to reach optimal
dissemination. The centralized scheme avoids the need for
users to exchange periodically contextual information, such as
meeting times, which instead can be directly extracted from
the cellular infrastructure. Moreover, users are not required to
continuously compute their seeding status, thus economizing
battery and computation power.
In summary, the main contributions of this paper are:
• Leecher-seeder model. We propose a D2D offloading

model where the network operator controls content injec-
tions and the promotion of users to the seeder state.

• Optimal control. We formulate D2D data offloading as
an optimal control problem to minimize the dissemination
cost in a hybrid scenario. A cost function trades off
monetary and network resources consumed to reach a
certain dissemination level and user satisfaction.

• Cost functions. We prove how to solve the offloading
problem for different cost functions. We show that under
plausible cost functions, the control of the injection is
continuous, while promotions have an on-off behavior.

• Evaluation. We evaluate the sensitivity of the optimal
controls to different contact rates and delay tolerance
values. We evaluate the optimality of our strategy against
other heuristics. Finally, we confirm the benefit of the
proposed seeder-leecher model compared to the simplified
seeder-only model currently employed in literature.

The remainder of this paper is structured as follows: Section II
introduces the leecher-seeder model. Cost-related issues are
discussed in Section III. The optimal control problem is
formulated and solved in Section IV. Section V presents
numerical results. We postpone related work to Section VI.
Finally, Section VII draws the conclusion and perspectives.

II. SYSTEM DESCRIPTION AND SCOPE

Overview. We formulate D2D offloading as an optimal control
problem, modeling data dissemination using a variant of the
classic SIR model for epidemics. In our model, some users
request data and are referred to as interested. Initially, all the
nodes are in the interested state waiting for content. At this
stage, the operator can only use cellular transmissions to reach
a subset of the interested users. Nodes that receive the content
enter the leecher state, still not playing any active role in
data distribution. At this point, the coordinator can promote a

TABLE I
LIST OF PARAMETERS.

Parameter Definition
nI(t) fraction of interested nodes at t
nL(t) fraction of leecher nodes at t
nS(t) fraction of seeder nodes at t
λ(t) contact rate at t
uI(t) direct injection rate at t
uP (t) promotion rate at t
Imax(t) maximum injection rate at t
T content lifetime

Φ(.) final payoff function for interested nodes at T
f(.) instantaneous cost function for injection
g(.) instantaneous cost function for promotion

fraction of them to the seeder state to diffuse the content.1

Network model. The system consists of N mobile nodes
and one content to be distributed by the infrastructure to all
nodes within the lifetime T . Intermediary nodes can be used as
opportunistic relays. Following the notation introduced above,
nodes can be in the interested, leecher, or seeder states. Their
respective fractions are nI(t), nL(t), nS(t), and nI(t)+nL(t)+
nS(t) = 1 ∀t ∈ [0, T ]. Therefore, we can always represent the
system using only two states. An interested node can receive
the content whenever in contact with a seeder, but not with a
leecher. For the sake of clarity, Table I provides a summary
of the parameters used along the paper (some of them will be
explained in the following sections).

Cost. Incentives to reward user participation in data dissemina-
tion can be offered by using virtual credit schemes or discounts.
For now, we do not consider any additional cost related to
overhead, signalization, or maintenance of promotions, which
are left for future work. Hence, promotion to the seeder state
does not represent a cost in itself for operators, but allows users
to be rewarded for their contribution in data dissemination. On
the other hand, injections through the cellular infrastructure
entail direct costs, in general related to resource availability in
the access network. We will further elaborate the reflection on
cost-related aspects in Section III.

Encounters and communication opportunities. In the real
world, the system under observation can be described with
discrete values (e.g., the number of users and the number of
cellular transmissions performed). For the sake of modeling,
we consider instead continuous values for the state and the
control values. We assume that N is large and that encounters
are homogeneous. Consistently with the literature, we use
a mean field model that is accurate for a large population.
D2D dissemination can be regarded as the spread of infective
disease – not surprisingly, epidemic routing is a conventional
forwarding strategy in opportunistic networks. As with a disease
contagion in a population, in our model content spreads from
seeders to interested nodes when such a pair enters in physical

1Note that we do not align to the traditional SIR nomenclature. Instead,
we use a nomenclature borrowed from peer-to-peer networks: “susceptible”
users in the SIR model are analogous to interested in our model. Similarly,
“infective” and “recovered” nodes are named respectively seeders and leechers.



Fig. 2. State transition rates for the leecher-seeder model.

proximity.2 We describe the state evolution with a system of
ODEs along with a set of initial and terminal constraints. The
contact rate λ(t) rules the encounter of any two nodes at time t.
We assume that λ(t) includes also the uncertainties introduced
by the wireless channel and the movement of nodes. At time
t, we have nS(t) seeders capable of meeting nI(t) interested
nodes. Consequently, interested nodes become seeders with
rate λ(t)nI(t)nS(t) (the transitions are illustrated in Fig. 2).

Injections and promotions. In line with the existing literature
on data offloading [8], we consider a central coordinator
that manages the cellular injections, adding to its duties also
the responsibility to decide the promotion of nodes. It turns
out that cellular injections increase the rate at which nodes
become leechers (namely, nodes that have the content but
do not distribute it). The intensity at which injections are
performed is governed by the signal uI(t), a bounded Lebesgue
integrable function with 0 ≤ uI(t) ≤ 1 ∀t ∈ [0, T ]. The value
of the injection rate is restricted in the interval [0, Imax(t)],
which measures the instantaneous available load on the cellular
network. Consequently, uI(t)nI(t) ≤ Imax(t) describes the
rate of injected copies.

Leechers carry the content but need to be promoted in order
to contribute to data dissemination. Operators can promote only
the necessary fraction of seeders. This is done via a control
channel binding users to the central coordinator. As a result,
leechers shift to the seeder state with intensity regulated by
the signal uP (t), a bounded Lebesgue integrable function with
0 ≤ uP (t) ≤ 1 ∀t ∈ [0, T ]. This increases the fraction of
nodes in the forwarder state by a rate uP (t)nL(t). Therefore,
the following system of ODEs controls the evolution of the
interested, leecher, and seeder nodes in the system:

dnI
dt

= −λ(t)nI(t)nS(t)− uI(t)nI(t), (1a)

dnL
dt

= uI(t)nI(t)− uP (t)nL(t), (1b)

dnS
dt

= λ(t)nI(t)nS(t) + uP (t)nL(t), (1c)

with initial states nI(0) = i0, nL(0) = l0, and nS(0) =
1− i0 − l0. For the offloading problem we consider, we have
i0 = 1 and l0 = 0, since we consider all users to be in the
interested state at the beginning of content diffusion.

The equations above describe how the states nI , nL, nS
change at time t as a reaction to the control signals uI , uL.

2As already mentioned, our system shares also several similarities with peer-
to-peer (P2P) networks, which features a large number of nodes downloading
data from seeder nodes.

Note that ∂nI
∂t + ∂nL

∂t + ∂nS
∂t = 0; therefore, the model can

always be expressed using only two out of the three equations.

III. DISTRIBUTING CONTENT IS COSTLY

The optimal offloading strategy consists in minimizing the
amount of nodes still in the interested state at the end of content
lifetime, while implementing a cost-savvy injection/promotion
campaign. If cellular operators had no capacity limitations, then
the optimal strategy would consist in injecting the maximum
amount of data via the cellular channel. Instead, when capacity
is limited, operators may seek to exploit D2D communication
capabilities of their customers. Nevertheless, rewarding users
can be costly, as both operational and budgetary constraints
should be taken into account when serving content. Based on
these aspects, Eq. 2 considers a cost function J that is general
enough to grasp various types of cost incurred by operators:

J = Φ[nI(T )]︸ ︷︷ ︸
payoff

+

T∫
0

f [uI(t)nI(t)]︸ ︷︷ ︸
injection

+ g[λnI(t)nS(t)]︸ ︷︷ ︸
reward

dt. (2)

In Eq. 2, Φ[nI(T )] represents the final payoff, i.e., the cost
that the operator has to pay for having failed to satisfy the
fraction nI(T ) of users by the deadline. This may lead to
loss of earnings due to missed deliveries or to extra costs in
terms of final injections [2], [9], [10]. Word of mouth among
angry consumers may also boost the commercial fallout of
missed or late deliveries making this term highly non-linear.
f [uI(t)nI(t)] captures the cost, in terms of network resources,
of injections over the cellular channel. Despite advanced
cellular technologies (e.g., LTE) increase the overall system
capacity with multi-user diversity, each additional user to be
served reduces the rate of improvement [11]. In other words,
the radio resources allocated to transmit data do not follow a
linear trend with the number of users. In addition, one must
consider that overhead is larger when many users share the
same bandwidth, rather than a single user benefiting from the
whole bandwidth [12]. For these reasons, the injection term
is likely another non-linear cost for operators. Finally, seeders
are rewarded with g[λnI(t)nS(t)] (instantiated as discounts or
virtual credits), accorded each time they make an opportunistic
transmission. Examples of possible incentive strategies in D2D
networks are provided in [4], [13].

The integral in Eq. 2 portrays the growing cost over time of
these two latter terms. Note that promotion control uL does
not appear inside the cost function. As outlined in Section II,
promoting a node to the forwarder state does not directly
generate a cost. However, seeders will be able to transmit data
opportunistically, possibly increasing the rewarding cost for
the operator. For physical reasons, Φ(.), f(.), and g(.) should
be monotonically increasing functions, with Φ(0) = f(0) =
g(0) = 0 (the cost for doing nothing is zero).

Relationship between control and cost. At any time, the
offloading controller must choose the values of the control
signals uI and uL. The decision is taken by assessing the
fraction of nodes in each compartment (nI , nL, and nS),



the time remaining before the deadline, and the contact rate
between nodes. Applied controls lead to two consequences: (i)
direct effect, which generates the instantaneous costs f(.) and
g(.) for the operator, and (ii) indirect effect, represented by
the future change in states formalized by Eq. 1. The optimal
offloading strategy requires the coordinator to plan its injection
and promotion strategies by minimizing the cost for the operator
while maximizing the rate of change of state variables.

Extreme cases. We aim to further clarify this concept by
focusing on the injection control uI . We consider two extreme
strategies that do not consider the evolution of dissemination.
The first myopic strategy always injects the maximum amount
of copies through the cellular channel. In this case, the
offloading controller does not take into consideration the D2D
capabilities of nodes. It turns out that this strategy is strongly
suboptimal. The other extreme is a minimum injection strategy,
where the coordinator injects only once. It is intuitive that an
optimal decision avoids such extremes.

IV. OPTIMAL SOLUTION

We now have the sufficient background to derive the optimal
offloading solution for our problem. By applying nS(t) =
1−nI(t)−nL(t), we can formulate the optimal control problem
considering only the two state variables nI and nL. The system
is controlled by the tuple < uI , uP >, which belongs to the
set of all the admissible controls U = {uI , uP }, where uI , uP
are Lebesgue integrable with uI , uP ∈ [0, 1]. The goal is to
characterize the optimal controls < u∗I , u

∗
P > that minimize

the cost function J , subject to the constraints defined in Eq. 1:

min
uI(t),uP (t)∈U

J, subject to: (3a)

dnI
dt

= −λ(t)nI(t)(1− nI(t)− nL(t))− uI(t)nI(t), (3b)

dnL
dt

= uI(t)nI(t)− uP (t)nL(t), (3c)

nI(t) ≥ 0, nL(t) ≥ 0, nS(t) ≥ 0,

nI(t) + nL(t) + nS(t) = 1, (3d)

where the initial states are i0 = 1 and l0 = 0.

A. Existence of an optimal control

The existence of an optimal solution can be determined by
applying the Filippov-Cesari theorem (Theorem 4.1 in [14]). To
prove this theorem, the following conditions should be satisfied:
(i) the functions inside the integral in Eq. 2 are continuous,
bounded, and convex in controls, with bounded derivatives, (ii)
the control signals uI(t) and uP (t) take values in a closed
set, and (iii) Eqs. 3b and 3c are linear in the controls. These
conditions guarantee the existence of an optimal solution.

B. General solution – Pontryagin’s Maximum Principle

Since an optimal control exists, we apply Pontryagin’s
Maximum Principle [15] to derive necessary conditions on
the optimal control (Theorem 3.4 in [16]). The conditions
of Pontryagin’s maximum principle reduce the computation

of an optimal strategy to the solution of a boundary value
problem for a system of differential equations. Let the tuple
(n∗I(.), n

∗
L(.), u∗I(.), u

∗
P (.)) be an optimal solution to the prob-

lem formalized in Eq. 3.3 There exist continuous and piecewise
continuously differentiable adjoint functions p∗I(t) and p∗L(t)
that maximize the present-value Hamiltonian function H .

For the sake of ease of mathematical manipulation, we trans-
form the problem into a maximization problem by multiplying
the Hamiltonian by −1. We also remove the dependence from
time whenever possible, in order to make reading easier:

H(nI,L, uI,P , pI,L, t) = −f [uI nI ]

− g[λnI (1− nI − nL)] (4)
+ pI [−λnI(1− nI − nL)− uInI ]
+ pL[uInI − uPnL].

The Hamiltonian function, in analogy with the corresponding
concept occurring in traditional mechanics, balances the rate of
change of states and the cost incurred by operators. Indeed, the
Hamiltonian is a generalized profit rate that includes both direct
and indirect effects, and has to be maximized at each instant.
The weights for the state variables are given by the adjoint
functions pI and pL, which represent the marginal increase of
H due to an increment in the state. Consequently, the adjoint
equations pI and pL evaluated at the optimum are:

dp∗I
dt

= −∂H(.)

∂nI

∣∣∣∣
n∗
I,L,u

∗
I,P ,p

∗
I,L

= (5a)

=
∂f(.)

∂nI
+
∂g(.)

∂nI
− pI [λ (2nI − 1 + nL)− uI ]− pL uI ,

dp∗L
dt

= −∂H(.)

∂nL

∣∣∣∣
n∗
I,L,u

∗
I,P ,p

∗
I,L

= (5b)

=
∂g(.)

∂nL
− pIλnI + pLuP .

with transversality (terminal) conditions that describe what
must be satisfied at the end of the time horizon T :

pI(T ) =
∂Φ(n∗I(T ), T )

∂nI
, pL(T ) =

∂Φ(n∗I(T ), T )

∂nL
= 0. (6)

According to the maximum principle, there exist optimal
controls, a tuple < u∗I , u

∗
P >∈ U of continuous and piecewise

continuously differentiable functions, and their corresponding
solutions n∗I , n∗L that maximize the Hamiltonian H satisfying
Eqs. 5 and 6:

u∗I,P (t) ∈ arg max
uI,P∈U

H(nI,L, uI,P , pI,L, t). (7)

The canonical system, composed of four coupled ODEs
(Eqs. 3b, 3c, 5a, 5b) and the transversality conditions (Eqs. 6),
determines a boundary value problem (BVP).

3Throughout the paper, variables with the star superscript (e.g., n∗
I (t))

represent the optimum value.



C. The case of data offloading
Let us now focus on the case of the seeder-leecher model by

solving the optimization problem for a class of cost functions
Φ(.), f(.), g(.) in Eq. 2. The choice of these functions follows
the discussion in Section III. However, thanks to the flexibility
of the model, they can be replaced at will, to take into account
the specificities and operating costs of certain networks. Besides
the existence constraints discussed in Section IV-A, by physical
reasons, Φ, f , and g should be monotonically increasing
functions starting at zero.

We consider an exponential function for the final payoff
Φ(x) = ex−1, a power-law function for the cellular injections
f(x) = bxα, with α ≥ 2, and a linear function g(x) = cx to
reward seeders that distribute content. The final payoff function
Φ(x) starts at zero and then increases exponentially to model
the cost for missing the delivery by the deadline T . f(x)
represents the cost for injecting data on the cellular channel
during the content lifetime. The power-law accounts for the
cost of simultaneous data transmissions. Indeed, the more
simultaneous cellular data transmissions, the more costly they
become (in terms of consumed radio resources) at the base
station. The power-law coefficient α depends on the considered
network and on its overall congestion conditions. Since the
domain of f ∈ [0, 1], lower values of α give the steeper curves.
The cost function g(x) is linear, as we consider that the reward
offered to forwarders for each opportunistic transmission they
perform is fixed. By substituting the cost functions Φ(.), f(.),
and g(.) in Eqs. 4, 5, and 6, the Hamiltonian, the adjoint
functions, and the transversality conditions become:

H = −b(nIuI)α − c(λnI (1− nI − nL))+

+ pI [−λnI(1− nI − nL)− uInI ]+ (8a)
+ pL[uInI − uPnL],

dp∗I
dt

= b αnα−1I uαI + c λ (1− 2nI − nL) (8b)

− pI [2λnI − λ+ λnL − uI ]− pL uI ,
dp∗L
dt

= −c λnI − pIλnI + pLuP , (8c)

pI(T ) = en
∗
I (T ), (8d)

pL(T ) = 0. (8e)

Injections. Given that Eq. 8a is strictly concave in the
control variable uI , we extract uI(t) using the Hamiltonian
maximization condition ( ∂H∂uI = 0 evaluated at the optimum),
along with the restriction on the maximum injection rate
(nI(t)uI(t) ≤ Imax(t) ∀t ∈ [0, T ]). By defining the function

ψ(t) = α−1

√
p∗I−p∗L
−αb , we can write the optimal solution as:

u∗I(t) =


0, if ψ(t) < 0,
ψ(t)
nI(t)

, if 0 ≤ ψ(t) ≤ Imax(t),
Imax(t)
nI(t)

, if ψ(t) ≥ Imax(t).

(9)

Equivalently, we have that u∗I(t) = min[max[ψ(t),0],Imax]
nI(t)

.

Promotions. In the case of promotions, since the Hamiltonian
is linear in the control variable uP , the maximization condition

∂H
∂uP

= 0 is trivially satisfied and independent of uP . The
control in this case is called singular (Definition 3.40 in [16])
with a bang-bang solution, i.e., a control that switches
discontinuously between one extreme to the other.

Since the maximization condition cannot help determine the
optimal control, it is possible to rewrite Eq. 8a as:

H =− b(nIuI)α − c(λnI (1− nI − nL))+

+ pI [−λnI(1− nI − nL)− uInI ]+ (10)
+ pL[uInI ]− uP [pL nL]︸ ︷︷ ︸

σ

.

By defining a switching function σ = (pLnL), to maximize
H the control should take its maximum (minimum) value when
σ < 0 (σ > 0). By construction, uP ∈ [0, 1], and:

u∗P (t) =

{
0, if σ > 0,
1, if σ < 0.

(11)

In order to be able to retrieve the evolution of the state and
adjoint variables, we have to solve a system of coupled ODEs
(respectively Eqs. 3b, 3c, 8b, 8c, 8d, and 8e), with a mix of
initial and final conditions (boundary values). We solved it
numerically by using the shooting method from the R package
bvpSolve to compute the evolution of the state and adjoint
variables as well as the optimal control [17].

V. NUMERICAL RESULTS

To identify the optimal offloading strategy, we conduct
numerical analyses using the software R. Firstly, we execute
a sensitivity analysis on the values of λ and T in order
to understand their implications in the offloading strategy.
Performance depends strongly on these two parameters, so
do the injection and promotion strategies. Then, we explore
under which circumstances the seeder-leecher model brings
advantages over the classic seeder-only model. Finally, we
address some implementation issues by comparing the optimal
strategy with several heuristic strategies, investigating under
which conditions and limits they can be adopted.

A. Injections and promotions

We investigate “when” the infrastructure should inject copies
of the content and promote nodes as seeders. Figs. 3 and 4
display the time evolution of both states and control variables
for two different deadlines and different contact rates.

By comparing Figs. 3 and 4, we discover that there are
more promotions for short deadlines. We conclude that content
lifetime strongly influences promotions. Short lifetimes (e.g.,
T = 5) are not sufficient to yield complete dissemination under
the provided cost-function. Instead, for T = 10 we obtain
complete data delivery (at least for the best contact rates).
When content dissemination is incomplete by the deadline,
the final payoff Φ(nI(T )) takes a large part of the cost
function J . This behavior confirms a well-known phenomenon
in opportunistic networking: increased delivery delays improve
the fraction of nodes that receive content through opportunistic
communications. The added dissemination time allows fewer
injections and promotions, thus lowering costs for cellular
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Fig. 3. Optimal offloading for different contact rates λ. T = 5s Other parameters: Imax = 0.1, α = 2, b = 10, c = 1, i0 = 1, s0 = 0.
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Fig. 4. Optimal offloading for different contact rates λ. T = 10s. Other parameters: Imax = 0.1, α = 2, b = 10, c = 1, i0 = 1, s0 = 0.

operators. On the other hand, increased delivery times could
hurt user satisfaction.

Besides the deadlines, low contact rates also lead to stronger
injection and promotion controls. Focusing on injections
(Figs. 3b and 4b), we observe that the control is stronger
in the beginning and in the end of the dissemination, following
a nearly symmetrical pattern. This pattern depends on the
interactions between nI and nS in Eq. 1a. Therefore, the
injection rate is higher when a few nodes are in the seeder or
the interested states – respectively at the beginning and at the
end of the dissemination. Injections help overcome the slow
start and the convergence time of opportunistic dissemination.
Wang et al. previously pointed out the symmetric trend of the
injection control, although for a simplified model [18].

Promotions (visible in Fig. 3c and 4c) follow a completely
different pattern. For T = 5, the control is always at its
maximum. The shorter deadline is responsible for the poor
dissemination. Indeed, even with an extreme promotion strategy
(always on), there are still nodes in the interested state at
the deadline. Longer deadlines, instead, allow devising more
effective promotion strategies. For T = 10, uP (t) shows three
different patterns depending on the value of the contact rate.
For λ = 0.1, the control is always at its maximum for the
entire dissemination. λ = 0.5 presents an on-off behavior,

with promotions that stop when the amount of seeders reaches
significant levels (in order to self-sustain without costing too
much to operators). Finally, for λ = 1, promotions are activated
only after half of the dissemination period. This collides with
the desire to attain the widest possible dissemination of the
content. Although at first sight this might seem counter-intuitive,
we must not forget that operators pay a small fee for each
opportunistic transmission performed by users. Under higher
contact rates, opportunistic dissemination has to be limited in
order to save monetary resources.

As anticipated in Section IV-C, uS takes the form of a
bang-bang control with exactly one on-off switch. Injections
performed when uS(t) = 0 serve only to satisfy the fraction
of users that will likely not receive the content by the deadline,
without further improving the dissemination (because these
nodes are not promoted, remaining leechers). Moreover, we
point out that the optimal strategy does consider moments
where no additional seeders are needed (uS(t) = 0). This
strengthens the idea that separating seeders and leechers is
beneficial from a cost-benefit point of view.

B. Controlling seeders: Giving operators an edge

We examine in which cases it is worth separating leechers
and seeders from the operator’s point of view. Including the
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leecher state in the picture is motivated by the fact that not
all users carrying the content may be required to forward
data. These scenarios hinge on a combination of factors, such
as the contact pattern or the delay tolerance of the content.
Eventually, adding an intermediate state between interested
and seeder becomes cardinal when operators want to reward
user participation. As many works suggest, offering some kind
of incentive (i.e., discounts or virtual credits) motivates user
participation [19]. However, current models in the literature
consider only two states (interested and seeder).

The optimal solution for the seeder-only model will serve for
comparison, and is detailed in Appendix A. In this case, the only
control is the injection rate uI . We plot in Fig. 5 the evolution of
the cost function J divided by its three main components Φ(T ),

F (T ) =
T∫
0

f [uI(t)nI(t)]dt, and G(T ) =
T∫
0

g[λnI(t)nS(t)]dt.

Φ(T ) is the final payoff value, due to nodes that have not
received the content by the deadline, F (T ) is the total cost of
injections, and G(T ) is the total cost of rewarding.

Separating seeders and leechers is advantageous for operators
if compared to the classic seeder-only model. In Fig. 5, we can
observe that, as the deadline increases, the leecher-seeder model
improves its aggregate performance compared to seeder-only.
From our analysis, for T > 5, the number of uninfected nodes
at the deadline decreases steadily, reducing the relative weight
of the term Φ(T ) on the overall cost. Rewarding cost G(T )
takes the larger part of J , accounting for the cost to reward
seeders. Seeding costs increase linearly for the seeder-only
model as the deadline stretches, making up nearly the entirety
of J . This confirms that an uncontrolled number of seeders can
interfere with the will of operators to cut operational expenses.
Instead, a separation between leechers and seeders offers
improved flexibility in the control of the offloading evolution,
bringing clear advantages in terms of distribution costs.

Note that for short deadlines (for T ≤ 5 in the example),
all connection opportunities should be used as captured by the
seeder-only model. Indeed, the cost-functional is dominated by
the final payoff Φ(T ), whose value depends on missed data
deliveries. The leecher-seeder model introduces an additional
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transition delay from the interested to the seeder state (the
ODE formulation requires a non-null time to transit to a state);
thus, its benefits come into play in the non-trivial situations of
content with larger deadline requirements.

C. Implementation considerations

We first investigate how intuitive heuristics not requiring
any optimization framework perform compared to the optimal
strategy, and what lessons can be learned having the knowledge
of the optimal injection and promotion controls. Finally, we
consider the impact of realistic values of the contact rate.

Heuristics. The optimal solution requires to solve numerically
the optimization problem, which is a complex task. This
may not be possible, given the size of the network and time
constraints, when the available processing power is limited. For
this reason, we analyze the performance of simple heuristics.
We compare the optimal strategy against three other heuristics.
The first heuristic, named initial control, mimics an operator
wanting to rely only on an initial subset of seeders. These
seeders are the only way to distribute content by the deadline.
This strategy relies on an initial injection at the rate Imax,
without performing any further injections. The second strategy,
named constant control, steadily injects at a fixed rate of
Imax

2 . These two strategies are static and do not require any
knowledge of how the dissemination evolves. In both cases, the
promotion control uR(t) is fixed at 1 for all the dissemination
delay. Finally, we consider a more dynamic strategy, named
pursue control, where both injection and promotion controls
follow the evolution of the interested nodes nI(t). In this case,
the control is strong at the beginning of the dissemination,
gradually descending as the time passes by, following nI(t).
The rationale behind this choice is that copies with a large
tolerance to dissemination time are more effective in content
dissemination. We compare these strategies in terms of the
cost function introduced in Eq. 2, varying the deadline T and
the contact rate λ.

In Fig. 6, we plot the cost functional J by varying the
deadline. As expected, the functional J for the optimal control
is always smaller than all the other heuristic strategies. However,
for shorter deadlines (T < 6), the pursue strategy is very close
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to the optimal. This is the first lesson we can draw: with shorter
deadlines, a control that follows the rate of interested nodes
comes close to the optimal. As the deadline increases, the
efficiency of the pursue strategy decreases. On the other hand,
we note that the constant strategy approaches the optimum
for larger deadlines. Indeed, the steady injection profile at
rate Imax

2 is very similar to the one in the optimal strategy
(depicted in Fig. 4b). Promotions are not adapted, concurring
to increase the overall cost. Lastly, relying only on an initial
set of seeders, without any additional injection during the
dissemination duration (such as in the initial strategy), brings
considerable efficiency drops. This happens because the set of
initial leechers (which is inherently limited by Imax) cannot
cover the entire network in T . Fig. 7 shows the trend of the
cost functional J varying the contact rate λ. In general, the
relative performance of the heuristics is the same as in the
previous case.

Contact rate. Fig. 7 outlines the importance of the contact
rate in the performance of the offloading strategy. λ is at
the base of the opportunistic diffusion between mobile users.
However, the contact rate depends on the mobility pattern of
users, and can vary in time. λ may also include the uncertainties
induced by the wireless channel and the movement of nodes.
Operators should estimate the value of λ in order to adapt the
optimal solution to current network conditions. In this context,
offloading architectures that employ a feedback mechanism
can prove very useful [10], [2].

To give the reader an idea of the values at stake, the meeting
time between nodes is nearly exponentially distributed when
nodes move in a bounded region (of area A) according to a
common mobility model [7]. Under these assumptions, for the
contact rate the following formula holds: λ

N ≈
8ωrv
πA , where

ω = 1.3683 for the random waypoint, ω = 1 for the random
direction model, r is the transmission range, and v is the
speed of the users. This means that, considering an area of
500× 500 m2, 100 mobile users equipped with a transmission
technology that allows direct transmissions up to 50 m and
mobility of 25 km/h following the random waypoint model,
we find a contact rate parameter λ = 0.488. If we consider,

instead, real mobility traces from the Infocom dataset [20], the
average contact rate is λ = 0.14167.

VI. RELATED WORK

D2D offloading is an interesting method to reduce con-
gestion in cellular networks [8]. Unicast and multicast D2D
dissemination strategies are studied in [21], [22], [23]. By
adding the infrastructure in the picture, the focus shifts towards
the selection of an optimal subset of users to kick-start
dissemination [1], [24]. However, these works consider only the
optimal selection of the initial seed nodes without controlling
the evolution of the dissemination. More related to our work,
heuristics are presented in [2], [9]. A learning approach can help
identify the best data carriers [10] or broadcast modulation [25].
The optimization techniques presented in this work were
initially developed as a solution of aeronautic problems, where
engineers wanted to control a system by minimizing a certain
performance index. Such techniques have not been sufficiently
considered in the case of cellular data offloading. Instead, the
works that are the closest to ours come from the literature on
opportunistic diffusion [7], [6] and peer-to-peer networks [26],
[27]. Optimal control has been employed to allocate resources
(e.g., vaccines or security patches) to prevent the diffusion of
epidemic diseases [28], [29] or computer viruses [30]. The
main difference to our work is that they aim at preventing
the infection rather than encouraging it. Instead, applications
of optimal control to boost epidemics exist in the area of
marketing [31], and opportunistic networks [32].

VII. CONCLUSION AND OUTLOOK

We proposed a novel analytical framework for opportunistic
offloading capturing the differences between leechers and
seeders. Following this approach, mobile operators are able to
finely control the dissemination evolution through external
controls such as cellular injections and promotions. We
have shown the existence of solutions for the model. We
applied Pontryagin’s Maximum Principle to devise an optimal
offloading strategy that minimizes the distribution costs. One
of the main strengths of the model is that every parameter
can be easily tuned. We analyzed the sensitivity to different
values of contact rate and delay-tolerance, and evaluated the
advantages of the proposed model over a simple two-state
model. We provided evidence that when we have enough
time flexibility, introducing a separation between leechers and
seeders is strongly beneficial for the cellular operator.

Besides evaluating the optimal strategy in case of time-
varying parameters, we believe that future developments can
leverage the techniques presented in this paper to handle a
more general case of stochastic diffusion processes following
a Markov decision model. In this case, the evolution of the
diffusion evolves following stochastic values, and the applied
control depends on the observation of the system. The epidemic
diffusion model can be also extended taking into account
seeders that stop sharing content due to battery or storage
constraints. Finally, a birth-death process can be included to
represent the arrival and departure of users in the interest area.
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APPENDIX
TWO-STATE MODEL SOLUTION

The evolution of the state equations for the two-state model
can be described using a single ODE to obtain the control
uI that manages the cellular injections. Considering nI(t) =
1− nS(t), the minimization problem becomes:

min
uI(t)∈U

J, subject to: (12a)

∂nI
∂t

= −λ(t)nI(t)(1− nI(t))− uI(t)nI(t), (12b)

0 ≤ nI(t) ≤ 1, nI(t) + nS(t) = 1,

nI(0) = i0, nS(0) = 1− i0. (12c)

We consider the same cost functions defined in Section IV-C.
Employing Pontryagin’s maximum principle, we find the
Hamiltonian H , the adjoint function pI , and the transversality
condition as follows:

H =− b(nIuI)α − c(λnI (1− nI)) (13a)
+ pI [−λnI(1− nI)− uInI ],

dp∗I(t)

dt
=b αnα−1I uαI + c λ (1− 2nI) (13b)

− pi [2λnI − λ− uI ] ,
pI(T ) =en

∗
I (T ). (13c)

By defining the function ψ(t) = α−1

√
p∗I
−αb , the Hamiltonian

maximization condition (Eq. 7) along with the restrictions
on the number of simultaneous transmissible copies through
the infrastructure gives thatu∗I(t) = min[max[ψ(t),0],Imax]

nI(t)
. The

injection control takes a similar form to the leechers-seeders
model, with ψ(t) depending, this time, only on p∗I(t).
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