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Keypoints

• Highly efficient discrete-dual-porosity approach for simulating self-potential (SP) signals in fractured porous media

• Determinant role of matrix fluid flow in the generation of fractured-rock SP signals

• Hydraulically-active fractures with significant fracture-matrix interactions can be identified with the SP method

Introduction

Quantification of fluid flow in fractured media is an outstanding challenge that is critically important in a wide variety of research fields and applications including hydrogeology, geothermal energy, hydrocarbon extraction, and the long-term storage of toxic waste [e.g., Carneiro, 2009;[START_REF] Kolditz | Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the Hot Dry Rock site in Rosemanowes (U.K.)[END_REF][START_REF] Rotter | Modeling U(VI) biomineralization in single-and dual-porosity porous media[END_REF]. In the context of resource extraction, the presence of fractures is generally considered to be an advantage as they facilitate access to materials stored in the matrix. Conversely, with regard to the storage of toxic elements, fractures represent a risk of leakage and subsequent migration of pollutants deep into the subsurface. In all cases, the detection of fractures and the characterization of their properties in natural environments is a required and critical task [START_REF] Nap | Characterization, Modeling, Monitoring, and Remediation of Fractured Rock[END_REF].

Geophysics offers a variety of tools that can provide important information on subsurface structure, physical properties, and fluid flow in a non-invasive manner [e.g., [START_REF] Hubbard | Hydrogeophysics[END_REF]. Most geophysical techniques infer fluid flow by data or model differencing in time or space; that is, they are not directly sensitive to flow occurring at the time of the measurements. An exception is the self-potential (SP) method, which is of particular interest for hydrogeological applications because of its direct sensitivity to water flowing in the subsurface [i.e., the streaming potential; [START_REF] Revil | The Self-Potential Method: Theory and Applications in Environmental Geosciences[END_REF]. This phenomenon is intimately linked to the presence of an excess charge in the pore water that counterbalances electric charges at the mineral-pore water interface. When water flows through the pore, it gives rise to a streaming current and an associated streaming potential. The direct sensitivity to subsurface fluid flow makes the SP method particularly interesting for D R A F T May 25, 2016, 1:47pm D R A F T the study of fractured rocks, in which flow is often highly channelized in a small fraction of the rock volume [e.g. [START_REF] Berkowitz | Characterizing flow and transport in fractured geological media: A review[END_REF].

Previous studies have demonstrated the ability of the SP method to detect groundwater flow in fractured media [e.g., [START_REF] Fagerlund | Detecting subsurface groundwater flow in fractured rock using self-potential (SP) methods[END_REF][START_REF] Maineult | Anomalies of noble gases and self-potential associated with fractures and fluid dynamics in a horizontal borehole[END_REF], determine the orientation of hydraulically-active fractures through azimuthal measurements at the ground surface [START_REF] Wishart | Self potential improves characterization of hydraulically-active fractures from azimuthal geoelectrical measurements[END_REF][START_REF] Wishart | Fracture anisotropy characterization in crystalline bedrock using field-scale azimuthal self potential gradient[END_REF], and localize water leakage through a single fracture [START_REF] Revil | Passive electrical monitoring and localization of fluid leakages from wells[END_REF]. Although such studies clearly demonstrate the potential utility of SP measurements in fractured-rock investigations, there is currently a dearth of numerical modeling tools to simulate SP responses in fractured media, the latter of which are required for quantitative interpretation and inversion of field data. Indeed, whereas fully discretized finite-element approaches are regularly used to simulate SP signals in porous media [e.g. [START_REF] Revil | The Self-Potential Method: Theory and Applications in Environmental Geosciences[END_REF], such methods quickly become computationally prohibitive when considering fractured rock where the fractures must be discretized at a fine spatial scale.

In this paper, we address the above challenges and present a highly efficient, discretedual-porosity (DDP) approach for simulating fluid flow and streaming potentials in fractured porous media. Our approach builds on the 2D electric-current-flow model developed by [START_REF] Roubinet | Discrete-dual-porosity model for electric current flow in fractured rock[END_REF], and importantly considers the exchange of water between fractures and the surrounding matrix. The proposed modeling approach is specifically designed for highly heterogeneous fractured porous media that cannot be handled by standard numerical methods. Indeed, simulations are found to be approximately 50 times faster than standard finite-element methods for simple configurations for which a compar-
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ison can be made. 

u = -K∇h, ∇ • u = 0, (1) 
where K [m/s] and h [m] are the hydraulic conductivity and hydraulic head, respectively.

Here, source or sink terms are not considered, and the hydraulic conductivity is defined as K = κρg/µ with κ [m 2 ] the medium permeability, ρ [kg/m 3 ] the fluid density, g [m/s 2 ] the gravitational acceleration, and µ [kg/(m•s)] the fluid dynamic viscosity.

Considering the presence of an electrical double layer that results in an excess of charge in the porewater, the water flowing through the medium drags a part of this excess charge

Qeff v [C/m 3 ].
This generates an electrokinetic source current density J s [A/m 2 ], which can be defined as [START_REF] Titov | Electrokinetic spontaneous polarization in porous media: petrophysics and numerical modelling[END_REF]]

J s = Qeff v u. (2) D R A F T May 25, 2016, 1:47pm D R A F T
In the quasi-static limit, the impact of this streaming current on the electric potential is described by the following charge conservation equation [START_REF] Sill | Self-potential modeling from primary flows[END_REF]:

∇ • (-σ∇ϕ + J s ) = 0, (3) 
where σ [S/m] and ϕ [V] are the bulk electrical conductivity and electric potential, respectively.

Overall modeling strategy

We wish to solve equations ( 1)-(3) in complex fractured rock formations that are characterized by a large contrast between the permeability of the fractures and that of the surrounding matrix. For this purpose, we consider a DDP representation in which the fractures are explicitly represented. In accordance with existing DDP formulations developed for fluid flow in fractured reservoirs [e.g., [START_REF] Lee | Hierarchical modeling of flow in naturally fractured formations with multiple length scales[END_REF][START_REF] Li | Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[END_REF], each fracture is represented using two parallel plates between which the flow is assumed to be laminar. This means that (i) the fracture permeability can be defined as

κ f = (b f ) 2 /12
where b f is the fracture aperture [e.g., [START_REF] Snow | Anisotropic permeability of fractured media[END_REF]; and (ii) the excess charge can be evaluated numerically by adapting the strategy of [START_REF] Jougnot | Derivation of soil-specific streaming potential electrical parameters from hydrodynamic characteristics of partially saturated soils[END_REF] for a single capillary tube to the case of two infinite plates having known separation.

Based on this DDP representation, we solve successively equations (1) and (3) in two dimensions using the hydrogeological and self-potential model formulations described in Sections 2.3 and 2.4, respectively. In each case, the fractures and matrix are divided into fracture segments and matrix blocks having constant properties, which are coupled through an exchange coefficient defined at the matrix-block scale. Please see Roubinet and [START_REF] Roubinet | Discrete-dual-porosity model for electric current flow in fractured rock[END_REF] for a detailed description of the representation and discretization methods used to model the geological structures.
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Hydrogeological model formulation

As the fluid flow problem in equation ( 1) is mathematically equivalent to the electric current flow problem in equation (3) with J s set to zero and with the hydraulic conductivity and hydraulic head replacing the electrical conductivity and electric potential, the DDP approach described by [START_REF] Roubinet | Discrete-dual-porosity model for electric current flow in fractured rock[END_REF] for electric current flow can be employed to determine the distribution of hydraulic head in the fractures and matrix.

This distribution is then used to evaluate the Darcy velocity of the fluid circulating in these structures, as well as the Darcy velocity of the fluid exchanged between them. The latter, expressed in the direction perpendicular to each considered fracture, is given by

u f m = - K m (h m -h f ) < d > , (4) 
where K m is the matrix hydraulic conductivity, h m and h f are the matrix and fracture hydraulic heads, respectively, and < d > is the average normal distance between the fracture and each point of the surrounding matrix block [START_REF] Lee | Hierarchical modeling of flow in naturally fractured formations with multiple length scales[END_REF][START_REF] Li | Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[END_REF]. Whereas expression (4) is usually defined at the matrix-block scale, note that we define it at the fracture-segment scale with h f the hydraulic head averaged along the considered fracture segment.

Self-potential model formulation

The presence of the previously described fluid flows combined with an excess of charge in the porewater implies the generation of source current densities in the fractures and
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matrix, which we denote by J s,f and J s,m , respectively. We now describe how we account for these current densities in the electrical problem at the fracture, fracture-network, and matrix-block scales, with particular focus on the additional terms required in comparison with the DDP approach described by [START_REF] Roubinet | Discrete-dual-porosity model for electric current flow in fractured rock[END_REF].

At the fracture scale, consider the charge conservation equation (3) in two dimensions with a constant fracture electrical conductivity σ f :

-σ f ∂ 2 x f ϕ f + ∂ 2 y f ϕ f = -∂ x f J x f s,f -∂ y f J y f s,f , (5) 
where x f and y f denote the spatial variables parallel and perpendicular to the considered fracture, respectively, ϕ f denotes the electric potential in this fracture, and J

x f s,f and J

y f s,f
are the components of J s,f in the x f and y f directions, respectively. As our 2D DDP formulation is based on a 1D representation of fractures, we average equation ( 5) over the aperture of the considered fracture. Assuming that the variation of J

x f s,f along the fracture is negligible (∂ x f J x f s,f = 0 A/m 3 ), this yields -σ f ∂ 2 x f φf = -Q E f m -Q SP f m , (6) 
where φf =

1 b f b f 0 ϕ f (x f , y f )
dy f is the electric potential averaged over the fracture aperture, and

Q E f m = - σ f b f ∂ y f ϕ f (y f =b f ) -∂ y f ϕ f (y f =0) and Q SP f m = 1 b f J y f s,f (y f =b f ) -J y f s,f (y f =0)
are electric source/sink terms representing exchange occurring at the fracture-matrix interfaces related to the variations of electric potential and hydraulic head, respectively. In our dual-porosity formulation, this leads to Q E f m being expressed as a function of the difference in electric potential between the fracture and matrix [START_REF] Roubinet | Discrete-dual-porosity model for electric current flow in fractured rock[END_REF] and to Q SP f m being given, using expression (2), as

Q SP f m = Qeff v,f u f m /b f , (7) D R A F T May 25, 2016, 1:47pm D R A F T
where Qeff v,f is the effective excess charge in the considered fracture and u f m is the Darcy velocity of the fluid going from this fracture to the surrounding matrix (Section 2.3).

At the fracture-network scale, charge conservation at each fracture intersection is enforced by integrating equation (3) over the considered intersection. Using Gauss' Divergence Theorem with C i denoting the contour of the intersection and n C i its outward unit normal vector leads to the expression

- C i σ f ∇ϕ f • n C i dC i = - C i Qeff v,f u f • n C i dC i , (8) 
where u f is the Darcy velocity of the fluid in the fracture. As each fracture intersection is the shared extremity of several fracture segments, expression ( 8) is discretized as the sum of the integrals over the apertures of these fracture segments. The left-hand side is obtained using the analytical expression of equation ( 6) and the right-hand side is taken into account as a source term.

Finally, in the matrix, charge conservation is again enforced by integrating equation ( 3) over each matrix block having volume V m and applying Gauss' Divergence Theorem. Using C m to denote the contour of a matrix block and n Cm its outward unit normal vector leads to

- Cm σ m ∇ϕ m • n Cm dC m = (9) - Cm Qeff v,m u m • n Cm dC m + Vm Q E f m + Q SP f m dV m ,
where the first term on the right-hand side is related to the electrokinetic source current density J s,m exchanged between the matrix blocks, and the second term is related to fracture-matrix exchanges occurring inside each block. We discretize expression (9) using
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a modified finite-volume method where the terms related to the presence of fluid flow are taken into account as source terms.

Method validation

To validate our modeling approach, we consider the fracture, matrix, and fluid properties in Table 1 and as we consider clean fractures (i.e., no filling). For the matrix, the permeability was chosen to be representative of sandstone [START_REF] Schön | Physical properties of rocks, in Physical Properties of Rocks -A Workbook[END_REF] and the excess charge was evaluated from the permeability using the empirical relationship defined by [START_REF] Jardani | Tomography of the Darcy velocity from self-potential measurements[END_REF].

The matrix electrical conductivity was determined using Archie's law: σ = σ w φ m , where φ is the porosity and m the cementation exponent (set equal to 2). (ii) a reference electrode located at (x, y) = (0, 0) m with a specified potential of 0 V.

Figures 1b andc show the distribution of the electric potential difference ∆ϕ x,y (x, y) = ϕ x,y (x, y) -ϕ x,y (0, 0) for the cases where matrix fluid flow was ignored and accounted for, respectively. These results were computed using our DDP approach with 201 matrix blocks in each direction, as well as with the COMSOL Multiphysics 4.3 finite-element software package. In the latter case, using the "extremely coarse" meshing option resulted in 8.1 × 10 5 model elements and a combined meshing/computation time of 1.5 hours on a 2.9 GHz laptop computer with 8 GB RAM. In comparison, our DDP approach required only 4.1 × 10 4 model elements and the total computation time was less than 2 minutes.

The mean absolute difference between the results of our DDP approach and those of the finite-element solution is 2.6×10 -5 mV for the case with no matrix flow and 3.2×10 -1 mV when it was considered, which demonstrates a good agreement between the two modeling methods. This agreement is also observed in Figures 1d ande , whose position is shown by a black cross in Figures 1b andc. That is,

∆ϕ * r (θ) = ∆ϕ r (θ) -∆ϕ min r . ( 10 
)
The results of the validation (Figure 1) provide important insight into whether it is reasonable to neglect matrix fluid flow when modeling streaming potentials in fractured media. As seen in Figures 1b andd, making this assumption results in extremely small SP values compared to the case where matrix flow and matrix-fracture interactions are
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taken into account (Figures 1c ande). This is despite the fact that, in our example, the matrix permeability was set to be 8 orders of magnitude smaller than that of the fractures and thus the matrix can be considered as impermeable from a flow modeling perspective. Indeed, whereas extremely small matrix permeabilities are generally ignored for flow computations in fractured media, they cannot be neglected when modeling the SP response. These results also imply that if the matrix material is strictly impervious, or if the fracture network is so well connected that fracture-matrix fluid exchange is minimal, then the associated SP signals will be negligible.

The results obtained for the case where matrix fluid flow was accounted for (Figures 1c ande) also provide information concerning the sensitivity of the SP method to fracturematrix fluid exchanges. As Fracture 2 does not intersect the domain boundaries (Fig-

ure 1a), the fluid circulating in this fracture during the pumping experiment is provided by the surrounding matrix. Conversely, the fluid circulating in Fracture 1 is mostly provided by the Dirichlet conditions enforced at the extremities of the modeling domain.

That is, Fracture 2 is characterized by strong fracture-matrix fluid interactions which result in (i) strong variations of the SP response ∆ϕ x,y perpendicular to this fracture, and

(ii) small variations of ∆ϕ x,y along this fracture where the maximum value of ∆ϕ x,y is observed (Figure 1c). As a result, the maximum value of ∆ϕ * r is observed in the direction of Fracture 2 (Figure 1e), which demonstrates that azimuthal SP measurements would be more sensitive to Fracture 2 than Fracture 1.

Results for complex fractured media
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We now use our modeling approach to investigate how the SP method may help to identify hydraulically-active fractures in complex fractured media. To this end, we consider the two 2D fracture configurations shown in Figures 2a andb. These 100 × 100 m regions contain (i) a primary fracture at position y = 50 m extending from x = 0 m to 100 m that is characterized by an aperture of 2 × 10 -3 m, and (ii) a random distribution of fractures all having an aperture of 10 -3 m. In the latter case, the fracture positions and orientations were drawn from a uniform distribution, whereas a power-law distribution was considered for their lengths using power law exponents equal to 1.5 (Figure 2a) and 2.5 (Figure 2b) and percolation parameter equal to 6. Justifications and examples of fracture networks corresponding to these distributions and parameters can be found in [START_REF] Bonnet | Scaling of fracture systems in geological media[END_REF], [START_REF] Bour | Connectivity of random fault networks following a power law fault length distribution[END_REF], and [START_REF] Roubinet | Connectivity-consistent mapping method for 2-D discrete fracture networks[END_REF].

We consider the same fracture, matrix, and fluid properties as before (Table 1), as well as the same boundary and source conditions for the fluid flow and streaming potential problems with, again, pumping applied at the center of the domain. Note that matrix fluid flow and fracture-matrix fluid exchange are taken into account in these examples.

Figures 2c-d show the distribution of the SP response ∆ϕ x,y computed with our modeling approach using 201 matrix blocks in each direction, and Figures 2e-f show the corresponding polar plots of ∆ϕ * r defined in equation ( 10) with, again, the position of ∆ϕ min r represented with a black cross in Figures 2c-d.

For the fractured medium in Figure 2a, we observe that the maximum value of ∆ϕ * r is 31 mV and that this value is obtained when θ = 306 • (Figure 2e). This corresponds to the location of a dead-end fracture that is hydraulically connected and close to the pumping
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well, which implies that the considered fracture contributes significantly to the pumped volume of fluid and that this contribution is mostly provided by the surrounding matrix. In other words, fluid fracture-matrix exchanges are maximized at this position, which results in a strong SP signal. Figures 2c and e also show that ∆ϕ * r ranges from 10 mV to 20 mV for angles corresponding to (i) the primary fracture in which the pumping is applied; and (ii)

fractures that are connected to the domain boundaries and hydraulically connected to the pumping well. Conversely, ∆ϕ * r is smaller than 10 mV for angles associated with regions where there is no fracture that is well connected to the pumping well. This demonstrates that the contrast in hydraulic and electrical properties between fractures and matrix, as well as the corresponding fracture-matrix exchanges, result in variations of ∆ϕ x,y that are smaller along the hydraulically-active fractures than perpendicular to these fractures.

For the fractured medium presented in Figure 2b, a different behavior for ∆ϕ * r is observed (Figure 2f). In this case, we do not see any localized large values characteristic of dominant hydraulically-active fractures having important fracture-matrix interactions.

We observe that (i these boundary conditions and their distance from the pumping well on the simulated SP signals. This could be easily done, for example, by comparing the signals obtained for domains of increasing size associated with consistent boundary conditions and fracture network properties.

)

Conclusions

We have presented a highly efficient and accurate 2D discrete dual-porosity approach for modeling streaming potentials in complex fractured porous media. A key feature of this approach is that it accounts for fluid and electric current flow in and between the fractures and surrounding matrix. For a simple configuration with two intersecting fractures and pumping, we found that our method is 50 times faster and provides the same response as a fully discretized finite-element numerical solution. We also saw in this example that ignoring matrix-fracture interactions may lead to simulated SP responses that are not only wrong in overall appearance, but also orders of magnitude too small in amplitude. These results and further examples based on more complex fractured domains demonstrate that the SP method, when applied to fractured media, is primarily sensitive to hydraulically-active fractures having important fracture-matrix exchange. The latter finding opens up exciting possibilities to remotely and non-invasively identify fracturematrix exchange using SP measurements. It would also be straightforward to include our new modeling approach within an inversion framework to quantify these exchanges from field data. For more densely fractured media, we approach an upscaled effective medium 

  the basic 2D fracture configuration shown in Figure1a. In this configuration, two fractures of infinite vertical extent intersect at position (x, y) = (50, 50) m. The fractures are oriented at angles of -26.6 • (Fracture 1) and 26.6 • (Fracture 2), and have widths (in the x-y plane) of 111.8 m (Fracture 1) and 50 m (Fracture 2). The fracture permeability and effective excess charge were evaluated as described in Section 2.2 and the fracture electrical conductivity was set equal to the water conductivity σ w = 5×10 -2 S/m

For

  the fluid flow problem, we consider: (i) Dirichlet hydraulic head boundary conditions equal to 1 m and 0 m on the left and right sides of the domain, respectively; (ii) Dirichlet boundary conditions varying linearly between these two values along the top and bottom; and (iii) a sink term applied at the center of the domain corresponding to pumping at a rate of 0.8 × 10 -3 m 2 /s. To study the impact of water flowing in the low-permeability matrix on the generated SP signal, we solve the fluid flow problem first only in the fractures (i.e., ignoring matrix flow) and then over the whole domain. For the streaming potential D R A F T May 25, 2016, 1:47pm D R A F T problem, we consider: (i) a current insulation condition on all borders of the domain; and

  , which contain polar plots of the potential difference in Figures 1b and c along the dashed circle having a radius of 20 m. Here the plotted values ∆ϕ * r (θ) were calculated relative to the minimum along the circle ∆ϕ min r

  the largest values of ∆ϕ * r around 20 mV are obtained when θ ranges from 252 • to 297 • ; and (ii) the smallest values of ∆ϕ * r , defined here as ∆ϕ * r ≤ 5 mV, are obtained when 63 • ≤ θ ≤ 72 • and 135 • ≤ θ ≤ 144 • . The latter regions having small SP values correspond to regions containing comparatively small fluid flow (not shown). Note that the simulations presented above represent scenarios where (i) a natural hydraulic gradient is locally perturbed by pumping, and (ii) the pumping rate is large enough such that the simulated azimuthal electrical measurements are not significantly affected by the boundary conditions. Further analysis could help to assess the impact of D R A F T May 25, 2016, 1:47pm D R A F T X -15

Figure 2 .

 2 Figure 1.(a) Configuration used to validate our modeling approach where the red cross

  We use our numerical approach to simulate field-scale SP experiments under pumping conditions in order to demonstrate that (i) considering the fluid flowing in the matrix is absolutely essential for accurate simulation of SP signals in fractured

	rock; (ii) strong SP signals are observed for hydraulically-active fractures having signifi-
	cant fracture-matrix fluid interactions; and (iii) the detection of individual hydraulically-
	active fractures by SP measurements is feasible only when the hydrogeological response
	is determined by a few dominant fractures.
	2. Methodological background
	2.1. Governing equations
	Under steady-state conditions, the Darcy velocity u [m/s] of an incompressible fluid can
	be described by Darcy's law and Darcy-scale mass conservation [e.g., Bear and Cheng,
	2010],

  connected to the pumping well, whereas small SP signals will indicate regions that are poorly connected to the pumping well. Future work will focus on simulating SP signals in 3D fractured domains. For this purpose, the required numerical method will build on either 2.5D or 3D formulations of our DDP approach, which are currently in development for modeling electrical current flow in fractured porous media.

	response, in which it becomes impossible to identify individual fractures. However, in this
	case, strong SP signals will still inform us about regions that are (in an average sense) well
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