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Abstract—The increasing power generation out of inter-
mittent renewable energy sources will result in a reduction
of the grid stability if no compensatory actions are taken.
This issue may lead to future obligations for energy
providers. This paper studies the implication of the future
obligations for generators in Europe according to the
recommendations of ENTSO-E, in particular the obligation
for some generators to have a synthetic (or virtual) inertia
and a frequency sensitive control. These obligations will be
described in details in the paper, in particular their effect
on the grid management and stability. The impact of this
new actions on the energy production will be discussed.
The continental European grid frequency is used as an
example.
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I. INTRODUCTION

The grid integration of some renewables (in particular
those from intermittent primary sources) has always been
a technical and political difficulty. The negative impact of
renewable energy on the power grid resilience, especially
from a frequency point of view, has been studied deeply
[2], in particular in relative small grid (island) [3], [4].
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Fig. 1. Share of wind and solar energy in the production for some
ENTSO-E countries (inspired by [1])



The significant growth of these energies, in particular
wind and solar (see Fig. 1), is forcing to find new
solutions. Recently, special attention has been paid to
the capability for renewable systems to participate in
ancillary services [5]–[9].

Clearly, these studies have influenced the European
Network of Transmission System Operators for Elec-
tricity (ENTSO-E) Grid code for generators connection
requirements [10], specially concerning frequency regu-
lation. The ENTSO-E represents 41 Transmission System
Operators (TSOs) from 34 European countries. We will
focus this paper on the description of two important
part of this code: the frequency sensitive control and the
synthetic inertia, in order to evaluate the implications
of this grid code on the control of renewable based
generators.

II. NOVEL OBLIGATIONS FOR GENERATORS

A. ENTSO-E Generators classification

ENTSO-E uses a classification of generators (A,B,C
and D) according to their maximum capacity and the
voltage of their connection point [10]. Typically, type
A and B corresponds to small generators connected to
the electric power distribution system and type C and D
corresponds to large generators connected to the electric
transmission system.

Each TSO must define these types according to the
maximum threshold of Table I. Besides, all the generators
connected at 110 kV or above are automatically of type
D. The synchronous areas used in this table are illustrated
in Fig. 2.

TABLE I. MAXIMUM CAPACITY THRESHOLD FROM WHICH ON
A POWER GENERATING MODULE IS OF TYPE B, C OR D [10]

Synchronous Area Type B Type C Type D
Continental Europe 1 MW 50 MW 75 MW

Nordic 1.5 MW 10 MW 30 MW
Great Britain 1 MW 10 MW 30 MW

Ireland 0.1 MW 5 MW 10 MW
Baltic 0.5 MW 10 MW 15 MW

Clearly, these thresholds depend on the size in term
of capacity of the synchronous area, as can be seen in
Fig. 3. Since the Baltic area is synchronous connected
with the IPS/UPS area (Integrated Power System/Unified
Power System of Russia), the generating capacity of this
area has been added to the Baltic countries. Obviously,
the weaker grid is, the more generators are needed to
participate to the frequency stability in these areas.

The new obligations for synthetic inertia and fre-
quency sensitive control are just for the largest generators
(type C and D) [12].
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Fig. 2. The geographical area covered by ENTSO-Es member
TSOs is divided into five synchronous areas and two isolated systems
(Cyprus and Iceland) [11]
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Fig. 3. Maximum capacity threshold for type C as a function of the
net generating capacity of the synchronous areas

B. Synthetic Inertia

Each rotating electrical machine (generator or motor)
directly connected to the grid have a mechanical inertia.
The addition of all theses inertia results in an equivalent
electrical inertia Jtotal. The frequency deviation depends
on this inertia:

d

dt

(
1

2
Jtotal ω

2

)
= Pg − Pl (1)

Jtotal ω
dω

dt
= Pg − Pl (2)

with Pg the generated power, Pl, the power demand and
ω = 2πf the electrical pulsation.

The global inertia constant Htotal, in s, is the normal-
ization of the kinetic energy by the sum of the apparent
power of the connected generators Stotal:

Htotal =
Jtotal ω

2

2Stotal
(3)



So we can rewrite (2) with this notation, and we have:
2Htotal

ω

dω

dt
=

Pg − Pl

Stotal
(4)

2Htotal

f

df

dt
=

Pg − Pl

Stotal
(5)

The temporal derivative of the frequency df
dt is called

Rate-Of-Change-Of-Frequency (RoCoF) in [Hz/s]. Some
relays use this value to detect islanded operation. The
typical incident case scenario corresponds to a case
where a major unit of generation shut down with a low
load. The relative original disbalance can have value from
1.7 % (reference incident for the continental Europe) to
8 % (Great-Britain and Ireland). With typical value of
Htotal between 4 to 6 s [13], [14], exceptional RoCoF
values are between 70 mHz/s and 500 mHz/s for 50 Hz
grids, depending on generators technologies and grid
total capacity.

The power electronics allows static DC/AC conver-
sion for photovoltaic power generation [8], [15] and
variable speed generation which is more suitable for the
energy production optimization. Two architectures are
mostly used: Doubly Fed Induction Generators (DFIG)
[16] and Fully-Fed (Induction or Synchronous) Genera-
tors (using back-to-back AC/DC/AC converters).

These architectures decouple the mechanical and
electrical systems, thus preventing the generator from
responding to system frequency changes like a traditional
synchronous generator. Controls that allow inertia-like
response have several name in the literature: synchron-
verters [17], Fast Frequency Response [8], virtual [18],
artificial [5], [19], emulated [20] or synthetic inertia [7],
[9]. Examples of synthetic inertia controls commercially
available for Wind Turbine Generators are: General Elec-
tric WindINERTIA [21] and ENERCON Inertia Emula-
tion [22], [23]. At the best of our knowledge, it exists
no remuneration for providing inertia to the grid.

In order to emulate a synthetic inertia, a power reserve
∆Pi must be controlled with the following law :

∆Pi =
2PmaxHgen

fn

df

dt
(6)

with Pmax, the capacity of the generator, Hgen, the
generator inertia constant and fn the nominal frequency.
Synthetic inertia control must be very rapid (2 seconds
for full response [23]) in order to emulate the inertia
properly.

In order to size this reserve, we must know the
maximum allowed RoCoF value :

(∆Pi)max =
2PmaxHgen

fn

(
df

dt

)
max

(7)

This maximum value is around 0.5 Hz/s for Great
Britain generators. In this context, the size of the power
reserve would be around 2 %/s. So, with a 5 % reserve,
it would be possible to create an inertia constant of 2.5 s
for all RoCoF from -0.5 Hz/s to +0.5 Hz/s.

Of course, all the intermittent energies have not the
same capabilities for synthetic inertia. Some technologies
possesses intrinsic energy buffers from rotating parts
(like wind turbines, tidal turbines, Oscillating Water
Columns), from moving parts (like Direct-Drive Wave
Energy Converters), from hydraulic reservoirs (like over-
topping devices) or from thermal storage (like solar
thermal energy). For these technologies, the obligation to
provide synthetic inertia can lead to none or negligible
economical consequences by using the already existing
stored energy (hidden inertia as called in some studies).
Each technology needs to quantify this capability in term
of synthetic inertia.

On the contrary, some technologies (in particular
photovoltaics) possesses negligible intrinsic energy. In
this case, the constitution of a reserve by deloading
(power set-point below maximum power, also called
generation shedding) is mandatory in order to create a
synthetic inertia. Such permanent reserve would result in
a significant loss on energy production. So this reserve
should be used only in some rare cases, only at the time
the grid is the weaker (typically during low consumption
periods).

C. Frequency Sensitive Control

The frequency sensitive mode describes in the
ENTSO-E code is a classical primary frequency control
or frequency containment control. The control of this
reserve ∆Pc is proportional to the frequency deviation
with a saturation effect:

∆Pc = −Pmax sgn(f − fn) min

(
|f − fn|
D · fn

, Rc

)
(8)

with D the droop, Rc, the containment reserve. All
grid codes allow a deadband (db). If the deviation is
inside this deadband, no power response is required.
The recommended range for Rc, D and db are given in
Table II. The response time asked for this reserve is much
less than for the inertia reserve: the maximum admissible
initial delay is 2 s and the maximum admissible delay for
full activation is 30 s.

TABLE II. FREQUENCY SENSITIVE MODE PARAMETERS [?],
[10], [24]

Parameters ENTSO-E France Great Britain
Reserve Rc 1.5-10 % ≥ 2.5 % ≥ 10 %

Droop D 2-12 % 3-16 % 3-5 %
Deadband db ±10-30 mHz ±10 mHz ±15 mHz



The actual French remuneration for the containment
reserve is 9.16e/MW/(1/2h): it is the availability of
the reserve that is remunerated (Rc at a half hour time
step) [?]. Deload operation in order to provide reserve
is economically interesting for a generator if the reserve
remuneration is superior to the feed-in tariff. But official
feed-in tariff for ocean energy in France for example
(wave and tidal) is 150e/MWh (more than 8 times
superior than the reserve price). This raises the question
of distinguishing ancillary services market and grid code
requirement.

The actual Great Britain code proposes a non-
symmetric frequency sensitive mode control, as can be
seen in Fig. 4. Indeed, when no permanent deload is
required by the TSO, the frequency containment service
is used only in case of over-frequency.
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Fig. 4. Two full load and two deload (or generation shedding)
scenarios in the Great Britain grid code (inspired by [25])

III. STUDIES

A. Test case of a major loss of production

The test case presented here is inspired by those pre-
sented for example in the following papers [7], [8], [26].
The main characteristics of this test case are presented
in Table III. Such major frequency deviations come from
a sudden imbalance, due to the loss of a large producer
or a major line.

TABLE III. TEST CASE PARAMETERS

Parameters Values
Initial RoCoF -0.3 Hz/s

Frequency nadir (lowest frequency) 49.6 Hz
Steady state frequency deviation 49.87 Hz

The architecture of the control is shown in Fig. 5.
The blue part represents the synthetic inertia and the
green part the sensitive frequency control (or containment
control). The output is a power set-point which has to be

added to the power output. The inertia synthesis has a
20 ms time constant with an inertia constant of 5 s and the
containment control has a time constant of 3 s, a droop of
5 % and a dead-band of ±10mHz. Both are limited by
a reserve of 10 %, but this limit is not reached during our
test case. These values are considered here as a typical
example.
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Fig. 5. Structure of the two controls (inertia and containment):
example of an individual tidal turbine with a back-to-back AC/DC/AC
converter

On this test case, we can see the complementary
between the inertia response and the frequency sensitive
response in Fig 6. Indeed, the inertia synthesis is very
rapid and can help to limit the RoCoF value and the
frequency nadir (lowest frequency). The containment
control is much more slow, but helps to limit the fre-
quency nadir and the steady-state frequency deviation.

It is also noticeable that the power fluctuations of
each control can partially be compensated when added
(fluctuations of the total curve compared to the inertia
and containment curves).

B. Continental Europe frequency analysis

RTE published freely the frequency in the continental
area with a time-step of 10 s since the 1st October 2014
[27]. We can see for example the frequency measured by
RTE for three different days in Fig. 7.

So, we now can study one year of frequency devia-
tion, from the 1st October 2014 to the 30th September
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2015. To the best of our knowledge, such big frequency
data were not freely accessible so far, which prevented
some work on the frequency control. This signal is shown
in Fig. 8.

The tendency to have similar frequency deviations
at the same hour appears to be very important. The
autocorrelation study (Fig. 9) confirms this with a
more important correlation for a day lag than for an
hour lag. This hour periodicity is linked with the way
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the production is scheduled (at a one-hour time-step).
Seasonal effects can also be seen, specially during the
early morning (between 4 am and 6 am) and the evening
(between 4 pm and 8 pm).
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Fig. 9. Autocorrelation of the frequency deviation signal

It is important to analyze this signal in term of stan-
dard deviation and percentile values in order to study the
classical use of the containment reserve (see Table IV and
Fig. 10). The two months chosen for the table (March
and August) represent respectively the biggest and the
smallest standard deviation within the year considered.

TABLE IV. RTE FREQUENCY DEVIATION ANALYSIS
(STANDARD DEVIATION, DEADBAND PROBABILITIES AND

SEVEN-NUMBER SUMMARIES)

Parameters 08/2015 03/2015 Year
Std. dev. 17.4 mHz 22.3 mHz 20.3 mHz

p(|d| < 10mHz) 45.06 % 35.32 % 39.14 %
p(|d| < 20mHz) 76.77 % 64.91 % 69.78 %
p(|d| < 30mHz) 92.14 % 84.38 % 87.69 %

pCTL2% -35.2 mHz -46.8 mHz -41.4 mHz
pCTL9% -22.3 mHz -27.5 mHz -25.3 mHz
pCTL25% -12.1 mHz -13.5 mHz -13.0 mHz
pCTL50% -1.2 mHz 1.3 mHz -0.1 mHz
pCTL75% +10.4 mHz +15.7 mHz +13.3 mHz
pCTL91% +22.5 mHz +29.0 mHz +26.4 mHz
pCTL98% +37.3 mHz +46.3 mHz +43.4 mHz

The analysis of the distribution shows a good fitting
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with a Student’s t-distribution. This distribution has been
chosen instead of a more classical Gaussian distribution
because it allows heavier tails. The parameters that
shows the best fit correspond to a location parameter
µ = −0.57mHz, a scale parameter σ = 19mHz and a
shape parameter ν = 11. First of all, we see that, even
with a narrow deadband (± 10 mHz), the deviation is
smaller than this threshold more than one-third of the
time.

This analysis allows the reproduction of the results
presented in the following section, but can also be used to
compare different synchronous area. An example of such
a comparison is shown in Fig. 11 [28]. Clearly standard
deviations of the frequency is more important for the
Nordic area, the Ireland, the Great Britain and Cyprus.
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C. Income of the containment reserve

In the following, we will consider only the expected
income of a containment reserve. In this study, the value
for the deadband equals db = ±10mHz and the droop

is between D = 2 % and D = 8 % with a typical value
of D = 4 %.

We will suppose here a quasi-static response of the
generator based on the large time-step (10 s) of the
frequency data. This is consistent with the values used
previously in section III-A: with a 3 s time constant, the
response is almost complete after 10 s (96 %). However,
less reactive response can be authorized, depending on
the local grid code [?], [10], [24]. The time-step is too
large for a study on synthetic inertia.

In the asymmetric case, we will analyze the influence
of the reserve size Rc on the income of this containment
reserve. Two cases will be studied : the actual French
case for marine energy, with a ratio between the reserve
tariff and the feed-in tariff (cfi) of r = 0.12 and the
minimum French feed-in tariff for on-shore wind energy
with r = 0.67 (feed-in tariff of 28e/MWh).

The optimistic hypothesis is made that a non-
symmetric reserve will be paid two times less than
a symmetric reserve (1/2 rcfi). It will be noted that
we consider a case where only the reserve availability
is remunerate regardless of the dynamic or the droop.
Part of the production will be lost compared to the
maximum power production. It depends on the use of
the containment reserve during the considered period, so
the expected value of the asymmetric containment power
will be used (E(∆P−c ), with ∆P−c , the negative part
of the containment reserve ∆Pc, described in (8)). The
expected value of the symmetric and asymmetric use of
the containment reserve is shown in Fig. 12.
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Finally, the expected value of the income E(Inc),
considering both reserve remuneration and energy loss,



is computed from this formulation :

E(Inc) =
1

2
rcfiPmaxRc + cfiE(∆P−c (Rc, D)) (9)

The expected value in this case comes from the frequency
data history.

This result can be normalized by cfiPmax:

E

(
Inc

cfiPmax

)
=

1

2
rRc + E

(
∆P−c (Rc, D)

Pmax

)
(10)

The result is shown in Fig. 13 for different values of
D, Rc and r.
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According to this figure, the expected income be-
comes positive when the reserve is large enough. Except
in the worst case scenario (droop of 2 % and important
feed-in tariff compared to reserve price), a positive
income is reached for a 10 % reserve. In the first scenario,
the income (corresponding to a cost when the value is
negative) is relatively small.

However, in all these cases, it would be not possible
to have a positive income with a symmetric reserve due
to the necessary permanent deload (generation shedding)

equals to the reserve (Rc). Indeed, the symmetric case
can be represented by this formula:

E

(
Inc

cfiPmax

)
= rRc + E

(
−Rc +

∆Pc

Pmax

)
(11)

E

(
Inc

cfiPmax

)
≈ (r − 1)Rc (12)

Indeed, the expected value of the containment reserve
use in the symmetric case is near zero regardless the
reserve size, the droop or the dynamic (see Fig. 12).
Thus, the income of such symmetric reserve would be
around -0.88%/% in the first case and -0.33%/% in the
second case. This formula confirms that such symmetric
reserve is economically interesting for an intermittent
renewable generator only if the reserve tariff is superior
to the feed-in tariff (r > 1).

IV. CONCLUSION

The future grid code for generators concerning the
frequency control in the ENTSO-E area have been de-
tailed and explained: from a certain capacity threshold
(dependent of the synchronous area), generators must
emulate a synthetic inertia and participate to the fre-
quency containment control (called frequency sensitive
control).

The control laws used to participate to the grid
resilience have been detailed with typical value and
some techno-economic comments. In particular, the ca-
pabilities of different intermittent energy technologies
concerning inertia synthesis (including tidal energy) must
be assessed in future works, similarly to what have been
done for wind turbines [19], [29].

The complementary of this two controls is tested on
a test case in order to verify the different dynamics and
steady-state response.

At the end of the paper, we analyze one year of
frequency data in order to assess the potential income
of a asymmetric frequency containment control partic-
ipation (on the understanding that classical symmetric
containment control cannot be economically interesting
if the reserve price is less than feed-in tariff). Within the
hypotheses taken here, this seems to be economically
interesting in lots of cases to participate to this reserve.

The frequency data used in this study concern only the
Continental Europe, that is only one part of the ENTSO-
E area. It could be interesting to use this method in the
other synchronous area.

The comparison with the use of an energy storage
system can also be interesting. Indeed, the decreasing



cost of Energy Storage Systems may lead to a more
economical way to increase grid resilience compared to
generation shedding.
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