
HAL Id: hal-01321188
https://hal.science/hal-01321188

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A multisensor fusion approach to improve LAI time
series

Aleixandre Verger, Frédéric Baret, Marie Weiss

To cite this version:
Aleixandre Verger, Frédéric Baret, Marie Weiss. A multisensor fusion approach to improve LAI time
series. Remote Sensing of Environment, 2011, 115 (10), pp.2460-2470. �10.1016/j.rse.2011.05.006�.
�hal-01321188�

https://hal.science/hal-01321188
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press, DOI: 10.1016/j.rse.2011.05.  

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

1 
 

A multisensor fusion approach to improve LAI time series  

 

Aleixandre Verger a,b,, Frédéric Baret b, Marie Weiss b  

 

a Departament de Física de la Terra i Termodinàmica, Universitat de València. C/ Dr. 5 

Moliner, 50. 46100 Burjassot, València, Spain 

b INRA, Université d'Avignon. UMR114, EMMAH, Domaine Saint-Paul, Site Agroparc, F-

84914 Avignon, France 

 Corresponding author. E-mail address: aleixandre.verger@uv.es (A. Verger) 

 10 

Abstract 

High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate 

resolution sensors provide continuous observations at global scale for monitoring spatial and temporal 

variations of land surface characteristics. However, the full potential of remote sensing systems is often 

hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and 15 

instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal 

continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, 

gap filling and temporal smoothing techniques. It is applicable to any optical sensor and satellite product. In 

this study, the potential of this technique was demonstrated for leaf area index (LAI) product based on 

MODIS and VEGETATION reflectance data. The FUSION product showed an overall good agreement with 20 

the original MODIS LAI product but exhibited a reduction of 90% of the missing LAI values with an improved 

monitoring of vegetation dynamics, temporal smoothness, and better agreement with ground measurements. 

Keywords: LAI time series, VEGETATION, MODIS, temporal smoothing, gap filling, data fusion 
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1 Introduction 

Leaf area index (LAI), defined as half the total developed area of green leaves per unit of horizontal ground 25 

area (Chen and Black, 1992), is a key vegetation variable used for a wide range of ecological, agricultural 

and meteorological applications. LAI has been recognized as an Essential Climate Variable for its key role in 

land-atmosphere interactions (GCOS, 2010). Several international programs and initiatives have established 

guidelines for monitoring climate and environment, stressing the need for realistic, high quality, temporally, 

and spatially stable, continuous and long time series of validated LAI global products (GCOS, 2010; GEO, 30 

2010). Moderate resolution sensors provide frequent observations of the surface and allow monitoring LAI at 

the global scale. Several LAI products are available to the science community, each of them being routinely 

produced from a unique sensor: VEGETATION/SPOT (Baret et al., 2007; Deng et al., 2006), 

MODIS/TERRA-AQUA (Myneni et al., 2002) and SEVIRI/MSG (García-Haro et al., 2009). However, each of 

these LAI products is not spatially and temporally continuous and contains occasional missing data mainly 35 

due to persistent clouds, snow cover and optically thick aerosols (Garrigues et al., 2008). Further, extreme 

solar geometries and long periods of darkness in winter limit the use of optical sensors at very high latitudes 

(Beck et al., 2006). Problems related to the sensor, data storage or transmission may also limit the continuity 

of observations. Finally, instability of retrieval algorithms to residual atmospheric effects, cloud contamination 

in surface reflectance, or directional effects degrade the LAI product accuracy and reduce the probability to 40 

find a reliable solution: in the case of MODIS collection 5, about 10–15% of the pixels with mostly 

herbaceous cover and about 15–30% of the pixels with woody vegetation are retrieved with the back-up 

algorithm, triggered when the main algorithm fails, resulting in lower quality products (Samanta et al., 2009). 

Compositing procedures are used to ensure a continuous and time-consistent delivery of products by 

reducing the impact of missing data and of unexpected day-to-day variations in retrieved LAI. The 45 

CYCLOPES LAI algorithm (Baret et al., 2007) is applied to composited reflectances estimated by fitting a 

surface BRDF (Bidirectional Reflectance Distribution Function) model (Roujean et al., 1992) over 30 days of 

observations. Conversely, the MODIS LAI algorithm is first run for each single observation date and the 

resulting LAI values are composited over 8 days (Myneni et al., 2002). However, this approach which selects 

one observation over 8 potential ones induces some significant scattering which results in lower temporal 50 

consistency as shown by Garrigues et al. (2008). To mitigate this problem, Verger et al. (2008) demonstrated 

that using truly composited reflectances as derived from the MODIS 16 days product (MOD43B4 (Schaaf et 

al., 2002)) and neural network based algorithm provides more consistent LAI products. Another approach 
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could be a better compositing technique of the daily LAI products. However, the lack of clear-sky 

observations over periods longer than the compositing window will anyway result in missing products. 55 

Although increasing the length of the compositing window would increase the probability to get actual 

observations, it would induce artifacts due to the intrinsic assumption of the stability of the surface during the 

compositing period (Roy et al., 2006).  

Several temporal and/or spatial techniques have been proposed to fill gaps resulting from missing data. 

Borak and Jasinski (2009) evaluated several interpolation techniques for MODIS LAI time series and 60 

concluded that temporal interpolation performs more efficiently over non-forest cover types, while spatial 

interpolation performs better in forest areas. Gao et al. (2008) proposed to fill gaps with an ecosystem-

dependent dynamics model within a limited spatial window around the pixel. When no such data is available 

in the vicinity of the considered pixel, an ancillary seasonal curve is used. However, the methods based on 

the spatial dimension may fail to represent actual landscapes where LAI could vary widely within a short 65 

distance (Garrigues et al., 2006). To overcome these difficulties Fang et al. (2008) proposed a temporal 

spatial filtering algorithm based on a vegetation continuous field (VCF) ecosystem curve fitting method 

(Hansen et al., 2002). This algorithm uses the MODIS VCF product which contains the fractional cover of 

trees, bare, and herbaceous within the pixel. It allows imposing regional dependant phenological behavior 

onto each target pixel’s temporal data, while maintaining pixel-level spatial and temporal integrity. However, 70 

an intrinsic limitation of such reconstruction methods is their inability to capture underlying atypical modes of 

seasonality (García-Haro et al., 2009) including natural and human induced disturbances (Jönsson and 

Eklundh, 2002). Further, all these methods are very sensitive to possible classification errors. 

Concurrent use of data from several satellite systems will provide more potential observations within a given 

time period, increasing the availability of data in many regions with a diurnal variability of clouds. The fusion 75 

of multisensor data appears thus as an appealing strategy to fully exploit the current Earth observation 

missions and to fulfill user requirements in terms of spatio-temporal continuity, consistency and quality of 

products. 

This paper aims at developing improved continuous LAI products derived from the fusion of available 

VEGETATION and MODIS observations. For this purpose, consistent LAI products are generated from 80 

MODIS and VEGETATION composited data following Verger et al. (2008) and are then smoothed and gap 

filled using a dedicated technique. The satellite products and the reference ground-based measurements are 

first presented. Then, the principles of the algorithm are described, validated based on simulated time series, 
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and applied over a subsample of situations globally representative of the range of conditions and surface 

types. Finally, the performances of the developed products are analyzed and compared with the original 85 

MODIS LAI product with emphasis on the continuity, consistency and agreement with ground 

measurements. 

2 Data 

To properly design, implement and validate the multisensor fusion algorithm, a data base of satellite 

reflectances and LAI is required over a globally representative ensemble of sites and over a time period long 90 

enough to capture their seasonality. The BELMANIP network, including 397 sites aiming to represent the 

variability of surface conditions over the Earth (WWW1; Baret et al., 2006), is used. The BELMANIP sites 

were generally chosen to be the most homogeneous (at 1 km resolution) as possible over a 3x3 km² area. 

This allows to minimize the point spread function effect and possible geolocation discrepancies between the 

two considered sensors, VEGETATION and MODIS. We considered the 2001-2003 period to well represent 95 

seasonal and interannual variability. The reflectance products are first presented. Then, the MODIS LAI 

product used to calibrate the algorithm for the fusion of VEGETATION and MODIS observations are 

depicted. Finally, the ground-based measurements used to validate the satellite LAI estimates are described. 

2.1 The VEGETATION and MODIS reflectance composited products 

CYCLOPES (derived from SPOT VEGETATION) and MOD43B4 (derived from Terra MODIS) reflectance 100 

products correspond to nadir viewing normalized reflectances in the red, near infrared and short wave 

infrared spectral bands (centered, respectively, at 645 nm, 835 nm, and 1665 nm for VEGETATION, and at 

648 nm, 858 nm and 1640 nm for MODIS).  

CYCLOPES reflectance products are available at WWW2. They correspond to 1/112° spatial sampling 

interval (about 1 km at the equator) and are projected in plate-carrée. The temporal sampling interval is 10 105 

days with a 30 days compositing window. A Gaussian weighting function is applied to put more emphasis on 

observations close to the centre of the window. Top of atmosphere reflectance are first cloud screened and 

atmospheric correction is applied. The Roujean et al. (1992) BRDF model is then adjusted over the resulting 

top of canopy reflectance available within the compositing window to compute a reflectance value for nadir 

viewing and for the median solar zenith angle during the compositing period for each of the VEGETATION 110 

bands. Note that a minimum of two valid observations in the compositing window was required. An initial 
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version of the algorithm was successfully validated by Hagolle et al. (2005). More details are available in 

Baret et al. (2007).   

MODIS reflectance products were downloaded from WWW3. They correspond to 1 km spatial sampling 

interval using a sinusoidal projection system. Nadir BRDF adjusted reflectance product (MOD43B4) 115 

collection 4 provides atmospherically corrected (Vermote et al., 1997), cloud-free, normalized reflectance 

values for each of the MODIS spectral bands at the mean solar zenith angle of each 16 day period (Schaaf 

et al., 2002). MOD43B4 product is computed using the Ross-Li BRDF model (Lucht et al., 2000). When the 

number of available observations is too small for a full BRDF inversion, a global database of archetypal 

BRDF model parameters is used to predict the shape of the BRDF (Schaaf et al., 2002). MOD43B4 products 120 

were validated by Jin et al. (2003). In addition to the nadir normalized reflectance values, the MOD43B4 

product provides extensive quality information. Only data labeled as ‘good quality’, i.e. full inversion with at 

least seven cloud-free observations, were included in our dataset.  

The consistency between VEGETATION and MODIS reflectance composited products was already 

demonstrated by Verger et al. (2008). 125 

2.2 The MODIS LAI product 

MODIS/TERRA LAI collection 5 product (MOD15A2) (available at WWW3) was used. The spatial sampling 

characteristics are similar to those of the MOD43B4 reflectance product. The main MODIS LAI retrieval 

algorithm relies on a radiative transfer model which ingests red and near infrared bidirectional reflectance 

factor values, their associated uncertainties, the view-illumination geometry, and biome type (within eight 130 

types) (Myneni et al., 2002; Shabanov et al., 2005). The MODIS algorithm accounts for clumping through 

three-dimensional radiative transfer formulation and assumptions on canopy architecture specific per biome 

class (Knyazikhin et al., 1998). If this algorithm fails, a back-up procedure is triggered to estimate LAI from 

biome specific NDVI based relationships. MODIS LAI product is generated by selecting the daily LAI value 

which corresponds to the maximum FPAR (Fraction of Photosynthetically Absorbed Radiation) value in an 8-135 

day compositing period. In this study, only the MODIS LAI values generated by the main algorithm were 

considered. Back-up retrievals were not used because they have generally lower quality mostly due to 

residual clouds and poor atmospheric correction (Yang et al., 2006). Further only the pixels assigned to the 

eight biome land cover types were considered which excludes barren/sparse vegetation (rock, tundra, and 

desert), permanent wetlands/inundated marshlands or perennial snow/ice.  140 
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Although MODIS LAI product has been extensively validated (e.g. Ganguly et al., 2008; De Kauwe et al., 

2011), high level of noise was inducing shaky temporal profiles and unrealistic seasonality (Kobayashi et al., 

2010) which limits the interest of directly using this product in the proposed fusion algorithm. 

2.3 Ground-based LAI measurements 

Garrigues et al. (2008) proposed a set of validation sites where ground values of LAI were derived from 145 

indirect methods based on light transmittance measurements. For some of the sites, measurements were 

repeated at several dates. However, the ground measurements were not always achieved within the 2001-

2003 period considered in our study. To increase the number of available points, the ground measurements 

completed outside the 2001-2003 period were included in the validation exercise (section 4) for the forest 

sites appearing as steady over few years based on remote sensing observations. Local ground 150 

measurements were scaled up by using empirical transfer functions and ancillary high-resolution images 

(Morisette et al., 2006). The accuracy of ground-based reference maps depend on errors in field 

measurements but also on uncertainties of fine-resolution satellite data, sampling and spatial scaling errors 

(Weiss et al., 2004). Note that ground measurements could be derived from several devices and 

interpretation techniques, and may provide estimates of effective LAI values (assuming the canopy as a 155 

turbid medium) or true LAI values when leaf clumping is accounted for (Weiss et al., 2004). To be consistent 

with the definition of satellite products, special attention was paid to the nature of LAI measurements and 

only LAI values accounting for clumping were selected yto provide a more reliable assessment of products 

accuracy. 

3 Methods 160 

A fusion algorithm was developed to estimate LAI from the synergistic use of VEGETATION and MODIS 

observations while keeping the spatial and temporal sampling as close as possible to the original MODIS LAI 

product. The proposed approach is based on the use of neural networks and temporal compositing 

techniques. The strategy included two main steps. First, for each of the 8 MODIS biomes, two neural 

networks were trained to estimate MODIS LAI products, one from MOD43B4 and the other from CYCLOPES 165 

reflectance products. Then, a specific Temporal Smoothing and Gap Filling algorithm (TSGF) was applied to 

the neural network LAI estimates resulting in the ‘FUSION’ product. The same TSGF algorithm was also 

applied to the main MODIS LAI values (‘SmoothedMOD’) to better evaluate the advantage of fusing several 

products. Table 1 lists the products that are used in section 4 for performances evaluation showing 
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differences in the temporal sampling and resolution, but sharing approximately the same spatial support. The 170 

flow chart of the proposed algorithm is given in Fig. 1. 

[Table 1] 

3.1 Neural networks LAI estimation 

The versatility and performance of neural networks to learn a particular LAI product from several input 

reflectance products was demonstrated by Verger et al. (2008). MODIS LAI product estimated from 175 

CYCLOPES reflectances (‘CYCrhoMODlai’) and MOD43B4 reflectances (‘MODrhoMODlai’) combinations 

were here investigated. 

The neural networks were trained per land cover class (Verger et al., 2008) using MOD12Q1 land cover map 

(Friedl et al., 2002) both for CYCLOPES and MOD43B4 reflectances. Seven main biomes were considered: 

shrubs, savanna, grasses and cereal crops, broadleaf crops, needleleaf forest (deciduous and evergreen), 180 

deciduous broadleaf forest and evergreen broadleaf forest (Table 2).  

The LAI estimation approach does not need a very accurate absolute calibration of reflectance products from 

the two considered sensors: the main requirement here is a very high degree of spatial and temporal 

consistency of reflectances in each band (Verger et al., 2008). The training data set should represent the 

same spatial and temporal sampling support. CYCLOPES reflectance products were first re-projected into 185 

MODIS sinusoidal projection system using a bi-cubic resampling method (Reichenbach and Geng, 2003). 

For all inputs and outputs, the median value over 3×3 pixels area was computed when at least 5 high quality 

level pixels were available. This allows minimizing geometrical uncertainties while removing most outliers 

inside the 3×3 pixels area. The ‘dominant biome class’ is considered. However, sites with less than 5 pixels 

belonging to the same biome class in the 3×3 pixels area during the 3 year period were rejected from the 190 

training dataset. Remaining outliers in reflectance values due to cloud contamination, residual atmospheric 

and directional effects or snow masking errors, were further eliminated by rejecting the 10% of samples 

showing the largest discrepancies between CYCLOPES and MOD43B4 reflectances over the three spectral 

bands. The temporal sampling frequency was set to the 16 days of MOD43B4 reflectance product 

corresponding to the lowest one among inputs and output variables. The 8-day original MOD15A2 LAI 195 

product was thus composited to get a 16-day temporal sampling: the central MOD15A2 value was averaged 

with the ones from the previous and the next compositing windows, assigning a 0.5 weight to these 

bracketing observations. However, when one or two of the border observations were missing, the product 
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was still computed from the remaining observations. Conversely, when the central observation was missing, 

no product was computed. The CYCLOPES reflectances were finally linearly interpolated at the central date 200 

of MOD43B4 product if the two closest CYCLOPES observations were within ±15 days from this date. 

Further details about the generation of the training dataset can be found in Verger et al. (2008).  

Back-propagation networks made of one layer of five tangent-sigmoid and one layer with one linear transfer 

function were considered (Verger et al., 2011). They result in 26 synaptic and 6 bias coefficients to be 

adjusted. The inputs (reflectances in the red, near infrared and short wave infrared and the sun zenith angle) 205 

and LAI output were scaled by their minimum and maximum values. The training dataset was split in two 

subsets by randomly selecting cases. Two thirds of the cases were used to train the networks while the 

remaining one third of cases was used to evaluate the performances and avoid over-fitting.  

Results (Table 2) show that performances of LAI estimates are very close between CYCLOPES and 

MOD43B4 reflectances, with a slightly smaller root mean square error (RMSE) values for CYCrhoMODlai. 210 

RMSE values are low for non-forest biomes (RMSE<0.2) and reasonable for savanna (<0.5) and forest 

biomes (<0.9). Note that the RMSE values increase with the LAI values across biomes, with non-forest and 

evergreen broadleaf forest experiencing respectively the lowest and the largest ones. These results agree 

well with those of Verger et al. (2008). 

[Table 2] 215 

The neural networks were then applied to the reflectance products at the pixel level (sinusoidal MODIS 1km 

sampling grid) and at the original temporal sampling interval (10 days for CYCLOPES and 16 days for 

MOD43B4). Since the neural networks were trained with MODIS LAI, the definition of CYCrhoMODlai, 

MODrhoMODlai and FUSION LAI products agrees with the MODIS LAI definition. 

3.2 The temporal smoothing and gap filling (TSGF) method 220 

The 1 km spatial sampling interval MODrhoMODlai and CYCrhoCYClai were fused to provide LAI values 

every 8 days using temporal smoothing and gap filling processes (Fig. 1).  

1. Temporal smoothing 

After evaluating several widely used temporal filters, a simple but robust method based on the 

adaptive Savitzky-Golay (SG) filter (Savitzky & Golay, 1964; Chen et al., 2004) was selected to 225 

smooth the LAI temporal profiles. The SG filtering captures subtle and rapid changes while being 

little sensitive to outliers (Fang et al., 2008). Chen et al. (2004) showed the effectiveness of an 
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adaptive SG filter in comparison to the Best Index Slope Extraction method (Viovy et al., 1992) and 

the fast Fourier transform technique for reconstructing SPOT VEGETATION high-quality NDVI time-

series. SG also worked well for MODIS LAI series (Fang et al., 2008). 230 

The proposed approach used local polynomial functions similarly to the SG-filtering. However, the 

fixed and symmetric compositing window of the standard SG was replaced by an adaptative process 

with variable length and allowing asymmetry in time: 

1.1. The first step consisted in defining the compositing window and identifying the high-

quality data used to fit the polynomial over the available LAI values. The length of the 235 

compositing period is one of the main drivers of the smoothing performances: a short 

compositing window captures subtle and rapid changes in the time series but is more 

sensitive to noise and gaps (Chen et al., 2004); conversely, a long compositing window 

produces smoother temporal profiles at the expense of flattening sharp peaks. After some 

trial and error tests, the period was defined by selecting the 3 closest observations before 240 

and 3 closest after the considered date within a maximum 128-day compositing window 

centered on the considered date (±64-day). If no such 6 LAI values were available within 

the 128 days compositing period, the smoothing was not applied, resulting in a missing 

data in the smoothed product.  

1.2. Weights iW  at date i  were set to the frequency of the corresponding products, i.e. 245 

10iW  for CYCrhoMODlai and 16iW  for MODrhoMODlai. This allows assigning the 

same importance to the LAI estimates derived from CYCLOPES (10-day frequency) and 

MOD43B4 reflectances (16-day). These weights were further normalized to ensure an 

even contribution of each side of the compositing period: 

   





 




 3

1

'
3

1

'   ; 
i i

i
i

i i

i
i

W

W
W

W

W
W  250 

where the signs refer to the observations i before (-) or after (+) the considered 

compositing date i0. When an actual observation is available at date i0, its weight, '
0W  is 

set to  2 3

1

3

1

1'
0

0

0 0

 


 



  



i i ii

n

i i

WW

W
W

i

where 
0i

n  is the number of actual observations 

( 20
0
 in  when 2 reflectance products are considered as in this study) at the 



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press, DOI: 10.1016/j.rse.2011.05.  

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

10 
 

compositing date i0. A second order polynomial function was then fitted using a weighed 255 

least square technique within the compositing window. 

1.3. The local polynomial fitting should be used cautiously to reproduce adequately the 

seasonality of the original data, especially during rapid change of growth or senescence 

rate: too large moving window will prevent describing realistically these features. To 

capture the corresponding sudden rise in data values and limit the flattening of sharp 260 

peaks sometimes observed in the fitted data, only a relatively small window can be used. 

To minimize this bias artifact, a correction was applied over a smaller window (±32-day) 

centered on the peaks by applying a linear regression between the fitted values and the 

original data if a minimum of 4 observations exist within the  ±32-day window. 

2. Gap filling 265 

A simple linear interpolation in a local moving window of 128- day length was applied to fill gaps in 

the smoothed data series. The gain of reconstructed data achieved with the first iteration was further 

exploited to improve the robustness and the continuity in the time series through a second iteration 

of the linear interpolation. 

[Fig. 1] 270 

4 Validation  

Validation of multi-temporal methods applied to moderate resolution satellite data is often not 

straightforward, since independent ground measurements for a broad range of conditions (seasonal period 

of vegetation or atmospheric conditions) are required. Most of ground-based reference maps are single-date 

maps derived under clear-sky conditions in the maximum development state of vegetation (Baret et al., 275 

2006). The lack of ground measurements representative of the MODIS 1 km products for a long enough time 

period hampers the quantitative assessment of MODIS time series. For testing temporal analysis methods in 

a controlled environment, simulation of time series appears complementary to the application to satellite data 

and comparison with ground data (Verbesselt et al., 2010). The temporal smoothing and gap filling capacity 

of TSGF was therefore validated by (1) simulating 8-day LAI time series, and (2) applying the method to 280 

actual LAI data. simulated range of8-day LAI time series was simulated with different noise levels and 

percentage of gaps in order to robustly test TSGF (section 4.1). Then the method was applied to both 8-day 

MODIS satellite LAI time series and 10-day and 16-day neural network LAI estimates. The developed 
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SmoothedMOD and FUSION products were validated by analyzing their continuity, consistency and 

accuracy. The continuity of LAI products was evaluated by characterizing the spatio-temporal and biome 285 

distribution of gaps (section 4.2) and the distribution of length of periods without products values (Length of 

Gaps, LoG) (section 4.3). Temporal consistency was evaluated by the smoothness level of the time series 

(section 4.4). The consistency of temporal profiles was further analyzed over a set of sites based on expert 

knowledge and auxiliary information (section 4.5). Finally, the several LAI products investigated were first 

intercompared (section 4.6) and their accuracy was evaluated over the set of available ground 290 

measurements (section 4.7). 

4.1 Assessment of TSGF in simulated LAI time series 

Simulated 8-day LAI time series are generated for a 3-year period by using an asymmetric Gaussian function 

for each season (Verbesselt et al., 2010) (dotted line in Fig. 2). Second, different levels of white noise and 

randomly distributed gaps were created in the simulated time series (crosses in Fig. 2). The noise 295 

component was generated using a random number generator that follows a normal distribution (0, ) 

(mean value equal to 0 and variance, ²), i.e.  ,0 LAILAInoisy . The values for the absolute LAI 

uncertainty used in this study were varying between = 0 and = 0, 0.5 by 0.05 steps. The percentages of 

simulated gaps were ranging between 0 and 0.7 by 0.1 steps. Third, the TSGF method was applied to the 

degraded data (solid line in Fig. 2). Fourth, the reconstructed time series were compared with the original 300 

reference data by computing the RMSE. In order to obtain representative values, the RMSE was derived as 

the mean value of 500 iterations for each level of noise and gap proportion.  

[Fig. 2] 

Fig. 2 illustrates that the TSGF method reproduces adequately the seasonality and the time of changes. A 

good correspondence between the reconstructed time series and the original test LAI data is generally 305 

observed. However, the method shows some limitations to reconstruct sharp peaks when the proportion of 

gaps is high since a minimum of 4 LAI data values within a ±32-day window centered on the peak is required 

for applying the flattening correction (step 1.3 of TSGF method, section 3.2). Some artifacts are also 

observed when the signal to noise ratio is low as observed around the minima of the time series (Fig. 2). 

Results show as expected that the uncertainty in the reconstruction of temporal series increases with the 310 

level of noise and the fraction of missing data (Fig. 3). For continuous time series (i.e. fraction of missing 

data equal to 0), the mean RMSE increases linearly with the noise level with an offset close to zero. For 
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discontinuous time series, the RMSE increases slowly with the noise level when the noise level is small 

compared to the percentage of missing data. 

[Fig. 3] 315 

4.2 Distribution of gaps 

The spatio-temporal distribution of missing data was computed per 10° latitudinal bands and for each month 

over the BELMANIP sites. Results (Fig. 4) show that the gaps are mostly observed around the equator due 

to persistence of clouds and at high latitudes in wintertime mainly due to snow and cloud cover as well as 

large sun zenith angles. A high frequency of gaps is also observed at mid latitudes during summertime which 320 

may be related to cyclonic activity (Fig. 4). The original MODIS product presents the highest rate of invalid 

data (34%). This may be partially explained due toby the short composition period of the MOD15A2 LAI. 

Note that the MOD15A2 back-up LAI product, which represents 22% of cases, was considered as invalid 

data. Barren/sparse vegetation pixels were not included in this study since MOD15A2 was not available for 

these cases.  325 

The MODrhoMODlai product shows less than half the fraction of invalid data (16%) as that of 

MOD15A2(34%) because of differences in the length of the compositing period (16 and 8 days, 

respectively). Similar spatio-temporal patterns were also observed between these two LAI products. 

However, MODrhoMODlai presents a significant lower frequency of gaps for the northern latitudes. This may 

result from the greater tolerance to the quality of input reflectance of the neural network algorithm as 330 

compared to the main MOD15A2 algorithm. 

Even though the compositing period of the reflectance data used as input into CYCrhoMODlai (30 days) is 

twice as long as that of MODrhoMODlai (16 days) and the minimum number of valid observations required in 

the compositing period is lower for the first (only two observations were required in the CYCLOPES algorithm 

while MOD43B4 reflectances were generated only if a minimum of seven observations were available, 335 

section 2.1), the gap frequency is slightly higher for CYCrhoMODlai (20%) than for MODrhoMODlai (16%). 

Both products show clear and similar spatio-temporal distributions of gaps, with large fraction of gaps located 

at the equator and the higher latitudes in winter (Fig. 4). However, the main differences are observed at 

these higher latitudes where MODrhoMODlai shows lower frequency of gaps. This may be explained by 

differences in snow and cloud screening performances as well as to the realism of the BRDF models used in 340 

the compositing algorithms (Lucht & Lewis, 2000).  
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The SmoothedMOD product shows a significantly reduced rate of gaps (13%) as compared to MOD15A2 

(34%), demonstrating the efficiency of the proposed TSGF method. The remaining gaps in SmoothedMOD 

(Fig. 4) are still located over the equatorial and high latitudes where the original MODIS product typically 

presents long periods (at least 128-day) with almost no LAI values.  345 

The FUSION product shows a very low fraction of gaps (4%). Gaps in the FUSION product are mostly 

located at the equator while almost no gaps are observed for the higher latitudes demonstrating the 

effectiveness of the synergy between CYCrhoMODlai and MODrhoMODlai products. 

[Fig. 4] 

The distribution per biomes (Table 3) shows that most of the gaps in the MOD15A2 product correspond to 350 

forest areas mainly located at the equator and the higher latitudes, and also to shrubs largely located also at 

the higher latitudes (see MODIS land cover map in Myneni et al., 2002). Further, forests may correspond to 

high LAI values with possible saturation conditions in the MOD15A2 algorithm. The derived SmoothedMOD 

product shows a significant reduction of gaps for all biomes, particularly for the deciduous broadleaf forest 

and all the non-forest biomes except shrubs. The CYCrhoMODlai shows around 10% frequency of gaps for 355 

non-forest biomes while forests show particularly high fraction of gaps that culminates with the evergreen 

broadleaf forests (41%). Conversely, around 15% of data are missing for MODrhoMODlai product except for 

evergreen broadleaf forest that reaches 34% gaps. The FUSION product presents less than 3% gaps except 

for evergreen broadleaf forest that however provides still the lower frequency of gaps with 17% although 

similar to the SmoothedMOD product (18%). This clearly indicates the difficulties to monitor this particular 360 

biome located near the equator with VEGETATION and MODIS satellites. However, the comparison 

between the FUSION and the SmoothedMOD products for the other biomes and particularly for shrubs and 

needleleaf forest, demonstrates the better performances of the multisensor fusion approach as compared to 

the monosensor gap filling approach. 

[Table 3] 365 

4.3 Length of gaps (LoG)  

The time interval between two consecutive valid observations of LAI products on each side of a gap, i.e. the 

length of gaps (LoG), is a very pertinent metrics to describe the continuity of products required for monitoring 

land surfaces. The histogram of LoG (Fig. 5) shows that the FUSION and the SmoothedMOD products have 

very low frequencies of gaps with lengths about evenly distributed. The three other LAI products show very 370 
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similar patterns after a LoG value around 50 days. However, for short LoG values, MOD15A2 and 

MODrhoMODlai products showed similar patterns with the highest frequency of LoG. Conversely, 

CYCrhoMODlai presents a higher frequency of long gaps as compared to MODrhoMODlai. 

[Fig. 5] 

 375 

4.4 Smoothness 

The smoothness level of LAI temporal series was evaluated as proposed by Weiss et al. (2007) using the 

absolute difference,  between LAI(t) product value at date t and the mean value between the two bracketing 

dates: 1/2(LAI(t+t)+LAI(t-t)) - LAI(t), where t is the temporal sampling interval. Difference  is 

computed only if the two bracketing LAI values at (t-t) and (t+t) exist. The smoother the temporal 380 

evolution, the smaller the  difference should be. 

The original MODIS product is the most ‘shaky’ in relation with its short compositing period Fig. 6). 

MODrhoMODlai shows an improvement in the smoothness due both to the increase of the temporal 

compositing window, the nature of the compositing algorithm (BRDF model fit) and the use of neural network 

based biophysical algorithm that provides more stable results than the MOD15A2 algorithm as already 385 

noticed by Verger et al. (2008). The CYCrhoMODlai shows intermediate smoothness level because of the 

increase of the compositing period as compared to MODrhoMODlai. Finally, SmoothedMOD and FUSION 

products exhibit the smoothest temporal profiles because of the TSGF process and its associated long 

( 128-day) compositing period. 

[Fig. 6] 390 

4.5 Temporal profiles 

The LAI temporal profiles of the central pixel of five BELMANIP sites (Table 4) selected to represent typical 

features were investigated (Fig. 7). Visual inspection of the temporal profiles confirms that the original 

MODIS product is extremely shaky, while the FUSION product is extremely smooth, MODrhoMODlai, 

CYCrhoMODlai and SmoothedMOD showing intermediate situations. The seasonality is generally well 395 

depicted by the different products for Mongu site with a good agreement with the few available ground 

measurements along its phenological cycle. However some discrepancies are observed over the Dahra site, 

that is partly explained because of the small spatial support of the ground measurements that may not 
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represent accurately coarse resolution pixels. This may also reveal a limitation of the temporal smoothing 

algorithm to capture faithfully the rapid changes when the percentage of missing data is very high as 400 

commented in section 4.1. And a limitation of the fusion approach to deal with differences in the original 

products when the LAI changes abruptly as observed in the MODrhoMODlai and CYCrhoMODlai products 

for the Dahra site. The situation is more complex for the forest sites: it is very difficult to describe any 

seasonality at the pixel level with the original MODIS product because of its extremely shaky character while 

the SmoothedMOD product exhibits significant artifacts due to the small number of available original MODIS 405 

data and the large associated uncertainties. Conversely, the FUSION product benefits from the 

complementarities in temporal consistency of MODrhoMODlai and CYCrhoMODlai products and shows the 

most reasonable temporal profiles, with a marked seasonal pattern for Hyytiälä and Soignes which is 

determined by the presence of understory and deciduous species and with very limited seasonality as 

expected for Counami (Table 4).  410 

[Table 4] 

[Fig. 7] 

4.6 Comparison between LAI products 

The intercomparison of LAI products was achieved at the pixel scale and the closest date. For the sake of 

simplicity, the RMSE values were computed for the ‘Forest’ and the ‘Non-Forest’ biome classes  since 415 

similarities are observed within these broad classes. RMSE values are clearly lower for the non-forest 

classes as compared to the forest classes (Table 5), in relation with the LAI levels experienced by these 

classes in agreement with earlier observations. As expected the SmoothedMOD product agrees the best 

with the original MODIS LAI product. Neural networks estimates of MODIS LAI from the MODIS reflectances 

(MODrhoMODlai) are very consistent with estimates from the CYCLOPES reflectances (CYCrhoMODlai). 420 

This supports our hypothesis that the spatial sampling interval of VEGETATION and MODIS sensors is 

comparable and that training over the same biophysical product with input reflectance derived from different 

sensors provides very consistent output products in agreement with Verger et al. (2008). Larger differences 

are found when comparing MODrhoMODlai with MODIS which justifies a posteriori why it was preferred to 

include MODrhoMODlai instead of either the original MODIS product or the SmoothedMOD product in the 425 

fusion process. The RMSE associated to the comparison between MODIS and the FUSION product provides 
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an approximate quantification of the MODIS temporal noise. The FUSION product shows high consistency 

with both CYCrhoMODlai and MODrhoMODlai as expected.  

[Table 5] 

4.7 Direct validation 430 

For the direct validation of the MODIS-based LAI products (closer to true LAI than to effective LAI 

definition),only ground LAI measurements proposed by Garrigues et al. (2008) (c.f. section 2.3.), which take 

into account the clumping effect were selected.. Further, to provide a consistent comparison of product 

performances, validation sites were selected if the MOD15A2, SmoothedMOD and FUSION LAI products 

were concurrently available within less than 8 days to the date of ground measurements acquisition. To 435 

minimize registration errors, the mean LAI product values over 3×3 pixels areas for the date the closest to 

the ground measurement campaign was compared to the ground LAI over the typical 3x3 km² size of ground 

validation sites. Our study, in agreement with the CEOS recommendations (Morisette et al., 2006), benefits 

from the high number (N=71) and representativeness of ground measurements which cover most of the 

physical range of LAI variation. However, there are not enough measurements for broadleaf forests where 440 

the largest differences between LAI products are expected (Table 2). Note that ground-based measurements 

are associated to errors and biases that are difficult to estimate (e.g. uncertainties in the estimation of 

clumping and woody area ratio, lack of understory quantification or spatial scaling errors).  

The overall performances of LAI products were quantified by the RMSE decomposed into accuracy (B) and 

precision (S) components. The accuracy (B) is measured as the mean value of the differences between 445 

products and ground measurements while the precision (S) is computed as the standard deviation of 

estimates around the best linear fit also reflected by the correlation coefficient (R2). 

Results (Fig. 8) show that the FUSION product agrees the best with LAI ground measurements. The 

improvement in the overall performances (RMSE) of the FUSION product is due to the observed increment 

of the precision (scoring the highest R2 and the lowest S values). In the fusion, the precision is increased 450 

through a double step process. First, the precision of intermediate neural network LAI estimates 

(MODrhoMODlai, CYCrhoMODlai) is improved as compared to that of MOD15 LAI product as proven in 

Verger et al. (2008) because neural networks smooth out noise and they are based on 16-day and 30-day 

composited reflectances as compared to 8-day maximum compositing of MOD15. Second, the fusion of 

MODrhoMODlai and CYCrhoMODlai results in more data and consequently in less noise. However, the 455 
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FUSION product presents a slight negative bias (B). These systematic differences are also observed in the 

comparison between the MOD15 product and the ground measurements. Since the fusion is based on the 

MOD15 LAI, the FUSION product cannot correct from possible biases in the original MOD15 product. Note 

also that most noisy points should be below the 1:1 line, since noise caused by clouds and poor atmospheric 

conditions is negatively biased. No significant difference is observed between the original and the smoothed 460 

MODIS LAI, with a slight improvement of performances through the smoothing process which reduces some 

artifacts (SmoothedMOD shows higher correlation (R2) and lower scattering (S) than MOD15).  

 [Fig. 8] 

5 Conclusions  

This study introduced an innovative fusion approach based on the use of neural networks and temporal 465 

filtering (TSGF) techniques. The algorithm fills gaps and smoothes out consistent products derived from two 

sensors. It is a generic approach applicable to any combination of satellite products. It was here applied to 

improve MODIS LAI product using reflectance data from VEGETATION and MODIS sensors.  

The performances of the approach for restoring the spatial and temporal distribution of MODIS LAI products 

is demonstrated based on the evaluation of the fraction of valid data, length of periods with missing data and 470 

occurrence of missing data in the original and proposed LAI products. The original MODIS product presents 

the highest rate of invalid data (34%) due to the shortest composition period but also to the failure of the 

main retrieval algorithm to provide a solution in sub-optimal conditions with high uncertainties in input data. 

The use of composited reflectances provides a more stable and continuous input dataset which allows 

reducing by more than a half the fraction of invalid data from the neural network estimates (MODrhoMODlai 475 

(16% of invalid data) and CYCrhoMODlai (20%)). The TSGF method appears to be very efficient to improve 

the continuity of LAI products (13% of invalid data in the SmoothedMOD product) but the instabilities of 

MODIS LAI are transferred in part to the SmoothedMOD product in periods and locations with frequent 

missing MODIS LAI product. The proposed fusion approach smoothes out efficiently most instabilities in the 

original MODIS product and allows filling most of the gaps (only 4% of gaps are remaining in the FUSION 480 

product) through the use of composited reflectances, neural network training and temporal smoothing and 

gap filling techniques. Further, the FUSION product agrees the best with ground measurements. However, 

residual gaps persist in evergreen broadleaf forests in the equatorial latitudes revealing the difficulties to 

monitor these particular areas due to persistent cloudiness. The investigated products show limitations to 
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describe rapid LAI changes as observed over vegetation surfaces with a short growing season. A refinement 485 

of the temporal filtering algorithm and the use of daily observations would probably mitigate this problem. 

Geostationary satellite sensors (e.g. SEVIRI/Meteosat) which deliver continuously-updated information could 

also contribute to improve the continuity and reliability of LAI products. Further studies should therefore 

concentrate on designing strategies that take advantage of the complementary characteristics of 

geostationary satellite products which provides temporal continuity and stability but coarser spatial resolution 490 

and polar orbit based observations with a finer spatial resolution but more affected by the multi-temporal 

noise and longer periods of missing data. Note that the proposed approach is entirely driven by remotely 

sensed observations and uses only information from the time series to be filled. For operational purposes 

this approach could be complemented by the use of a climatology resulting from the compilation of data over 

an extended temporal period or based on dedicated functioning models with the capacity to simulate the 495 

dynamics of LAI.  

The proposed fusion approach assumes some degree of spatial and temporal consistency between the 

products to be fused. Although the temporal aspect is probably minor and could be solved using the daily 

observations from different sensors rather than the composited reflectance products, the spatial aspect might 

be more limiting. The results reported here demonstrate that the fusion algorithm accommodates the 500 

differences in the spatial support of VEGETATION and MODIS over the BELMANIP sites. However, co-

registration errors, projection systems and point spread function of both sensors may compromise the 

applicability of the proposed approach over heterogeneous areas where more attention to the scaling effects 

should be paid. 

Our results show the high potential of the proposed multisensor fusion approach as compared to the 505 

standard temporal filtering methods for improving the performances of satellite products in terms of 

continuity, consistency and agreement with ground measurements. This innovative sensor-independent 

approach may contribute to generate continuous long-term Earth System Data Records from remote sensing 

data collected with several sensors over the past three decades and to extend the time series with sensors 

to be launched in the near future. 510 
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Table 1. Temporal sampling interval and resolution (length of the compositing window) of the considered LAI 

products. TSGF stands for temporal smoothing and gap filling.  690 

 
 Sampling Resolution Description 
MODIS 8 days 8 days Original MODIS LAI product (MOD15A2) 
SmoothedMOD 8 days 128 days MOD15A2 LAI product processed using TSGF 
MODrhoMODlai 16 days 16 days MODIS LAI estimated from MOD43B4 product 
CYCrhoMODlai 10 days 30 days MODIS LAI estimated from CYCLOPES product 
FUSION 8 days 128 days Fusion of MODrhoMODlai and CYCrhoMODlai using TSGF 
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 715 

 

 

Table 2. Number of cases (pixel×date) used per biome class in the training data set and associated RMSE 

values as compared to the original MODIS products. 

 720 
Biome class Nb. data RMSE 

 MODrhoMODlai CYCrhoMODlai 
Shrubs 784 0.12 0.11 
Savanna 926 0.48 0.40 
Grasses & Cereal Crops 1476 0.19 0.17 
Broadleaf Crops 797 0.17 0.15 
Needleleaf F. 1380 0.68 0.63 
Deciduous Broadleaf F. 413 0.73 0.72 
Evergreen Broadleaf F. 375 0.89 0.85 
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Table 3. Fraction of invalid data per biome for the several LAI products investigated (Table 1) over the 745 

BELMANIP sites during the 2001–2003 period. 

 
Biome MODIS SmoothedMOD CYCrhoMODlai MODrhoMODlai FUSION 
Shrubs 0.35 0.21 0.12 0.16 0.017 

Savanna 0.23 0.07 0.12 0.15 0.025 

Grasses & Cereal Crops 0.28 0.07 0.07 0.11 0.003 

Broadleaf Crops 0.26 0.05 0.11 0.13 0.006 

Needleleaf F. 0.45 0.20 0.34 0.14 0.031 

Deciduous Broadleaf F. 0.34 0.07 0.23 0.15 0.016 

Evergreen Broadleaf F. 0.43 0.18 0.41 0.34 0.17 

TOTAL 0.34 0.13 0.20 0.16 0.037 

 
 
 750 
 
 
 
 
 755 
 
 
 
 
 760 
 
 
 
 



E 
Version définitive du manuscrit publié dans / Final version of the manuscript published in : Remote Sensing of Environment, 
2011, In Press, DOI: 10.1016/j.rse.2011.05.  

 

   
   

   
   

M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t  
   

   
   

   
 M

an
us

cr
it 

d’
au

te
ur

 / 
A

ut
ho

r m
an

us
cr

ip
t  

   
   

   
   

 M
an

us
cr

it 
d’

au
te

ur
 / 

A
ut

ho
r m

an
us

cr
ip

t 

 

28 
 

 765 
 
 
 
 
 770 
 
 
 
 
 775 
 
 
 
 
 780 
 
 
 
 
 785 
 
 
 
 
 790 
Table 4. Description of the sites selected for the temporal profiles (Fig. 7). 
 
 

Site 
name 

Location Lat. (º) Lon. (º) MODIS land 
cover 

Actual land cover Reference for 
ground data  

Mongu Zambia -15.44 23.25 Savanna Kalahari woodland Privette et al. 
(2005), WWW4 

Dahra Senegal 15.41 -15.43 Grasses & 
Cereal Crops 

Savanna Fensholt et al. 
(2004) 

Hyytiälä Finland 61.85 24.29 Evergreen 
Needleleaf F. 

Mixed boreal forest WWW5 

Soignes Belgium 50.78 4.42 Deciduous 
Broadleaf F. 

Deciduous 
broadleaf forest 

WWW5 

Counami French 
Guiana 

5.34 -53.24 Evergreen 
Broadleaf F. 

Tropical rain forest WWW5 
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Table 5. Root mean square error (RMSE) computed between MODIS, SmoothedMOD, MODrhoMODlai, 815 

CYCrhoMODlai and FUSION products for forest (top triangular matrix) and non-forest (bottom triangular 

matrix) BELMANIP sites during the 2001-2003 period.  

 
                   Forest 
Non-Forest MODIS SmoothedMOD MODrhoMODlai CYCrhoMODlai FUSION 

MODIS 0.00 0.79 1.32 1.31 1.29 

SmoothedMOD 0.35 0.00 1.10 1.21 1.03 
MODrhoMODlai 0.86 0.80 0.00 0.31 0.40 

CYCrhoMODlai 0.82 0.76 0.67 0.00 0.39 

FUSION 0.84 0.78 0.19 0.18 0.00 
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 840 
 
Fig. 1. Flow chart of the algorithm for the estimation of the LAI products (Table 1). 
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 845 
 
 
Fig. 2. Simulated 8-day LAI time series of a tropical cropland (dotted line). Simulated observations by 

introducing a white noise of 0.3 standard deviation and a percentage of gaps of 0.3 to the original time series 

(crosses). Reconstructed time series by applying the TSGF method to the observations (solid line). 850 
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Fig. 3. Mean of 500 RMSEs for the TSGF reconstructed LAI time series as a function of the  noise level 

(  ,0 LAILAInoisy ) for a fraction of missing data varying between 0 and 0.7. 890 
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 920 

 
 
Fig. 4. Fraction of invalid data as a function of the latitude and the date of acquisition for the several LAI 

products investigated (Table 1). Evaluation over the BELMANIP sites during the 2001–2003 period in 10º × 

1-month cells. 925 
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Fig. 5. Histogram of length of gaps (LoG).  
 940 
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Fig. 6. Histogram of the δ absolute value for the original and the developed MODIS LAI products.  965 
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1010 

 

 

 
 

Fig. 7. Temporal evolution of MODIS, SmoothedMOD, MODrhoMODlai, CYCrhoMODlai and FUSION LAI 1015 

products for the period 2001–2003 over the central pixel of five BELMANIP sites representing five biome 

classes (Table 4).  
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 1035 

Fig. 8.  Comparison of MODIS, SmoothedMOD and FUSION LAI products with direct ground measurements 

of true LAI. Letter markers correspond to the biome classes: shrubs (s), savanna (a), grasses and cereal 

crops (g), broadleaf crops (b), needleleaf forest (n), deciduous broadleaf forest (d) and evergreen broadleaf 

forest (e). The statistics are: number of samples (N), correlation coefficient (R2), root mean square error 

(RMSE), standard deviation (S) and bias (B).  1040 
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