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Abstract

Background: Ongoing research into inflammatory conditions raises an in-
creasing need to evaluate immune cells in histological sections in biologically
relevant regions of interest (ROIs). Herein, we compare different approaches
to automatically detect lobular structures in human normal breast tissue in
digitized whole slide images (WSIs). This automation is required to perform
objective and consistent quantitative studies on large data sets.

Methods: In normal breast tissue from nine healthy patients immunohis-
tochemically stained for different markers, we evaluated and compared three
different image analysis methods to automatically detect lobular structures in
WSIs: (1) a bottom–up approach using the cell–based data for subsequent tissue
level classification, (2) a top–down method starting with texture classification
at tissue level analysis of cell densities in specific ROIs, and (3) a direct texture
classification using deep learning technology.

Results: All three methods result in comparable overall quality allowing
automated detection of lobular structures with minor advantage in sensitivity
(approach 3), specificity (approach 2), or processing time (approach 1). Com-
bining the outputs of the approaches further improved the precision.

Conclusions: Different approaches of automated ROI detection are feasible
and should be selected according to the individual needs of biomarker research.
Additionally, detected ROIs could be used as a basis for quantification of im-
mune infiltration in lobular structures.
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1. Introduction

Lobular structures are the functional units of the resting mammalian breast
that further differentiate into milk–producing glands during lactation. The nor-
mal anatomical structures are important because breast cancer and premalig-
nant lesions originate in these epithelial structures and there is evidence that
the transition between ductal and lobular structures may be particularly sus-
ceptible to oncogenic events [1]. In addition to studies on the origins of cancer,
the detection of lobules is also relevant for an inflammatory condition referred to
as lymphocytic lobulitis (LLO), which has been observed in the adjacent tissue
around breast cancer and in prophylactically removed breast tissue without any
evidence for cancer in BRCA1/2 mutation carriers [2, 3]. This phenomenon is
not yet well understood and deciphering its possible link with hereditary breast
cancer may lead to better disease understanding, new prognostic indicators, or
novel treatment options. In order to perform an objective, repeatable, and sta-
tistically reliable quantitative study of LLO on large data sets, the ability to
automatically detect lobules in histological slides is necessary.

Nowadays, such slides can be routinely digitized; the resulting whole slide
images (WSIs) can be processed by automated image analysis techniques with
the aim to detect lobular structures and to quantify cell numbers [4, 5]. Many
works are based on detecting and automatically counting cells for cancer diag-
nosis, grading, and prognosis [6, 7, 8]. However, to give more insight to the
pathologist, it is necessary to evaluate immune cells beyond estimation of their
density, for example by object–based recognition of spatial patterns and interac-
tions at high resolution [9]. Thus, our objective is to pave the way for identifying
and classifying cells in those areas in image that are most relevant, like lobules
in breast cancer and LLO, finally enabling methods to characterize the spatial
distribution of different subtypes of immune cells in relation to these to these
larger image objects.

In general, lobules are composed of dense areas of epithelial cells in tubular
structures, normally with a clear contrast to the lobular stroma. However,
lobules can be very different in size, shape, and texture depending on their
functional stage (e.g., phase of the menstrual cycle), the degree of immune cell
infiltration, and also appear differently according to the used staining method
(see Figure 1).

Cancer growth adds to this complexity of tissue structures and makes man-
ual or automated lobule detection even more challenging. As a preparatory
work before delving into the structural complexity of cancer–affected tissue,
we focus on normal breast tissue of healthy patients in order to evaluate and
compare three different image analysis methods to automatically detect lobu-
lar structures in immunohistochemically (IHC) stained WSIs. Even without
solving the cancer–related challenges, the work addresses an important demand
because the evaluation of LLO will lead to new biomarker patterns with diag-
nostic and prognostic value. From a technological point of view, the task of
defining regions of interest (ROI) for further analysis tackles a problem that
occurs frequently in medical image analysis: The limited availability of experts
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Figure 1: Top row shows a large lobule with sparse branching in two different stainings (left:
ER, right: CD8). Bottom row shows a small lobule with dense branching (left: ER, right:
CD8). Scale bars are 0.5 mm.

to perform large-scale manual annotation due to restricted resources of trained
pathologists remains an important bottleneck for progress. In the context of
LLO, this is evident because the statistical base for experimental evidence has
been limited by the available time for pathologists who have to manually select
every lobule and therefore could so far only annotate small data sets [10, 11].
Thus, overcoming the limitations of manual annotation of WSIs by automation
is highly desirable. This work builds on previous work [12], where detection of
normal lobules in the vicinity of breast cancer was optimized for the purpose
of analyzing nuclear expression of estrogen receptor (ER) or progesterone re-
ceptor (PR). Grote et al. detected lobules on several segmentation layers using
textural, geometric, and relational features, as well as solid tumor using tex-
tural features. Other tissue classification techniques have supported the study
of pathologies like odontogenic cysts [13] and various cancers [14, 15]. The
identification of general biological structures has received comparatively little
attention, although graph–based approaches exist for unsupervised top–down
tissue categorization [16] and bottom–up biological object identification [17].

After presenting our data set and evaluation criterion, we will describe three
methods that were developed in the context of lymphocytic lobulitis: (1) a
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Bottom–Up Method (MBU) starting with cell detection and ending with tissue
classification, (2) a Top–Down Method (MTD) starting with texture classifi-
cation and ending with cell density characterization, and (3) a direct texture
classification Method using Deep Learning technology (MDL). We conclude by
comparing their strengths and weaknesses using two characteristically different
stainings and by assessing the feasibility of combining the methods.

2. Materials and Methods

We collected tissue samples from a cohort including nine healthy women
who underwent reduction mammoplasty due to hypermasty [18]. The paraffin–
embedded samples were cut into 3 µm thick sections and stained for the nuclear
marker ER and the immune cell marker cluster of differentiation 8 (CD8) that
is expressed in the cell cytoplasm and on the outer cell membranes of cytotoxic
T lymphocytes, using an automated staining instrument (Ventana Benchmark
Ultra). As ER is often expressed in breast cancer, it was chosen as example
for a routinely used breast cancer marker important for treatment decisions
[19, 20] and CD8 for its relevance in oncoimmunology [21]. Whereas ER+ cells
are epithelial cells of lobular structures, CD8+ cytotoxic T lymphocytes may
spread close to epithelial compartments, over the full lobular stroma, or even in
non–lobular stroma. WSIs were acquired by Aperio AT2 scanner at 40X mag-
nification, scanned images have a resolution of 0.253 µm/pixel. For each WSI, a
pathologist (FF) performed annotations of the full epithelial compartment (in-
cluding lobular and ductal regions) and more detailed annotations to distinguish
between lobular and non–lobular regions. This was performed by drawing out-
lines over the digital images using the software tool Aperio ImageScope. Table 1
summarizes the number of annotated lobules for each case and each staining.

Patient Age ER Size CD8 Size ER Lobules CD8 Lobules
NB02 25 20.6×20.6 21.6×21.2 125 120
NB05 29 21.1×20.1 18.1×21.6 32 25
NB11 19 15.6×15.9 14.1×15.8 55 35
NB12 22 17.6×15.7 17.1×14.2 12 11
NB16 27 16.1×15.5 15.1×17.9 54 63
NB20 27 16.6×15.1 17.6×15.0 80 76
NB25 30 20.1×16.6 13.6×19.9 49 34
NB28 21 24.6×20.9 28.7×22.6 19 24
NB34 28 14.1×19.0 16.1×19.7 226 238

Table 1: Overview over data set: Size of image (width×height mm) and number of lobules
in ground truth. The slight variation in numbers of lobules could be either due to variable
composition of the sections at different levels of the paraffin block or due to slightly different
annotation of components of lobules, e.g. merging two elements of the glands to one “lobule”.

To evaluate the methods, we calculated a global, pixel–based F1 score (equiv-
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alent to Dice similarity[22]):

F1 =
2TP

2TP + FP + FN
(1)

where TP is the number of true positives, FP the number of false positives, and
FN the number of false negatives. We additionally measured the true positive
percentages inside the detected and actual lobular objects in order to obtain a
more object–based quality estimation.

To the best of our knowledge, there is no equivalent published work that we
can use for comparison, but the elementary concepts and tools that we use are
well documented [23].

2.1. Method 1: Bottom–Up (MBU)

As a starting point, we developed a workflow (see Figure 3) that applies
well–established algorithms using Definiens Developer XD 64 2.4 based on the
assumption that cell clusters and therefore highest deviations in RGB occur in
lobular structures. In the following, we refer to this workflow as MBU. Due
to large size of WSIs (up to 100,000 × 100,000 pixels), we used images down–
sampled to a resolution of 8 µm/pixel (∼ 3.2% of the original WSI). Based
on a multi–threshold segmentation on a gray layer, tissue regions (remaining:
background) are detected, in which afterwards each pixel is classified as lobular
or non–lobular area. For this, we generated a color–distribution–range image
(CDR) that represents the averaged RGB range in a small part (s × s pixels)
of the down–sampled image cut by a lower and an upper threshold tl and tu;
i.e., each image is split into tiles s× s pixel large having three layers red, green,
blue each in range [0, 255], in which all new pixel values x are set as defined in
equation (2),

x =


0 if 1

3

(
rR + rG + rB

)
< tl

255 if 1
3

(
rR + rG + rB

)
> tu

1
3

(
rR + rG + rB

)
otherwise

(2)

where rX = maxX −minX represents the range of layer X in the corresponding
small tile. Thus, a homogeneous area with similar colors in all pixels is set to
black, whereas a texture–rich area with large color deviations in these tiny tiles
is set to white. Lobular structures in IHC images have a high contrast between
epithelial cells in dark blue and very bright lobular stroma. The remaining
image is composed of bright stroma with less contrasts and almost white fatty
tissue, which is mostly classified as background. Since we do not use a sliding
window approach for simplicity, we afterwards split the image into tiles l×l pixel
large to redefine the pixel values depending on their neighborhood (defined in
Figure 2).

In tiles with less than twl
white pixels or in tiles where more than 50%

(parameter tb) of the pixels are black and less than 25% (parameter twu
) are

white, each pixel value x is set to x
2 (darker). For the remaining tiles, the
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Figure 2: Neighborhood of pixel (i, j) (red: direct neighbors; blue: further neighbors) used in
MBU.

decision is separately done for each individual pixel based on its eight direct
neighbors and 16 further neighbors, for details see equation (3),

xnew =


x
2 if (|B| > tb · l2 ∧ |W | ≥ twu

· l2 ∧ ¬N8)

x+ x
2 if

(
|B| ≤ tb · l2 ∧ |W | > twm

· l2 ∧ (N8 ∨N16)
)

∨
(
|B| > tb · l2 ∧ |W | ≥ twu · l2 ∧N8

)
x otherwise

(3)

where |B| and |W | are the number of black and white pixels and Ni is true
when at least one of i neighbors is 255 (obviously, we set values larger than 255
to 255). All used parameter values are listed in Table 2.

Parameter Description Used value
s size of small tiles 5 i.e., 1600 µm2

l size of large tiles 50 i.e., 160,000 µm2

tl lower threshold to cut CDR 25
tu upper threshold to cut CDR 150
twl

lower threshold for white pixels 0.0212
twm

middle threshold of white pixels 0.1248
twu

upper threshold of white pixels 0.2500
tb threshold of black pixels 0.5000

Table 2: Parameters used in MBU.

The cut CDR was included as additional layer into our Definiens rule set and
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averaged with a layer which represents clusters of well–shaped nuclei. For this
combination, the two layers are normalized to the same range to allow an equal
weighting of both. If a pixel in this combined layer is non–dark, it is classified as
lobular. The nuclei layer is generated by a k–means clustering to find areas with
high epithelial cell densities using a robust nucleus detection by Definiens[24]
and excluding stromal and immune cells based on size and shape. Due to small
size of cells, the clustering is done on a higher resolution of 1.14 µm/pixel (∼
22.1% of the original WSI). Here, we assume that the nuclei of epithelial cells
in lobular structures are usually round and 20–50 pixels large (i.e., a diameter
of about 5–10 µm).

Image

Layer preparation Area detection

Medium resolution Low resolution

Detected lobules

Nuclei clusters

Nice nuclei

Nucleus detection by Definiens

Classification

Tissue detection

CDR image

s
h
a
p
e
,
s
iz

e
k
–
m

e
a
n
s

Figure 3: Overview of MBU processing a single WSI. The classification into lobular and
non–lobular structures is based on a combination of nuclei clusters in a medium resolution
(1.14 µm/pixel ∼ 22.1% of original WSI) and a cut color–distribution–range (CDR) image,
which represents the range of RGB in tiles of s × s pixels, in a low resolution (8 µm/pixel
∼ 3.2% of original WSI).

2.2. Method 2: Top–Down (MTD)

The second approach (Figure 4), in the following called MTD, has two basic
steps where first candidate regions are identified in low resolution and then
refined in medium resolution. In the first step, lobule candidate regions are
detected from a texture image in low resolution (5.06 µm/pixel or 5% of the
original image). The texture image is produced by a texture–based classification
using local binary patterns and local variance as features, as described in [15]. A
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support vector machine (SVM) is used for the classification. For training of the
SVM model, small image subsets (from images not contained in our test set but
belonging to the same series) containing only lobular tissue or only other tissue
are used. The output of the classification is a gray value image showing the
probability of lobular tissue. This image is thresholded to obtain the candidate
regions with a threshold (60) chosen so that most of the lobules in the images
from which the training subsets were taken are inside the candidate regions.

The second step, the refinement of lobule candidates, is done using algo-
rithms from Definiens Developer XD 64 2.4; it is based on nuclear density, which
is higher in lobular areas than in the surrounding tissue. In medium resolution
(0.84 µm/pixel or 30%), the image in the candidate regions is filtered using a
Laplacian of Gaussian (LoG) filter whose parameters (9× 9 kernel, σ = 1.768)
are set to give maximum response for blobs of the average size of epithelial nu-
clei. The LoG image is thresholded using a fixed threshold to select an initial
set of nuclei. The detected nuclei are filtered according to elliptic fit (≥ 0.8) so
that only round nuclei remain. This nuclei detection does not attempt to detect
all nuclei; the goal is rather to reliably detect a sufficient subset of epithelial
nuclei for nuclear density estimation. The detected nuclei are used to produce
a nuclear density channel using a sliding window approach (window size 41×41
pixel). Using the density channel, the candidate regions are shrunk iteratively
until the remaining objects meet a minimum density criterion (average density
≥ 0.05). For further refinement, stromal and epithelial areas inside the lobules
are separated by thresholding a smoothed gray value image. As threshold, the
average of gray values in all refined lobule regions is used. Lobules that contain
very little epithelial tissue (≤ 10%) after this step are eliminated. In a post–
processing step, the borders of regions are smoothed by growing and shrinking,
small regions are eliminated and small holes are filled.

2.3. Method 3: Deep Learning (MDL)

A machine learning algorithm describes how to identify patterns in existing
data (learning) and uses this acquired knowledge to make predictions on new
data[25]. A deep learning algorithm is a machine learning algorithm that can
learn a hierarchical description of the data with multiple sublevels of nonlinear
features[26].

In recent years, a type of deep learning architecture optimized for 2D data
called convolutional neural networks (CNNs)[27] have provided state–of–the–art
results in various applications of machine learning–based image analysis, from
general scene labeling[28] to cancer classification[29] and mitosis detection[30].
A CNN has the ability to learn a hierarchical description of visual patterns from
a set of annotated examples, and then make accurate predictions for new visual
inputs. By combining patch–based image analysis with CNNs, we are able to
automatically detect lobular structures in normal breast histological images.
The process is summarized in Figure 5 .

For patch–based image analysis, we assume that it is possible to predict the
class of a pixel by observing its neighboring pixels. In order to keep computation
time low, a pathologist visually estimated the lowest level of detail at which he
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Trained classification model Image

Candidate areas Refinement

Low resolution Medium resolution

Detected lobules

Candidate areas

Texture classification

Round nuclei detection

Nuclear density image

Shrinking of candidate areas

Post–processing

Epithelial tissue
Smoothing

Figure 4: Overview of MTD processing a single WSI. Image and previously trained model are
used as inputs. The first step uses texture–based classification in low resolution, the second
step takes place in medium resolution and is based on nuclear density.

could reliably distinguish epithelial tissue from other elements to be 4 µm/pixel.
Likewise, we settled on a square neighborhood of size 128 µm which is enough
to cover a full cross–section of a duct with its surroundings. It is then possible
to generate, for each pixel, a “raw” or “featureless” description of the patch
centered on this pixel. In other words, to each pixel we associate a square
RGB patch described by 32 × 32 × 3 = 3072 values. In images annotated by
a pathologist, each patch can be considered positive or negative according to
its central pixel: if a pixel is in an annotated lobular region, then its patch is
positive, otherwise it is negative.

Our CNN is a function that can predict the class of a patch (positive or
negative) based on its featureless description. This function has a fixed form
defined in the “CIFAR10 Quick” example provided with the software Caffe[31].
The associated deep network architecture is designed to perform multiclass clas-
sification of small RGB images[32], which is conveniently similar to the task
of patch classification. We can use it as a black box although its parameters
(weights) need to be learned during supervised training. In order to estimate the
prediction error of the method on unseen data for a given staining, we perform a
3–fold cross–validation using nine annotated images arbitrarily divided in three
groups: A={NB02, NB05, NB11}, B={NB12, NB16, NB20}, and C={NB25,
NB28, NB34} (see Table 1 for general information on ground truth contents).
In fold 0, the method is trained on B∪C and evaluated on A; in fold 1, the
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Area detection

Low resolution

Detected lobules

Patches

CNN

Label image

Post–processing

Figure 5: Overview of the CNN–based lobular detection at a fixed resolution of 4 µm/pixel: a
CNN for binary classification is trained with an equal number of positive and negative RGB
patches (32×32 pixels) randomly sampled from images annotated by a senior pathologist; the
trained network can then be used to predict the class of patches extracted from a new image,
resulting in a binary mask; after a simple post–processing step (removal of small connected
components), the binary mask can be used to locate lobular structures in the image.

method is trained on A∪C and evaluated on B; and in fold 2, the method is
trained on A∪B and evaluated on C. For any fold, training consists of 20 itera-
tions using error backpropagation with adaptive learning rate (ADAGRAD[33])
on a dataset composed of 600,000 patches (50,000 for each class and each im-
age). Given as input an image at 4 µm/pixel, this method will output a binary
image where positive and negative pixels have different values. An additional
post–processing step is used to denoise the result by removing small elements
below a size threshold. In each fold, this threshold is learned by maximizing the
macro–F1 score (average of F1 scores for each class) on the 6 training images.

2.4. Combination

We notice that the missclassified objects are not the same for each method.
This suggests that they potentially offer complementary information about the
patterns to be classified. As stated in [34, 35], if we have many different clas-
sifiers it is sensible to consider using them in a combination in the hope of
increasing the overall accuracy.
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In order to evaluate whether a combination of our methods will improve the
results, we use the detection results of every single method in the form of binary
masks to produce a combined result. In a pixel–based combination of masks (in
low resolution, 5.06 µm/pixel or 5%), all pixels which belong to detected areas
for at least two of the three methods are labeled as detected. This majority
voting procedure is useful to eliminate false detections that are made by only
one method.

3. Results and discussion

The overall performance of all methods for the stainings ER and CD8 is
given in Table 3, as F1 score (measured pixel–based) for each of the 18 test
images as well as the average for each staining. The highest F1 scores averaged
over both stainings were obtained by MTD (0.59) and MDL (0.60).

Staining Method NB02 NB05 NB11 NB12 NB16

ER

MBU .78 .17 .28 .42 .54
MTD .73 .51 .54 .73 .76
MDL .69 .67 .56 .24 .80

Combination .81 .67 .62 .71 .79

CD8

MBU .49 .39 .50 .59 .63
MTD .65 .42 .58 .68 .57
MDL .59 .51 .60 .50 .77

Combination .74 .58 .66 .68 .74

Staining Method NB20 NB25 NB28 NB34 Average

ER

MBU .38 .37 .66 .77 .40±.23
MTD .71 .57 .61 .84 .67±.11
MDL .62 .76 .59 .80 .64±.16

Combination .73 .62 .70 .86 .72±.08

CD8

MBU .20 .36 .33 .81 .42±.18
MTD .45 .37 .20 .70 .51±.17
MDL .66 .61 .04 .75 .56±.20

Combination .68 .47 .41 .83 .64±.13

Table 3: Comparison of F1 scores for the different methods applied to ER and CD8 images
(NBx).

3.1. Visual comparison

Figures 6 to 8 show lobule detection results and comparisons with ground
truth for the image with the best F1 score for each method. For all three meth-
ods, the best results were achieved in one of the NB34 images (CD8 for MBU, ER
for both other methods). This case contains many compact lobules with dense
epithelial tissue, which makes them stand out against the surrounding tissue
quite clearly. In addition, most of its lobules are positive for both ER and CD8
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(i.e., many epithelial cells stained for ER are colored in brown and/or several
brown colored CD8+ T lymphocytes are in close contact to epithelial cells) fur-
ther increasing their differences to the background. Some characteristics of the
different methods can be observed in these images. Correctly detected lobules
from both MBU (Figure 6) and MTD (Figure 7) tend to have small stripes of
false negative area around them, i.e., the detected area is usually smaller than
the area that was manually outlined as ground truth. In the case of MBU, false
negative areas within ground truth lobular objects occur due to the pixel–based
classification instead of segmentation approaches using e.g., watershed or re-
gion growing. Intra–lobular stroma is usually not classified as lobular area due
to missing contrasts by epithelial cells. This could be solved by additionally
including some growing (and shrinking) procedures to reach smoother regions.
The main advantage of MBU is that it is very fast (less than 2 min per image
on a computer with a 3.6 GHz CPU, 32 GB RAM, using preprocessed nuclei
detection) provided that the time–consuming nuclei detection has already been
done, which is necessary anyway for cell population analysis. As mentioned
before, we applied a robust method performing well for segmenting nuclei and
classifying into different cell types by Definiens, which requires approximately
11 hours per image (single core usage in 3.4 GHz cluster environment with 384
GB RAM). In applications that do not quantify cells, it is also possible to use a
rough and fast nuclei segmentation in MBU. For MTD, on average 38 min per
image are needed on a computer with a 3.6 GHz CPU, 32 GB RAM. In contrast
to MBU and MTD, there are practically no false negative regions in the result
from MDL (Figure 8 ). The largest region labeled as false negative is actually
a clearly stromal region inside a lobule, which is part of our ground truth.
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Figure 6: Image with best result for MBU. For the MBU, the best result was in NB34 CD8,
with an F1 score of 0.81. Left outlines of detected lobules in green, right evaluation result
(green: true positive areas, blue: true negative areas, red: false positive areas, orange: false
negative areas). Scale bar is 2 mm.
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Figure 7: Image with best result for MTD. For the MTD, the best result was in NB34 ER,
with an F1 score of 0.84. Left outlines of detected lobules in green, right evaluation result
(green: true positive areas, blue: true negative areas, red: false positive areas, orange: false
negative areas). Scale bar is 2 mm.

14



Figure 8: Image with best result for MDL. For MDL, the best result was in NB34 ER, with
an F1 score of 0.80. Green lines show outlines of detected lobules. Left outlines of detected
lobules in green, right evaluation result (green: true positive areas, blue: true negative areas,
red: false positive areas, orange: false negative areas). Scale bar is 2 mm.

False positive areas also occur for all methods; these are often located in the
small space between adjacent lobules. Correctly detected lobules from MDL
almost always have a small stripe of false positive area around them, i.e., the
detected area is larger than the ground truth area. Although false positive or
false negative borders around correctly detected lobules are quite narrow, they
contribute to the measurements shown in Table 3 , so that the detection quality
needed for applications, as judged by visual inspection, may be better than
these numbers suggest.

Some typical examples of detection problems for the different methods can
be seen in Figures 9 to 11. In Figure 9, a subset of NB02, CD8 contains a
false positive area from MBU, where the tissue has an altered structure due to
the IHC processing. Such regions often cause false positive detections. Due to
calculation of CDR, the method strongly relies on textures in which the color
range is quite high, which could be caused for example by tissue processing
artifacts due to antigene retrieval (bright pixels directly neighbored to dark
pixels).
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Figure 9: Example for false positive detection in MBU. Left outlines of detected lobules in
green, right evaluation result (green: true positive areas, blue: true negative areas, red: false
positive areas, orange: false negative areas). Example subset from NB02 CD8. False positive
detections are caused by changes in tissue structure due to IHC processing. Scale bar is 1
mm.

Figure 10: Example for false negative detection in MTD. Left outlines of detected lobules
in green, right evaluation result (green: true positive areas, blue: true negative areas, red:
false positive areas, orange: false negative areas). Example subset from NB16 CD8. Lobules
are missed from detection because measured nuclear density was too low: epithelial tissue is
sparse and nuclei have low contrast in image. Scale bar is 1 mm.
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Figure 11: Example for false positive detection in MDL. Left outlines of detected lobules in
green, right evaluation result (green: true positive areas, blue: true negative areas, red: false
positive areas, orange: false negative areas). Example from NB28 CD8. Scale bar is 2 mm.

Figure 10 shows an example of false negative detection from MTD. This
method relies on the measurement of nuclear density from detected nuclei. In
the example, the lobule structure is relatively loose, meaning that epithelial
tissue is sparse. In addition, the epithelial nuclei do not have large contrast to
their surroundings, so that some are missed in the nuclei detection step. As a
result, the nuclear density in the given area is below the required threshold, and
the region was eliminated from the detection result. False positive detections
(not shown) are often caused by vessels containing blood aggregations. These
regions, though hardly stained, have a very similar texture to that of lobules,
which leads to their detection.

Figure 11 shows an image with a large false positive area from MDL. This
method depends heavily on the quality of the training set: classes should be
balanced, examples should be correctly labeled and they should also be repre-
sentative of the variety that can be found in unseen data. This last criterion is
the hardest to achieve and image NB28 CD8 exhibits a stromal texture that is
not found in the others. This could be an artifact resulting from the physical
process used to prepare the slide. While it is an infrequent event, it does happen
more than once in the rest of our images.

Another disadvantage of MDL is that it requires a specific hardware, but the
resulting speed is satisfying. Using a Nvidia Quadro K4200 GPU with 4 GB of
memory, training for one fold takes less than two hours and evaluation for an
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image takes four minutes on average.

3.2. True positives in lobular structures

Histograms from per–lobule analysis of true positive percentages (Figure 12 )
show the characteristics of the different methods in a more quantified manner.

In Figure 12 rows 1 and 3, histograms of percentage of ground truth area
in detected lobules are shown, indicating how correct the detections are and
how many false detections occurred. The first bin (0–5%) in the histograms
of row 1 and 3 shows how many false positive objects appear in the results of
the different methods. In all three methods, more false positive objects were
detected in CD8 than in ER (2–3 times as many). Most false detections are
observed in MBU, but on the other hand, the correctly found lobules are more
cleanly detected (contain less non–lobular tissue) than in the other methods.
For MTD, this picture is more heterogeneous, and in the results of MDL, most
lobules contain some amount of non–lobular tissue (see also Figure 8).

Figure 12 rows 2 and 4 show histograms of percentage of detected area
in ground truth lobules, indicating how complete the detection is for existing
ground truth lobules and how many ground truth lobules are missed from the
detection. The first bin in the histograms of row 2 and 4 shows how many
lobules are missed. It can be seen that MDL has the least total losses. Most
ground truth lobules are completely or almost completely detected, and there
are very few where parts are missing. In the other two methods, the total losses
are higher and the detection is more heterogeneous: there are many lobules
where only parts of the ground truth lobules are detected. As described above,
missing parts are often located along the borders of lobules. While MDL shows
no substantial differences between ER and CD8 images, MBU and MTD show
some differences: for MBU, ER has more missed detections than CD8, as well as
relatively few complete detections. For MTD, CD8 has more missed detections
and fewer complete detections.

In summary, MDL shows a high completeness in detection — hardly any
lobule is missed — but most of the detected lobule objects also contain non–
lobular tissue. MBU has a number of missed as well as false detections, but
correctly detected lobules are relatively clean. MTD has more missed detections
than MDL, but also more objects that contain mostly lobular tissue.
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Figure 12: Histograms of true positive ratios for detected and ground truth lobules. Left col-
umn: MBU, center column: MTD, right column: MDL. The upper two rows show histograms
for ER stained images, the lower two rows for CD8 images.

3.3. Combination

The top part of Figure 13 visualizes the effect of the combination of results.
The F1 score results can be found in Table 3 (row “Combination” for both
stainings). The results show that in two thirds of the cases the F1 score of
the combination is higher than that of every single method. In the others, it
is second best, often very close to the best single result. An exception is NB25
(both stainings), where the combination result is still second best but with a
larger distance to the best single method.

This case has a large amount of ductal tissue, which is incorporated in the
ground truth but for the most part only detected by MDL (Figure 13, bottom).
If the target of an analysis are primarily the lobules but not the ducts, the com-
bination seems to be the better choice also in this case. Further, using both the
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combination results and the results of MDL might be helpful in distinguishing
lobular and ductal tissue.

Figure 13: Combination of methods. White: labeled as lobular by all three methods; yellow:
labeled as lobular by MBU and MTD; magenta: labeled as lobular by MBU and MDL; cyan:
labeled as lobular by MTD and MDL; red: labeled as lobular by MBU only; green: labeled
as lobular by MTD only; blue: labeled as lobular by MDL only. Gray lines: border lines of
ground truth. Top: A subset of NB02 CD8 shows the effect of the combination. Detections
by one method only (red, green, blue) often lie outside of the ground truth. Ground truth
regions are almost completely covered, in this example often by all three methods or by
combinations of MBU and MDL (magenta), sometimes by combinations of MTD and MDL
(cyan) or combinations of MBU and MTD (yellow). Bottom: In NB25 ER, large ductal areas
are only detected by MDL (blue). Scale bars are 2 mm.

4. Conclusion

In order to automate the detection of lobular structures in digital WSIs
of normal breast tissue, we developed and compared several image analysis
methods: two methods combining manually designed features and cell detection
and a featureless machine learning–based image analysis.

We showed that despite a moderate variance for any given staining, each
gives good results based on visual check of accuracy, and that the output could
be used as basis for further image analysis (e.g., cell populations identification
and quantification). We also showed that combining all the methods by pixel–
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level majority voting improves precision and might help with subclassification
of lobular tissue into lobules and ducts. We will leverage the knowledge gained
in this study to tackle the issue of lobular structure detection in cancerous
breast tissue and expand the concept of ROI–targeted immune cell detection in
oncoimmunology.
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