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Consistent order estimation for nonparametric

Hidden Markov Models
LUC LEHÉRICY

Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay,
91405 Orsay, France. E-mail: luc.lehericy@math.u-psud.fr

We consider the problem of estimating the number of hidden states (the order) of a nonpara-
metric hidden Markov model (HMM). We propose two different methods and prove their almost
sure consistency without any prior assumption, be it on the order or on the emission distribu-
tions. This is the first time a consistency result is proved in such a general setting without using
restrictive assumptions such as a priori upper bounds on the order or parametric restrictions
on the emission distributions. Our main method relies on the minimization of a penalized least
squares criterion. In addition to the consistency of the order estimation, we also prove that
this method yields rate minimax adaptive estimators of the parameters of the HMM - up to
a logarithmic factor. Our second method relies on estimating the rank of a matrix obtained
from the distribution of two consecutive observations. Finally, numerical experiments are used
to compare both methods and study their ability to select the right order in several situations.

MSC 2010 subject classifications: Primary 62F07; secondary 62M05, 62M15, 62G05.
Keywords: hidden Markov model, least squares method, model selection, nonparametric density
estimation, order estimation, spectral method.

1. Introduction

1.1. Context and motivation

Hidden Markov models (HMM in short) are powerful tools to study time-evolving pro-
cesses on heterogeneous populations. Nonparametric HMMs–that is, hidden Markov mod-
els where the parameters are not restricted to a finite-dimensional space–have proved
useful in a wide range of applications, see for instance Couvreur and Couvreur (2000) for
voice activity detection, Lambert, Whiting and Metcalfe (2003) for climate state iden-
tification, Lefèvre (2003) for automatic speech recognition, Shang and Chan (2009) for
facial expression recognition, Volant et al. (2014) for methylation comparison of proteins,
Yau et al. (2011) for copy number variants identification in DNA analysis.

In practice, the hidden states often have an interpretation in the modelling of the
phenomenon. It is thus important to be able to infer the right order in addition to the
parameters when dealing with hidden Markov models. However, this task is notoriously
difficult: Gassiat and Keribin (2000) show that the likelihood ratio statistic is unbounded
even in the simple case where one wants to test if a HMM has 1 or 2 hidden states. As far
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2 L. Lehéricy

as we know, no consistency result has been proved about order selection for nonparametric
HMMs. Even for parametric HMMs, no estimator has been proved to be consistent in a
general setting without assuming that an a priori upper bound on the order is known
beforehand.

Not only is the order estimation useful in order to interpret the model, it is also
necessary to ensure stability. This is because over estimating the order causes a loss
of identifiability: there are several ways to add one state to a HMM without changing
anything to its distribution. The spectral estimators (Anandkumar, Hsu and Kakade
(2012); de Castro, Gassiat and Le Corff) are especially sensitive to this problem, as
shown by Lehéricy (2015) and Figure 6: as soon as the HMM becomes close to a HMM
with fewer hidden states, the estimators give absurd results. Thus, estimating the right
order is crucial for such methods to be effective.

Formally, a hidden Markov model is a markovian process (Xt, Yt)t≥1 taking value in
X ×Y. (Xt)t≥1 is a Markov chain and the observations Yt depend only on the associated
Xt (i.e. the (Yt)t≥1 are independent conditionally on (Xt)t≥1). The states (Xt)t≥1 are
assumed to be hidden, so that one has only access to the observations (Yt)t≥1. When the
number of hidden states |X | (which we call the order of the HMM) is finite, the model is
completely defined by its order, the initial distribution and the transition matrix of the
hidden Markov chain, and the possible distributions of an observation Yt conditionally
to the values of its hidden state Xt, which we call the emission distributions. The goal of
the estimation procedures is to recover these parameters by using only the observations
(Yt)t≥1.

Up to now, most theoretical results on hidden Markov models dealt with the paramet-
ric frame, that is with a finite number of parameters. However, it is not always possible
to restrict the model to such a convenient finite-dimensional space. Theoretical results
in the nonparametric framework were only developed recently and do not address the
order estimation problem. de Castro, Gassiat and Lacour (2016) propose an adaptive
quasi-rate minimax least squares method. de Castro, Gassiat and Le Corff and Robin,
Bonhomme and Jochmans (2014) study spectral methods. The latter is also proved to
reach the minimax convergence rate but is not adaptive: it requires the regularity of the
emission distributions to be known. All these methods require the order of the HMM to
be known.

Our work is novel on three points. First, it deals with the nonparametric setting: we
need no parametric or regularity assumption on the emission densities. Note that all our
results also apply to parametric settings or even to finite observation spaces, since these
are just special cases of nonparametric estimation. Secondly, we do not require any a
priori upper bound on the order, an assumption that is often made in earlier works,
both frequentist and bayesian. Finally, our least squares method yields estimators of all
model parameters at the same time, without requiring any prior information. Oracle
inequalities show that these estimators are rate minimax adaptive up to a logarithmic
factor.
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1.2. Related works

The first step to obtain theoretical results was to understand when hidden Markov models
are identifiable. This challenging issue was only solved a few years ago, see Gassiat, Cley-
nen and Robin (2015) (following Allman, Matias and Rhodes (2009) and Hsu, Kakade
and Zhang (2012)) and with weaker assumptions Alexandrovich and Holzmann (2014).
Both proved that under generic assumptions, the parameters of the HMM can be recov-
ered from the distribution of a finite number of consecutive observations, thus paving the
way for guarantees on parameter estimation.

HMM inference is generally decomposed in two parts. The first one is the estimation
of the order, and the second one is the estimation of the parameters once the order is
known.

From a theoretical point of view, the order estimation problem remains widely open
in the HMM framework. One can distinguish two kinds of results. The first kind does not
need an a priori upper bound on the order, but is only applicable to restrictive cases.
For instance, using tools from coding theory, Gassiat and Boucheron (2003) introduced
a penalized maximum likelihood order estimator for which they prove strong consistency
without a priori upper bound on the order of the HMM. Nevertheless, their result is
restricted to a finite observation space and they have to use heavy penalties that grow as
a power of the order. For the special case of Gaussian or Poisson emission distributions,
Chambaz, Garivier and Gassiat (2009) showed that the penalized maximum likelihood
estimator is strongly consistent without any a priori upper bound on the order. The
second kind of results is more general but requires an a priori upper bound of the order
just to get weak consistency of order estimators, for penalized likelihood criterion (Gassiat
(2002)) as well as Bayesian approaches (Gassiat and Rousseau (2014); van Havre et al.
(2016)).

On a practical side, several order estimation methods using penalized likelihood crite-
rion have been studied numerically, see for instance Volant et al. (2014) when emission
distributions are a mixture of parametric densities or Celeux and Durand (2008) for
parametric HMMs. The latter also introduced cross-validation procedures that aimed
for circumventing the lack of independance of the observations. In the case of nonpara-
metric HMMs, Langrock et al. (2015) studied a method using P-splines with a custom
penalization.

Then comes the question of estimating the parameters of the HMM once its order
is known. In the parametric setting, the asymptotic behaviour of the maximum likeli-
hood estimator is rather well understood (see for instance Bickel et al. (1998) or Douc
et al. (2004) using techniques from Le Gland and Mevel (2000)), but so far the ques-
tion of its nonasymptotic behaviour remains open. Hsu, Kakade and Zhang (2012) and
Anandkumar, Hsu and Kakade (2012) proposed a spectral method for parametric HMMs
based on joint diagonalization of a set of matrices and controlled its nonasymptotic error.
Robin, Bonhomme and Jochmans (2014) and de Castro, Gassiat and Le Corff extended
this method to the nonparametric setting, and de Castro, Gassiat and Lacour (2016)
used the latter to obtain an estimator of the transition matrix of the hidden chain for a
quasi-rate minimax adaptive least squares estimator of the emission densities. Our least
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squares estimation method is a generalization of their procedure that is able to deal with
all parameters at once and does not require auxiliary estimators.

1.3. Contribution

The aim of our paper is twofold. Firstly, we introduce two estimators of the order for
nonparametric HMMs and show that both converge almost surely to the right order un-
der minimal assumptions. Secondly, we numerically assess their ability to select the right
order and compare their efficiency.

Our first and main method is the penalized least squares estimator. This method is
based on estimating the projection of the emission distributions onto a family of nested
parametric subspaces. Our results hold for any Hilbert space, including parametric sets
of emission densities and finite observation spaces. Then, for each subspace and for each
possible value K of the order, we look for the HMM with K hidden states and with
emission distributions in the chosen subspace that matches the observations “best”–where
“best” means minimizing the empirical equivalent of an L2 distance. This step provides
an empirical distance between the observations and the model, which is then penalized in
order to counterbalance the overfitting phenomenon that occurs when considering large
models. Our first main result is that for a suitable choice of the penalty, choosing the
model (i.e. the order and the subspace) which minimizes this penalized distance leads to
a strongly consistent estimator of the order, see Corollary 5.

In addition, this method also provides estimators of the other parameters of the HMM
for free, by taking the parameters of the HMM corresponding to the selected model.
We prove an oracle inequality on the L2 risk of these estimators, which shows that they
achieve the minimax adaptive rate of convergence, up to a logarithmic term, see Theorem
10 and Corollary 11.

Our second estimator comes from spectral methods. Just like for our least squares
procedure, we consider a nested family of parametric subspaces of a Hilbert space. Let
us choose one of them, and denote by (ϕa)a an orthonormal basis of this subspace. Then,
consider the matrix N defined by

N(a, b) := E[ϕa(Y1)ϕb(Y2)].

This matrix contains the coordinates of the density of (Y1, Y2) in the orthonormal basis
(ϕa ⊗ ϕb)a,b. It is proved in Section 4 that the rank of N is exactly equal to the order
of the HMM as soon as the subspace is large enough. Therefore, finding its rank means
finding the number of hidden states. However, in practice, one only has access to an em-
pirical version of this matrix. The difficulty comes from the fact that this noisy version
will almost surely have full rank. Thus, the key point is to recover the order of the true
matrix given its empirical (full rank) counterpart. We achieve this by thresholding the
spectrum of the empirical matrix. Notice that other methods exist to estimate the rank of
a matrix based on a noisy observation, see for instance Kleibergen and Paap (2006) and
references therein. Unfortunately, most can not be applied directly to our setting since



Nonparametric HMM order estimation 5

they require an invertibility condition on the covariance matrix of the matrix entries. The
CRT statistics from Robin and Smith (2000) is a notable exception, however their test
of rank also requires the tuning of an unknown parameter in order to be weakly consistent.

Then, we run an implementation of these two methods and compare their efficiency
on simulated data. The difficulty at this stage comes from the fact that both method
involve an unknown tuning parameter. This is a common issue that appears in every
model selection method in one form or another, and many heuristics have been proposed
to circumvent this difficulty.

For the least squares estimator, we compare two methods which have been both proved
to be theoretically valid in simple cases and empirically validated in a large variety of
situations: the slope heuristics (see for instance Baudry, Maugis and Michel (2012) and
references therein) and the dimension jump heuristics (introduced and proved to lead to
an optimal penalization in the gaussian model selection framework by Birgé and Massart
(2007)). Both behave well with our estimator and lead to a satisfying calibration of the
penalty.

For the spectral estimator, we introduce a custom heuristics based on the fact that
the smallest singular values of the empirical version of the matrix N decrease in a simple
manner. It is thus possible to calibrate an entirely data-driven threshold to distinguish
“significant” singular values–that is, the ones corresponding to non-zero singular values
of the real N–from noise.

The numerical validation shows that our least squares method performs well in al-
most any situation. It is able to select the right order accurately with notably fewer
observations than the spectral estimator, and is easier to calibrate. On the other hand,
the spectral method is very fast, which allows to take more observations into account.
This allows to obtain satisfying estimators in a short amount of time.

Regarding the inference of the other parameters, our least squares estimator offers
several advantages when compared to previous methods. First, it does not need a prelim-
inary estimation of the transition matrix or of the order, unlike de Castro, Gassiat and
Lacour (2016) who used the transition matrix given by spectral estimators. Neverthe-
less, our method still reaches the adaptive minimax convergence rate for the estimation
of the emission densities, up to a logarithmic factor. This is especially useful to avoid
the cases where their auxiliary estimator fails. For instance, the spectral method that
de Castro, Gassiat and Lacour (2016) used is unreliable when the order is over estimated
or where the states are almost linearly dependent, see for instance Lehéricy (2015) or
Figure 6. Then, our least squares method is robust to an overestimation of the order,
both theoretically and numerically, thanks to the iterative initialization procedure that
we introduce. This initialization method consists in using estimators from smaller mod-
els as initial point for the minimization algorithm in order to avoid getting stuck in
suboptimal local extrema. We believe it can be of practical interest since it produces
robust estimators and can also be used in other settings, for instance as initialization for
expectation maximization algorithm for maximum likelihood estimators.
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1.4. Outline of the paper

Our paper is organized as follows.
Section 2 is devoted to the notations, the model and the assumptions.
Our main procedure, the penalized least squares method, is introduced in Section 3.

We first state an identifiability proposition which we use to prove strong consistency of
the estimator of the order. This is done in two steps. Firstly, we control the probability to
underestimate the order. This is done thanks to Proposition 1, and gives an exponential
bound on the probability of error, see Theorem 3. Secondly, we control the probability
to overestimate the order, see Theorem 4. For this, we introduce a general condition on
the penalty, which we use to prove polynomial decrease rate, and illustrate how to easily
satisfy this condition. Finally, we state oracle inequalities on the estimators of the density
of L consecutive observations and on the parameters of the hidden Markov model under
a generic assumption, see Theorem 10 and Corollary 11, which shows that they reach the
minimax convergence rate up to a logarithmic factor.

In Section 4, we introduce the spectral algorithm and propose a strongly consistent
estimator of the order. This is done by thresholding the spectrum of the empirical version
of the matrix N, which describes the projection of the distribution of two observations
on an orthonormal basis, see Theorem 13.

In Section 5, we propose practical algorithms to apply both methods and compare
them. Firstly, we set the parameters on which we will test both procedures. Secondly,
we compare their results and discuss their performance. Lastly, we introduce and discuss
the heuristics we used to practically implement both methods.

Our main technical result, Lemma 16, can be found at the beginning of Section 6. It
is used extensively for both the consistency of the estimator of the order and the oracle
inequalities on the HMM parameters. The rest of this section is dedicated to the proofs
of the results.

Appendix A of our supplementary material contains the spectral algorithm from
de Castro, Gassiat and Le Corff and de Castro, Gassiat and Lacour (2016) that we
use in our simulations. Appendix B gathers the proofs of Section 3.4, which deals with
the oracle inequalities for the least squares method. Finally, Appendix C contains the
proof of Lemma 16, and Appendix D contains miscellaneous lemmas and proofs.

2. Definitions and assumptions

We will use the following notations throughout the paper.

• N∗ = {1, 2, . . . } is the set of positive integers.
• For k ∈ N∗, [k] is the set {1, . . . , k}.
• If f1 and f2 are two functions, we denote by f1 ⊗ f2 their tensor product, defined

by f1 ⊗ f2(x1, x2) = f1(x1)f2(x2).
• Span(a) is the linear space spanned by the family a.
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• If E1 and E2 are two linear spaces, we denote by E1⊗E2 their tensor product, that
is the linear space spanned by the tensor products of their elements: E1 ⊗ E2 =
Span(f1 ⊗ f2|f1 ∈ E1, f2 ∈ E2).

• ∆K = {π ∈ [0, 1]K |
∑K
k=1 πk = 1} is the simplex in dimension K. It will be seen as

the set of probability measures on a finite set of size K.
• QK ⊂ RK×K is the set of irreducible transition matrices of size K.
• IdK is the identity matrix of size K.
• L2(A, ν) is the Hilbert space of square integrable functions on A with respect to

the measure ν.
• The notation C ≡ C(a, b, . . . ) for a constant C will mean that the value of C

depends on the specified parameters a, b, . . . For several constants depending on
the same parameters, we will write (C,D) ≡ (C,D)(a, b, . . . ).

In the following, L is a positive integer which will denote the number of consecutive
observations used for the estimation procedure.

2.1. Hidden Markov models

Let (Xj)j≥1 be a Markov chain with finite state space X of size K∗ with transition matrix
Q∗ and initial distribution π∗. Without loss of generality, we can set X = [K∗].

Let (Yj)j≥1 be random variables on a measured space (Y, µ) with µ σ-finite such that
conditionally on (Xj)j≥1 the Yj ’s are independent with a distribution depending only
on Xj . Let ν∗k be the distribution of Yj conditionally to {Xj = k}. Assume that ν∗k has
density f∗k ∈ L2(Y, µ) with respect to µ. We call (ν∗k)k∈X the emission distributions and
f∗ = (f∗1 , . . . , f

∗
K∗) the emission densities.

Then (Xj , Yj)j≥1 is a hidden Markov model with parameters (π∗,Q∗, f∗,K∗). The
hidden chain (Xj)j≥1 is assumed to be unknown, so that the estimator only has access
to the observations (Yj)j≥1.

For K ∈ N∗, π ∈ RK , Q ∈ RK×K and f ∈ (L2(Y, µ))K , let

gπ,Q,f ,K =

K∑
k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L⊗
i=1

fki .

When π is a probability distribution on [K], Q a K × K transition matrix and f a
K-uple of probability densities, gπ,Q,f ,K is the density of the first L observations of a
HMM with parameters (π,Q, f ,K).

For the sake of readability, we will drop the dependence in K in the following and
write gπ,Q,f instead of gπ,Q,f ,K . Moreover, if Q is irreducible with stationary distribution
π, we simply write gQ,f , and we write the true density g∗ := gπ

∗,Q∗,f∗ .

2.2. Assumptions

Let F be a subset of L2(Y, µ) and (PM )M∈M⊂N be a sequence of nested subspaces
of L2(Y, µ) such that PM has dimension M for all M ∈ M and their union is dense
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in L2(Y, µ). (PM )M∈M will be the subspaces on which the projections of the emission
densities will be estimated.

We will need the following assumptions.

[HX] (Xk)k≥1 is a stationary ergodic Markov chain with parameters (π∗,Q∗);
[HidA] Q∗ is invertible, L ≥ 3 and the family f∗ is linearly independent;
[HidB] Q∗ is invertible, L ≥ (2K∗+ 1)((K∗)2−2K∗+ 2) + 1 and the emission densities

(f∗k )k∈X are all distinct;
[HF] f∗ ∈ FK∗ , F is closed under projection on PM for all M and

∀f ∈ F ,

{
‖f‖∞ ≤ CF,∞
‖f‖2 ≤ CF,2

with CF,∞ and CF,2 larger than 1.

The ergodicity assumption in [HX] is completely standard in order to obtain con-
vergence results. In this case, the initial distribution is forgotten exponentially fast, so
that the HMM will essentially behave like a stationary process. In order to simplify the
proofs, we assume the Markov chain to be stationary. One can check that our results are
essentially the same when the initial distribution is not the stationary one.

[HidA] appears in spectral methods, with the hypothesis that π∗ > 0 elementwise,
see for instance Hsu, Kakade and Zhang (2012). [HidA] and [HidB] also appear in iden-
tifiability issues, possibly combined with the stationarity hypothesis, see Alexandrovich
and Holzmann (2014) and Gassiat, Cleynen and Robin (2015). Note that the condition
on L in [HidB] only involves the real order K∗.

Even though [HidB] appears less restrictive than [HidA] about the emission densities,
it is delicate to use here. The problem lies in the condition on the number of consecutive
observations L. For [HidB], one has to take L larger than an increasing function of the
order, so it requires to have an a priori upper bound on the order to choose L. This is
less interesting than [HidA], which can work without prior bound since it only requires
L = 3 for any value of the order.

3. Least squares estimation

In this section, we introduce our penalized least squares estimator and study its asymp-
totic properties.

3.1. Approximation spaces and estimators

We want to estimate the density of L consecutive observations g∗ by minimizing the
quadratic loss t 7→ ‖t− g∗‖22 − ‖g∗‖22. We thus take the corresponding empirical loss

γn(t) = ‖t‖22 −
2

n

n∑
s=1

t(Zs)
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where Zs = (Ys, . . . , Ys+L−1) for an observation sequence (Yt)1≤t≤n+L−1 of length n+ L− 1
coming from a single HMM (Xt, Yt)t≥1.

Define for all K ∈ N∗, M ∈M:

SK,M := {gQ,f ,Q ∈ QK , f ∈ (F ∩PM )K}
SK := {gQ,f ,Q ∈ QK , f ∈ FK}

where F and (PM )M∈M are defined in Section 2.2. In the following, we will always
implicitly consider M ∈M.

For all K and M , we define the corresponding estimators

ĝK,M = gQ̂K,M ,f̂K,M ∈ arg min
t∈SK,M

γn(t)

where we dropped the dependency in n for ease of notation. Then, we select the param-
eters using the penalized empirical loss:

(K̂l.s., M̂) ∈ arg min
K≤n,M≤n

{γn(ĝK,M ) + pen(n,M,K)}

which leads to the estimators

ĝ := ĝK̂l.s.,M̂

Q̂ := Q̂K̂l.s.,M̂

f̂ := f̂K̂l.s.,M̂

3.2. Underestimation of the order

Note that the distribution of the HMM remains unchanged under permutation of the hid-
den states. We will therefore use a pseudo-distance dperm that is invariant by permutation
on the set of parameters.

We define it as follows. Let K ≥ 1, π1, π2 ∈ ∆K , Q1 and Q2 transition matrices of size
K, f1, f2 ∈ (L2(Y, µ))K . Let S(X ) be the set of permutations of X . For all τ ∈ S(X ),
define the swapped parameters τπ1, τQ1 and τ f1 by

(τπ1)(k) := π1(τ(k))

(τQ1)(k, l) := Q1(τ(k), τ(l))

(τ f1)k := f1,τ(k)

and finally

dperm((π1,Q1, f1), (π2,Q2, f2)) := inf
τ∈S(X )

(
‖τπ1 − π2‖22

+ ‖τQ1 −Q2‖2F +

K∑
k=1

‖(τ f1)k − f2,k‖22

)1/2

.
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The following properties will be of use to prove the consistency of the order estimator,
but we think it can also be of independent interest to better understand the identifiability
of the model. The first one is a generalization of previous identifiability results from
Alexandrovich and Holzmann (2014); Gassiat, Cleynen and Robin (2015); de Castro,
Gassiat and Lacour (2016).

Proposition 1. Let K ≥ 1, π ∈ ∆K such that πk > 0 for all k ∈ X , Q transition
matrix of size K and f ∈ (L2(Y, µ))K such that [HidA] or [HidB] hold for the order
K. Then, for all K ′ ≥ 1, for all π′ ∈ ∆K′ , for all transition matrix Q′ of size K ′ and all
f ′ ∈ (L2(Y, µ))K

′
, the following holds:(

gπ,Q,f = gπ
′,Q′,f ′ and K ′ ≤ K

)
⇒ (K = K ′ and dperm((π,Q, f), (π′,Q′, f ′)) = 0) .

Comment. This property does not require two assumptions that appear in Alexan-
drovich and Holzmann (2014) and Gassiat, Cleynen and Robin (2015): that f is a family
of probability densities and that the Markov chain is stationary.

In particular, the fact that f may not be a family of probability densities is crucial
in the proof of Corollary 2, which is necessary to prove the strong consistency of the
estimator of the order.

Proof. Assume [HidA]. The spectral algorithm from de Castro, Gassiat and Le Corff
applied on the linear space spanned by both sets of densities allows to retrieve the order
from two consecutive observations and the parameters from three consecutive observa-
tions. Their proof works when the emission densities are not probability densities and
when the chain is not stationary.

Assume [HidB]. A careful reading of the proofs of Alexandrovich and Holzmann
(2014) shows that their result can be extended to general observation spaces and do not
require the measures to be probabilities.

The second property is the following corollary, which states that the L2 distance
between the actual model and the models where the order is underestimated is positive.
It is worth noting that we do not need F to be compact.

Corollary 2. Assume [HX], ([HidA] or [HidB]) and [HF] hold. Then, for all K <
K∗:

dK := inf
t∈SK

‖t− g∗‖2 > 0

Proof. Proof in Section 6.2.1.

Our first theorem shows that the probability to underestimate the order decreases
exponentially with the number of observations. This comes from Corollary 2: since the
empirical criterion converges to the L2 distance (plus some constant that does not depend
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on the model), the penalized error will eventually become larger for orders under K∗

than for orders over K∗, which means that we won’t underestimate the real order. The
exponential decrease rate brings to mind the one studied in Gassiat and Boucheron
(2003): in both cases, the exponents involve the distance between the actual model and
models with underestimated orders, as can be seen in our proof.

Theorem 3. Assume [HX], ([HidA] or [HidB]) and [HF] hold. There exists positive
constants ρ ≡ ρ(CF,2, CF,∞,Q

∗, L) and β ≡ β(CF,2, CF,∞,Q
∗, (dK)K<K∗ , L) such that

the following holds.
Assume that

∀n, ∀M, ∀K, pen(n,M,K) ≥ ρ(MK +K2 − 1)
log(n)

n
,

and
∀M, ∀K, pen(n,M,K) −→

n→∞
0

then there exists n0 such that for all n ≥ n0,

P(K̂l.s. < K∗) ≤ e−βn.

Proof. Proof in Section 6.3.

3.3. Overestimation of the order and consistency

Our second theorem controls the probability to overestimate the order. It consists in
overpenalizing large models so that the estimated order remains small.

We will need the following technical condition on the penalty:

Condition ([Hpen](α, ρ)). The penalty function pen satisfies

∃n1, ∀n ≥ n1, ∀M ≤ n, ∀K ≤ n s.t. K > K∗,

pen(n,M,K)− pen(n,M,K∗) ≥ ρ(MK +K2 − 1)
log(n)

n
+ α

log(n)

n
,

We can now state the theorem and its corollary proving the strong consistency of our
estimator of the order. Note that it does not require any identifiability assumption.

Theorem 4. Assume [HX] and [HF] hold. There exists positive constants (ρ, β) ≡
(ρ, β)(CF,2, CF,∞,Q

∗, L) such that the following holds.
Assume [Hpen](α, ρ) holds for some α ≥ 0, then there exists n0 such that for all

n ≥ n0,
P(K̂l.s. > K∗) ≤ n−βα.

Proof. Proof in Section 6.3.
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Corollary 5. Assume [HX], [HF] and ([HidA] or [HidB]) hold. There exists positive
constants (ρ, β) ≡ (ρ, β)(CF,2, CF,∞,Q

∗, L) such that the following holds.
Assume that the penalty function satisfies{

∀n, ∀M ≤ n, ∀K ≤ n, pen(n,M,K) ≥ ρ(MK +K2 − 1) log(n)
n

∀M, ∀K, pen(n,M,K) −→
n→+∞

0

and [Hpen](α/β, ρ) holds for some α > 1, then

P(K̂l.s. 6= K∗) = O(n−α).

In particular, K̂l.s. −→ K∗ almost surely.

Let us comment on the condition [Hpen] when using a penalty of the form pen(n,M,K) =
C(MK +K2 − 1) log(n)/n where C may depend on n.

• If one has an a priori bound on the order, i.e. if K∗ ≤ K0 for some known K0,
then direct computations show that for all α, ρ, there exists C ≥ 0 depending on
K0 (for instance, C = 2ρ(1 +K2

0 ∨ α
ρ ) works) such that [Hpen](α, ρ) holds for all

K∗ ≤ K0 (instead of K ≤ n). This means that if one has an a priori bound K0 on
the order, then by taking a constant C large enough and K̂l.s. ≤ K0, the estimator
K̂l.s. > K∗ is almost surely consistent.

• If one does not have an a priori bound on K∗, taking a constant C does not allow
to get [Hpen](α, ρ) for all possible K∗, which means we can’t apply Corollary 5.
However, by taking C as a sequence indexed by n that tends to infinity, we get that
for all K∗ and α, ρ, [Hpen](α, ρ) holds. This implies consistency with polynomial
decrease of the probability of error, at the cost of overpenalizing.
Overpenalizing is actually necessary if one wants to satisfy [Hpen] for all K∗. This
is stated in the following proposition:

Proposition 6. Let ρ > 0 and pen be a positive penalty such that for all K∗,
[Hpen](0, ρ) holds, then there exists a sequence (un)n≥1 −→ ∞ such that for all n ≥ 1,
M ≤ n and K ≤ n, pen(n,M,K) ≥ un(MK +K2 − 1) log(n)/n.

Proof. Proof in Appendix D.1.

3.4. Oracle inequalities

Our first result for this section is an oracle inequality on the density of L consecutive
observations for the least squares estimator.

Theorem 7. Assume [HX] and [HF] hold. Then there exists positive constants (n0, ρ, A) ≡
(n0, ρ, A)(CF,2, CF,∞,Q

∗, L) such that if the penalty satisfies

∀n, ∀M ≤ n, ∀K ≤ n, pen(n,M,K) ≥ ρ(MK +K2 − 1)
log(n)

n
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then for all n ≥ n0, for all x > 0, it holds with probability larger than 1− e−x that

‖ĝ − g∗‖22 ≤ 4 inf
K≤n,M≤n

{
‖g∗K,M − g∗‖22 + pen(n,M,K)

}
+ 4A

x

n
.

Proof. Proof in Section B.1.

Comment. The constant 4 before the infimum can be replaced by any constant κ > 1,
at the cost of changing the constants n0, ρ and A.

We would like to deduce an oracle inequality on the parameters of the HMM from
this result. Using Cauchy-Schwarz inequality, it is easy to upper bound the error on the
density g∗ by the error on the parameters: for all probability distributions π1 and π2 on
[K], for all transition matrices Q1 and Q2 of size K and for all f1, f2 ∈ FK ,

‖gπ1,Q1,f1 − gπ2,Q2,f2‖2 ≤ CLF,2
√
LKdperm((π1,Q1, f1), (π2,Q2, f2)) (1)

as soon as [HF] holds. The proof of this equation is detailed in Section B.2.
Thus, all we need to deduce an oracle inequality on the parameters is to lower bound

the error on g∗ by the error on the parameters. Let C ⊂ RK∗ × RK∗×K∗ × RK∗×K∗ be
the set of parameters (p, q, A) such that{

∀i ∈ X ,
∑
j∈X q(i, j) = 0

∀j ∈ X ,
∑
i∈X A(i, j) = 0

(2)

Note that C can be identified with the set

Cred :={((pi)i≥2, (q(i, j))i,j≥2, (A(i, j))i≥2,j) | (p, q, A) ∈ C}
=RK

∗−1 × RK
∗×(K∗−1) × RK

∗×(K∗−1)

These assumptions are natural since they are necessary (but not sufficient) to ensure that
if (p, q, A) ∈ C and π is a probability distribution, Q a transition matrix and f a vector
of probability densities, then π + p is also a probability distribution, Q + q a transition
matrix and f +Af a vector of probability densities.

The first step in order to get a lower bound along the same lines as equation (1) is to
control the behaviour of the difference near the true parameters, which comes down to
proving that the quadratic form M derived from the second-order expansion of

N : (p, q, A) ∈ RK
∗
× RK

∗×K∗ × RK
∗×K∗ 7−→ ‖gπ+p,Q+q,f+Af − gπ,Q,f‖22

is positive definite on C for (π,Q, f) = (π∗,Q∗, f∗). One can write the coefficients of the
matrix of this quadratic form as polynomials in the coefficients of π, Q and of the Gram
matrix G(f) := (〈fi, fj〉)i,j∈X . However, this matrix may not be invertible: one has to
consider its restriction to the space C, which is equivalent to considering the quadratic
form MC defined on Cred by the second-order expansion of x ∈ Cred 7−→ N(IC(x)) where
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IC is the natural linear injection from Cred to C (note that IC is bijective and bicontinous
under [HF]). Since the quadratic form MC is always nonnegative, we only need its
determinant to be non zero in order for the quadratic form M to be positive definite
on C.

Thus, let H be determinant of the matrix of this quadratic form. H is also a polynomial
in the coefficients of π, Q and G(f). The following lemma shows that there exists some
parameters π,Q and f satisfying the conditions for which H is not zero.

Lemma 8. There exists some parameters (π,Q, f) satisfying the conditions [HX] and
[HidA] such that H(π,Q, G(f)) 6= 0.

Proof. Proof in Section B.3.

What should be retained from this lemma is that H is a polynomial which is not
identically zero on the set of parameters satisfying the identifiability conditions. This
means that one can generically assume it to be different from zero, which corresponds to
the assumption

[Hdet] H(π∗,Q∗, G(f∗)) 6= 0.

Since we assumed π∗ to be the stationary distribution of Q∗, its coefficients–and by
extension H–can be expressed as a rational function of the coefficients of Q∗. Taking H1

as the numerator of the rational function deduced from H, one gets another polynomial in
the coefficients of Q∗ and G(f∗) which is also non-zero. Thus, the following assumption-
–which we will need to lower bound the error on the density g∗ by the error on the
parameters–is generically satisfied.

[HdetStat] H1(Q∗, G(f∗)) 6= 0.

Note that [Hdet] and [HdetStat] are equivalent under the assumption [HX].

Theorem 9. Assume [HidA] and [Hdet] hold. Then there exists a positive constant
c(π∗,Q∗, f∗) such that for all π ∈ ∆K∗ , for all transition matrix Q of size K∗ and for
all h ∈ FK∗ such that

∫
hidµ = 1 for all i ∈ [K∗],

‖gπ,Q,h − gπ
∗,Q∗,f∗‖22 ≥ c(π∗,Q∗, f∗) dperm((π,Q,h), (π∗,Q∗, f∗))2.

Proof. Proof in Section B.4.

The following theorem is a direct consequence of the above results. It provides an
oracle inequality on the parameters conditionally to the fact that the order has been
correctly estimated.

Theorem 10. Assume [HX], [HidA], [HF] and [Hdet] hold. Also assume that for
all f ∈ F ,

∫
fdµ = 1.
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Then there exists positive constants (n0, ρ, A) ≡ (n0, ρ, A)(CF,2, CF,∞,Q
∗, L) such

that if the penalty satisfies

∀n, ∀M ≤ n, ∀K ≤ n, pen(n,M,K) ≥ ρ(MK +K2 − 1)
log(n)

n

then for all n ≥ n0, for all x > 0, conditionally to {K̂l.s. = K∗}, with probability larger
than 1− e−x:

dperm((π̂, Q̂, f̂), (π∗,Q∗, f∗)) ≤
4CLF,2

√
LK∗

c(Q∗, f∗)
×[

inf
M≤n

{
K∗∑
k=1

‖f∗M,k − f∗k‖22 + pen(n,M,K∗)

}
+A

x

n

]
,

where f∗M,k is the projection of f∗k on PM .

It is now possible to get the convergence rate of the estimators of the parameters.
In order to take the event where K̂l.s. 6= K∗ into account, we agree that the distance
between the parameters of two HMMs with different orders is bounded by some constant
Cerr. Note that Cerr could even be taken as a power of n without changing anything to
our result.

Corollary 11. Assume [HX], [HidA], [HF] and [Hdet] hold. Also assume that for
all f ∈ F ,

∫
fdµ = 1, and that the penalty satisfies

∀n, ∀M ≤ n, ∀K ≤ n, pen(n,M,K) = (MK +K2 − 1)
log(n)2

n

Then there exists a positive constant A ≡ A(CF,2, CF,∞,Q
∗, L) such that for all β > 1,

there exists a positive constant n0 ≡ n0(CF,2, CF,∞,Q
∗, L, β) such that for all n ≥ n0

and for all Cerr > 0,

E
[
1K̂ 6=K∗Cerr + 1K̂=K∗dperm((π̂, Q̂, f̂), (π∗,Q∗, f∗))

]
≤

4CLF,2
√
LK∗

c(Q∗, f∗)
×

inf
M≤n

{
K∗∑
k=1

‖f∗M,k − f∗k‖22 + pen(n,M,K∗)

}
+

A

c(Q∗, f∗)n
+
Cerr

nβ
,

and P(K̂l.s. 6= K∗) = O(n−β).

Let us discuss what this corollary implies. The approximation error
∑K∗

k=1 ‖f∗M,k−f∗k‖22
can be bounded in a standard way by O(M−2s/D) where s > 0 is the regularity of the
emission densities, see for instance DeVore and Lorentz (1993). One can obtain a trade-off
between approximation error and penalty by choosing M ≈ (n/ log(n)2)D/(2s+D), which
leads to the optimal rate of convergence (n/ log(n)2)−2s/(2s+D), up to a logarithmic
factor. This shows that our estimators are adaptive, quasi-rate minimax and converge
almost surely to the right number of states, all at the same time.
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4. Spectral estimation

In this section, we introduce our spectral order estimator. We will assume [HX] and
[HidA] hold.

The idea of this method is to use the matrix containing the coordinates of the density
of two consecutive observations in an orthonormal basis. Take M ∈ M and let ΦM =
(ϕ

(M)
1 , . . . , ϕ

(M)
M ) be an orthonormal basis of PM . For ease of notation, we will drop the

dependency in M and write ϕa instead of ϕ
(M)
a . Let us introduce the matrice NM and

its empirical estimator, defined by

∀a, b ∈ [M ], NM (a, b) := E[ϕa(Y1)ϕb(Y2)],

∀a, b ∈ [M ], N̂M (a, b) :=
1

n

n∑
s=1

ϕa(Ys)ϕb(Ys+1).

NM contains the coordinates of the density of (Y1, Y2) with respect to µ⊗2 on the basis
ΦM . It holds that

NM = OMDiag(π∗)Q∗O>M , (3)

with OM the coordinates of the emission densities on the orthonormal basis:

∀m ∈ [M ], ∀k ∈ X , OM (m, k) := E[ϕm(Y1)|X1 = k] =

∫
ϕmf

∗
kdµ.

When the emission densities are linearly independent, OM has full rank for M large
enough.

The key remark for our method is that NM contains explicit information about the
order of the HMM, as stated in the following lemma:

Lemma 12. There exists M0 ≡ M0(Q∗,ΦM , f
∗) such that for all M ≥ M0, NM has

rank K∗.

In the following, we will assume M ≥M0 for M0 given by this lemma.
In practice, one only has access to the matrix N̂M , which can be seen as a noisy

version of NM . In particular, there is no reason for it to have only K∗ nonzero singular
values. On the contrary, the spectrum becomes noisy, and when some singular values of
NM are too small, they can be masked by this noise. As seen in equation (3), this can
occur when Q∗ or OM are close to not having full rank, which means for OM that the
emission densities are almost linearly dependent.

Denote by σ1(A) ≥ σ2(A) ≥ . . . the singular values of the matrix A. We can now state
the theorem proving the consistency of the spectral order estimator:

Theorem 13. Let K̂sp.(C) = #{i | σi(N̂M ) > C
√

log(n)/n}.
There exists C0 ≡ C0(Q∗,ΦM ) and n0 ≡ n0(Q∗,ΦM ,O

∗
M ) such that for all C ≥ C0

and n ≥ n0C
2(1 + log(C)),

P(K̂sp.(C) 6= K∗) ≤ n−2

so that K̂sp.(C) −→ K∗ almost surely.
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Comment. It is possible to take M −→∞, n0 constant and C0 depending on M in an
explicit way as long as M grows slowly enough, that is η2(ΦM ) ≤ cst ·

√
n/ log(n) and

C0 = cst · η2(ΦM ) where η2(ΦM ) is defined in Lemma 14.

Proof. The following result from appendix E of de Castro, Gassiat and Le Corff allows
to control the difference between the spectra of NM and N̂M .

Lemma 14. There exists some constant C∗ depending only on Q∗ such that for any
positive u, M and n,

P
[
‖NM − N̂M‖F ≥

η2(ΦM )C∗√
n

(1 + u)

]
≤ e−u

2

where

η2
2(ΦM ) = sup

y,y′∈Y2

M∑
a,b=1

(ϕa(y1)ϕb(y2)− ϕa(y′1)ϕb(y
′
2))2.

In particular, taking u =
√

2 log(n) and assuming u > 1 and n ≥ 2, one has with
probability 1− n−2 that

σ1(NM − N̂M ) ≤ C
√

log(n)

n

for all C ≥ C0 := 2
√

2η2(ΦM )C∗, using that for any matrix A, one has σ1(A) ≤ ‖A‖F .
Let C ≥ C0. We will need Weyl’s inequality (a proof may be found in Stewart and

Sun (1990) for instance):

Lemma 15 (Weyl’s inequality). Let A,B be p × q matrices with p ≥ q, then for all
i = 1, . . . , q,

|σi(A+B)− σi(A)| ≤ σ1(B).

Using this inequality, one gets that with probability at least 1−n−2, for all 1 ≤ i ≤ K∗,
σi(N̂M ) > σK∗(NM )− C

√
log(n)/n and for all i > K∗, σi(N̂M ) < C

√
log(n)/n.

In particular, if 2C
√

log(n)/n < σK∗(NM ), then with probability at least 1−n−2, the

order is exactly the number of singular values of N̂M which are larger than C
√

log(n)/n.
Finally, observe that under the condition n ≥ n0C

2(1 + log(C)),

C

√
log(n)

n
≤

√
2 log(C) + log(1 + log(C))

n0(1 + log(C))

≤
√

3

n0

√
log(C)

1 + log(C)
,

since one can assume without loss of generality that C0 ≥ 1. By taking n0 = 12/σK∗(NM )2,
this concludes the proof.
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5. Numerical experiments

In this section, we show the results of our estimators on simulated data. The simulation
parameters are introduced in Section 5.1. We show the numerical results and discuss their
ability to select the right order in practice in Section 5.2, and we present the data-driven
methods and heuristics we used for the numerical implementation in Section 5.3.

5.1. Simulation parameters

We will consider Y = [0, 1] with µ being the Lebesgue measure. We will use a trigono-
metric basis on L2([0, 1]) to generate the approximation spaces (PM )M . More precisely,
define

ϕ0(t) = 1

ϕa(t) =
√

2 cos(πat)

for all t ∈ [0, 1] and a ∈ N∗. We take PM = Span({ϕa | 0 ≤ a < M}) the spaces induced
by the trigonometric basis.

Comment. Taking the same vectors in all bases is not mandatory to ensure theoret-
ical consistency, but in practice it allows us to take an additional initial point for the
minimization step and improves the stability of the algorithm (see Step 1 below).

We will assume f∗ to be linearly independent, so that one only needs L = 3 observa-
tions to recover the parameters of the HMM.

In order to assess the performances of the different procedures, we generate n obser-
vations of a HMM of order 3 for several values of n, using the following parameters:

• Emission distributions: Beta distributions with two possible sets of parameters:
[(1.5; 5), (7; 2) and (6; 6)] or [(2; 5), (4; 2) and (4; 4)];

• Markov chain parameters:

Q∗ =

 0.8 0.1 0.1
0.2 0.7 0.1
0.07 0.13 0.8

 ,

π∗ = (
47

120

11

40

1

3
)

≈ (0.3917 0.2750 0.3333).

Finally, we take Mmax = 50 and Kmax = 5 the maximum values of M and K for which
we will compute the estimators.

The simulation codes are available in MATLAB at https://www.normalesup.org/

~llehericy/HMM_order_simfiles/.

https://www.normalesup.org/~llehericy/HMM_order_simfiles/
https://www.normalesup.org/~llehericy/HMM_order_simfiles/
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n P(K̂l.s. = K∗) P(K̂sp. = K∗)

999 0.2 0
3 000 1 0
9 999 1 1
19 998 1 1

(a) Beta parameters (1.5; 5), (7; 2) and (6; 6).

n P(K̂l.s. = K∗) P(K̂sp. = K∗)

7 500 0.3 0
19 998 0.9 0
30 000 1 0
49 998 1 0.1

(b) Beta parameters (2; 5), (4; 2) and (4; 4)

Figure 1: Probability to select the right order for the two methods (K̂l.s. for the least
squares method and K̂sp. for the spectral method). 10 simulations have been done for
each n. Parameters for spectral selection are M = 40, Mreg = 35 and τ = 1.5 (see Section
5.3.2 for the definition of these parameters).

5.2. Numerical results

Figure 1 summarizes the results of both procedures. Both select the right order as soon
as the number of observations is sufficient.

The spectral method is easily put in pratice and runs extremely fast. It doesn’t need a
time-consuming contrast minimization step or an initial point. However, the thresholding
of the singular values is a delicate issue, and if the order is incorrect, then the theoretical
results about the spectral estimators of the parameters don’t hold and this method may
behave poorly.

The performances of the least squares method are much better (see Figure 1 for
comparing the order estimators and de Castro, Gassiat and Lacour (2016) for comparing
the emission densities estimators). In addition, the model selection step is easy to handle
and gives an estimator of the order that we proved to be consistent, estimators of the
HMM parameters that we proved to be quasi-rate minimax and a way to check whether
the model fits the data well (see Section 5.3.1), all at the same time. However, the
minimization of the (non-convex) empirical contrast is a time-consuming step, especially
for large samples and large models.

Choosing the right method is thus a question of computational power and amount
of available data. For small datasets where one wants to get accurate results, the least
squares method is best. Conversely, on large datasets and large models, the spectral
method is a good choice in order to obtain many estimators in a reasonable amount of
time.

5.3. Practical implementation

5.3.1. Least squares method

The first issue that one encounters when trying to minimize the least squares criterion γn
is that it is not convex. Several algorithms have been proposed to overcome this difficulty.
We chose to use CMA-ES (for Covariance Matrix Adaptation Estimation Strategy, see
Hansen (2006)) in order to find a minimizer. This estimator is easy to use and works well
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in many situations, but–like all approximate minimization algorithms–it requires a good
initial point since it might otherwise remain stuck in local minima.

One part of our method consists in using previous estimates as initial points for further
steps to counter this phenomenon, since it is likely that this way the estimators stay near
the real minimizer. Our practical algorithm is the following:

1. Minimize γn on each model, for M ≤Mmax and K ≤ Kmax. We take several initial
points for model (K,M) according to the following cases:

• K = 1. Use a HMM with a single state and a uniform emission distribution.

• K > 1. Take the estimator from model (K − 1,M). For each hidden state
of the corresponding HMM, use the model where this state is duplicated.
More precisely, the Markov chain X̃ where state I is duplicated is obtained
by replacing the state I from chain X with two states I1 and I2 such that for
each state S 6= I1, I2,

P(X̃t+1 = I1 | X̃t = S) =
1

2
P(Xt+1 = I | Xt = S)

= P(X̃t+1 = I2 | X̃t = S)

P(X̃t+1 = S | X̃t = I1) = P(Xt+1 = S | Xt = I)

= P(X̃t+1 = S | X̃t = I2)

and

P(X̃t+1 = I2 | X̃t = I1) =
1

2
P(Xt+1 = I | Xt = I)

= P(X̃t+1 = I1 | X̃t = I2)

• M > 1. Use estimator from model (K,M−1) with the M -th coordinate of each
emission density set to zero. This is only interesting if all PM are spanned by
the first M vectors of a given orthonormal basis, like for trigonometric spaces.

Then, after minimization from each one of these initial points, take the estimator
that minimizes γn.

2. Tune the parameter ρ of the penalty with the slope heuristics or the dimension
jump method (see below) and select M̂ and K̂.

3. Return the estimator for M = M̂ and K = K̂.

This iterative initialization procedure relies on the heuristics that when the order is
underestimated, then several states are ”merged” together. Duplicating a merged state
will allow to separate them effectively while still taking advantage of the computations
done up to now. It is meant to avoid having to recalculate all states at the same time
(which could get us stuck in sub-optimal local minima) when the best solution is likely
to be a small modification of the previous estimator. In addition, when the order is
overestimated, it allows to make sure the empirical criterion is indeed decreasing with
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the dimension of the model by giving an estimator that performs at least as well as those
from smaller models. This makes our method robust to an overestimation of the order.

The last practical issue is a very common one in the model selection setting: the
constant ρ of the penalty is unknown and has to be estimated before one can select
the right model. Several data-driven estimators have been proposed to circumvent this
difficulty, for instance dimension jump heuristics, slope heuristics, bootstrap or cross
validation. We focus on the first two, which have several advantages in our setting. First,
they are easy to use, are proved to be theoretically valid in many settings and work well
in a wide range of applications (see for instance Baudry, Maugis and Michel (2012) and
references therein). Secondly, they take advantage of the structure of our problem and
both give a qualitative way to check whether the choice of penalty is valid or not, and
by extension whether the model is misspecified or not.

Dimension jump heuristics In this paragraph, we study the selected parameters

ρ 7−→ (M̂(ρ), K̂(ρ)) ∈ arg min{γn(ĝK,M ) + ρpenshape(n,M,K)}

and the selected complexity

ρ 7−→ Comp(ρ) = M̂(ρ)K̂(ρ) + K̂(ρ))[K̂(ρ))− 1]

with penshape(n,M,K) = (MK +K2 − 1) log(n)/n.
Assume that there exists κ such that κpenshape is a minimal penalty, that is a penalty

such that as n tends to infinity, for all ρ > κ, the size of the model chosen for penalty
ρpenshape remains small in some sense and for all ρ < κ, the size of the model becomes
huge. Then, for n large enough, this will appear on the graph of the selected model
complexity as a “dimension jump”: around some constant ρjump, the complexity will
abruptly drop from large models to small models. This is clearly the case in Figure 2.
Figure 3 shows the behaviour of M̂ and K̂ with ρ. A dimension jump also occurs with
these functions. It is most visible for M̂ .

Finally, once the dimension jump location ρjump has been estimated, we take ρ̂ =
2ρjump to select the final parameters.

It is worth noting that this jump method also gives a qualitative way to check whether
the choice of parameters is sensible: if no clear jump can be identified, then either one
didn’t consider enough models to make the jump clear, or the penalty isn’t the right one,
or the model cannot approximate the data distribution well.

Slope heuristics This heuristics relies on the fact that when penshape is a minimal
penalty, then the empirical contrast function is expected to behave like ρminpenshape for
large models and for some constant ρmin. This gives both a way to calibrate the constant
of the penalty and to check if the chosen penalty has the right shape (see Baudry, Maugis
and Michel (2012)). The final penalty is then taken as 2ρ̂minpenshape.

Figure 4 shows the graph of the empirical contrast depending on penshape. The slope
heuristics works well in this situation, suggesting that our penalty has the right shape.
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(b) n = 49, 998.

Figure 2: Graph of ρ 7→ Comp(ρ) for 10 sets of n consecutive observations. Here, the
parameters of the Beta distribution are (2; 5), (4; 2) and (4; 4).
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Figure 3: Graph of ρ 7→ M̂(ρ) and ρ 7→ K̂(ρ) for 10 sets of n consecutive observations.
Here, the parameters of the Beta distribution are (2; 5), (4; 2) and (4; 4).

5.3.2. Spectral method

The idea of the spectral order estimation is to recover the rank of the matrix NM . How-
ever, this is not always possible: if one singular value of NM is smaller than the noise
(which is the case when OM is close from not being invertible, i.e. when the emission den-
sities are close from being linearly dependent, and when there are only few observations),
then this method will not be able to “see” the corresponding hidden state.

Figure 5–and in particular Figure 5a–illustrates this problem: the third singular value
is smaller than several noisy singular values, which means it won’t be possible to recover
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Figure 4: Empirical constrast and calibrated penalty for n = 49, 998. Here, the parameters
of the Beta distribution are (2; 5), (4; 2) and (4; 4).

it. Even if one knows the right order, the fact that the singular value is smaller than the
noise can make it impossible for spectral methods to recover the true parameters. Figure
6 shows the result when trying to estimate the densities in the situation of Figure 5a:
when the singular value is drowned by the noise, the output of the spectral estimator
is aberrant. Notice that it is not a fatality: in the same situation, the least squares
method manages to give sensible estimators of the emission densities. This is an intrinsic
limitation of the spectral method.

Therefore, what we need is a way to threshold the parameters in order to distinguish
noise from significant singular values. The estimator K̂sp.(C) is one way to achieve this,
but the calibration of C is a tricky problem, since the right choice of C depends on the
parameters of the HMM. We will use a different method, which relies on the same idea:
identifying the noisy singular values which stand out from the others and saying they
correspond to nonzero singular values of NM . Our heuristics relies on the fact that when
one sorts the singular values in decreasing order, then the smallest ones approximately
follow an affine relation with respect to their index. This tendency is shown in Figure 7.

We proceed as follows. LetM andMreg be two positive integers such thatMreg ≤M ≤Mmax.

We estimate the affine dependance of the singular values of N̂M with respect to their
index with a linear regression using its Mreg smallest singular values. Then, we set a
thresholding parameter τ > 1. We say a singular value is significant if it is above τ
times the value that the regression predicts for it. Lastly, we take K̂sp. as the number
of consecutive significant singular values starting from the largest one. This heuristics
seems to work as soon as τ is large enough, e.g. τ = 1.5.
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(a) n = 19, 998, Beta parameters (2; 5), (4; 2)
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(b) n = 49, 998, Beta parameters (2; 5), (4; 2)
and (4; 4).
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(c) n = 3, 000, Beta parameters (1.5; 5), (7; 2)
and (6; 6).
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Figure 5: Spectrum of the empirical matrix N̂M and the theoretical matrix NM for
M = 40 and 10 simulations. The first singular values are too large to appear here.

6. Proofs

6.1. Main technical result

The following lemma is the main technical result of this paper. It is the key for both the
strong consistency and the oracle inequalities. It allows to control the difference between
the empirical criterion γn and the theoretical L2 loss for all models at the same time.

Define ν : t 7−→ 1
n

∑n
s=1 t(Zs)−

∫
tg∗, so that

∀t ∈ L2(YL, µ⊗L), γn(t) + ‖g∗‖22 = ‖t− g∗‖22 − 2ν(t) (4)
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Figure 6: Estimators of the emission densities for n = 19, 998 and Beta parameters (2; 5),
(4; 2) and (4; 4). We took K = K̂l.s. = 3 and M = M̂ = 13. The bad behaviour of the
spectral algorithm when the emission densities are poorly separated is clearly visible on
the third emission distribution.
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and (4; 4). The regression (green line) has been performed on the 35 smallest singular
values. The two largest singular values are too large to appear here.
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Let

s = (sK,M )K,M ∈ S :=
∏

K∈N∗,M∈M

(⋃
K

SK

)
7−→ (ZK,M (s))K,M

:=

(
sup

t∈SK,M

[
|ν(t− sK,M )|

‖t− sK,M‖22 + x2
K,M

])
K,M

(5)

Comment. It is not necessary to assume that sK,M ∈ SK,M . In particular, one can
take sK,M = g∗ for all K,M . In that case, we will simply write ZK,M (g∗).

Lemma 16. Assume [HX] and [HF] hold. Then there exists a sequence (xK,M )K,M ≡
(xK,M )K,M (CF,2, CF,∞,Q

∗, L) and positive constants (n0, ρ, A) ≡ (n0, ρ, A)(CF,2, CF,∞,Q
∗, L)

such that if the penalty p̃en satisfies

∀n, ∀M ≤ n, ∀K ≤ n p̃en(n,M,K) ≥ ρ(MK +K2 − 1)
log(n)

n

then for all s ∈ S, n ≥ n0 and x > 0, one has with probability larger than 1− e−x:
sup

K′≤n,M ′≤n
ZK′,M ′(s) ≤

1

4

sup
K′≤n,M ′≤n

(
2ZK′,M ′(s)x

2
K′,M ′ − p̃en(n,M ′,K ′)

)
≤ Ax

n

Comment. One can replace the constant 1/4 in the first upper bound by any ε > 0, at
the cost of changing the constants n0, ρ and A.

The structure of the proof follows the usual method to control empirical processes, see
for instance Massart (2007), Chapter 6, adapted to the HMM structure by de Castro,
Gassiat and Lacour (2016). The novelty and main difficulty of the proof comes from the
generalization to both nonparametric densities and an unknown number of states: we
had to introduce a much finer control of the constants and of the bracketing entropy of
the models in order to take the dependency in the order of the HMM into account.

The details of the proof can be found in appendix C.

6.2. Identifiability proofs

6.2.1. Proof of Corollary 2

Denote by ProjA the orthogonal projection on a linear space A.
Since the union of (PM )M∈M is dense in F , we can take M such that [HidA] or

[HidB] holds for f∗M = (f∗M,k)k∈X := (ProjPM f
∗
k )k∈X .

We will need the following lemma.
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Lemma 17.

∀π ∈ RK , ∀Q ∈ RK×K , ∀f ∈ FK , ∀M, ProjP⊗LM

(
gπ,Q,f

)
= gπ,Q,ProjPM

(f)

Proof. By linearity of the projection operator, it is enough to prove that for all (t1, . . . , tL) ∈
(L2(Y, µ))L,

ProjP⊗LM
(t1 ⊗ · · · ⊗ tL) = ProjPM (t1)⊗ · · · ⊗ ProjPM (tL)

which is easy to check.

We will make a proof by contradiction. Assume that inft∈SK ‖t − g∗‖2 = 0 for some
K < K∗. Then there exists a sequence (gn)n≥1 = (gπn,Qn,fn)n≥1 such that gn −→ g∗ in
L2(YL, µ⊗L), with πn ∈ ∆K , Qn a transition matrix of size K and fn ∈ FK .

The orthogonal projection on P⊗LM is continuous, so by using Lemma 17, one gets that

gπn,Qn,ProjPM
(fn) −→ gπ

∗,Q∗,f∗M

Then, using the compacity of ∆K and of the set of transition matrices of size K and
the relative compacity of (F ∩PM )K (which is a bounded subset of a finite dimension
linear space), one gets (up to extraction of a subsequence) that there exists π∞ ∈ ∆K ,
Q∞ a transition matrix of size K and f∞ ∈ (PM )K such that πn −→ π∞, Qn −→ Q∞
and ProjPM (fn) −→ f∞.

Finally, using the continuity of the function (π,Q, f) 7−→ gπ,Q,f and the unicity of the
limit, one gets

gπ∞,Q∞,f∞ = gπ
∗,Q∗,f∗M .

Then Proposition 1 contradicts the assumption K < K∗, which is enough to conclude.

6.3. Consistency proofs

The definition of K̂l.s. is equivalent to the following one:

K̂l.s. ∈ arg min
K≤n

{γn(ĝK,M̂K
) + pen(n, M̂K ,K)}

where
M̂K ∈ arg min

M≤n
{γn(ĝK,M ) + pen(n,M,K)}

Choosing K rather than K∗ means that K is better than K∗, i.e.

{K̂l.s. = K} ⊂
{

0 ≥ inf
M≤n
{γn(ĝK,M ) + pen(n,M,K)}

− inf
M≤n
{γn(ĝK∗,M ) + pen(n,M,K∗)}

}
.
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Let

Dn,K := inf
M≤n
{γn(ĝK,M ) + pen(n,M,K)}

− inf
M≤n
{γn(ĝK∗,M ) + pen(n,M,K∗)}

= γn(ĝK,M̂K
) + pen(n, M̂K ,K)

− inf
M≤n
{ inf
t∈SK∗,M

γn(t) + pen(n,M,K∗)}.

Then
{K̂l.s. = K} ⊂ {Dn,K ≤ 0}.

We will thus control the probability of the latter event for all K < K∗ in the first case
and K > K∗ in the second case.

Proof of Theorem 3 Let M0 ∈ M. We will choose a suitable value for this integer
later in the proof. Assume n ≥M0. Then by definition of Dn,K and of ν (equation (4)),

Dn,K ≥ γn(ĝK,M̂K
) + pen(n, M̂K ,K)− γn(g∗K∗,M0

)− pen(n,M0,K
∗))

≥ ‖g∗ − ĝK,M̂K
‖22 − ‖g∗ − g∗K∗,M0

‖22 − 2ν(ĝK,M̂K
− g∗K∗,M0

)

+ pen(n, M̂K ,K)− pen(n,M0,K
∗).

Using the definition of ZK,M (equation (5)), one gets that

|ν(ĝK,M̂K
− g∗K∗,M0

)| ≤ |ν(ĝK,M̂K
− g∗)|+ |ν(g∗ − g∗K∗,M0

)|

≤ ZK,M̂K
(g∗)(‖g∗ − ĝK,M̂K

‖22 + x2
K,M̂K

)

+ ZK∗,M0(g∗)(‖g∗ − g∗K∗,M0
‖22 + x2

K∗,M0
).

Let n0, ρ and A be as in Lemma 16. We can assume that n0 ≥ K∗ so that K∗ ≤ n. Let

us introduce the function p̃en(n,M,K) = ρ(MK +K2 − 1) log(n)
n . Let n ≥ n0 and x > 0

and assume we are in the event of probability 1−e−x of Lemma 16. Then, for all K ≤ n:

|ν(ĝK,M̂K
− g∗K∗,M0

)| ≤ 1

4
‖g∗ − ĝK,M̂K

‖22 +
1

2
A
x

n
+

1

2
p̃en(n, M̂K ,K)

+
1

4
‖g∗ − g∗K∗,M0

‖22 +
1

2
A
x

n
+

1

2
p̃en(n,M0,K

∗)

and

Dn,K ≥
1

2
‖g∗ − ĝK,M̂K

‖22 −
3

2
‖g∗ − g∗K∗,M0

‖22 − 2A
x

n
+ pen(n, M̂K ,K)

− pen(n,M0,K
∗)− p̃en(n, M̂K ,K)− p̃en(n,M0,K

∗).

We assumed pen ≥ p̃en, so that

Dn,K ≥
1

2
‖g∗ − ĝK,M̂K

‖22 −
3

2
‖g∗ − g∗K∗,M0

‖22 − 2A
x

n
− 2pen(n,M0,K

∗)



Nonparametric HMM order estimation 29

Corollary 2 ensures that
d := inf

K<K∗
inf
t∈SK

‖t− g∗‖2 > 0,

so that for all K < K∗,

Dn,K ≥
d2

2
− 3

2
‖g∗ − g∗K∗,M0

‖22 − 2A
x

n
− 2pen(n,M0,K

∗).

By density of (PM )M∈M in F , one gets that

inf
M
‖g∗K∗,M − g∗‖2 = 0

so that there exists M0 such that ‖g∗ − g∗K∗,M0
‖22 ≤ d2/6. If we choose this M0, we get

that

Dn,K ≥
d2

4
− 2A

x

n
− 2pen(n,M0,K

∗).

Which implies that Dn,K > 0 as soon as 2Ax/n < d2/4− 2pen(n,M0,K
∗), i.e.

x <

(
d2

8
− pen(n,M0,K

∗)

)
n

A
.

To conclude, note that there exists ñ0 ≥ max(n0,M0) such that for all n ≥ ñ0, pen(n,M0,K
∗) ≤

d2

16 . Then, letting β = d2

16A , one has for all n ≥ ñ0, with probability 1 − e−βn, for all

K < K∗, Dn,K > 0, which implies that K̂l.s. 6= K.

Proof of Theorem 4 For all K ≥ K∗,

Dn,K ≥ γn(ĝK,M̂K
) + pen(n, M̂K ,K)− γn(g∗

K∗,M̂K
)− pen(n, M̂K ,K

∗)

and

γn(ĝK,M̂K
)− γn(g∗

K∗,M̂K
) = ‖ĝK,M̂K

− g∗‖22 − ‖g∗K∗,M̂K
− g∗‖22
− 2ν(ĝK,M̂K

− g∗
K∗,M̂K

).

Note that g∗
K∗,M̂K

= g∗
K,M̂K

is the orthogonal projection of g∗ on P⊗L
M̂K

and ĝK,M̂K
∈

SK,M̂K
⊂ P⊗L

M̂K
, so that, using the Pythagorean Theorem,

‖ĝK,M̂K
− g∗‖22 − ‖g∗K∗,M̂K

− g∗‖22 = ‖ĝK,M̂K
− g∗

K∗,M̂K
‖22.

Let n0, ρ and A be as in Lemma 16. We can assume that n0 ≥ K∗ so that K∗ ≤ n. Let

us introduce the function p̃en(n,M,K) = ρ(MK +K2 − 1) log(n)
n . Let n ≥ n0 and x > 0
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and assume we are in the event of probability 1− e−x of Lemma 16. Then, for all K ≤ n
such that K ≥ K∗:

|ν(ĝK,M̂K
− g∗

K∗,M̂K
)| = |ν(ĝK,M̂K

− g∗
K,M̂K

)|

≤ ZK,M̂K
((g∗K′,M ′)K′,M ′)‖ĝK,M̂K

− g∗
K,M̂K

‖22
+ ZK,M̂K

((g∗K′,M ′)K′,M ′)x
2
K,M̂K

≤ 1

4
‖ĝK,M̂K

− g∗
K,M̂K

‖22 +
1

2
A
x

n
+

1

2
p̃en(n, M̂K ,K),

which implies

γn(ĝK,M̂K
)− γn(g∗

K∗,M̂K
) ≥ 1

2
‖ĝK,M̂K

− g∗
K,M̂K

‖22 −A
x

n
− p̃en(n, M̂K ,K)

≥ −Ax
n
− p̃en(n, M̂K ,K)

so that for all K ≤ n such that K ≥ K∗:

Dn,K ≥ pen(n, M̂K ,K)− pen(n, M̂K ,K
∗)− p̃en(n, M̂K ,K)−Ax

n
.

Now, assume that [Hpen](α, ρ) holds for some α > 0 and the above constant ρ. Then
there exists n1 such that for all n ≥ n1 and for all K ≤ n such that K ≥ K∗,

Dn,K ≥ α
log(n)

n
−Ax

n
,

which is strictly positive as soon as x < α log(n)/A. Thus, letting β = 1/(2A), one has
for all n ≥ max(n0, n1,K

∗), with probability 1−n−βα, for all K ≤ n such that K > K∗,
Dn,K > 0, which implies that K̂l.s. 6= K. This concludes the proof.

7. Acknowledgment

We would like to thank Elisabeth Gassiat for her precious advice and Yohann de Castro
for his codes which were at the root of our numerical experiments.

References

Alexandrovich, G. and Holzmann, H. (2014). Nonparametric identification of hidden
Markov models. arXiv preprint arXiv:1404.4210.

Allman, E. S., Matias, C. and Rhodes, J. A. (2009). Identifiability of parameters
in latent structure models with many observed variables. The Annals of Statistics
3099–3132.



Nonparametric HMM order estimation 31

Anandkumar, A., Hsu, D. J. and Kakade, S. M. (2012). A Method of Moments for
Mixture Models and Hidden Markov Models. In COLT 1 4.

Baudry, J.-P., Maugis, C. and Michel, B. (2012). Slope heuristics: overview and
implementation. Statistics and Computing 22 455–470.

Bickel, P. J., Ritov, Y., Ryden, T. et al. (1998). Asymptotic normality of the
maximum-likelihood estimator for general hidden Markov models. The Annals of
Statistics 26 1614–1635.
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de Castro, Y., Gassiat, É. and Lacour, C. (2016). Minimax Adaptive Estimation
of Nonparametric hidden Markov models. Journal of Machine Learning Research 17
1-43.

de Castro, Y., Gassiat, E. and Le Corff, S. Consistent estimation of the filtering
and marginal smoothing distributions in nonparametric hidden Markov models. IEEE
Information Theory, to appear.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation 303. Springer
Science & Business Media.

Douc, R., Moulines, E., Rydén, T. et al. (2004). Asymptotic properties of the max-
imum likelihood estimator in autoregressive models with Markov regime. The Annals
of statistics 32 2254–2304.

Gassiat, E. (2002). Likelihood ratio inequalities with applications to various mixtures.
In Annales de l’IHP Probabilités et statistiques 38 897–906.

Gassiat, E. and Boucheron, S. (2003). Optimal error exponents in hidden Markov
models order estimation. Information Theory, IEEE Transactions on 49 964–980.

Gassiat, E., Cleynen, A. and Robin, S. (2015). Finite state space non parametric
hidden Markov models are in general identifiable. Stat. Comp. 1–11.

Gassiat, E. and Keribin, C. (2000). The likelihood ratio test for the number of com-
ponents in a mixture with Markov regime. ESAIM: Probability and Statistics 4 25–52.

Gassiat, E. and Rousseau, J. (2014). About the posterior distribution in hidden
Markov models with unknown number of states. Bernoulli 20 2039–2075.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation 75–102. Springer.

Hsu, D., Kakade, S. M. and Zhang, T. (2012). A spectral algorithm for learning
hidden Markov models. Journal of Computer and System Sciences 78 1460–1480.

Kleibergen, F. and Paap, R. (2006). Generalized reduced rank tests using the singular
value decomposition. Journal of econometrics 133 97–126.



32 L. Lehéricy

Lambert, M. F., Whiting, J. P. and Metcalfe, A. V. (2003). A non-parametric
hidden Markov model for climate state identification. Hydrology and Earth System
Sciences Discussions 7 652–667.

Langrock, R., Kneib, T., Sohn, A. and DeRuiter, S. L. (2015). Nonparametric
inference in hidden Markov models using P-splines. Biometrics 71 520–528.

Le Gland, F. and Mevel, L. (2000). Exponential forgetting and geometric ergodicity
in hidden Markov models. Mathematics of Control, Signals and Systems 13 63–93.
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Appendix A: Spectral algorithm

Algorithm 1: Spectral estimation of HMM parameters (de Castro, Gassiat and
Lacour (2016), de Castro, Gassiat and Le Corff)

Data: An observed chain (Y1, . . . , Yn) and an order K.

Result: Spectral estimators π̂, Q̂ and the estimators (f̂M,k)k∈X of (f∗k )k∈X in PM (equipped
with an orthonormal basis ΦM = (ϕ1, . . . , ϕM )).

[Step 1] Consider the following empirical estimators: for any a, b, c in {1, . . . ,M},

• L̂M (a) := 1
n

∑n
s=1 ϕa(Y

(s)
1 ),

• M̂M (a, b, c) := 1
n

∑n
s=1 ϕa(Y

(s)
1 )ϕb(Y

(s)
2 )ϕc(Y

(s)
3 ),

• N̂M (a, b) := 1
n

∑n
s=1 ϕa(Y

(s)
1 )ϕb(Y

(s)
2 ),

• P̂M (a, c) := 1
n

∑n
s=1 ϕa(Y

(s)
1 )ϕc(Y

(s)
3 ).

[Step 2] Let Û be the M ×K matrix of orthonormal right singular vectors of P̂M corresponding to its
top K singular values.

[Step 3] Form the matrices B̂(b) := (Û>P̂M Û)−1Û>M̂M (. , b, . )Û for all b ∈ {1, . . . ,M}.
[Step 4] Set Θ a (K ×K) uniformly drawn random unitary matrix and form the matrices

Ĉ(k) :=
∑M

b=1(ÛΘ)(b, k)B̂(b) for all k ∈ {1, . . . ,K}.

[Step 5] Compute R̂ a (K ×K) unit Euclidean norm columns matrix that diagonalizes the matrix Ĉ(1):

R̂−1Ĉ(1)R̂ = Diag(Λ̂(1, 1), . . . , Λ̂(1,K)).

[Step 6] Set Λ̂(k, k′) := (R̂−1Ĉ(k)R̂)(k′, k′) for all k, k′ ∈ X and ÔM := ÛΘΛ̂.

[Step 7] Consider the emission distributions estimator f̂ := (f̂M,k)k∈X defined by

f̂M,k :=
∑M

m=1 ÔM (m, k)ϕm for all k ∈ X .

[Step 8] Set π̃ := Π∆K

((
Û>ÔM

)−1
Û>L̂M

)
where Π∆K denotes the projection onto the simplex in

dimension K.

[Step 9] Consider the transition matrix estimator:

Q̂ := ΠTM

((
Û>ÔMDiagπ̃

)−1
Û>N̂M Û

(
Ô>M Û

)−1
)
,

where ΠTM denotes the projection onto the convex set of transition matrices, and define π̂ as
the stationary distribution of Q̂.
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Appendix B: Proofs of the oracle inequalities

B.1. Proof of Theorem 7

Let K ≤ n and M ≤ n. Then

γn(ĝ) + pen(n, M̂, K̂l.s.) ≤ γn(ĝK,M ) + pen(n,M,K)

≤ γn(g∗K,M ) + pen(n,M,K)

where the first inequality comes from the definition of (K̂l.s., M̂) and the second from the
definition of ĝK,M . Therefore,

γn(ĝ)− γn(g∗K,M ) ≤ pen(n,M,K)− pen(n, M̂, K̂l.s.).

By definition of ν (equation 4),

γn(t1)− γn(t2) = ‖t1 − g∗‖22 − ‖t2 − g∗‖22 − 2ν(t1 − t2)

so that

‖ĝ − g∗‖22 ≤ ‖g∗K,M − g∗‖22 + pen(n,M,K)− pen(n, M̂, K̂l.s.)

+ 2ν(ĝM̂,K̂l.s.
− g∗K,M )

Now we want to control the ν term. By linearity,

ν(ĝK̂l.s.,M̂
− g∗K,M ) = ν(ĝK̂l.s.,M̂

− g∗) + ν(g∗ − g∗K,M )

Using the definition of ZK,M (equation 5), we get that{
|ν(ĝK̂l.s.,M̂

− g∗)| ≤ ZK̂l.s.,M̂
(g∗)(‖ĝK̂l.s.,M̂

− g∗‖22 + x2
K̂l.s.,M̂

)

|ν(g∗K,M − g∗)| ≤ ZK,M (g∗)(‖g∗K,M − g∗‖22 + x2
K,M )

so that, using Lemma 16, for all n ≥ n0 and x > 0, with probability larger than 1− e−x,
for all M ≤ n and K ≤ n,

|ν(ĝK̂l.s.,M̂
− g∗K,M )| ≤ 1

4
‖ĝ − g∗‖22 +

1

4
‖g∗K,M − g∗‖22 +A

x

n

+
1

2
pen(n, M̂, K̂l.s.) +

1

2
pen(n,M,K)

so that

‖ĝ − g∗‖22 ≤‖g∗K,M − g∗‖22 + 2pen(n,M,K)

+
1

2
‖ĝ − g∗‖22 +

1

2
‖g∗K,M − g∗‖22 + 2A

x

n
,
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which means that

1

2
‖ĝ − g∗‖22 ≤

3

2
‖g∗K,M − g∗‖22 + 2pen(n,M,K) + 2A

x

n

and finally

‖ĝ − g∗‖22 ≤4 inf
K≤n,M≤n

{‖g∗K,M − g∗‖22 + pen(n,M,K)}+ 4A
x

n

which is the expected inequality.

B.2. Proof of equation 1

First, decompose the difference in three terms.

‖gπ1,Q1,f1 − gπ2,Q2,f2‖2 ≤ ‖gπ1,Q1,f1 − gπ2,Q1,f1‖2 + ‖gπ2,Q1,f1 − gπ2,Q2,f1‖2
+ ‖gπ2,Q2,f1 − gπ2,Q2,f2‖2

Then we can control each term separately. Let (ϕm)m∈N∗ be an orthonormal basis of
∪MPM .

‖gπ1,Q,f − gπ2,Q,f‖22 =

∥∥∥∥∥ ∑
k∈XL

(π1 − π2)k1
Qk1,k2

. . .QkL−1,kL

L⊗
i=1

fki

∥∥∥∥∥
2

2

=
∑

m∈(N∗)L

( ∑
k∈XL

(π1 − π2)k1
Qk1,k2

. . .QkL−1,kL

L∏
i=1

〈fki , ϕmi〉

)2

≤
∑

k∈XL
(π1 − π2)2

k1
Qk1,k2

. . .QkL−1,kL

×
∑

k′∈XL
Qk′1,k

′
2
. . .Qk′L−1,k

′
L

L∏
i=1

∑
mi∈N∗

〈fk′i , ϕmi〉
2

using Cauchy-Schwarz inequality. Then, since
∑
mi∈N∗〈fk′i , ϕmi〉

2 = ‖fk′i‖
2
2 ≤ C2

F,2 by
[HF] and Q is a transition matrix, we get that

‖gπ1,Q,f − gπ2,Q,f‖22 ≤ KC2L
F,2‖π1 − π2‖2

A similar decomposition leads to

‖gπ,Q1,f − gπ,Q2,f‖22 ≤ (L− 1)KC2L
F,2‖Q1 −Q2‖2F

and

‖gπ,Q,f1 − gπ,Q,f2‖22 ≤ LKC
2(L−1)
F,2

∑
k∈X

‖(f1)k − (f2)k‖22

These inequalities remain true if the states of the second set of parameters are swapped.
Then, we use that CF,2 ≥ 1 by [HF] to conclude.
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B.3. Proof of Lemma 8

In the following, we will identify the quadratic form M derived from the second order
expansion of x 7→ N(x) and its matrix. Likewise, we will identify the quadratic form MC

derived from the second order expansion of x 7→ N(IC(x)) with its matrix. Without loss
of generality, one can assume L = 3.

Choice of parameters and expression of M . Let π ∈ ∆K∗ be the uniform distri-
bution on X , Q = IdK∗ and f such that 〈fi, fj〉 = F1i=j for some constant F > 0. For
instance, the fi’s are F times the indicating functions of distinct measurable sets with
same measure 1

F for µ. In that case, (fi/
√
F )i is an orthonormal basis, and the quantity

gπ+p,Q+q,f+Af − gπ,Q,f can be broken down into three order one terms in p, q and A:

• the term in p:
∑
i pifi ⊗ fi ⊗ fi ;

• the term in q:
∑
i,k q(i, k)fi ⊗ (fi + fk)⊗ fk ;

• the term in A:
∑
i ((Af)i ⊗ fi ⊗ fi + fi ⊗ (Af)i ⊗ fi + fi ⊗ fi ⊗ (Af)i).

Now we can make the list of all second-order terms in the expansion of the quantity
‖gπ+p,Q+q,f+Af − gπ,Q,f‖22:

• p and p: F 3
∑
i p

2
i ;

• p and q: 2F 3
∑
i piq(i, i) ;

• p and A: 3F 3
∑
i piAi,i ;

• q and q: 2F 3
∑
i,k q(i, k)2 + 2F 3

∑
i q(i, i)

2 ;

• q and A: F 3
∑
i,k q(i, k)Ak,i + F 3

∑
i,k q(i, k)Ai,k + 4F 3

∑
i q(i, i)Ai,i ;

• A and A: 6F 3
∑
iA

2
i,i + 3F 3

∑
i,k A

2
i,k.

We can now write the matrix M . In order to clarify the structure of this matrix, let
us swap the components of the parameters (p, q, A) and consider the new parameters
(Adiag, Aelse, p, qdiag, qelse), where Adiag (resp. qdiag) is a vector of size K∗ containing the
diagonal coefficients of A (resp. q) and Aelse (resp. qelse) contains its other coefficients.
Then the matrix is:

Mswapped = F 3


9IdK∗ 0 3IdK∗ 6IdK∗ 0

0 3IdK∗(K∗−1) 0 0 X
3IdK∗ 0 IdK∗ 2IdK∗ 0
6IdK∗ 0 2IdK∗ 4IdK∗ 0

0 X 0 0 2IdK∗(K∗−1)

 ,

where X[(Ai,j)i 6=j ] = (Ai,j +Aj,i)i 6=j .

Kernel of M . Substracting the first block of lines to the third and fourth blocks of
lines and then the first block of columns to the third and fourth blocks of columns does
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not change the rank and leads to the matrix

F 3


9IdK 0 0 0 0

0 3IdK(K−1) 0 0 X
0 0 0 0 0
0 0 0 0 0
0 X 0 0 2IdK(K−1)


Thus dim(Ker(M)) ≥ 2K, where Ker(M) is the kernel of M and dim denotes the dimen-
sion. If one takes away the lines and columns corresponding to p and qdiag, one gets the
matrix

F 3

 9IdK∗ 0 0
0 3IdK∗(K∗−1) X
0 X 2IdK∗(K∗−1)

 .

This matrix is invertible. Therefore, dim(Ker(M)) = 2K. Now, for all i ∈ [K∗], let e1
i

and e2
i be the vectors defined as

(e1
i )pk = 0 for all k

(e1
i )Ak,l = 0 for all (k, l) 6= (i, i)

(e1
i )q(k,l) = 0 for all (k, l) 6= (i, i)

(e1
i )Ai,i = 2

(e1
i )q(i,i) = −3

and 

(e2
i )pk = 0 for all k 6= i

(e2
i )Ak,l = 0 for all (k, l) 6= (i, i)

(e2
i )q(k,l) = 0 for all (k, l)

(e2
i )Ai,i = 1

(e2
i )pi = −3

One can easily check that these vectors are linearly independant and are all in Ker(M).
Thus, they are a basis of the kernel of M : Ker(M) = Span({e1

i , e
2
i | i ∈ [K]}).

Nondegeneracy of M restricted on C. Since M is symmetric, and thus diagonalis-
able in an orthonormal basis,

M = P>Ker(M)⊥MKer(M)⊥PKer(M)⊥ (6)

where PKer(M)⊥ is the orthogonal projection on the space of vectors orthogonal to Ker(M)
and MKer(M)⊥ is a symmetric positive definite matrix, whose smallest eigenvalue will be
written c0 in the following. The last step to conclude will require the two following
lemmas:

Lemma 18. Ker(M) ∩ C = {0}.
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Proof. Let x ∈ Ker(M) ∩ C, then x =
∑
i(λie

1
i + µie

2
i ) because (e1

i , e
2
i )i is a basis of

Ker(M). Since x ∈ C, one gets λi = 0 for all i because of the conditions on q. Then, the
conditions on A imply µi = 0 for all i, so that x = 0.

Lemma 19. There exists a constant κ > 0 such that for all x ∈ C,

‖PKer(M)⊥x‖2F ≥ κ‖x‖2F . (7)

Proof. PKer(M)⊥ is continuous. By compacity, the quantity

κ := inf{‖PKer(M)⊥x‖2F |x ∈ C, ‖x‖2F = 1}

is reached for some x0 ∈ C \ {0}. If κ = 0, then x0 ∈ Ker(M), but this is impossible
because of Lemma 18. Therefore κ > 0.

Finally, for all x ∈ C,

x>Mx =x>P>Ker(M)⊥MKer(M)⊥PKer(M)⊥x

=(PKer(M)⊥x)>MKer(M)⊥(PKer(M)⊥x)

≥c0‖PKer(M)⊥x‖2F
≥c0κ‖x‖2F .

Therefore, the quadratic form with matrix M is nondegenerate on C, which shows that
H is non-zero for these (π,Q, f). To conclude, observe that H is continuous and that our
choice of parameters can be approximated by parameters satisfying [HX] and [HidA].

B.4. Proof of Theorem 9

First, assume that the quadratic form obtained from the second order expansion of

D : (p, q,h) ∈ {(p, q, Af) | (p, q, A) ∈ C} 7−→ ‖gπ+p,Q+q,f+h − gπ,Q,f‖22

is nondegenerate. Then, a careful reading of the proof of Theorem 8 of de Castro, Gassiat
and Lacour (2016) shows that their result can be adapted to our setting and leads to the
desired minoration.

Thus, what we need to show is that [Hdet] (which implied the nondegeneracy of the
quadratic form from N) implies the nondegeneracy of the quadratic form from D (the
trick being that D takes h = Af as parameter while N takes A). Assume [Hdet], then
there exists c0 > 0 such that

QuadN(p, q, A) ≥ c0(‖p‖22 + ‖Q‖2F + ‖A‖2F )

with the notation QuadN referring to the quadratic form in the second order expansion
of N.
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Since [HidA] holds, f is linearly independent, so that the application J : A ∈
RK∗×K∗ 7−→ Af ∈ Span(f)K

∗
is invertible. Thus, h 7−→

∑
i∈X ‖hi‖22 and h 7−→ ‖J−1(h)‖2F

are two norms on the same finite-dimensional linear space Span(f)K
∗
, so that they

are equivalent. In particular, there exists a constant c1 ≤ 1 such that ‖J−1(h)‖2F ≥
c1
∑
i∈X ‖hi‖22. Therefore,

QuadD(p, q,h) = QuadN(p, q, J−1(h))

≥ c0c1

(
‖p‖22 + ‖Q‖2F +

∑
i∈X
‖hi‖22

)
,

which is what we wanted to prove.

Appendix C: Proof of the control of ZK,M

This section contains the proof of Lemma 16.

C.1. Concentration inequality on ZK,M(s)

Define for all σ > 0 the sets

Bσ = {t ∈ SK,M , CL/2F,∞‖t− sK,M‖2 ≤ σ}

Let dg∗ be the semi-distance defined by d2
g∗(t1, t2) = E[(t1 − t2)2(Z1)] =

∫
g∗(t1 −

t2)2dµ⊗L, and d2 the distance induced by the norm on L2(YL, µ⊗L).
Let N(ε, A, d) = eH(ε,A,d) denote the minimal cardinality of a covering of A by brackets

of size ε for the semi-distance d, that is by sets [t1, t2] = {t : YL 7→ R , t1(·) ≤ t(·) ≤ t2(·)}
such that d(t1, t2) ≤ ε. H(·, A, d) is called the bracketing entropy of A for the semi-
distance d.

The following lemma is a Bernstein-like inequality that follows from Paulin (2013),
Theorem 2.4:

Lemma 20. Let t be a real valued and measurable bounded function on YL. Let V =
E[t2(Z1)]. There exists a positive constant c∗ depending only on Q∗ and L such that for
all 0 ≤ λ ≤ 1/(2

√
2c∗‖t‖∞) and for all n ∈ N:

logE exp

[
λ

n∑
s=1

(t(Zs)− Et(Zs))

]
≤ 2nc∗V λ2

1− 2
√

2c∗‖t‖∞λ

The following lemma is an extension of Theorem 6.8 from Massart (2007) and allows
to obtain a concentration inequality on the supremum on all functions of a class when
one can control its bracketing entropy.
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Lemma 21. Let Ξ be some measurable space, (ξi)1≤i≤n a sequence of random variables
on Ξ, T some countable class of real valued and measurable functions on Ξ. Assume that
there exists some positive numbers a and b such that for all t ∈ T , ‖t‖∞ ≤ b and
supi E[t2(ξi)] ≤ a2.

Assume also that there exists some constant Cξ ≥ 1/4 such that for all 0 ≤ λ ≤
1/(2
√

2Cξb) and for all t ∈ T :

logE exp

[
λ

n∑
s=1

(t(ξs)− Et(ξs))

]
≤ 2nCξa

2λ2

1− 2
√

2Cξbλ
(8)

Assume furthermore that for any positive number δ, there exists some finite set Bδ of
brackets covering T such that for any bracket [t1, t2] ∈ Bδ, ‖t1−t2‖∞ ≤ b and supi E[(t1−
t2)2(ξi)] ≤ δ2. Let eH(δ) denote the minimal cardinality of such a covering. Then, there
exists a numerical constant κ > 0 such that for any measurable set A such that P(A) > 0,

EA
(

sup
t∈T

n∑
s=1

(t(ξs)− Et(ξs))

)
≤ κCξ

[
E + a

√
n log

(
1

P(A)

)
+ b log

(
1

P(A)

)]
where

E =
√
n

∫ a

0

√
H(u) ∧ ndu+ (b+ a)H(a)

and for any measurable random variable W , EA[W ] = E[W1A]/P(A).

Comment. The assumption Cξ ≥ 1/4 is only used to factorise the upper bound by Cξ.
Without it, the upper bound would be

κ′

[
E + a

√
Cξn log

(
1

P(A)

)
+ bCξ log

(
1

P(A)

)]

In practice, this assumption doesn’t cost anything: if equation (8) holds for some con-
stant Cξ, then it holds for any constant C ′ ≥ Cξ.

We will apply this lemma to Ξ = YL and ξi = Zi. Using Lemma 20, equation (8)
holds with Cξ = max(c∗, 1/4).

Take T = (Bσ − sK,M )
⋃

(−Bσ + sK,M ), so that sup
t∈T

ν(t) = sup
t∈Bσ
|ν(t− sK,M )|. Then,

one can check using Lemma 28 that the assumptions ‖t‖∞ ≤ b and supi E[t2(ξi)] ≤ a2

hold with

• b = 2CLF,∞

• a = 2 min(σ,C
L/2
F,∞C

L
F,2)

and H(u) ≤ log(2) +H(u,Bσ − sK,M , dg∗).
We can do without assuming T to be countable. Indeed, ν is continuous on T equipped

with the infinity norm. This entails that the supremum of ν over T is equal to the
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supremum of ν over any dense subset of (T , ‖ · ‖∞). Since T ⊂ (PM )⊗L, which is a finite
dimensional metric linear space for the infinity norm, it is separable. Therefore, without
loss of generality, we can get rid of the countability assumption on T .

Rewriting these results, we get the following lemma:

Lemma 22. There exists a constant C∗ depending only on Q∗ and L such that for all
σ > 0, for all measurable A such that P(A) > 0:

EA
(

sup
t∈Bσ
|ν(t− sK,M )|

)
≤ C∗

[
E

n
+ σ

√
1

n
log

(
1

P(A)

)
+

2CLF,∞
n

log

(
1

P(A)

)]

where

E =
√
n

∫ σ

0

√
H(u,Bσ − sK,M , dg∗) ∧ ndu+ log(2)σ

√
n

+ 2(CLF,∞ + C
L/2
F,∞C

L
F,2)H(σ,Bσ − sK,M , dg∗)

The core of the proof consists in controlling the bracketing entropy in order to find
a ”good” function ϕ and constants C and σK,M depending on CF,2, CF,∞ and L such

that x 7→ ϕ(x)
x is nonincreasing and

∀σ ≥ σK,M E ≤ Cϕ(σ)
√
n. (9)

For ease of notation, we did not write the dependency of C and ϕ on K and M .
Let us see how to conclude with such an inequality. We shall use the following result

(lemma 4.23 from Massart (2007)).

Lemma 23. Let S be some countable set, u ∈ S and a : S 7→ R+ such that a(u) =
inft∈S a(t). Let Z be some process indexed by S and assume that supt∈B(λ) Z(t) − Z(u)
has finite expectation for any positive number λ ≥ 0, where

B(λ) = {t ∈ S, a(t) ≤ λ}

Then, for any function φ on R+ such that x 7→ φ(x)/x is nonincreasing on R+ and
satisfies for some λ∗ ≥ 0 to

∀λ ≥ λ∗ ≥ 0, E

[
sup

t∈B(λ)

Z(t)− Z(u)

]
≤ φ(λ)

one has for any x ≥ λ∗ :

E
[
sup
t∈S

(
Z(t)− Z(u)

a(t)2 + x2

)]
≤ 4

φ(x)

x2
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In our case,

S = SK,M − sK,M
u = sK,M

a(t) = C
L/2
F,∞‖t− sK,M‖2

Z(t) = |ν(t− sK,M )|
λ∗ = σK,M

φ(x) = C∗

[
C
ϕ(x)√
n

+ x

√
1

n
log

(
1

P(A)

)
+

2CLF,∞
n

log

(
1

P(A)

)]
With this choice of S, a and Z, this proposition holds even if S is not countable for the
same reason as in Lemma 22.

It follows that for all x ≥ σK,M :

EA
[

sup
t∈SK,M

|ν(t− sK,M )|
CLF,∞‖t− sK,M‖22 + x2

]
≤ 4

φ(x)

x2
,

so that if xK,M ≥ σK,M

C
L/2
F,∞

:

EA[ZK,M (s)] ≤ 4
φ(xK,MC

L/2
F,∞)

x2
K,M

and then

EA[ZK,M (s)] ≤4
C∗

x2
K,M

[
C
ϕ(xK,MC

L/2
F,∞)

√
n

+ xK,MC
L/2
F,∞

√
1

n
log

(
1

P(A)

)

+
2CLF,∞
n

log

(
1

P(A)

)]

=:ψ

(
log

(
1

P(A)

))
Note that the function ψ is nondecreasing. On the event A = {ZK,M (s) ≥ ψ(x)},

ψ(x) ≤ EA[ZK,M (s)] ≤ ψ
(

log

(
1

P(A)

))
so that x ≤ log

(
1

P(A)

)
and finally P(A) ≤ e−x.

It follows that with probability 1− e−zK,M−z:

ZK,M (s) ≤ 4C∗

[
C
ϕ(xK,MC

L/2
F,∞)

x2
K,M

√
n

+ C
L/2
F,∞

√
zK,M + z

x2
K,Mn

+ 2CLF,∞
zK,M + z

x2
K,Mn

]
(10)

and the last step of the proof will be to choose the right xK,M and zK,M (see Section
C.3).
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C.2. Control of the bracketing entropy

The goal of this section is to prove equation (9), that is to find ϕ, C and σK,M such that

∀σ ≥ σK,M E ≤ Cϕ(σ)
√
n.

The bracketing entropy is invariant under translation and increasing with respect to
the inclusion relation, so

H(u,Bσ − sK,M , dg∗) = H(u,Bσ, dg∗) ≤ H(u, SK,M , dg∗)

Using Lemma 28, we get that for all t ∈ L2(YL,R),
∫
t2g∗dµ ≤ CLF,∞‖t‖22. Therefore, a

bracket of size u/C
L/2
F,∞ for d2 is also a bracket of size u for dg∗ , which implies that

H(u,Bσ − sK,M , dg∗) ≤ H

(
u

C
L/2
F,∞

, SK,M , d2

)
(11)

Let us now rewrite the definition of SK,M :

SK,M =

 ∑
k∈{1,...,K}L

πk1

L∏
i=2

Qki−1,ki

L⊗
i=1

fki , Q ∈ QK , πQ = π, f ∈ (F ∩PM )K


⊂

 ∑
k∈{1,...,K}L

µkφk, µ ∈ U , φ ∈ Φ


where
U =

{
(πk1

L∏
i=2

Qki−1,ki)k1,...,kL , Q transition matrix K ×K, π ≥ 0, π ∈ SK−1

}

Φ =

{
(

L⊗
i=1

fki)k1,...,kL , f ∈ (F ∩PM )K

}
U is equipped with the distance d2(a, b) = (

∑
k(bik − aik)2)1/2. A bracket for U will be a

set [a, b] = {c | ∀k ∈ {1, . . . ,K}L, ak ≤ ck ≤ bk}.
Φ is equipped with the distance d∞,2(u, v) = maxk ‖vik − uik‖2. A bracket Φ will be a

set [u, v] = {t | ∀k ∈ {1, . . . ,K}L, uk(·) ≤ tk(·) ≤ vk(·)}.
Controlling the bracketing entropy on each of these sets will allow to control the

bracketing entropy of SK,M . Let us start with them:

Lemma 24. There exists a bracket covering {[ai, bi]}1≤i≤NU (ε) of size ε of U for the
distance d2 with cardinality

NU (ε) ≤ max

(
2LKL/2

ε
, 1

)K2−1

(12)

such that for all i and k, 0 ≤ aik ≤ 1.
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Lemma 25. There exists a bracket covering {[ui, vi]}1≤i≤NΦ(ε) of size ε of Φ for the
distance d∞,2 of cardinality

NΦ(ε) ≤ max

(
L(4CF,2M)L

ε
, 1

)MK

(13)

such that
max
i

max
k
‖vik‖22 ≤ (8M2C2

F,2)L.

Let us take such bracketings and consider the following set of brackets:{[∑
k

Ai,jk ,
∑
k

Bi,jk

]}
1≤i≤NU (ε),1≤j≤NΦ(ε)

where

∀y ∈ YL,

{
Ai,jk (y) = min{aiku

j
k(y), bikv

j
k(y)}

Bi,jk (y) = max{aiku
j
k(y), bikv

j
k(y)}

.

This set covers SK,M : for all µ ∈ U , φ ∈ Φ, there exists i ∈ {1, . . . , NU (ε)} and
j ∈ {1, . . . , NΦ(ε)} such that µ ∈ [ai, bi] and φ ∈ [uj , vj ], and then by construction∑

k µkφk ∈ [
∑

kA
i,j
k ,
∑

k B
i,j
k ].

Let us now bound the size of these brackets. Let [a, b] ∈ {[ai, bi]}1≤i≤NU (ε) and [u, v] ∈
{[ui, vi]}1≤i≤NΦ(ε), then if one denotes by [A,B] the corresponding bracket, there exists

(σk)k ∈ {−1, 1}KL

such that:∥∥∥∥∥∑
k

Ak −
∑
k

Bk

∥∥∥∥∥
2

2

=

∥∥∥∥∥∑
k

σk(bkvk − akuk)

∥∥∥∥∥
2

2

≤

∥∥∥∥∥∑
k

|bkvk − akuk|

∥∥∥∥∥
2

2

≤ KL
∑
k

‖akuk − bkvk‖22

= KL
∑
k

‖(ak − bk)vk + ak(uk − vk)‖22

≤ 2KL

(∑
k

‖(ak − bk)vk‖22 +
∑
k

‖ak(uk − vk)‖22

)

= 2KL

(∑
k

(ak − bk)2‖vk‖22 +
∑
k

a2
k‖uk − vk‖22

)
.
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Then, by definition of the brackets, ‖uk − vk‖22 ≤ ε2 and
∑

k(ak − bk)2 ≤ ε2. In
addition, we assumed |ak| ≤ 1 and ‖vk‖22 ≤ (8M2C2

F,2)L for all k, so that

‖
∑
k

Ak −
∑
k

Bk‖22 ≤ 2KLε2((8M2C2
F,2)L +KL),

which implies

N(ε, SK,M , d2) ≤ NU

 ε√
2KL(KL + (8M2C2

F,2)L)


×NΦ

 ε√
2KL(KL + (8M2C2

F,2)L)

 , (14)

and finally by combining 11, 12, 13 and 14:

H(u,Bσ − sK,M , dg∗) ≤ (K2 − 1) log max

CL/2F,∞
√

2KL(KL + (8M2C2
F,2)L)2LKL/2

u
, 1


+MK log max

CL/2F,∞
√

2KL(KL + (8M2C2
F,2)L)L(4CF,2M)L

u
, 1


≤ (MK +K2 − 1) log max

CL/2F,∞
√

2(KL + (8M2C2
F,2)L)LKL(4CF,2M)L

u
, 1


≤ (MK +K2 − 1) log max

CL/2F,∞
√

2(nL + (8C2
F,2)Ln2L)nnL(4CF,2)LnL

u
, 1


≤ (MK +K2 − 1) log max

(
C
L/2
F,∞2(8C2

F,2)L/2nLnnL(4CF,2)LnL

u
, 1

)

≤ (MK +K2 − 1) log max

(
2(16C

1/2
F,∞C

2
F,2)Ln3L+1

u
, 1

)

≤ (MK +K2 − 1) log max

(
n6L

u
, 1

)
for n large enough (n ≥ n0 := 16C

1/2
F,∞C

2
F,2) because we assumed M ≤ n, K ≤ n, L ≤ n,

CF,2 ≥ 1 and CF,∞ ≥ 1. Thus, Lemma 29 implies that if we write C0 =
√
π and

ϕ(σ) = C0σ
√
MK +K2 − 1

(
1 +

√
log

(
max

{
n6L

σ
, 1

}))
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then for all n ≥ n0 and σ > 0,
σ2H(σ, SK,M , d2) ≤ ϕ(σ)2∫ σ

0

√
H(u, SK,M , d2)du ≤ ϕ(σ)

log(2)σ ≤ ϕ(σ)

Let us now check that this function ϕ satisfies equation (9). First, note that x 7→ ϕ(x)
x is

nonincreasing, so that x 7→ ϕ(x)
x2 is also nonincreasing. Thus, we may define σK,M as the

unique solution of the equation ϕ(x) =
√
nx2, and then for all σ ≥ σK,M :

H(σ,Bσ − sK,M , dg∗) ≤
ϕ(σ)2

σ2
≤ ϕ(σ)

σ
σ
√
n = ϕ(σ)

√
n

Equation (9) follows immediately with C = 2(1 + CLF,∞ + C
L/2
F,∞C

L
F,2).

Proof of Lemma 24 Let ε ∈ (0, 2).
We start with the family {[k/n, (k + 1)/n], k ∈ {0, . . . , n − 1}} with n an integer

between 1/ε and 2/ε, which gives a bracket covering of size ε of [0, 1] with cardinality
smaller than 2/ε. These brackets will be used to control each free component of Q and
π, that is K2 − 1 components.

More precisely, we define the following bracket set:

{
[A,B] | Ak =

1

nL
pk1

L∏
i=2

aki−1,ki , Bk =
1

nL
(pk1

+ 1)

L∏
i=2

(aki−1,ki + 1),

p ∈ {0, . . . , n− 1}K−1,

K−1∑
k=1

pk < n, pK = n−
K−1∑
k=1

(pk + 1),

a ∈ {0, . . . , n− 1}K×(K−1), ∀i ∈ {1, . . . ,K},
K−1∑
k=1

ai,k < n and

ai,K = n−
K−1∑
k=1

(ai,k + 1)
}
.

This set covers U and its cardinality is smaller than

(
2

ε

)K2−1

. To get the bracket’s size,
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note that

∑
k∈{1,...,K}L

(
1

nL
pk1

L∏
i=2

aki−1,ki −
1

nL
(pk1

+ 1)

L∏
i=2

(aki−1,ki + 1)

)2

=
1

n2L

∑
k∈{1,...,K}L

 L∏
i=2

aki−1,ki +

L∑
j=2

pk1

∏
i6=j,i≥2

aki−1,ki

2

≤ L2n2L−2KL

n2L

≤ L2KLε2,

and in the end

N(u,U , d2) ≤ max

(
LKL/2

u
, 1

)K2−1

.

Proof of Lemma 25 All f ∈ F∩PM can be written as
∑M
m=1 λmϕm where (ϕm)m∈{1,...,M}

is an orthonormal basis of PM . Then, assumption [HF] implies that |λm| ≤ CF,2 for all
m ∈ {1, . . . ,M}.

We will therefore start from a bracket covering of the euclidian ball of radius CF,2 of
RM , from which we will construct a covering of F ∩PM and of Φ.

Lemma 26. Let ε ∈ (0, 4). There exists a bracket covering {[ai, bi]}1≤i≤NM of size ε of
the euclidian ball of radius CF,2 of RM with cardinality

NM ≤ max

(
4CF,2

√
M

ε
, 1

)M
such that for all m ∈ {1, . . . ,M}, i ∈ {1, . . . , NM}, −CF,2 ≤ aim ≤ bim ≤ CF,2.

Proof. We start with a bracket covering of size ε/
√
M of the infinity ball of radius CF,2

of RM . This can be done by a regular partition with max(d2CF,2/εe, 1) pieces along each
coordinate. One can easily check that such a covering is also a covering of size ε of the
euclidian ball of radius CF,2 of RM . To conclude, it is enough to notice that dxe ≤ 2x as
soon as x > 1/2, and that 2CF,2/ε > 1/2 because CF,2 ≥ 1 and ε < 4.

Let {[ai, bi]}1≤i≤NM be such a covering. For all m ∈ {1, . . . ,M}, i ∈ {1, . . . , NM} and
y ∈ Y, let

uim(y) =

{
aim if ϕm(y) ≤ 0

bim otherwise

vim(y) = aim + bim − uim(y)
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and for all i ∈ {1, . . . , NM} and y ∈ Y,
U i1(y) =

M∑
m=1

uim(y)ϕm(y)

U i2(y) =

M∑
m=1

vim(y)ϕm(y)

and finally for all i = (i1, . . . , iK) ∈ {1, . . . , NM}K and k = (k1, . . . , kL) ∈ {1, . . . ,K}L:
(V i)k = min


L⊗
β=1

U
ikβ
σβ ; σ ∈ {1, 2}L


(W i)k = max


L⊗
β=1

U
ikβ
σβ ; σ ∈ {1, 2}L


.

It is enough to show that {[V i,W i], i ∈ {1, . . . , NM}K} is a bracket covering of size
L(4CF,2M)L−1

√
Mε of Φ that satisfies

max
i

max
k

∫
(W i

k)2dµ⊗L ≤ (8M2C2
F,2)L.

Applying the Cauchy-Schwarz inequality, one gets that for all i ∈ {1, . . . , NM},

‖U i2 − U i1‖22 = ‖
M∑
m=1

|bim − aim|.|ϕm|‖22

≤M‖bi − ai‖22
≤Mε2.

Moreover, for all i ∈ {1, . . . , NM} and σ ∈ {1, 2},

‖U iσ‖22 ≤ ‖
M∑

mi=1

|bim + aim|.|ϕm|‖22

≤ 2M(‖ai‖22 + ‖bi‖22)

≤ 4M2C2
F,2.

We then use that for all i ∈ {1, . . . , NM}K and k ∈ {1, . . . ,K}L,

|W i
k − V i

k|(y) ≤
L∑
γ=1

∣∣∣U ikγ2 − U ikγ1

∣∣∣ (yγ) max
j∈{1,2}L

L∏
β 6=γ,β=1

∣∣∣U ikβjβ ∣∣∣ (yβ)

≤
L∑
γ=1

∣∣∣U ikγ2 − U ikγ1

∣∣∣ (yγ)

L∏
β 6=γ,β=1

(∣∣∣U ikβ1

∣∣∣+
∣∣∣U ikβ2

∣∣∣) (yβ)
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so that

‖W i
k − V i

k‖22 ≤L
L∑
γ=1

∥∥∥U ikγ2 − U ikγ1

∥∥∥2

2

L∏
β 6=γ,β=1

2

(∥∥∥U ikβ1

∥∥∥2

2
+
∥∥∥U ikβ2

∥∥∥2

2

)

≤L2L−1
L∑
γ=1

Mε2
L∏

β 6=γ,β=1

(2× 4M2C2
F,2)

=L2(16M2C2
F,2)L−1Mε2

=(L(4CF,2M)L−1
√
Mε)2

and finally d∞,2(W i, V i) ≤ L(4CF,2M)L−1
√
Mε for all i ∈ {1, . . . , NM}K .

The last part of the lemma is proved by noting that for all i and k,

(W i)2
k = max{

L⊗
β=1

(U
ikβ
σβ )2; σ ∈ {1, 2}L}

≤
∑

σ∈{1,2}L

L⊗
β=1

(U
ikβ
σβ )2,

so that ∫
(W i)2

kdµ⊗L ≤
∑

σ∈{1,2}L

L∏
β=1

‖U
ikβ
σβ ‖22

≤
∑

σ∈{1,2}L
(4M2C2

F,2)L

≤ (8M2C2
F,2)L.

C.3. Choice of parameters

Let us come back to equation (10). Since x 7→ ϕ(x)
x is nonincreasing, one has

ϕ(xK,MC
L/2
F,∞)

xK,M
√
n
≤

σK,MC
L/2
F,∞ as soon as xK,M ≥ σK,M

C
L/2
F,∞

, so with probability 1− e−zK,M−z:

ZK,M (s) ≤ 4C∗

[
CC

L/2
F,∞

σK,M
xK,M

+ C
L/2
F,∞

√
zK,M + z

x2
K,Mn

+ 2CLF,∞
zK,M + z

x2
K,Mn

]
.

Let C ′ = C∗max(C, 1)CLF,∞. One gets

ZK,M (s) ≤ 4C ′

[
σK,M
xK,M

+

√
zK,M + z

x2
K,Mn

+
zK,M + z

x2
K,Mn

]
.
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Let xK,M = θ−1
√
σ2
K,M +

zK,M+z
n with θ such that 2θ + θ2 ≤ 1/(16C ′). Then, with

probability 1− e−zK,M−z:

ZK,M (s) ≤ 4C ′(θ + θ + θ2) ≤ 1

4

Now choose zK,M = M + K, it follows that
∑
K∈N∗,M∈M e−zK,M ≤ (e − 1)−2 ≤ 1 and

the first point of the lemma is proved.
Moreover, one has with probability 1− e−z, for all K,M :

ZK,M (s)x2
K,M ≤ 4C ′

[
σK,MxK,M + xK,M

√
zK,M + z

n
+
zK,M + z

n

]

≤ 4C ′
[
2θx2

K,M +
zK,M + z

n

]
= 4C ′

[
2θ−1σ2

K,M + (2θ−1 + 1)
M +K

n
+ (2θ−1 + 1)

z

n

]
Let A = 4C ′(2θ−1 + 1). We get that with probability 1− e−z, for all K,M :

ZK,M (s)x2
K,M ≤ A

[
σ2
K,M +

M +K

n
+
z

n

]
Therefore the lemma holds as soon as

∀K ≤ n, ∀M ≤ n, p̃en(n,M,K) ≥ A
[
σ2
K,M +

M +K

n

]
(15)

Lemma 27. There exists constants C1 and n1 such that for all n ≥ n1:

σK,M ≤ C1

√
MK +K2 − 1

n
(1 +

√
log(n))

Proof. Let x(C) = C
√

MK+K2−1
n (1 +

√
log(n)).

σK,M is defined by the equation ϕ(x)
x2
√
n

= 1. The function x 7→ ϕ(x)
x2 is nondecreasing,

so it is enough to show that ϕ(x(C))
x(C)2

√
n
≤ 1 for some constant C that we can assume to be

greater than 1.

It is easy to check that there exists a constant n1 such that for all n ≥ n1, ϕ(n6L)
(n6L)2

√
n
≤ 1,
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so that σK,M ≤ n6L, which makes it possible to assume x(C) ≤ n6L. Then

ϕ(x(C))

x(C)2
√
n

=
C0

C

1 +

√
log

(
n6L+1/2

C
√

(MK+K2−1)
(

1+
√

log(n)
))

1 +
√

log(n)

≤ C0

C

1 +
√

log(n7L)

1 +
√

log(n)

=
C0

C

1 +
√

7L
√

log(n)

1 +
√

log(n)

and by taking C1 = max(C0

√
7L, 1), one gets that

ϕ(x(C1))

x(C1)2
√
n
≤ 1

which means that σK,M ≤ x(C1).

The condition of equation (15) becomes

p̃en(n,M,K) ≥ A

[
C2

1 (MK +K2 − 1)(1 +
√

log(n))2 +M +K

n

]

which is implied by

p̃en(n,M,K) ≥ ρ(MK +K2 − 1)
log(n)

n

for some constant ρ depending only on CF,2, CF,∞, Q∗ and L. This concludes the proof.

Appendix D

D.1. Proof of Proposition 6

Let m ≥ 3. Note r = m
m−1 and K0 = (m − 1)m. One can check that K = K0r

m ≥ 2K0

and K0r
k ∈ N∗ for all k ∈ {0, . . . ,m}.

Denote by n(K) the integer n1 in the hypothesis [Hpen](0, ρ) corresponding to K∗ =
K. Then for all n ≥ supk∈{0,...,m−1} n(K0r

k), for all M and for all k ∈ {1, . . . ,m},

pen(n,M,K0r
k) − pen(n,M,K0r

k−1) ≥ ρ(MK0r
k + K2

0 (r2)k − 1)
log(n)

n
.
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Taking the sum over k ∈ {1, . . . ,m}, one gets that

pen(n,M,K) ≥ ρ
(
M

r

r − 1
(K −K0) +

r2

r2 − 1
(K2 −K2

0 )−m
)

log(n)

n

≥ ρ
(
M

r

r − 1
(K −K0) +

r2

r2 − 1
(K2 − 2K2

0 )

)
log(n)

n

since m ≤ K2
0 = (m− 1)2m. Using that K ≥ 2K0,

pen(n,M,K) ≥ ρ

2

(
r

r − 1
MK +

r2

r2 − 1
K2

)
log(n)

n
.

Let vm = ρ
2 min

(
r
r−1 ,

r2

r2−1

)
. One gets

pen(n,M,K) ≥ vm(MK +K2)
log(n)

n
.

Therefore, there exists a non-decreasing sequence (un)n≥1 such that{
∀n, ∀M ≤ n, ∀K ≤ n, pen(n,M,K) ≥ un(MK +K2 − 1) log(n)

n

∀m, umax(m,supk∈{0,...,m−1} n(K0rk)) ≥ vm
.

and since vm −→∞, we get that un −→∞, which concludes the proof.
We could for instance take

un = max

(
0, sup

{
vi

∣∣∣ i ≤ n s.t. sup
k∈{0,...,i−1}

n(ik(i− 1)i−k) ≤ n

})
.

D.2. Auxiliary lemmas

Lemma 28.

∀t ∈
⋃
K

SK ,


‖t‖∞ ≤ CLF,∞
‖t‖2 ≤ CLF,2
E[t2] ≤ CLF,∞‖t‖22

Proof. t can be written as t = gπ,Q,f with π a probability K-uple, Q a transition matrix
of size K and f ∈ FK for some K ≥ 1.
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The first point follows from

‖t‖∞ =

∥∥∥∥∥∥
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L⊗
i=1

fki

∥∥∥∥∥∥
∞

≤
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

∥∥∥∥∥
L⊗
i=1

fki

∥∥∥∥∥
∞

≤
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L∏
i=1

‖fki‖∞

≤CLF,∞
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

=CLF,∞

For the second point, we use the Cauchy-Schwarz inequality:

‖t‖22 =

∫  K∑
k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L∏
i=1

fki(yi)

2

dµ(y1) . . . dµ(yL)

=

∫ ( K∑
k1,...,kL=1

√√√√π(k1)

L∏
i=2

Q(ki−1, ki)


√√√√π(k1)

L∏
i=2

Q(ki−1, ki)

L∏
i=1

fki(yi)

)2

dµ(y1) . . . dµ(yL)

≤
∫  K∑

k′1,...,k
′
L=1

π(k′1)

L∏
i=2

Q(k′i−1, k
′
i)


 K∑
k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L∏
i=1

f2
ki(yi)

 dµ(y1) . . . dµ(yL)

=

K∑
k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

∫ L∏
i=1

f2
ki(yi)dµ(y1) . . . dµ(yL)

=

K∑
k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)

L∏
i=1

‖fki‖22

≤
K∑

k1,...,kL=1

π(k1)

L∏
i=2

Q(ki−1, ki)C
2L
F,2
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=C2L
F,2

The last point comes from

E[t2] =

∫
g∗t2dµ⊗L

≤
∫
‖g∗‖∞t2dµ⊗L

≤CLF,∞
∫
t2dµ⊗L par le premier point

=CLF,∞‖t‖22

Lemma 29. Let A,B ∈ R∗+. Let H : x ∈ R∗+ 7→ A log max(Bx , 1), and ϕ(x) : x ∈ R∗+ 7→
x
√
πA(1 +

√
log max(Bx , 1)). Then:x

2H(x) ≤ ϕ(x)2∫ x

0

√
H(u)du ≤ ϕ(x)

Proof. The first point is straightforward.
For the second point, we have two cases.

Case 1: x ≤ B. Then H(x) = log(Bx ). Therefore, we can use that
∫ σ

0

√
log(Bx )dx ≤ σ(

√
π+√

log(Bσ )), which is enough to conclude.

Case 2: x ≥ B. Then H(x) = 0 and ϕ(x) = x
√
πA ≥ B

√
πA = ϕ(B). Thus,∫ x

0

√
H(u)du =

∫ B

0

√
H(u)du

≤ ϕ(B)

≤ ϕ(x)
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