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Explicit isogenies in quadratic time in any characteristic

Luca De Feo, Cyril Hugounenq, Jérôme Plût, and Éric Schost

Abstract
Consider two ordinary elliptic curves E,E′ defined over a finite field Fq, and suppose that there
exists an isogeny ψ between E and E′. We propose an algorithm that determines ψ from the
knowledge of E, E′ and of its degree r, by using the structure of the `-torsion of the curves
(where ` is a prime different from the characteristic p of the base field).

Our approach is inspired by a previous algorithm due to Couveignes, that involved computa-
tions using the p-torsion on the curves. The most refined version of that algorithm, due to De
Feo, has a complexity of Õ(r2)pO(1) base field operations. On the other hand, the cost of our
algorithm is Õ(r2) log(q)O(1), for a large class of inputs; this makes it an interesting alternative
for the medium- and large-characteristic cases.

1. Introduction

Isogenies are non-zero morphisms of elliptic curves, that is, non-constant rational maps pre-
serving the identity element. They are also algebraic group morphisms. Isogeny computations
play a central role in the algorithmic theory of elliptic curves. They are notably used to speed
up Schoof’s point counting algorithm [Sch85, Atk88, Sch95, Elk98]. They are also widely
applied in cryptography, where they are used to speed up point multiplication [GLV01, LS14],
to perform cryptanalysis [MMT01], and to construct new cryptosystems [Tes06, CLG09,
Sto10, DFJP14, JS14].

The degree of an isogeny is its degree as a rational map. If an isogeny has degree r, we call
it an r-isogeny, and we say that two elliptic curves are r-isogenous if there exists an r-isogeny
relating them. Accordingly, we say that two field elements j and j′ are r-isogenous if there exist
r-isogenous elliptic curves E and E′ such that j(E) = j and j(E′) = j′. The explicit isogeny
problem has many incarnations. In this paper, we are interested in the variant defined below.

Explicit isogeny problem. Given two j-invariants j and j′, and a positive integer r,
determine if they are r-isogenous. In that case, compute curves E, E′ with j(E) = j and
j(E′) = j′, and the rational functions defining an r-isogeny ψ : E → E′.

A good measure of the computational difficulty of the problem is given by the isogeny
degree r. Indeed the output is represented by O(r) base field elements, hence an asymptotically
optimal algorithm would solve the problem using O(r) field operations. Even though the input
size is logarithmic in r, by a slight abuse we say that an algorithm solves the isogeny problem
in polynomial time if it does so in the size of the output. Thanks to Vélu’s formulas [Vél71],
in particular the version appearing in [Koh96, §2.4], we can compute ψ from the knowledge
of the polynomial h vanishing on the abscissas of the points in kerψ, at the cost of a constant
number of multiplications of polynomials of degree O(r). Given that all known algorithms to
compute h require more than a few polynomial multiplications, we often say that we have
computed ψ whenever we have computed h, and conversely.
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This paper focuses on the explicit isogeny problem for ordinary elliptic curves over finite
fields. A famous theorem by Tate [Tat66] states that two curves are isogenous over a finite field
if and only if they have the same cardinality over that field. The explicit isogeny problem stated
here appears naturally in the Schoof-Elkies-Atkin point counting algorithm (SEA). There, E is
a curve over Fq, whose rational points we wish to count, and E′ is an r-isogenous curve, with r a
prime of size approximately log(q). For this reason, the explicit isogeny problem is customarily
solved without prior knowledge of the cardinality of E(Fq). We abide by this convention here.

Many algorithms have been suggested over the years to solve the explicit isogeny problem.
Early algorithms were due to Atkin [Atk91] and Charlap, Coley and Robbins [CCR91].
Elkies’ [Elk98, BMSS08] was the first algorithm targeted to finite fields (of large enough
characteristic). Assuming r is prime, its complexity is dominated by the computation of the
modular polynomial Φr, which is an object of bit size O(r3 log(r)). Later Bröker, Lauter and
Sutherland [BLS12] optimized the modular polynomial computation in the context of the SEA
algorithm [Sut13b]. Finally Lercier and Sirvent [LS08, LV16] generalized Elkies’ algorithm
to work in any characteristic. Despite these advances, the overall cost of Elkies’ algorithm and
its variants is still at least cubic in r.

Another line of work to solve the explicit isogeny problem for ordinary curves was initiated
by Couveignes [Cou94, Cou96, Cou00], and later improved by De Feo and Schost [DF11,
DFS12]. These algorithms use an interpolation approach combined with ad-hoc constructions
for towers of finite fields of characteristic p. Their complexity is quasi-quadratic in r, but
exponential in log(p), hence they are only practical for very small characteristic.

In this paper we present a variant of Couveignes’ algorithm with complexity polynomial in
log(p) and quasi-quadratic in r. Like the original algorithm, it is limited to isogenies of ordinary
curves. Together with the Lercier-Sirvent algorithm, they are the only polynomial-time isogeny
computation algorithms working in any characteristic, hence they are especially relevant for
counting points in medium characteristic (i.e., counting points over Fpn , when n� p/ log(p)).

Note that, although Couveignes-type algorithms do not make use of the modular polynomial
Φr, its computation is still necessary in the context of the SEA algorithm. Thus our new
algorithm does not improve the overall complexity of point counting, though it may provide a
speed-up in some cases. It gives, however, an effective algorithm for solving the explicit isogeny
problem, with potential applications in other contexts, e.g., cryptography.

1.1. Notation

Throughout this paper: r is a positive integer, p an odd prime, q a power of p, and Fq is the
finite field with q elements. E is an ordinary elliptic curve over Fq, its group of n-torsion points
is denoted by E[n], its q-Frobenius endomorphism by π. The endomorphism ring of E is denoted
by O, with K = O ⊗Q the corresponding number field, OK its maximal order, and dK the
discriminant of OK . For a prime ` different from p and not dividing r, we denote by E[`k] the
group of `k-torsion points of E, E[`∞] = lim−→E[`k] the union of all E[`k], and T`(E) = lim←−E[`k]
the `-adic Tate module [Sil92, III.7], which is free of rank two over Z`. The factorization of
the characteristic polynomial of π over Z` is determined by the Kronecker symbol (dK/`). If
(dK/`) = +1 then we also define λ, µ as the eigenvalues of π in Z` and write h = v`(λ− µ),
where v` is the `-adic valuation.

We measure all computational complexities in terms of operations in Fq; the boolean costs
associated to the algorithms presented next are negligible compared to the algebraic costs,
and will be ignored. We use the Landau notation O( ) to express asymptotic complexities,
and the notation Õ( ) to neglect (poly)logarithmic factors. We let M(n) be a function such
that polynomials in Fq[x] of degree less than n can be multiplied using M(n) operations in
Fq, under the assumptions of [vzGG99, Chapter 8.3]. Using FFT multiplication, one can take
M(n) ∈ O(n log(n) loglog(n)).
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1.2. Couveignes’ algorithm and our contribution

Couveignes’ isogeny algorithm takes as input two ordinary j-invariants j, j′ ∈ Fq, and a
positive integer r not divisible by p, and returns, if it exists, an r-isogeny ψ : E → E′, with
j(E) = j and j(E′) = j′. It is based on the observation that the isogeny ψ must put E[pk]
in bijection with E′[pk], in a way that is compatible with their structure as cyclic groups. It
proceeds in three steps:

(1) Compute generators P, P ′ of E[pk] and E′[pk] respectively, for k large enough;
(2) Compute the interpolation polynomial L sending x(P ) to x(P ′), and the abscissas of

their scalar multiples accordingly;
(3) Deduce a rational fraction g(x)/h(x) that coincides with L at all points of E[pk], and

verify that it defines the x-component of an isogeny of degree r. If it does, return it;
otherwise, replace P ′ with a scalar multiple of itself and go back to Step (2).

For this algorithm to succeed, enough interpolation points are required. Given that the x-
component of ψ is defined by O(r) coefficients, we have pk ∈ Θ(r). However, most of the time,
those points are not going to be defined in the base field Fq, so we must use efficient algorithms
to construct and compute in towers of extensions of finite fields. Indeed, Couveignes and his
successors go at great length in studying the arithmetic of Artin-Schreier towers [Cou00,
DFS12], and the adaptation of the fast interpolation algorithm to that setting [DF11]. Using
these highly specialized constructions, Steps (1) and (2) are both executed in time Õ(pk+O(1)) =
Õ(rpO(1)). However the last step only succeeds for one pair of torsion points P, P ′, in general,
thusO(r) trials are expected on average. Hence, the overall complexity of Couveignes’ algorithm
is Õ(r2pO(1)), i.e., quadratic in r, but exponential in log(p). Although the exponent of p is
relatively small, Couveignes algorithm quickly becomes impractical as p grows.

In this paper we introduce a variant of Couveignes’ algorithm with the same quadratic
complexity in r, and no exponential dependency in log(p).

The bottom line of our algorithm is elementary: replace E[pk] in the algorithm with E[`k],
for some small prime `. However a naive application of this idea fails to yield a quadratic-time
algorithm. Indeed, in the worst case one has `2k ∈ Θ(r), with E[`k] ' (Z/`kZ)2. Hence, two
generators P,Q of E[`k] must be mapped onto two generators of E′[`k]. This can be done in
O(`4k) possible ways, with a best possible cost of O(`2k) per trial, thus yielding an algorithm
of complexity O(`6k) = O(r3) at best.

To avoid this pitfall, we carefully study in Section 2 the structure of E[`k], and its relationship
with the Frobenius endomorphism π. With that knowledge, we can put some restrictions on
the generators P,Q, as explained in Section 3, thus limiting the number of trials to O(`2k). In
Section 4 we present an interpolation algorithm adapted to the setting of `-adic towers, and
in Section 5 we put all steps together and analyze the full algorithm. Finally in Section 6 we
discuss our implementation and the performance of the algorithm.

1.3. Towers of finite fields

The algorithms presented next operate on elements defined in finite extensions of Fq.
Specifically, we will work in a tower of finite fields Fq = F0 ⊂ F1 ⊂ · · · ⊂ Fn, with ` dividing
#F1 − 1, d1 = [F1 : F0] dividing `− 1, and [Fi+1 : Fi] = ` for any i > 0. For ` = 2, we build
upon the work of Doliskani and Schost [DS15], whereas for general ` we use towers of Kummer
extensions in a way similar to [DDS13, §2]. Both constructions represent elements of Fi
as univariate polynomials with coefficients in Fq, thus basic arithmetic operations can be
performed using modular polynomial arithmetic over Fq. While constructing the tower, we
also enforce special relations between the generators of each level, so that moving elements up
and down the tower, and testing membership, can be done at negligible cost.

We briefly sketch the construction for odd `. We first look for a primitive polynomial P1 ∈
Fq[x] of degree equal to [F1 : F0]. There are many probabilistic algorithms to compute P1 in
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expected time polynomial in ` and log(q); since their cost does not depend on the height n
of the tower, we neglect it (in all that follows, by expected cost of an algorithm, we refer to
a Las Vegas algorithm, whose runtime is given in expectation). Then, the image x1 of x in
F1 = Fq[x]/P1(x) is an element of multiplicative order #F1 − 1, and in particular it is not
a `-th power. Hence for any i > 1 we define Fi as Fq[x]/P1

(
x`

i−1)
, the computation of the

polynomials P1

(
x`

i−1)
incurring no algebraic cost. Using this representation, elements of Fi

can be expressed as elements of a higher level Fi+j , and reciprocally, by a simple rearrangement
of the coefficients. Another fundamental operation can be done much more efficiently than in
generic finite fields, as the following generalization of [DS15, §2.3] shows.

Lemma 1.1. Let F0 ⊂ · · · ⊂ Fn be a Kummer tower as defined above, and let a ∈ Fi for
some 0 6 i 6 n. For any integer j, we can compute the (#Fj)-th power of a using O(`i−1M(`))
operations in Fq, after a precomputation independent of a of cost O(`M(`) log(q)).

Proof. Without loss of generality, we can assume that j < i; otherwise, the output is simply
a itself. Let s = #Fj , and let d = [Fi : F1] = `i−1. Let xi be the image of x in Fi = Fq[x]/Pi(x),
so that xdi = x1.

The first step, independently of a, is to compute y = xsi . Writing s = ud+ r, with r < d, we
see that y is given by xu mod #F1

1 xri . We compute xu mod #F1

1 using O(`M(`) log(q)) operations
in Fq, and we keep this element as a monomial of F1[xi]. By assumption, a is represented as a
polynomial in xi of degree less than [Fi : F0]. We rewrite it as a = a0 + a1xi + · · ·+ ad−1x

d−1
i ,

with ai ∈ F1. This is done by a simple rearrangement of the coefficients of a.
Finally, we compute a(y) by a Horner scheme. All powers yk we need are themselves

monomials in F1[xi], each computed from the previous one using O(M(`)) operations in Fq, for
a total of O(`i−1M(`)). Finally the monomials akyk are combined together to form a polynomial
in (x1, xi) of degree less than (d1, d), and then brought to a canonical form in Fi via another
rearrangement of coefficients.

Summarizing, the following computations can be performed in a Kummer tower at the
indicated asymptotic costs, all expressed in terms of operations in Fq.

– basic arithmetic operations (addition, multiplication) in Fi, using O(M(`i)) operations;
– inversion in Fi using O(M(`i) log(`i)) operations (when ` = 2, a factor of i can be saved
here [DS15], but we will disregard this optimization for simplicity.)

– mapping elements from Fi−1 to Fi and vice versa at no arithmetic cost;
– multiplication and Euclidean division of polynomials of degree at most d in Fi[x] using
O(M(d`i)) operations, via Kronecker’s substitution, as already done in e.g. [vzGS92];

– computing a (#Fj)-th power in Fi using O(`i−1M(`)) operations, after a precomputation
that uses O(`M(`) log(q)) operations.

For one fundamental operation, we only have an efficient algorithm in the case ` = 2, hence
we introduce the following notation:

– R(i) is a bound on the expected cost of finding a root of a polynomial of degree ` in Fi[x].

Note that we allow Las Vegas algorithms here, as no deterministic polynomial time algorithm
is known. For ` = 2, Doliskani and Schost show that R(i) = O(M(`i) log(`iq)). For general `,
we have R(i) = O(`iM(`i+1) log(`) log(`q)) using the variant of the Cantor-Zassenhaus algo-
rithm described in [vzGG99, Chapter 14.5], or R(i) = O

(
(`i(ω+1)/2 + M(`i+1 log(q)))i log(`)

)
using [KS97]. Here, ω is such that matrix multiplication in size m over any ring can be done
in O(mω) base ring operations (so we can take ω = 2.38 using the Coppersmith-Winograd
algorithm). In any case, R(i) is between linear and quadratic in the degree `i.
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2. The Frobenius and the volcano

In this section we explore some fundamental properties of ordinary elliptic curves over finite
fields: the structure of their isogeny classes, its relationship with the rational `∞-torsion points,
and with the Frobenius endomorphism π.

2.1. Isogeny volcanoes

For an extensive introduction to isogeny volcanoes we refer the reader to [Sut13a]. We recall
here, without their proof, two results about `-isogenies between ordinary elliptic curves.

Proposition 2.1 [Koh96, Proposition 21]. Let φ : E → E′ be an `-isogeny between
ordinary elliptic curves and O,O′ be their endomorphism rings. Then one of the three following
cases is true:

(i) [O′ : O] = `, in which case we call φ ascending;
(ii) [O : O′] = `, in which case we call φ descending;
(iii) O′ = O, in which case we call φ horizontal.

Proposition 2.2 [Koh96, Proposition 23]; [Sut13a, Lemma 6]. Let E be an ordinary
elliptic curve with endomorphism ring O.

(i) If O is `-maximal then there are (dK/`) + 1 horizontal `-isogenies from E (and no
ascending `-isogenies).

(ii) If O is not `-maximal then there are no horizontal `-isogenies from E, and one ascending
`-isogeny.

A volcano of `-isogenies is a connected component of the graph of rational `-isogenies between
curves defined on Fq. The crater is the subgraph corresponding to curves having an `-maximal
endomorphism ring. The shape of the crater is given by the Kronecker symbol (dK/`), as per
Proposition 2.2. For any k > 0, an `k-isogeny is horizontal if it is the composite of k horizontal
`-isogenies. The depth of a curve is its distance from the crater. It is also the `-adic valuation
of the conductor of O = End(E).

•

• • •

“Stromboli”: (dK/`) = −1

• •

• •

“Vesuvius”: (dK/`) = 0

•

• •

• •
•

“Etna”: (dK/`) = +1

•

•

•

•

•

•

Figure 1. The three shapes of volcanoes of 2-isogenies

2.2. The `-adic Frobenius

In the rest of this paper we consider only a volcano with a cyclic crater (i.e. we assume
(dK/`) = +1), so that ` is an Elkies prime for these curves. This implies that the Frobenius
automorphism on T`(E), which we write π|T`(E), has two distinct eigenvalues λ 6= µ. The
depth of the volcano of Fq-rational `-isogenies is h = v`(λ− µ) [Sut13a, Theorem 7(iv)].

Proposition 2.3. Let E be an ordinary elliptic curve with Frobenius endomorphism π.
Assume that the characteristic polynomial of π has two distinct roots λ, µ in Z`, so that the
`-isogeny volcano has a cyclic crater. Then there exists a unique e ∈ J0, hK such that π|T`(E) is
conjugate, over Z`, to the matrix

(
λ `e

0 µ

)
. Moreover e = h if E lies on the crater, and else h− e is

the depth of E in the volcano.
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We note here that the matrix
(
λ `h

0 µ

)
is conjugate over Z` to

(
λ 0
0 µ

)
.

Proof. Since the characteristic polynomial of π splits over Z`, the matrix of π|T`(E)
is trigonalizable. Conjugating the matrix

(
λ a
0 µ

)
by ( 1 b

0 1 ) replaces a by a− b(λ− µ), and
conjugating by ( c 0

0 1 ) replaces a by c · a, so that the valuation e = v`(a) is an invariant under
matrix conjugation. This proves the first part. For the second part, by Tate’s theorem [Sil92,
Isogeny theorem 7.7 (a)], O ⊗ Z` is isomorphic to the order in Q`[π`] of matrices with integer
coefficients, which is generated by the identity and `−min(h,v`(a))(π` − λ).

We now study the action of `-isogenies on the `-adic Frobenius by showing the link between
two related notions of diagonalization.

Definition 2.4 (Horizontal and diagonal bases). Let E be a curve lying on the crater. We
call a point of E[`k] horizontal if it generates the kernel of a horizontal `k-isogeny. We call a
basis of E[`k] diagonal if π is diagonal in it, horizontal if both basis points are horizontal.

Proposition 2.5. Let E be a curve lying on the crater and P be a point of E[`k] such
that `hP is an eigenvector of π. Then `hP is horizontal if, and only if, P is an eigenvector
for π. If π(P ) = λP then we say that `hP has direction λ.

This proposition being trivially true for h > k, we assume that k > h in what follows.
Let R be a point of E of order `k, let φ be the isogeny with kernel 〈R〉, and let E′ be its

image. The subgroup 〈R〉 defines a point in the projective space of E[`k], which is a projective
line over Z/`kZ. There exists a canonical bijection [Ser77, II.1.1] between this projective
line and the set of lattices of index `k in the Z`-module T`(E): it maps a line 〈R〉 to the
lattice ΛR = 〈R〉+ `kT`(E). This lattice is also the preimage by φ of the lattice `kT`(E′).

Fix a basis (P,Q) of E[`k], let Π be the matrix of π in this basis, and let R = xP + yQ. The
lattice ΛR is generated by the columns of the matrix LR =

(
`k 0 x
0 `k y

)
. The Hermite normal

form of LR is MR =
(
`k−m x/y′

0 `m

)
, where we write y = `my′ with ` - y′, and the columns of MR

also generate the lattice ΛR. We check thatMR has determinant `k. Since ΛR = φ−1R (`kT`(E
′)),

there exists a basis of T`(E′) in which φR has matrix `kM−1R . Therefore, in that basis of T`(E′),
the matrix of π|T`(E′) is M−1R ·Π ·MR.

Proof of Proposition 2.5. Fix a basis (R,S) of E[`k] that diagonalizes π. We can write
P = xR+ yS; without loss of generality we may assume y = 1. Let φ be the isogeny determined
by `hP , and let E′ be its image. Since `hP is an eigenvector of π, φ is a rational isogeny.
According to the previous discussion, π|T`(E′) has matrix

(
λ `h−kx(λ−µ)
0 µ

)
. This matrix is

diagonalizable only if v`(x) > k − h. On the other hand, we can compute (π − µ)P = x(λ−
µ)R, so that P is an eigenvector on the same condition v`(x) > k − h.

While horizontal bases are our main interest, diagonal bases are easier to compute in practice.
Algorithms computing both kind of bases are given in Section 3. The main tool for this is the
next proposition: given a horizontal point of order `k, it allows us to compute a horizontal
point of order `k+1.

Proposition 2.6. Let ψ : E → E′ be a horizontal `-isogeny with direction λ. For any
point Q ∈ E[`∞], if `Q is horizontal with direction µ, then ψ(Q) is horizontal with direction µ.

Proof. Let Q′ = ψ(Q) and ψ̂ be the isogeny dual to ψ. Since both ψ̂ and ψ̂(Q′) = `Q are
horizontal with direction µ, Q′ is also horizontal.
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Proposition 2.7. Let ψ : E → E′ be an isogeny of degree r prime to `.
(i) The curves E and E′ have the same depth in their `-isogeny volcanoes.
(ii) For any point P ∈ E[`k], the isogenies with kernel 〈P 〉 and 〈ψ(P )〉 have the same type

(ascending, descending, or horizontal with the same direction).
(iii) If P ∈ E[`] and P ′ ∈ E′[`] are both ascending, or both horizontal with the same

direction, then E/P and E′/P ′ are again r-isogenous.

Proof. Points (i) and (ii) are consequences of Proposition 2.3 and of the fact that ψ, being
rational and of degree prime to `, induces an isomorphism between the Tate modules of E
and E′, commuting to the Frobenius endomorphisms. For point (iii), we just note that since
there exists a unique subgroup of order ` which is either ascending or horizontal with a given
direction, we must have 〈P ′〉 = 〈ψ(P )〉.

2.3. Galois classes in the `-torsion

Assume that E has a `-maximal endomorphism ring. The following proposition summarizes
the properties of E[`k] that we will need for our main interpolation algorithm. If ` is odd, let α =
v`(λ

`−1 − 1) and β = v`(µ
`−1 − 1); if ` = 2, let α = v2(λ2 − 1)− 1 and β = v2(µ2 − 1)− 1, and

assume without loss of generality that α > β. Since λ 6≡ µ (mod `h+1), it is impossible that
λ ≡ µ ≡ 1 (mod `h), so that one at least of the two valuations α, β is 6 h, and therefore β 6 h.

Proposition 2.8. For any k, let dk be the degree of the smallest field extension F/Fq such
that E[`k] ⊂ E(F ). Then:

(i) The order of q in (Z/`Z)× divides d1, and d1 divides (`− 1).
(ii) If ` is odd then for all k > 1, dk = `min(v`(d1),k−β).
(iii) If ` = 2 then d2 ∈ {1, 2} and, for all k > 2, dk = `min(v`(d2),k−β).
(iv) Let [F : Fq] = d1`

n, the group E[`∞](F ) is isomorphic to (Z/`n+αZ)× (Z/`n+βZ).
(v) The group E[`k] contains at most k · `k+β Galois conjugacy classes over F1 = Fqd1 .

Proof. The degree dk is exactly the order of the matrix π|E[`k]. It is therefore the least
common multiple of the multiplicative orders of λ, µ modulo `k. This proves (i) using the fact
that λ · µ = q. For points (ii)–(v) we may assume that d1 = 1. Then, for any N , v`(λ2N −
1) = α+ v`(2N). Let (P,Q) be a diagonal basis of E[`k]. The point (πN − 1)(xP + yQ) =
(λN − 1)xP + (µN − 1)yQ is zero iff v`(x) + α+ v`(N) > k and v`(y) + β + v`(N) > k. This
shows (iv). The largest Galois classes are those for which v`(y) = 0 and their size is `k−β ,
proving (ii) and (iii). Moreover, for any i 6 k − β the points in an orbit of size 6 `i are those
for which v`(x) > k − α− i and v`(y) > k − β − i; there are at most `min(α+i,k)+min(β+i,k) such
points, and therefore `min(α+i,k)+min(β,k−i) 6 `k−i+β corresponding classes. Summing this over
all i proves (v).

3. Computing the action of the Frobenius endomorphism

We continue here our study on the action of the Frobenius π on E[`k]. Given an ordinary
elliptic curve E with `-maximal endomorphism ring, we explicitly compute diagonal and
horizontal bases of E[`k] as defined in the previous section. We will use the latter basis of
E[`k] in Section 5.2, to put restrictions on the interpolation problem of our algorithm.

We suppose that k > h. By Proposition 2.8, there exists a Kummer tower F0 ⊂ · · · ⊂ Fk−β
such that all the points of E[`k] are rational over Fk−β . The algorithms presented next assume
that the tower has already been computed.
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3.1. Computation of a diagonal basis

In Algorithm 1 below, we describe how to compute eigenvalues of the Frobenius mod`k

and corresponding eigenvectors in the `k-torsion subgroup. We write Q← divide(`, P ) for the
computation of a preimage of P by multiplication by `.

Algorithm 1 Computing a diagonal basis of E[`k]

Input: E: an ordinary, `-maximal elliptic curve; k: a positive integer;
Output: (Pk, Qk): a basis of E[`k]; λ, µ ∈ Z/`kZ such that π(Pk) = λPk, π(Qk) = µQk.
1: λ← 0; µ← 0; P0, Q0 ← neutral element of E[`].
2: for i = 0 to k − 1 do
3: P ′ ← divide(`, Pi); Q′ ← divide(`,Qi).
4: compute π|(P ′, Q′) =

(
λ+a`i b`i

c`i µ+d`i

)
(mod `i+1).

5: if b = 0 then x← 0; solve equation c`i + ((d− a)`i + µ− λ)y = 0;
6: else solve equation c`ix2 + ((d− a)`i + µ− λ)x− b`i = 0; y ← −cx/b; end if.
7: Pi+1 ← P ′ + yQ′; Qi+1 ← xP ′ +Q′.
8: λ← λ+ `i(a+ bx); µ← µ+ `i(d+ cy).
9: end for

10: return (Pk, Qk, λ, µ).

Proposition 3.1. Algorithm 1 computes a diagonal basis of E[`k] using an expected
O(R(k − β) + `2M(`k−β) + `M(`2) log(`) log(`q)) operations in Fq.

Proof. The equation at line 5 or 6 is first divided out by the largest power of ` possible,
which is `min(h,i), then solved modulo `. For i 6 h− 1, since a = d and b = c = 0, the solutions
are x = y = 0, and steps 5 to 7 do nothing. A straightforward calculation shows that after each
loop the basis (Pi+1, Qi+1) is diagonal.

For i = 0, the basis of E[`](F1) at step 3 is computed by factoring the `-division polynomial at
an expected cost of O(`M(`2) log(`) log(`q)) operations using the Cantor-Zassenhaus algorithm.
Once E[`] has been computed, we can factor the multiplication-by-` map as a product of two
`-isogenies. Then, for any P defined in E(Fi−β), the computation of divide(`, P ) at Step 3
costs O(R(i− β + 1)) operations. Evaluating π(P ′) in Step 4 has a cost of O(`i−βM(`)).
Writing π(P ′) as a linear combination αP ′ + βQ′ needs at most `2 point additions, with a
cost of `2M(`i−β+1). The cost of solving the equations at Steps 5 and 6 by exhaustive search
is negligible, as are the remaining operations. Since the cost of each loop grows geometrically,
the last loop dominates all others, and gives the stated complexity.

3.2. Computation of a horizontal basis

Using the previous algorithm we can compute a diagonal basis of E[`h+1]. By Proposition 2.5,
this gives us a horizontal basis of E[`]. Thanks to Proposition 2.6, we can use this information to
improve horizontal points of E[`i] into horizontal points of E[`i+1], as illustrated in Algorithm 2.

Proposition 3.2. Algorithm 2 is correct and computes its output using an expected
O(R(k − β) + kR(h− β + 1) + k`2M(`h−β+1)) operations in Fq.

Proof. Let Ei be the image curve of φi. We check that at step i of the loop, the
points (Pi, Qi) form a diagonal basis of Ei[`h+1], and φi has direction λ. The fact that R is
horizontal is then a consequence of Proposition 2.6. The two most expensive operations in the
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Algorithm 2 Computing a horizontal point of order `k

Input: (P0, Q0): a diagonal basis of E[`h+1]; k: an integer, k > h+ 1.
Output: R: a horizontal point of E[`k] with direction λ.
1: for i = 1 to k − 1 do
2: φi ← isogeny with kernel

〈
`hPi−1

〉
3: Qi ← φi(Qi−1)
4: P ′ ← divide(`, φi(Pi−1)).
5: Write π(P ′) = λP ′ + bQi for b ∈ Z/`Z and let Pi ← P ′ − (b/µ)Qi.
6: end for
7: return R = φ̂1 ◦ . . . ◦ φ̂k−1(divide(`k−(h+1), Pk−1)).

loop are Steps 4 and 5, costing respectively O(R(h− β + 1)) and O(`2M(`h−β+1)), as discussed
in the proof of Proposition 3.1. They are repeated k times. Finally, Step 7 is dominated by the
last divide operation, which costs O(R(k − β)).

One application of Algorithm 1 (with input k ← h+ 1) and two applications of Algorithm 2
allow us to compute a horizontal basis of E[`k]. This could be done directly with Algorithm 1
instead, but that would require computing in an extension Fk+h−β .

4. Interpolation step

After constructing bases (P,Q) of E[`k] and (P ′, Q′) of E′[`k] using the algorithms of the
previous section, our algorithm computes the polynomial with coefficients in Fq mapping x(P )
to x(P ′), x(Q) to x(Q′), and the other abscissas accordingly. In this section we give an efficient
algorithm for this specific interpolation problem. The algorithm appeared in [DF11] in the
context of the Artin-Schreier extensions used in Couveignes’ isogeny algorithm; it uses original
ideas from [EM03]. We recall this algorithm here, and adapt the complexity analysis to our
setting of Kummer extensions.

We start by tackling a simpler problem. We suppose we have constructed a tower of Kummer
extensions Fq = F0 ⊂ F1 ⊂ · · · ⊂ Fn, with [F1 : F0] | (`− 1), and [Fi+1 : Fi] = ` for any i > 0.
Given two elements v, w ∈ Fn \ Fn−1, we want to compute polynomials T and L such that:

– T ∈ Fq[x] is the minimal polynomial of v, of degree d = deg T < `n;
– L is in Fq[x], of degree less than d, and L(v) = w.

Observe that, since v, w /∈ Fn−1, we necessarily have v`(d) = n− 1, so that `n−1 6 d < `n.
Using a fast interpolation algorithm [vzGG99, Chapter 10.2], the polynomials T and L could
be computed in O

(
nM(`2n) log(`)

)
operations in Fq. We can do much better by exploiting the

form of the Kummer tower, and the Frobenius algorithm given in Lemma 1.1.
Following [DF11], we first compute T , starting from T (0) = x− v. We let σi be the map that

takes all the coefficients of a polynomial in Fn−i[x] to the power #Fn−i−1. For i = 0, . . . , n− 1,
suppose we know a polynomial T (i) of degree `i in Fn−i[x]. Then, compute the polynomials
T (i,j) given by T (i,j) = σji

(
T (i)

)
for 0 ≤ j ≤ `− 1, and define

T (i+1) =

b∏
j=0

T (i,j) with b =

{
`− 1 if i < n− 1,
d/`n−1 otherwise.

(4.1)

One easily sees that T (i+1) is the minimal polynomial of v over Fn−i+1.

Lemma 4.1. The cost of computing T is O(nM(`n+1) log(`)) operations in Fq.
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Proof. At each step i, from the knowledge of T (i) we compute all T (i,j) using Lemma 1.1.
The cost for a single polynomial T (i,j) is of O(`i`n−i−1M(`)) operations, i.e. O(`nM(`)) for all
O(`) of them. From the T (i,j)’s we compute T (i+1) using a subproduct tree, as in [vzGG99,
Lemma 10.4]. The result has degree O(`i+1) and coefficients in Fn−i, thus the overall cost is
O(M(`n+1) log(`)). After T (i+1) is computed this way, we can convert its coefficients to Fn−i−1
at no algebraic cost. Summing over all i, we obtain the stated complexity.

We can finally proceed with the interpolation itself. First, compute w′ = w/T ′(v) and let
L(0) = w′. Next, for i = 0, . . . , n− 2, suppose we know a polynomial L(i) in Fn−i[x] of degree
less than `i. We compute the polynomials L(i,j) given by L(i,j) = σji

(
L(i)

)
and

L(i+1) =

b∑
j=0

L(i,j)T
(i+1)

T (i,j)
, b defined as in Eq. (4.1).

As shown in [DF11], L(n) is the polynomial L we are looking for.

Proposition 4.2. Given v, w ∈ Fn \ Fn−1, the cost of computing the minimal poly-
nomial T ∈ Fq[x] of v and the interpolating polynomial L ∈ Fq[x] such that L(v) = w is
O(nM(`n+1) log(`)) operations in Fq.

Proof. After the polynomials T (i) have been computed, we need to compute T ′(v). This
is done by means of successive Euclidean remainders, since T ′(v) = (((T ′ mod T (1)) mod
T (2)) · · · mod T (n)). At stage i, we have to compute the Euclidean division of a polynomial
of degree O(`n−i+1) by one of degree O(`n−i) in Fi[x]. Using the complexities from Section 1.3
we deduce that each division can be done in time O(M(`n+1)), for a total of O(nM(`n+1))
operations. Then, computing w′ = w/T ′(v) takes O(M(`n) log(`n)) operations.

Finally, at each step i, the polynomials L(i,j) are computed at a cost of O(`nM(`)), as in
the proof of Lemma 4.1. The computation of L(i+1) uses the same subproduct tree as for the
computation of T (i), requiring O(log `) additions, multiplications and divisions of polynomials
of degree O(`i+1) with coefficients in Fn−i, for a total of O(M(`n+1) log(`)). Summing over all
i, the complexity statement follows readily.

We end with the general problem of interpolating a polynomial in Fq[x] at points of Fn.

Proposition 4.3. Let (v1, w1), . . . , (vs, ws) be pairs of elements of Fn, let ti be the degree
of the minimal polynomial of vi, and let t =

∑
ti. The polynomials

– T ∈ Fq[x] of degree t such that T (vi) = 0 for all i, and
– L ∈ Fq[x] of degree less than t such that L(vi) = wi for all i

can be computed using O
(
M(t) log(s) + nM(`2t) log(`)

)
operations in Fq.

Proof. The polynomial T is simply the product of all the minimal polynomials Ti. Let
ni = v`(ti), so that vi, wi ∈ Fni+1 \ Fni , and `ni 6 ti < `ni+1. We convert (vi, wi) to a pair
of elements of Fni+1 at no algebraic cost, then we compute Ti as explained previously at a
cost of O(nM(`ni+2) log(`)) operations. Bounding `ni by ti, summing over all i, and using the
superlinearity of M, we obtain a total cost of O(nM(`2t) log(`)) operations. Simultaneously, we
compute all the polynomials Li such that Li(vi) = wi, at the same cost.

Then we arrange the Ti’s into a binary subproduct tree and multiply them together. A
balanced binary tree, though not necessarily optimal, has a depth of O(log(s)), and requires
O(M(t)) operations per level. Thus we can bound the cost of computing T by O(M(t) log(s)).

Finally, using the same subproduct tree structure, we apply the Chinese remainder algorithm
of [vzGG99, Chapter 10] to compute the polynomial L at the same cost O(M(t) log(s)).
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5. The complete algorithm

We finally come to the description of the full algorithm. Given two j-invariants, defining two
elliptic curves E and E′, and an integer r, we want to compute an isogeny ψ : E → E′ of degree
r. Since the algorithms of Section 3 apply to curves on top of volcanoes with cyclic crater, we
first need to determine a small Elkies prime ` for E and E′, and then reduce to an explicit
isogeny problem on the crater of the `-volcanoes. These steps are discussed and analyzed next.

5.1. Finding a suitable `-volcano

Our algorithm uses an Elkies prime `. Since dK is not assumed to be known yet, we need to
be able to compute the height h of the volcano, the shape of its crater, as well as the shortest
`-isogeny chain from E to the crater.

The algorithms of Fouquet and Morain [FM02] compute the height h and find a curve
Emax on the crater at the cost of O(`h2) factorizations of the `-th modular polynomial Φ`.
The polynomial Φ` is computed using Õ(`3 log(`)) boolean operations, then each factorization
costs an expected O(M(`) log(`) log(`q)) operations using the Cantor-Zassenhaus algorithm
(more efficient methods for special instances of volcanoes are presented in [MMRV05] and
in [IJ13], but we do not discuss them). Working on E and E′, we compute the shortest path
of `-isogenies α : E → Emax, α′ : E′ → E′max linking the curves E,E′ to the craters. We still
have to determine the shape of these craters. Since the height h of the volcano is known,
using Algorithm 1 we can compute a matrix of π|Emax[`h+1]. If this matrix has two distinct
eigenvalues then the crater is cyclic, otherwise it is not.

By Proposition 2.7, the depth of E and E′ below their respective craters is the same. By
Proposition 2.7 (iii), the curves Emax and E′max are again r-isogenous; we can use our algorithm
to compute such an isogeny ψmax. Then, since ` is coprime to r, ψ = (α′)−1 ◦ ψmax ◦ α is
well defined and is the required r-isogeny. Its kernel can be computed in O(hM(`r) log(`r))
operations by evaluating the dual isogeny α̂ on the kernel of ψmax via a sequence of resultants.

5.2. Interpolating the isogeny

We now assume that both curves E,E′ have `-maximal endomorphism rings. We fix bases
of E[`k], E′[`k] and write π, π′ for the matrices of the Frobenius. Since ψ is rational, its matrix
satisfies the relation π′ · ψ = ψ · π in Z2×2

` and hence in (Z/`kZ)2×2.
If diagonal bases of E[`k], E′[`k] are used, then, since π is a cyclic endomorphism of Z2

` ,
this condition seems to ensure that ψ is a diagonal matrix; however, Z/`kZ is not an integral
domain and π is congruent, modulo `h, to the scalar matrix λ, so we can only say that ψ
(mod `k−h) is diagonal. If on the other hand we choose horizontal bases of E[`k], E′[`k] then,
by Proposition 2.7 (ii), we know that ψ is a diagonal matrix.

We then enumerate all the `2k−2 invertible diagonal matrices; for each matrix M , we
interpolate the action of M on E[`k] as a rational fraction, and verify that it is an r-isogeny.
The successful interpolation will be our explicit isogeny ψ. Precisely, we interpolate using the
abscissas of non-zero points of E[`k]; there are (`2k − 1)/2 distinct such abscissas (or 22k−1 + 1
when ` = 2). The isogeny ψ acts on abscissas as a rational fraction of degrees (r, r − 1), which
is thus defined by 2r coefficients; knowing this rational function allows us to find the kernel of
ψ, and recover ψ itself using Vélu’s formulas. For this method to work, we therefore select the
smallest k > h+ 1 such that `2k − 1 > 4r.

Summarizing, our algorithm for two `-maximal curves proceeds as follows:
(1) Use Algorithms 1 and 2 to compute horizontal bases (P,Q), (P ′, Q′) of E[`k], E′[`k];
(2) Compute the polynomial T vanishing on the abscissas of 〈P,Q〉 as in Section 4;
(3) For each invertible diagonal matrix

(
a 0
0 b

)
in (Z/`kZ)2×2:
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(i) compute the interpolation polynomial La,b such that La,b(x(uP + vQ)) =
x(a uP ′ + b v Q′) for all u, v ∈ Z/`kZ;

(ii) Use the Cauchy interpolation algorithm of [vzGG99, Chapter 5.8] to compute a
rational fraction Fa,b ≡ La,b (mod T ) of degrees (r, r − 1);

(iii) If Fa,b defines an isogeny of degree r, return it and stop.

Proposition 5.1. Assuming that `h <
√
r, the algorithm above computes an isogeny

ψ : E → E′ in expected time O
((
r`2M(r`4) + M(r`3) log(`q)

)
log(r) log(`)

)
.

Proof. By definition of k, we know that `2k ∈ O(r`2). By Proposition 2.8, there is a β <
h such that E[`k] is contained in E(Fn) with n = k − β. We thus construct the Kummer
tower F0 ⊂ · · · ⊂ Fn, and we do the precomputations required by Lemma 1.1 at a cost of
O(`M(`) log(q)).

Bounding h by k − 1, Step (1) costs on average O(kR(k − β) + k`2M(`
√
r) +

`M(`2) log(`) log(`q)) according to Propositions 3.1 and 3.2. Using the most pessimistic
estimates of Section 1.3, we see that this cost is bounded by O(M(r`3) log(r) log(`) log(`q)).

By Proposition 2.8 (v), there are at most O(k · `k+β) Galois classes in E[`k]. In order to
apply the algorithms of Section 4, we need to compute a representative for each class. Each
representative is computed from the basis (P,Q) using point multiplication by two scalars
6 `k in the field Fn, which costs O(M(`n) log(`k)) operations. We thus have a total cost of
O(kM(`2k) log(`k)) ⊂ O(M(r`2) log(r)2) to compute all such representatives.

Then, using Proposition 4.3, where the total degree is t = (`2k − 1)/2 ∈ O(r`2), and the
number of interpolation points is s ∈ O(k · `k+β), we can compute the polynomials T and La,b
at a cost of O(M(r`4) log(r) log(`)). The cost of computing Fa,b, and identifying the isogeny,
is dominated by that of computing La,b [DF11, §3.3]. Finally, in general approximately
`2k = O(r`2) candidate matrices must be tried before finding the isogeny.

5.3. Overall complexity

By a result of Shparlinski and Sutherland [SS14, Theorem 1], for almost all primes q and
curves E/Fq, for L > log(q)ε for any ε > 0, asymptotically half of the primes ` 6 L are Elkies
primes. Hence, we expect to have enough small Elkies primes to apply our algorithm. The
following theorem states a worst case bound depending on r and q alone.

Theorem. For almost all primes q and curves E,E′ over Fq, it is possible to solve the
“Explicit Isogeny Problem” in expected time O

(
rM(r log(q)6) log(r) loglog(q)

)
.

Proof. Given a curve E, we search for the smallest Elkies prime satisfying the conditions of
Proposition 5.1. As a special case of [SS14, Theorem 1], we can take L ∈ O(log(q)) such that
the product of all Elkies primes ` 6 L exceeds Ω(

√
q). On the other hand, we discard those

primes ` 6 L for which the height h satisfies `h >
√
r; since those discarded primes are divisors

of
√
dK , their product is at most O(

√
q). This shows that there remains enough “good” Elkies

primes in J1, LK, so that in the worst case ` ∈ O(log(q)).
The most expensive steps in Section 5.1 are the computation and the factorization of

the modular polynomials for all primes up to `. This is well within O(log(q)6). The stated
complexity follows then from substituting ` = O(log(q)) in Proposition 5.1.

6. Conclusion and experimental results

In the previous sections we have obtained a Las Vegas algorithm with an interesting
asymptotic complexity. In particular, in the favorable case where ` = O(1), the running time
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Figure 2. Left: comparison of horizontal basis computation and interpolation phases, for a
fixed curve defined over F101, and increasing r. Right: Comparison of one interpolation phase

for F101, F230+669, F262+189 and F2252+421, and increasing r. Plots in logarithmic scale.

of the algorithm is quasi-quadratic in the isogeny degree r and quasi-linear in log q. Thus we
expect it to be practical, and a substantial improvement over Couveignes’ original algorithm,
at least when small parameters ` and h can be found quickly. A large ` or h adversely affects
performance in the following ways:

– All modular polynomials up to Φ` must be computed or retrieved from tables.
– All degrees (`2k − 1)/4 6 r < (`2k+1 − 1)/4 require essentially the same computational
effort, thus resulting in a staircase behavior when r increases.

– Because we must have k > h, all degrees r smaller than (`2h+2 − 1)/4 require the same
computational effort.

For these reasons, it is wisest in practice to set small a priori bounds on ` and h, and only run
our algorithm when parameters within these bounds can be found.

To validate our findings, we implemented a simplified version of our main algorithm using
SageMath v7.1 [Dev16]. In our current implementation, we only handle the case ` = 2 and
we work only with curves on the crater of a 2-volcano. We implemented the construction of
Kummer towers described in [DS15], in the favorable case where p = 1 mod 4. Source code and
benchmark data are available in the GitHub project https://github.com/Hugounenq-Cyril/
Two_curves_on_a_volcano/.

We ran benchmarks on an Intel Xeon E5530 CPU clocked at 2.4GHz. We fixed a base field
Fq and an elliptic curve E with height h = 3 and β = 2, then ran our algorithm to compute
the multiplication-by-r isogeny E → E, for r increasing. The torsion levels involved in the
computations varied from 23 to 28. Figure 2 (left) shows the running times for the computation
of the horizontal basis of E[`k], and for one execution of the interpolation step. Running times
are close to linear in r, as expected. The staircase behavior of our algorithm is apparent from
the plot. Since the interpolation steps must be repeated ∼ r times, we focus on this step to
compare the running time for different base fields. In Figure 2 (right) we observe that the
dependency in q, although much better than in Couveignes’ original algorithm, is higher than
what the theoretical analysis would predict. This may due to low-level implementation details
of SageMath, which, in the current implementation, are beyond our control.

In conclusion, our algorithm shows promise of being of practical interest within selected
parameter ranges. Generalizing it to work with Atkin primes would considerably enlarge its
applicability range; we hope to develop such a generalization in a future work. On the practical
side, we plan to work on two improvements that seem within reach. First, the reduction
from generic curves to `-maximal curves seems superfluous and unduly expensive: it would be

https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano/
https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano/
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interesting to generalize the concept of horizontal bases to any curve. Second, a multi-modular
approach interpolating on a torsion group of composite order is certainly possible, and could
improve the running time of our algorithm by allowing it to work in smaller extension fields.

Acknowledgements. We would like to thank the anonymous referees for their careful review
and their insightful remarks.

References
Atk88 Arthur O. L. Atkin. The number of points on an elliptic curve modulo a prime. Mail to the nmbrthry

mailing list, 1988.
Atk91 Arthur O. L. Atkin. The number of points on an elliptic curve modulo a prime. Mail to the nmbrthry

mailing list, 1991.
BLS12 Reinier Bröker, Kristin Lauter, and Andrew Sutherland. Modular polynomials via isogeny volcanoes.

Mathematics of Computation, 81(278):1201–1231, 2012.
BMSS08 Alin Bostan, François Morain, Bruno Salvy, and Éric Schost. Fast algorithms for computing isogenies

between elliptic curves. Mathematics of Computation, 77(263), 2008.
CCR91 Leonard S Charlap, Raymond Coley, and David P Robbins. Enumeration of rational points on elliptic

curves over finite fields, 1991. Preprint.
CLG09 Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from expander

graphs. Journal of Cryptology, 22(1):93–113, January 2009.
Cou94 Jean-Marc Couveignes. Quelques calculs en théorie des nombres. PhD thesis, Université de Bordeaux,

1994.
Cou96 Jean-Marc Couveignes. Computing l-Isogenies using the p-Torsion. In ANTS-II: Proceedings of the Second

International Symposium on Algorithmic Number Theory, pages 59–65, London, UK, 1996. Springer-
Verlag.

Cou00 Jean-Marc Couveignes. Isomorphisms between Artin-Schreier towers. Mathematics of Computation,
69(232):1625–1631, 2000.

DDS13 Luca De Feo, Javad Doliskani, and Éric Schost. Fast algorithms for `-adic towers over finite fields. In
ISSAC’13: Proceedings of the 2013 international symposium on Symbolic and algebraic computation,
pages 165–172. ACM, 2013.

Dev16 The Sage Developers. Sage Mathematics Software (Version 7.0), 2016.
DF11 Luca De Feo. Fast algorithms for computing isogenies between ordinary elliptic curves in small

characteristic. Journal of Number Theory, 131(5):873–893, May 2011.
DFJP14 Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.
DFS12 Luca De Feo and Éric Schost. Fast arithmetics in Artin-Schreier towers over finite fields. Journal of

Symbolic Computation, 47(7):771–792, 2012.
DS15 Javad Doliskani and Éric Schost. Computing in degree 2k-extensions of finite fields of odd characteristic.

Designs, Codes and Cryptography, 74(3):559–569, 2015.
Elk98 Noam D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In

Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of Studies in Advanced
Mathematics, pages 21–76, Providence, RI, 1998. AMS International Press.

EM03 Andreas Enge and François Morain. Fast decomposition of polynomials with known galois group. In
AAECC’03: Proceedings of the 15th international conference on Applied algebra, algebraic algorithms and
error-correcting codes, pages 254–264, Berlin, Heidelberg, 2003. Springer-Verlag.

FM02 Mireille Fouquet and François Morain. Isogeny volcanoes and the SEA algorithm. In Algorithmic number
theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci. Springer, Berlin, 2002.

GLV01 Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic curves
with efficient endomorphisms. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 190–200, London, UK, 2001. Springer-Verlag.

IJ13 Sorina Ionica and Antoine Joux. Pairing the volcano. Mathematics of Computation, 82(281):581–603,
2013.

JS14 David Jao and Vladimir Soukharev. Isogeny-based quantum-resistant undeniable signatures. In Post-
Quantum Cryptography: 6th International Workshop, PQCrypto 2014, pages 160–179, Waterloo, ON,
Canada, 2014. Springer International Publishing.

Koh96 David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California
at Berkeley, 1996.

KS97 Erich Kaltofen and Victor Shoup. Fast polynomial factorization over high algebraic extensions of finite
fields. In ISSAC ’97: Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, pages 184–188, New York, NY, USA, 1997. ACM.

LS08 Reynald Lercier and Thomas Sirvent. On Elkies subgroups of `-torsion points in elliptic curves defined
over a finite field. Journal de théorie des nombres de Bordeaux, 20(3):783–797, 2008.



EXPLICIT ISOGENIES IN ANY CHARACTERISTIC Page 15 of 16

LS14 Patrick Longa and Francesco Sica. Four-dimensional Gallant–Lambert–Vanstone scalar multiplication.
Journal of Cryptology, 27(2):248–283, 2014.

LV16 Pierre Lairez and Tristan Vaccon. On p-adic differential equations with separation of variables. Preprint
available at http://arxiv.org/abs/1602.00244, 2016.

MMRV05 Josep M. Miret, Ramiro Moreno, Ana Rio, and Magda Valls. Determining the 2-sylow subgroup of an
elliptic curve over a finite field. Mathematics of Computation, 74(249):411–427, 2005.

MMT01 Markus Maurer, Alfred Menezes, and Edlyn Teske. Analysis of the GHSWeil descent attack on the ECDLP
over characteristic two finite fields of composite degree. In INDOCRYPT ’01: Proceedings of the Second
International Conference on Cryptology in India, pages 195–213. Springer-Verlag, 2001.

Sat02 Takakazu Satoh. On p-adic point counting algorithms for elliptic curves over finite fields. In Algorithmic
number theory, pages 43–66. Springer, 2002.

Sch85 René Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of
Computation, 44(170):483–494, 1985.

Sch95 René Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de
Bordeaux, 7(1):219–254, 1995.

Ser70 Jean-Pierre Serre. Cours d’arithmétique. Presses Universitaires de France, 1970.
Ser77 Jean-Pierre Serre. Arbres, amalgames, SL2, volume 46 of Astérisque. Société Mathématique de France,

1977.
Sil92 Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1992.
SS14 Igor E Shparlinski and Andrew V Sutherland. On the distribution of atkin and elkies primes. Foundations

of Computational Mathematics, 14(2):285–297, 2014.
Sto10 Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of

isogenous elliptic curves. Advances in Mathematics of Communications, 4(2), 2010.
Sut13a Andrew Sutherland. Isogeny volcanoes. In ANTS X: Proceedings of the Algorithmic Number Theory 10th

International Symposium, volume 1, pages 507–530. Mathematical Sciences Publishers, 2013.
Sut13b Andrew Sutherland. On the evaluation of modular polynomials. In ANTS X: Proceedings of the

Algorithmic Number Theory 10th International Symposium, volume 1, pages 531–555. Mathematical
Sciences Publishers, 2013.

Tat66 John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones mathematicae, 2(2):134–144,
1966.

Tes06 Edlyn Teske. An elliptic curve trapdoor system. Journal of Cryptology, 19(1):115–133, January 2006.
Vél71 Jean Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des Sciences de Paris,

273:238–241, 1971.
vzGG99 Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University Press,

New York, NY, USA, 1999.
vzGS92 Joachim von zur Gathen and Victor Shoup. Computing Frobenius maps and factoring polynomials. In

STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
97–105, New York, NY, USA, 1992. ACM.

Appendix A. Galois classes in E[`k]

We give here the full decomposition of E[`k] in Galois classes. This is a more precise form
of Proposition 2.8 (v).

Proposition A.1. Let E be an elliptic curve with `-maximal endomorphism ring. Assume
` 6= 2, λ ≡ µ ≡ 1 (mod `) and let α = v`(λ− 1), β = v`(µ− 1). Write ν(x, y) = min(x+ y, x+
β − 1, y + α− 1) and ρ(x, y) = x+ y − ν(x, y) = max(0, x− α+ 1, y − β + 1). The decompo-
sition of the group E[`k] in Galois classes is as follows:

(i) for i, j = 1, . . . , k − 1: (`− 1)2 · `ν(i,j) classes of size `ρ(i,j);
(ii) for i = 1, . . . , k − 1: (`− 1) · `min(i,α−1) classes of size `max(0,i−α+1), and (`− 1) ·

`min(i,β−1) classes of size `max(0,i−β+1);
(iii) the `2 singleton classes of E[`].

Proof. Fix a basis (P,Q) of E[`k] such that π(P ) = λP , π(Q) = µQ. Studying the Galois
orbits of E[`k] means studying the map Z2

` → Z2
` , (x, y) 7→ (λx, µy). In other words, the orbits

correspond to elements of Z2
` modulo the multiplicative subgroup generated by (λ, µ). An easy

way to describe this is to consider a multiplicative lattice in (Q×` )2.
Let ξ be a primitive (`− 1)-th root of unity in Z`. Then by [Ser70, Théorème II.3.2],

the map f(x, y, z) = `x · ξy · exp(`z) is a group isomorphism between Z× (Z/(`− 1)Z)× Z`

http://arxiv.org/abs/1602.00244
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and Q×` . For i ∈ J0, k − 1K and c ∈ Z/(`− 1)Z, let V (i, c) be the image in Z/`kZ of the
map f(k − 1− i, c, –): then the multiplicative structure of V (i, c) is that of a principal
homogeneous space under Z/`iZ. We also define W (i, j, c, d) = V (i, c) · P + V (j, d) ·Q ⊂
E[`k].

Since λ ≡ 1 (mod `), we may write λ = f(0, 0, u `α−1) and µ = f(0, 0, v `β−1) for some u, v ∈
Z×` . This implies that the set W (i, j, c, d) is stable under Galois. Moreover, the orbits
of W (i, j, c, d) correspond bijectively to points of a fundamental domain of the lattice Λi,j

generated by the columns of
(
`i 0 u`α−1

0 `j v`β−1

)
, whereas the size of each orbit is [(Z/`iZ)×

(Z/`jZ) : Λi,j ]. By using elementary column manipulations, we find that the covolume of Λi,j
is `ν(i,j), hence the point (i) of the proposition. (The case i = j = 0 yields singleton classes
in E[`]).

The union of all the sets W (j, i, c, d) is exactly the set of all xP + yQ for x, y 6= 0. We obtain
the classes of (ii) by considering the sets V (i, c) · P and V (j, d) ·Q.

We now state the equivalent proposition when ` = 2. The proof is much the same as in the
odd case.

Proposition A.2. Let E be an elliptic curve with 2-maximal endomorphism ring. Assume
λ ≡ µ ≡ 1 (mod 4) and let α = v2(λ− 1), β = v2(µ− 1). Write ν2(x, y) = min(x+ y, x+ β −
2, y + α− 2) and ρ2(x, y) = x+ y − ν2(x, y) = max(0, x− α+ 2, y − β + 2). The decomposi-
tion of the group E[2k] in Galois classes is as follows:

(i) for i, j = 1, . . . , k − 2: 4 · 2ν2(i,j) classes of size 2ρ2(i,j);
(ii) for i = 1, . . . , k − 2: 4 · 2min(i,α−2) classes of size 2max(0,i−α+2), and 4 · 2min(i,β−2) classes

of size 2max(0,i−β+2).
(iii) the 16 singleton classes of E[4].

Note that if λ or µ ≡ −1 (mod 4) then by replacing the base field by a quadratic extension,
we can always ensure that the condition λ ≡ µ ≡ 1 (mod 4) is satisfied.
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