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Introduction

Erdmann gave in [START_REF] Erdmann | Blocks of tame representation type and related algebras[END_REF] a list of basic symmetric algebras of tame representation type which include all the algebras which may be Morita equivalent to blocks of finite groups of tame representation type. She obtained these algebras by means of properties of the Auslander-Reiten quiver which are known to hold for blocks of group rings with tame representation type. These algebras are subdivided into three classes, those of dihedral type, of semidihedral type and of quaternion type, corresponding to the possible defect group in case of group algebras, and actually defined by the behaviour of their Auslander-Reiten quiver. Holm refined in [START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF] Erdmann's classification of those algebras which may occur as blocks of group algebras to a classification up to derived equivalence. However, in [START_REF] Erdmann | Blocks of tame representation type and related algebras[END_REF][START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF] the algebras are defined by quivers with relations, and the relations involve certain parameters, corresponding mostly to deformations of the socle of the algebras. It was unclear in some cases if different parameters lead to different derived equivalence classes of algebras. The question of non trivial socle deformations appears to be a very subtle one in this special case, but also in general, and little progress was made on this question until very recently.

In [START_REF] Zimmermann | Invariance of generalized Reynolds ideals under derived equivalences[END_REF] we showed that a certain sequence of ideals of the centre of a symmetric algebra defined previously by Külshammer [START_REF] Külshammer | Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV[END_REF] is actually invariant under derived equivalences if the base field is perfect. We call this sequence of ideals the Külshammer ideals. In joint work [START_REF] Liu | stable Hochschild homology and Auslander-Reiten conjecture[END_REF] with Liu and Zhou we showed that if the base field is algebraically closed, then the dimension of the image of this invariant in the stable centre is also an invariant under stable equivalences of Morita type. In joint work [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF] with Holm we observed that the Külshammer ideals behave in a very subtle manner with respect to the deformation parameters. Using this observation we showed that some of the parameters are invariants under derived equivalence for certain families of algebras of dihedral and of semidihedral type. The present paper is a continuation and completion of [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF].

In order to apply the theory of Külshammer ideals we need to use the symmetrising form explicitly, and in the present work we progress in avoiding the ad-hoc arguments used in our previous work to determine the symmetrising form. In this note we compute the Külshammer ideals for algebras of quaternion type and distinguish this way the derived equivalence classes of the algebras with two simple modules. Over algebraically closed fields of characteristic different from 2 we can classify completely the derived equivalence classes of the algebras of quaternion type occurring in Holm's list, except for a case of very small parameters. If the field is algebraically closed of characteristic 2 then we have an almost complete classification in case of two simple modules. The result in this case is displayed in Corollary 10 and Theorem 7. We also deal with the case of algebras of quaternion type with three simple modules, where Külshammer ideals distinguish the isomorphism classes of algebras in characteristic 2 with parameter d according to whether or not d is a square in K. The invariance of Külshammer ideals under derived or Morita equivalence is proved only in case K is perfect, which implies that all elements of K are squares when K is of characteristic 2. Hence, we cannot say more about this case, and the derived equivalence classification remains open for this class of 20-dimensional algebras. Derived equivalent local algebras are actually Morita equivalent (cf [START_REF] Zimmermann | Representation theory: A homological algebra point of view[END_REF]Proposition 6.7.4]), so that the derived equivalence classification of the class of algebras of quaternion type with one simple module coincides with its classification up to isomorphism. Isomorphic algebras have isomorphic Külshammer ideal structure.

For the reader's convenience we give the somewhat technical result for the class of algebras with two simples here. Blocks of quaternion type with two simple modules are derived equivalent to an algebra A k,s (a, c) for parameters a ∈ K × and c ∈ K and integers s ≥ 3 and k ≥ 1.

• In particular, if K is an algebraically closed field of characteristic different from 2, then there is

a ′ ∈ K × such that A k,s (a, c) ≃ A k,s (a ′ , 0), and if (k, s) = (1, 3), then A k,s (a, c) ≃ A k,s (1, 0). Moreover, if A k,s (1, 0) and A k ′ ,s ′ (1, 0) are derived equivalent, then (k, s) = (k ′ , s ′ ) or (k, s) = (s ′ , k ′ ). • If K is a perfect field of characteristic 2, we have the following situation. The algebra A k,s (a, c) is not derived equivalent to A k,s (a ′ , 0) for any a, a ′ , c ∈ K × . If K is algebraically closed of characteristic 2, and if c = 0, then A k,s (a, c) is isomorphic to A(a ′′ , 1) for some a ′′ ∈ K × , and if (k, s) = (1, 3), then A k,s (a, 0) ≃ A k,s (1, 0). Further, again for algebraically closed K, if A k,s (a ′ , c ′ ) is derived equivalent to A k ′ ,s ′ (a ′′ , c ′′ ) then (k, s) = (k ′ , s ′ ) or (k, s) = (k ′ , s ′ ).
We do not know for which parameters a, a ′ ∈ K × we get A k,s (a, 1) is derived equivalent to A k,s (a ′ , 1), and we do not know when A (1,3) (a, 0) is derived equivalent to A (1,3) (a ′ , 0) for a, a ′ ∈ K × . The Külshammer ideal structure depends in a quite subtle way on the parameters, and we want to stress the fact that we need to compute the ideals as ideals, and as in [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF] it is not sufficient to consider the dimensions only.

The paper is organised as follows. In Section 1 we recall basic facts about Külshammer ideals and improve the general methods needed to compute the Külshammer ideal structure for symmetric algebras. In Section 2 we apply the general theory to algebras of quaternion type, and we prove our main result Theorem 7 there.

Acknowledgement. I wish to thank Oyvind Solberg for giving me during the Oberwolfach conference "Hochschild cohomology and applications" in February 2016 a GAP program to compute the Külshammer ideals. The GAP program [START_REF]Algorithms, Programming, version 4.7.9[END_REF] uses the package "qpa" and encouraged me to study the quaternion type algebras. I also wish to thank Rachel Taillefer for pointing out the particularity of (k, s) = (1, 3) for two simple modules which I forgot to consider in a previous version. I thank the referee for numerous very useful remarks, and in particular for alerting me on some mistake in the initial version concerning symmetrising forms.

Review on Külshammer ideals and how to compute them

The aim of this section is to briefly give the necessary background on Külshammer ideals, as introduced by B. Külshammer [START_REF] Külshammer | Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV[END_REF]. Morita invariance of Külshammer ideals (then named generalised Reynolds' ideals) was shown in [START_REF] Breuer | Cartan invariants and central ideals of group algebras[END_REF][START_REF] Héthelyi | Central ideals and Cartan invariants of symmetric algebras[END_REF] for perfect fields K. Külshammer ideals were proved to be a derived invariant in [START_REF] Zimmermann | Invariance of generalized Reynolds ideals under derived equivalences[END_REF], were used in [START_REF] Holm | Derived equivalence classification of symmetric algebras of domestic type[END_REF][START_REF] Holm | Derived equivalence classification of symmetric algebras of polynomial growth[END_REF][START_REF] Skowroński | Derived equivalence classification of weakly symmetric algebras of domestic type[END_REF] to classify weakly symmetric algebras of polynomial growth or domestic type up to derived equivalences, in [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF] for a derived equivalence classification of algebras of dihedral or semidihedral type, in [START_REF] Holm | Deformed preprojective algebras of type L: Külshammer spaces and derived equivalences[END_REF] for deformed preprojective algebras of type L, and in [START_REF] Snashall | Classification of symmetric special biserial algebras with at most one nonuniserial indecomposable projective[END_REF] for the derived equivalence classification of certain special biserial algebras. The concept was generalised to general finite-dimensional algebras in [START_REF] Bessenrodt | Generalised Reynolds ideals for nonsymmetric algebras[END_REF], to an invariant of Hochschild (co)homology for symmetric algebras [START_REF] Zimmermann | Fine Hochschild invariants of derived categories for symmetric algebras[END_REF] and in [START_REF] Zimmermann | Hochschild homology invariants of Külshammer type of derived categories[END_REF] for general algebras. The image of the Külshammer ideals in the stable centre were shown to be an invariant under stable equivalences of Morita type [START_REF] Liu | stable Hochschild homology and Auslander-Reiten conjecture[END_REF][START_REF] König | Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the AuslanderReiten conjecture[END_REF]. An overview is given in [START_REF] Zimmermann | On the use of Külshammer type invariants in representation theory[END_REF][START_REF] Zimmermann | Representation theory: A homological algebra point of view[END_REF].

Let K be a field of characteristic p > 0. Any finite-dimensional symmetric K-algebra A has an associative, symmetric, non-degenerate K-bilinear form -, -: A × A → K. For any K-linear subspace M of A we denote the orthogonal space by M ⊥ with respect to this form. Moreover, let [A, A] be the K-subspace of A generated by all commutators [a, b] := ab -ba, where a, b ∈ A. For any n ≥ 0 set

T n (A) = x ∈ A | x p n ∈ [A, A] .
Then, by [START_REF] Külshammer | Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV[END_REF], for any n ≥ 0, the orthogonal space T n (A) ⊥ is an ideal of the center Z(A) of A, called n-th Külshammer ideal. These ideals form a descending sequence

Z(A) = [A, A] ⊥ = T 0 (A) ⊥ ⊇ T 1 (A) ⊥ ⊇ T 2 (A) ⊥ ⊇ . . . ⊇ T n (A) ⊥ ⊇ . . .
with intersection of all ideals T n (A) ⊥ for n ∈ N being the Reynolds' ideal R(A) = Z(A) ∩ soc(A).

In [START_REF] Héthelyi | Central ideals and Cartan invariants of symmetric algebras[END_REF] 

(T n (A)/[A, A]) = dim K (T n (B)/[B, B]).
We note that in the proof of [START_REF] Zimmermann | Invariance of generalized Reynolds ideals under derived equivalences[END_REF]Theorem 1] the hypothesis that K is algebraically closed is never used. The assumption on the field K to be perfect is sufficient.

The aim of the present note is to show how these derived invariants can be applied to some subtle questions in the derived equivalence classifications of algebras of quaternion type.

In order to compute the Külshammer ideals we need a symmetrising form. However, the Külshammer ideals do not depend on the choice of the symmetrising form if K is perfect (cf [18, Proof of Claim 3]). We showed in [START_REF] Holm | Deformed preprojective algebras of type L: Külshammer spaces and derived equivalences[END_REF] (see also [START_REF] Zimmermann | Representation theory: A homological algebra point of view[END_REF]) that every Frobenius form arises as in the following proposition.

Proposition 2. [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF][START_REF] Holm | Deformed preprojective algebras of type L: Külshammer spaces and derived equivalences[END_REF] Let A be a basic Frobenius algebra such that K is a splitting field for A, and let {e 1 , . . . , e n } be a choice of orthogonal primitive idempotents with n i=1 e i = 1. Then there are bases B i,j of e i Ae j such that B = n i,j=1 B i,j is a basis of A containing a basis of soc(A) and such that the following statements hold:

(1) Define an K-linear mapping ψ on the basis elements by

ψ(b) = 1 if b ∈ soc(A) 0 otherwise for b ∈ B.
Then an associative non-degenerate K-bilinear form -,for A is given by x, y := ψ(xy).

(2) Any Frobenius form arises this way for some choice of a basis B.

Note that the hypothesis in [START_REF] Holm | Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type[END_REF][START_REF] Holm | Deformed preprojective algebras of type L: Külshammer spaces and derived equivalences[END_REF] is slightly different, however equivalent to the one given here. If A is a basic symmetric algebra over an algebraically closed field K, then A = KQ/I and we want to determine those bases B s of soc(A) which yield a symmetric form. This problem is addressed in previous papers dealing with Külshammer ideals (cf [10, Remark 2.9], [9, Remark 3.2]). The following remark indicates a necessary condition for the problem. Remark 3. If A is an indecomposable, basic symmetric algebra over an algebraically closed field K and let {e 1 , . . . , e n } be a choice of orthogonal primitive idempotents with n i=1 e i = 1. Suppose that B s is a K-basis of soc(A) and suppose that for each b ∈ B s there is a unique e i such that e i be i = b. Using [START_REF] Zimmermann | Representation theory: A homological algebra point of view[END_REF]Proposition 2.7.4] it is not hard to see that we can always find a basis B s of soc(A) such that the difference of two elements of B s is in the commutator subspace. Moreover, since the elements of B s are uniquely determined up to scalars by this property, Proposition 2 then shows that we can complete the basis B s to a basis B as in the proposition. If ψ is a K-linear map as in Proposition 2, then ψ(

[A, A]) = 0. In particular, if b, b ′ ∈ soc(A) with b -b ′ ∈ [A, A], then ψ(b) = ψ(b ′ ).

Algebras of quaternion type

2.1. Two simple modules. Erdmann gave a classification of algebras which could appear as blocks of tame representation type. These algebras fall in three classes, the algebras of dihedral, the algebras of semidihedral and the algebras of quaternion type. Erdmann's classification was up to Morita equivalence. Holm [7, Appendix B] gave a classification up to derived equivalence and obtained for non-local algebras of quaternion type two families, one containing algebras with two simple modules, one containing algebras with three simple modules. The algebras in each family share a common quiver, and the relations depend on a number of parameters.

The quiver for the algebras with two simples is the following.

• • 1 2 E ' &% '$ T &% '$ c α β γ η Let k ≥ 1, s ≥ 3 integers and a ∈ K × , c ∈ K. Then we get an algebra Q(2B) k,s 1 (a, c) by the above quiver with relations βη = (αβγ) k-1 αβ, ηγ = (γαβ) k-1 γα, α 2 = a • (βγα) k-1 βγ + c • (βγα) k , γβ = η s-1 , α 2 β = 0, γα 2 = 0.
Remark 4. Using [START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF] we see that the centre of this algebra is of dimension k + s + 2 and the Cartan matrix is 4k 2k 2k k + s with determinant 4ks. Hence, using Theorem 1, if

D b (Q(2B) k,s 1 (a, c)) ≃ D b (Q(2B) k ′ ,s ′ 1 (a ′ , c ′ )), then 4ks = 4k ′ s ′ and k + s + 2 = k ′ + s ′ + 2. Therefore (k + s) 2 = (k ′ + s ′ ) 2 and (k -s) 2 = (k ′ -s ′ ) 2 , which implies k = k ′ and s = s ′ , or k = s ′ and k ′ = s. Lemma 5. Let K be a field, and let A k,s (a, c) := Q(2B) k,s 1 (a, c). Then, Z(A k,s (a, c)) has a K-basis formed by the disjoint union {η -(αβγ) k-1 α} • ∪ {η t |2 ≤ t ≤ s} • ∪ {(αβγ) u + (βγα) u + (γαβ) u | 1 ≤ u ≤ k -1} • ∪ {1, (αβγ) k , α 2 } and is isomorphic, as commutative K-algebra, with K[U, Y, S, T ]/(Y s+1 , U k -Y s -2T, S 2 , T 2 , SY, SU, ST, U Y, U T, Y T )
where

U := (αβγ) + (βγα) + (γαβ) Y := η -(αβγ) k-1 α S := α 2 T := (αβγ) k Proof. First, η -(αβγ) k-1 α commutes trivially with η, since ηα = 0 = αη. Now α(η -(αβγ) k-1 α) -(η -(αβγ) k-1 α)α = α 2 (βγα) k-1 -(αβγ) k-1 α 2 = (a(βγα) k-1 βγ + c(βγα) k )(βγα) k-1 -(βγα) k-1 (a(βγα) k-1 βγ + c(βγα) k ) = a (βγα) k-1 βγ(βγα) k-1 -(βγα) 2k-2 βγ = a(βγα) k-1 βγ(βγα) k-1 -(βγα) k-1 βγ . This is trivially 0 if k = 1, and if k > 1, then (βγα) 2k-2 βγ = β(γαβ) 2k-2 γ = β(γαβ) k (γαβ) k-2 γ = βη s (γαβ) k-2 γ = 0. Hence a(βγα) k-1 βγ(βγα) k-1 -(βγα) k-1 βγ = a(βγα) k-1 βγ(βγα)(βγα) k-2 = a(βγα) k-1 βη s-1 (γα)(βγα) k-2 = a(βγα) k-1 βη s-2 (γαβ) k-1 γα 2 (βγα) k-2 = 0 since γα 2 = 0. The relations βη = (αβγ) k-1 αβ and ηγ = (γαβ) k-1 γα = γ(αβγ) k-1 α show that η -(αβγ) k-1 α commutes with β and with γ. Now, if k > 1, then η -(αβγ) k-1 α 2 = η 2 , and if k = 1, then η -(αβγ) k-1 α 2 = η 2 + α 2 . Since α 2 β = γα 2 = 0, it is clear that α 2 is central. Hence η t is central for each t ≥ 2. Now, αβγβ = αβη s-1 = α(αβγ) k-1 αβη s-2 = 0 since α 2 β = 0. Likewise γβγα = 0. Hence βU = β ((αβγ) + (βγα) + (γαβ)) = βγαβ = ((αβγ) + (βγα) + (γαβ)) β = U β and γU = γ ((αβγ) + (βγα) + (γαβ)) = γαβγ = γ ((αβγ) + (βγα) + (γαβ)) = U γ. Now, ηU = η ((αβγ) + (βγα) + (γαβ)) = η(γαβ) = (γαβ) k-1 γα 2 β = 0 = γα(αβγ) k-1 αβ = γαβη = ((αβγ) + (βγα) + (γαβ)) η = U η and αU = α ((αβγ) + (βγα) + (γαβ)) = αβγα = ((αβγ) + (βγα) + (γαβ)) α = U α.
Hence U is central, and then we only need to compute U u to get the result. Finally, socle elements in basic symmetric algebras over splitting fields are always central, and 1 is central of course. We know by [START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF] that the centre is (2 + k + s)-dimensional, and obtain therefore the result. Remark 6. Erdmann and Skowroński show in [START_REF] Erdmann | The stable Calabi-Yau dimension of tame symmetric algebras[END_REF]Lemma 5.7] 

that if K is an algebraically closed field, then Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s 1 (1, c ′ ) for some c ′ ∈ K and if K is of characteristic different from 2, then Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s
1 (a, 0). We can examine their computations again to get slightly better results. We assume here k + s > 4.

Suppose that K admits any k-th root, i.e. for all x ∈ K there is y ∈ K with y k = x. We want to simplify the parameters a, c. Replace α by x α α, β by x β β, γ by x γ γ and η by x η η for non zero scalars x α , x β , x γ , x η . Then the relations above are equivalent to

x η βη = x k α (x β x γ ) k-1 (αβγ) k-1 αβ, x η ηγ = x k α (x β x γ ) k-1 (γαβ) k-1 γα, x 2 α α 2 = a • x k-1 α (x β x γ ) k (βγα) k-1 βγ + c • x k α (x β x γ ) k (βγα) k , x γ x β γβ = x s-1 η η s-1 , α 2 β = 0, γα 2 = 0. We first choose x β such that x β x γ = x s-1 η to get the system βη = x k α x (k-1)(s-1)-1 η (αβγ) k-1 αβ, ηγ = x k α x (k-1)(s-1)-1 η (γαβ) k-1 γα, α 2 = a • x k-3 α x k(s-1) η (βγα) k-1 βγ + c • x k-2 α x k(s-1) η (βγα) k , γβ = η s-1 , α 2 β = 0, γα 2 = 0.
Then we put

x α = x -(k-1)(s-1)-1 k η
and obtain the system

βη = (αβγ) k-1 αβ, ηγ = (γαβ) k-1 γα, α 2 = a • x -(k-1)(s-1)-1 k •(k-3)+k(s-1) η (βγα) k-1 βγ + c • x -(k-1)(s-1)-1 k (k-2)+k(s-1) η (βγα) k , γβ = η s-1 , α 2 β = 0, γα 2 = 0. Now, -(k-1)(s-1)-1 k • (k -3) + k(s -1)
= 0 implies k = 3 and s = 1, or k = 1 and s = 3, which are excluded parameters, where the first case is already excluded since the algebra is defined only for s ≥ 3, and where both cases are excluded by our hypothesis. This number can be simplified and we therefore define u(k, s) := (k -3) + (4k -3)(s -1) > 0 for our admissible parameters. Hence if there is an element y a ∈ K such that y u(k,s) a = a -k , then we may choose such a parameter x η , such that we may assume a = 1. This holds in particular if K is algebraically closed. We obtain this way A k,s (a, 0) ≃ A k,s (1, 0) if K is sufficiently big, i.e. there is an element y a satisfying y u(k,s) a = a -k . Moreover, since s ≥ 3 and k ≥ 1 we get

- (k -1)(s -1) -1 k (k-2)+k(s-1) = (k -2) + (3k -2)(s -1) k ≥ (k -2) + 2(3k -2) k = 7k -6 k > 0. Let v(k, s) := (k -2) + (3k -2)(s -1). If there is y c ∈ K such that y v(k,s) c
= c -k , then we can therefore choose x η such that we can assume c = 1 if c = 0. Again, this is trivially true if K is algebraically closed.

As a consequence, combining our computation and the result [15, Lemma 5

.7], if K is algebraically closed of characteristic different from 2, then Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s 1 (1, 0). Theorem 7. Let A k,s (a, c) be the algebra Q(2B) k,s
1 (a, c) over a field K of characteristic p. Let a, c ∈ K \ {0}. We get the following cases.

(

) Suppose p = 2. (a) If k = 1, and (i) if s is even or if a is not a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))), (ii) if s is odd and a is a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))) -1. (b) If k > 1 is odd, and (i) if s is even and if c is a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))), (ii) if s is odd or if c is not a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))) -1. (c) If k is even, and (i) if c is a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))), (ii) if c is not a square in K, then dim K (T ⊥ 1 (A k,s (a, c))) = dim K (T ⊥ 1 (A k,s (a, 0))) -1. (2) Suppose K is a perfect field of characteristic p = 2. 1 
(a) Then A k,s (a, 0) ≃ A k,s (1, 0) and (i) if k and s are even, then

Z(A k,s (a, 0))/T ⊥ 1 (A k,s (a, 0)) ≃ K[U, Y, S]/(U k/2 -Y s/2 , S 2 , U Y, U S, Y S), (ii) if k > 1 or s is odd, then Z(A k,s (a, 0))/T ⊥ 1 (A k,s (a, 0)) ≃ K[U, Y, S]/(U ⌈k/2⌉ , Y ⌈s/2⌉ , S 2 , U Y, U S, Y S). (b) If c = 0, then (i) if k and s are even, then Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y ]/(U k/2 -Y s/2 , U Y ), (ii) if k > 1 or s is odd, then Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y ]/(U ⌈(k+1)/2⌉ , Y ⌈(s+1)/2⌉ , U Y ). (c) If k = 1, then (i)
if (s is odd and c = 0) or (s is even and c = 0),

Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y, S]/(Y ⌈(s+1)/2⌉
, S 2 , Y S), (ii) if (s is odd and c = 0) or (s is even and c = 0),

Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y ]/(Y ⌈s/2⌉ ). (3) If p = 2, and if K is algebraically closed, then A k,s (a, c) ≃ A k,s (a, c) for some a ′ ∈ K × , and if (k, s) = (1, 3), then A k,s (a, c) ≃ A k,s (1, 0). (4) If p > 3 or n ≥ 2, then the dimension of the Külshammer ideal T n (A k,s (a, c)) ⊥ does not depend on the parameters a, c. Suppose that K is algebraically closed. Then A k,s (a, 0) ≃ A k,s (1, 0) if (k, s) = (1, 3) and if c = 0 then A k,s (a, c) ≃ A k,s (a ′ , 1) ≃ A k,s (1, c ′ ) for some a ′ , c ′ ∈ K × .
Remark 8. Consider the case s = 3 and k = 1. The computations in Remark 6 show that if K is algebraically closed, and c = 0, then for each a ′ there is a such that A 1,3 (a ′ , c) ≃ A 1,3 (a, 1). This case is quite particular which allows an alternative argument for distinguishing derived equivalence classes. If c = 0, then the relations of A 1,3 (a, 0) are homogeneous. Therefore the algebra A 1,3 (a, 0) is graded by path lengths with semisimple degree 0 component. A theorem of Rouquier [START_REF] Rouquier | Automorphismes, graduations et catégories triangulées[END_REF]Theorem 6.1] shows that if A 1,3 (a, 0) is derived equivalent to another algebra B, then the induced stable equivalence of Morita type induces a grading on B. Moreover, by [START_REF] Rouquier | Automorphismes, graduations et catégories triangulées[END_REF]Lemma 5.21] the degree 0 component of A 1,3 (a, 0) is of finite global dimension if and only if the degree 0 component of B is of finite global dimension.

Remark 9. The hypothesis that K is algebraically closed is stronger than required. A more precise, somewhat technical statement is given at the end of Remark 6.

Proof of Theorem 7. The isomorphisms A k,s (a, 0) ≃ A k,s (1, 0) for (k, s) = (1, 3) and if c = 0 then A k,s (1, c ′ ) ≃ A k,s (a, c) ≃ A k,s (a ′ , 1) for some a ′ , c ′ ∈ K × follow from Remark 6.

Define the following subsets of Q(2B) k,s 1 (a, c).

B 1 := {α(βγα) n , (βγα) n βγ, (βγα) m , e 1 (αβγ) ℓ | 0 ≤ ℓ ≤ k, 1 ≤ m ≤ k -1, 0 ≤ n ≤ k -1}, B 2 := {e 2 η t , (γαβ) m | 0 ≤ t ≤ s, 1 ≤ m ≤ k -1}, B 3 := {(βγα) n β, α(βγα) n β | 0 ≤ n ≤ k -1}, B 4 := {(γαβ) n γ, (γαβ) n γα | 0 ≤ n ≤ k -1}.
The (disjoint) union of these sets forms a basis of Q(2B) k,s 1 (a, c), using the known Cartan matrix of Q(2B) k,s 1 (a, c). As a next step we need to compute the commutator space. Clearly, non closed paths are commutators, since if e i pe j = 0 for some path p and e i = e j , then p = e i p -pe i . Hence

B 3 ∪ B 4 ⊆ [A k,s (a, c), A k,s (a, c)]. Moreover, α(βγα) n = α(βγα) n -(βγα) n α ∈ [A(a, c), A(a, c)] ∀n ≥ 1, (βγα) m = (αβγ) m = (γαβ) m ∈ A k,s (a, c)/[A k,s (a, c), A k,s (a, c)] ∀m ≥ 0, (βγα) m βγ = γ(βγα) m β = 0 ∈ A k,s (a, c)/[A k,s (a, c), A k,s (a, c)] ∀m ≥ 1, and hence B comm := {α, (αβγ) m , η t , e 1 , e 2 | 1 ≤ t ≤ s -1, 1 ≤ m ≤ k} is a generating set of A k,s (a, c)/[A k,s (a, c), A k,s (a, c)].
Since the dimension of the centre of A k,s (a, c) equals the dimension of A k,s (a, c)/[A k,s (a, c), A k,s (a, c)], the algebra A k,s (a, c) being symmetric, and both are of dimension 2 + k + s, by [START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF], we get that the classes represented by the elements B comm form actually a basis of A k,s (a, c)/[A k,s (a, c), A k,s (a, c)].

We only need to work in A k,s (a, c)/[A k,s (a, c), A k,s (a, c)], and therefore we need to consider linear combinations of paths in B comm only. We can omit idempotents, since computing modulo the radical these idempotents remain idempotents, and are hence never nilpotent modulo commutators. Hence we only need to consider linear combinations of elements in the set

{η t , α, (βγα) m | 1 ≤ t ≤ s -1, 1 ≤ m ≤ k}.
We deal with the case p = 2. Let hence p = 2. In the commutator quotient squaring is semilinear (cf e.g. [START_REF] Külshammer | Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV[END_REF],[22, Lemma 2.9.3]).

If k > 1 is odd, then

0 = s-1 t=1 x t η t + uα + k m=1 y m (βγα) m 2 = s-1 t=1 x 2 t η 2t + u 2 c(βγα) k + k m=1 y 2 m (βγα) 2m = 1≤t≤s/2 x 2 t η 2t + u 2 c(βγα) k + (k-1)/2 m=1 y 2 m (βγα) 2m ,
which implies x t = 0 for all t ≤ s 2 , y m = 0 for all m ≤ k-1 2 . If c = 0 then there is no other constraint. Suppose c = 0. Then, if s is odd we get u = 0. If s is even, then x 2 s/2 + cu 2 = 0 which has a non trivial solution if and only if c is a square in K. Hence, computing in A k,s (a, c)/[A k,s (a, c), A k,s (a, c)] we get

T 1 (A k,s (a, c)) =        α, η t , (βγα) m | t > s 2 , m > k-1 2 K if c = 0 η t , (βγα) m | t > s 2 , m > k-1 2 K if s is odd and c = 0 η t , (βγα) m | t > s 2 , m > k-1 2 K if s is even and 0 = c ∈ K 2 η t , (βγα) m , η s/2 + dα | t > s 2 , m > k-1 2 K if s is even and 0 = c = d 2 If k is even, then 0 = s-1 t=1 x t η t + uα + k m=1 y m (βγα) m 2 = s-1 t=1 x 2 t η 2t + u 2 c(βγα) k + k m=1 y 2 m (βγα) 2m = 1≤t≤(s-1)/2 x 2 t η 2t + u 2 c(βγα) k + k/2 m=1 y 2 m (βγα) 2m ,
which implies y m = 0 for 1 ≤ m < k/2 and x t = 0 for t ≤ s-1 2 . If c = 0, then x s/2 + y k/2 = 0 in case s is even, and y k/2 = 0 in case s is odd. Suppose c = 0. If s is odd, then y 2 k/2 + cu 2 = 0, and if s is even, then

y 2 k/2 + x 2 s/2 + cu 2 = 0. Again y 2 k/2 + cu 2 = 0 and y 2 k/2 + x 2 s/2 + cu 2 = 0 has non zero solutions if and only if c is a square. Computing in A k,s (a, c)/[A k,s (a, c), A k,s (a, c)] we get T 1 (A(a, c)) =                α, η t , (βγα) m | t > s-1 2 , m > k 2 K if s is odd and c = 0 α, η s/2 + (βγα) k/2 , η t , (βγα) m | t > s 2 , m > k 2 K if s is even and c = 0 η t , (βγα) m | t > s-1 2 , m > k 2 K if s is odd and 0 = c ∈ K 2 η t , (βγα) m , (βγα) k/2 + dα | t > s-1 2 , m > k 2 K if s is odd and 0 = c = d 2 η t , (βγα) m , (βγα) k/2 + η s/2 | t > s 2 , m > k 2 K if s is even and 0 = c ∈ K 2 η t , (βγα) m , (βγα) k/2 + η s/2 , η s/2 + dα | t > s 2 , m > k 2 K if s is even and 0 = c = d 2 If k = 1, then, since βγ = γβ = η s-1 in the commutator quotient, 0 = s-1 t=1 x t η t + uα + y 1 (βγα) 2 = s-1 t=1 x 2 t η 2t + u 2 aη s-1 + u 2 c(βγα)
which implies x t = 0 for 1 ≤ t ≤ s-2 2 . If c = 0, then x s/2 = 0 in case s is even, and x 2 (s-1)/2 + au 2 = 0 in case s is odd. This last equation has non zero solutions if and only if a ∈ K 2 .

Suppose c = 0. If s is even, then x 2 s/2 + cu 2 = 0. This has non zero solutions if and only if c ∈ K 2 . If s is odd, then cu 2 = 0 and x 2 (s-1)/2 + au 2 = 0. Hence s odd implies u = 0 = x (s-1)/2 . Computing s (a,c),A k,s (a,c)] for n ≥ 2 (and any p ≥ 2 in this case) yields expressions which are independent of a, c.

again in A k,s (a, c)/[A k,s (a, c), A k,s (a, c)], T 1 (A k,s (a, c)) =                η (s-1)/2 + bα, η t , (βγα) | t > s-1 2 K if s is odd, a = b 2 and c = 0 η t , (βγα) | t > s-1 2 K if s is odd, a ∈ K 2 and c = 0 η t , (βγα) | t > s 2 K if s is even and c = 0 η t , (βγα) | t > s-1 2 K if s is odd and c = 0 η t , (βγα) | t > s 2 K if s is even and 0 = c ∈ K 2 η t , (βγα), η s/2 + dα | t > s 2 K if s is even and 0 = c = d 2 It is easy to see that computing T n (A k,s (a, c))/[A k,
In order to compute the Külshammer ideal T 1 (A k,s (a,c)) ⊥ we need to give the symmetrising form of A k,s (a, c). Recall that we have a basis B =

4 i=1 B i of A (k,s) (a, c) given by B 1 := {α(βγα) n , (βγα) n βγ, (βγα) m , e 1 (αβγ) ℓ | 0 ≤ ℓ ≤ k, 1 ≤ m ≤ k -1, 0 ≤ n ≤ k -1}, B 2 := {e 2 η t , (γαβ) m | 0 ≤ t ≤ s, 1 ≤ m ≤ k -1}, B 3 := {(βγα) n β, α(βγα) n β | 0 ≤ n ≤ k -1}, B 4 := {(γαβ) n γ, (γαβ) n γα | 0 ≤ n ≤ k -1}. We define a trace map A(a, c) ψ -→ K by ψ(η s ) = ψ((αβγ) k ) = 1
, and ψ(x) = 0 if x is a path in the quiver such that x ∈ B \ soc(A k,s (a, c)).

Note that (αβγ) k = βηγ = (βγα) k . Remark 3 indicates that ψ should coincide on these socle elements for ψ to define a symmetric form. Indeed, η s = ηγβ = (γαβ) k and hence

η s -(αβγ) k = (γαβ) k -(αβγ) k = [γ, αβ(γαβ) k-1 ]
is a commutator. We need to prove that ψ(c c) is mapped to 0 by ψ, and m 2 > 0 implies c) is mapped to 0 by ψ. If ℓ 2 = 0, then the two elements commute trivially.

1 c 2 ) = ψ(c 2 c 1 ) for all elements c 1 , c 2 ∈ B. Case (c 1 , c 2 ) ∈ B 1 ×B 1 : We obtain α(βγα) n1 •α(βγα) n2 = 0 if n 1 +n 2 > 0, and the case n 1 = n 2 = 0 is clearly symmetric. α(βγα) n1 • (βγα) n2 βγ = (αβγ) n1+n2+1 = (βγα) n2 βγ • α(βγα) n1 , α(βγα) n1 • (βγα) m2 = (αβγ) n1+m2 α ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a,
(βγα) m2 • α(βγα) n1 = 0. Now, if ℓ 2 > 0, then α(βγα) n1 • (αβγ) ℓ2 = 0 and (αβγ) ℓ2 • α(βγα) n1 = (αβγ) ℓ2+n1 α ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a,
(βγα) n1 βγ • (βγα) n2 βγ = 0 = (βγα) n2 βγ • (βγα) n1 βγ and (βγα) n1 βγ • (βγα) m2 = 0 whereas (βγα) m2 • (βγα) n1 βγ = (βγα) m2+n1 βγ ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a, c) is mapped to 0 by ψ. If ℓ 2 > 0, then (βγα) n1 βγ • (αβγ) ℓ2 = (βγα) n1+ℓ2 βγ ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a, c)
is mapped to 0 by ψ, whereas (αβγ) ℓ2 • (βγα) n1 βγ = 0. Clearly e 1 commutes with (βγα) n1 βγ. Now, trivially 

(βγα) m1 • (βγα) m2 = (βγα) m2 • (βγα) m1 and (αβγ) ℓ1 • (αβγ) ℓ2 = (αβγ) ℓ2 • (αβγ) ℓ1 . Finally, if ℓ 1 > 0 then (αβγ) ℓ1 • (βγα) m2 = 0 = (βγα) m2 • (αβγ) ℓ1 . Case (c 1 , c 2 ) ∈ B 1 × B 2 : Since B 1 ⊆ e 1 A k,s (a, c)e 1 , and since B 2 ⊆ e 2 A k,s (a, c)e 2 we get ψ(c 1 c 2 ) = ψ(c 2 c 1 ) = 0 for c 1 ∈ B 1 and c 2 ∈ B 2 . Case (c 1 , c 2 ) ∈ B 1 × B 3 : Since B 1 ⊆ e 1 A k,s (a, c)e 1 , and since B 3 ⊆ e 1 A k,s (a, c)e 2 we get c 1 c 2 = 0 and c 2 c 1 ∈ e 1 A k,s (a, c)e 3 for c 1 ∈ B 3 and c 2 ∈ B 1 . Non closed paths are mapped to 0 by ψ. Case (c 1 , c 2 ) ∈ B 1 ×B 4 : Since B 4 ⊆ e 2 A k,s (a, c)e 1 the same arguments as in the case (c 1 , c 2 ) ∈ B 1 ×B 3 apply. Case (c 1 , c 2 ) ∈ B 2 × B 2 : Clearly η t1 • η t2 = η t2 • η t1 and (γαβ) m1 • (γαβ) m2 = (γαβ) m2 • (γαβ) m1 . Moreover, if t > 0 then η t • (γαβ) m = 0 = (γαβ) m • η t . If t = 0, then trivially η t • (γαβ) m = (γαβ) m • η t . Case (c 1 , c 2 ) ∈ B 2 × B 3 : Since then
) ∈ B 1 × B 3 apply. Case (c 1 , c 2 ) ∈ B 3 × B 3 : Then c 1 c 2 = 0 = c 2 c 1 . Case (c 1 , c 2 ) ∈ B 3 × B 4 : (βγα) n1 β • (γαβ) n2 γ = (βγα) n1+n2 βγ ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a, c)
is mapped to 0 by ψ, and

(γαβ) n2 γ • (βγα) n1 β = (γαβ) n2 (γβ)(γαβ) n1 = 0. Now, (βγα) n1 β • (γαβ) n2 γα -(γαβ) n2 γα • (βγα) n1 β = (βγα) n1+n2+1 -(γαβ) n1+n2+1 .
and the value of ψ on each of the summands is equal.

α(βγα) n1 β • (γαβ) n2 γ = (αβγ) n1+n2+1 and (γαβ) n2 γ • α(βγα) n1 β = (γαβ) n2+n1+1 both have identical values under ψ. Finally α(βγα) n1 β • (γαβ) n2 γα = (αβγ) n1+n2+1 α ∈ (B 1 ∪ {0}) \ soc(A (k,s) (a, c) is mapped to 0 by ψ and (γαβ) n2 γα • α(βγα) n1 β = 0. Case (c 1 , c 2 ) ∈ B 4 × B 4 : Then c 1 c 2 = 0 = c 2 c 1 .
Altogether this shows that ψ is symmetric. The fact that ψ defines a non degenerate form follows as in the proof of Proposition 2. For the reader's convenience we recall the short argument. Suppose that the form defined by ψ is degenerate. Then there is a 0 = x ∈ A k,s (a, c) with ψ(xy) = 0 for all y, and since 1 = e 1 + e 2 there is a primitive idempotent e ∈ {e 1 , e 2 } of A k,s (a, c) such that we may suppose that x ∈ eA k,s (a, c). Let S be a simple submodule of xA k,s (a, c) and there is y such that 0 = s = xy ∈ S. Since S ≤ eA k,s (a, c) is one-dimensional, and included in the socle, and since eBe contains a basis of S we get ψ(xy) = 0. The form defined by ψ is trivially associative. Hence ψ defines a symmetrising form.

We come to the main body of the proof. Recall from Lemma 5 that dim K (Z(A k,s (a, c))) = k+s+2. We proceed case by case.

k > 1 odd and c = 0: Recall that in this case

T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = α, η t , (βγα) m | t > s 2 ; m > k -1 2 K . Hence dim K (T 1 (A k,s (a, 0))/[A k,s (a, 0), A k,s (a, 0)]) = 1 + s 2 + k+1 2 -1 if s is even 1 + s+1 2 + k+1 2 -1 if s is odd = s 2 + k+1 2 if s is even s+1 2 + k+1 2 if s is odd observing that (βγα) k -η s ∈ [A k,s (a, c), A k,s (a, c)]. Therefore dim K (T 1 (A k,s (a, 0)) ⊥ ) = k + s + 2 - s 2 + k+1 2 if s is even s+1 2 + k+1 2 if s is odd = s 2 + 1 + k+1 2 if s is even s+1 2 + k+1 2 if s is odd But, in case s is even, η t , (αβγ) u + (βγα) u + (γαβ) u , (αβγ) k | u ≥ k + 1 2 , t ≥ s 2 ⊆ T 1 (A(a, c)) ⊥ ,
and in case s is odd,

η t , (αβγ) u + (βγα) u + (γαβ) u , (αβγ) k | u ≥ k + 1 2 , t ≥ s + 1 2 ⊆ T 1 (A(a, c)) ⊥ .
This is a basis of a subspace of the centre of the dimension as required, and hence the set above is a basis of T 1 (A k,s (a, c)) ⊥ . Hence, with these parameters, if s is even then

Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y, S]/(Y s/2
, U (k+1)/2 , S 2 , Y S, U S, U Y ), and if s is odd, then

Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y, S]/(Y (s+1)/2
, U (k+1)/2 , S 2 , Y S, U S, U Y ). k > 1 odd, c = 0, and s is odd:

Recall T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = η t , (βγα) m | t > s 2 ; m > k -1 2 K .
In this case we get α 2 ∈ T 1 (A k,s (a, c)) ⊥ , and using the preceding discussion we get that

α 2 , (βγα) k , η t , (αβγ) u + (βγα) u + (γαβ) u | u ≥ k + 1 2 , t ≥ s + 1 2 is a K-basis of T 1 (A k,s (a, c)) ⊥ .
Hence in this case

Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y ]/(Y (s+1)/2 , U (k+1)/2 , U Y ). k > 1 odd, d 2 = c = 0, and s is even. Recall T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = dα + η s/2 , η t , (βγα) m | t > s 2 ; m > k -1 2 K .
Then

η s/2 + dα • η s/2 + d ca α 2 = η s + d 2 ca α 3 = η s + c ca α 3 = η s + 1 a • a(αβγ) k
and this is mapped to 0 by ψ. Hence,

d ca α 2 + η s/2 , (αβγ) k , η t , (αβγ) u + (βγα) u + (γαβ) u | u ≥ k -1 2 , t ≥ s 2 + 1
is a K-basis of T 1 (A k,s (a, c)) ⊥ . Therefore in this case

Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y ]/(Y s 2 +1
, U (k+1)/2 , U Y ). k even and c = 0 and s is odd. Recall

T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = dα + (βγα) k/2 , η t , (βγα) m | t > s -1 2 ; m > k 2 K .
Then the discussion of the case k > 1 odd and c = 0 shows that

η t , (αβγ) k , (αβγ) u + (βγα) u + (γαβ) u | u ≥ k 2 , t ≥ (s + 1) 2 is a K-basis of T 1 (A k,s (a, c)) ⊥ . Hence in this case Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y, S]/(Y (s+1)/2 , U k/2
, S 2 , Y S, U S, U Y ). k even and c = 0 and s is even. Recall

T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = α, η s/2 + (βγα) k/2 , η t , (βγα) m | t > s 2 ; m > k 2 K . Then (αβγ) k , η t , (αβγ) u + (βγα) u + (γαβ) u , η s/2 + (βγα) k/2 | u ≥ k 2 + 1, t ≥ s 2 + 1 is a K-basis of T 1 (A k,s (a, c)) ⊥ . Hence in this case Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y, S]/(Y s/2 -U k/2 , S 2 , Y S, U S, U Y ). k even, 0 = c = d 2 , s odd: Recall T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = dα + (βγα) k/2 , η t , (βγα) m | t > s -1 2 ; m > k 2 K .
Since dim(Z(A k,s (a, c))) = k + s + 2, and since

dim(T 1 (A k,s (a, c)))/[A k,s (a, c), A k,s (a, c)] = k 2 + s + 1 2 , we get dim(T 1 (A k,s (a, c)) ⊥ ) = 2 + k + s - k 2 - s + 1 2 = k 2 + s + 1 2 + 1.
Moreover,

d c α 2 + U k/2 • dα + (βγα) k/2 = d 2 c α 3 + dU k/2 α + d c (βγα) k/2 + (βγα) k
and this maps to 0 by the map ψ. Therefore

(βγα) k , d c α 2 + (αβγ) k/2 + (βγα) k/2 + (γαβ) k/2 , η t , (αβγ) u + (βγα) u + (γαβ) u | u ≥ k 2 + 1, t ≥ s + 1 2 is a K-basis of T 1 (A k,s (a, c
)) ⊥ , and therefore

Z(A k,s (a, c))/T 1 (A k,s (a, c)) ⊥ ≃ K[U, Y ]/(U k/2 , Y (s+1)/2 , U Y ).
k even, c = d 2 = 0, and s even:

Recall T 1 (A k,s (a, c))/[A k,s (a, c), A k,s (a, c)] = dα + η s/2 , (βγα) k/2 + η s/2 , η t , (βγα) m | t > s 2 ; m > k 2 K . Then α 2 + dη s/2 , (βγα) k , η t , (αβγ) u + (βγα) u + (γαβ) u , η s/2 + (βγα) k/2 | u ≥ k 2 + 1, t ≥ s 2 + 1 is a K-basis of T 1 (A k,s (a, c)) ⊥ . Hence in this case Z(A k,s (a, c))/T ⊥ 1 (A k,s (a, c)) ≃ K[U, Y ]/(Y s/2 -U k/2 , U Y ). If k = 1 and c = 0 and s odd: Since dim(Z(A 1,s (a, c)) = 3 + s, and since dim(T 1 (A 1,s (a, c))/[A 1,s (a, c), A 1,s (a, c)]) = 3 + s -1 2 ,
we obtain dim(T 1 (A 1,s (a, c)) ⊥ ) = s+1 2 . Observe that η s = (αβγ) + (βγα) + (γαβ) = U . Then we get

βγα, η t , | t ≥ s + 1 2 is a K-basis of T 1 (A 1,s (a, c)) ⊥ . Therefore Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y, S]/(Y (s+1)/2 , S 2 
, Y S). If k = 1 and c = 0 and s even: Since dim(Z(A 1,s (a, c)) = 3 + s, and since

dim(T 1 (A 1,s (a, c))/[A 1,s (a, c), A 1,s (a, c)]) = 1 + s 2 , we obtain dim(T 1 (A 1,s (a, c)) ⊥ ) = 2 + s 2 . Hence α 2 , βγα, η t , | t ≥ s 2 is a K-basis of T 1 (A 1,s (a, c)) ⊥ and Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y ]/Y s/2 . If k = 1 and c = 0 and s odd: Since dim(Z(A 1,s (a, c)) = 3 + s, and since dim(T 1 (A 1,s (a, c))/[A 1,s (a, c), A 1,s (a, c)]) = 2 + s -1 2 , we obtain dim(T 1 (A 1,s (a, c)) ⊥ ) = 1 + s+1 2 . Hence α 2 , βγα, η t , | t ≥ s + 1 2 is a K-basis of T 1 (A 1,s (a, c)) ⊥ and Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y ]/Y (s+1)/2
. If k = 1 and c = 0 and s even: Since dim(Z(A 1,s (a, c)) = 3 + s, and since

dim(T 1 (A 1,s (a, c))/[A 1,s (a, c), A 1,s (a, c)]) = 2 + s 2 , we obtain dim(T 1 (A 1,s (a, c)) ⊥ ) = 1 + s 2 . Hence βγα, η t , | t ≥ 1 + s 2 is a K-basis of T 1 (A 1,s (a, c)) ⊥ and Z(A 1,s (a, c))/T ⊥ 1 (A 1,s (a, c)) ≃ K[Y, S]/(Y (s+2)/2 , S 2 , Y S).
In order to be more concise we summarise the results from Theorem 7 and Remark 4 in case K is algebraically closed in the following corollary.

Corollary 10. Let K be an algebraically closed field of characteristic p ∈ N ∪ {∞}, and let a, a ′ , c be non-zero elements in K, and let c ′ , c ′′ ∈ K.

• If p = 2, then there is a

′ ∈ K × such that Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s 1 (a ′ , 0), and if (k, s) = (1, 3), then Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s 1 (1, 0). • If p = 2, then D b (Q(2B) k,s 1 (a, c)) ≃ D b (Q(2B) k,s 1 (a ′ , 0)). Moreover, there is a ′′ ∈ K × such that Q(2B) k,s 1 (a, c) ≃ Q(2B) k,s 1 (a ′′ , 1) and if (k, s) = (1, 3), then Q(2B) k,s 1 (a ′ , 0) ≃ Q(2B) k,s 1 (1, 0). • For any characteristic of K we get D b (Q(2B) k,s 1 (a, c ′′ )) ≃ D b (Q(2B) k ′ ,s ′ 1 (a ′ , c ′ )) ⇒ ((k = k ′ and s = s ′ ) or (k = s ′ and s = k ′ ).)
Proof. The first statement is an immediate consequence of Theorem 7 item (3) and [15, Lemma 5.7]. The second statement follows from Theorem 7 item (2)(a), (2)(b), (2)(c), and Theorem 1. Indeed, the isomorphism type of the centre modulo the first Külshammer ideal differs in case c = 0 and c = 0. More precisely, the commutative algebras from case (2)(a) (i) and (2)(a) (ii) are non isomorphic since the dimensions of the socles of these algebras differ by 1. Likewise, the commutative algebras from case (2)(b) (i) and (2)(b) (ii) are non isomorphic since the dimensions of the socles of these algebras differ by 1. The dimension of the socle of the centre modulo the Külshammer ideal distinguish the algebras also in case (2)(c), i.e. k = 1. The third statement follows from Remark 4. Remark 11. Let K be an algebraically closed field of characteristic 2. We do not know for which pair of parameters a, a ′ ∈ K × we get that Q(2B) k,s 1 (a ′ , 1) is derived equivalent to Q(2B) k,s 1 (a, 1). We do not know for which parameters k, s the algebras Q(2B) k,s 1 (a, c) and Q(2B) s,k 1 (a, c) are derived equivalent.

Remark 12. The case p = 3 is special if K is not perfect. Let p = 3 and use the notations used in the proof of Theorem 7. Then α 3 = a(βγα) m . In the commutator quotient taking third power is semilinear (cf e.g. [START_REF] Külshammer | Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV[END_REF],[22, Lemma 2.9.3]), and therefore 0 = We have again various cases. If 3 does not divide k and 3 does not divide s, then x t = 0 for all t ≤ s/3 and y m = 0 for all m ≤ k/3 and u = 0. If 3 does not divide k but 3|s, then x t = 0 for all t < s/3 and y m = 0 for all m ≤ k/3 and x 3 s/3 + au 3 = 0, which has a non zero solution if and only if a is a cube. If 3 divides k and 3 does not divide s, then x t = 0 for all t ≤ s/3 and y m = 0 for all m < k/3 and y 3 m/3 + au 3 = 0, which has a non zero solution if and only if a is a cube. If 3 divides k and 3 divides s, then x t = 0 for all t < s/3 and y m = 0 for all m < k/3 and x 3 s/3 + y 3 m/3 + au 3 = 0, which has a non zero solution if and only if a is a cube.

As seen above, the first Külshammer ideal detects if the parameter a is a third power in case k or s is divisible by 3. This shows that the isomorphism A k,s (a, 0) ≃ A k,s (1, 0), which we proved for algebraically closed base fields, is false if the base field is not perfect. 2.2. Three simple modules. Holm shows that there are two families of algebras Q(3K) a,b,c and Q(3A) 2,2 1 (d) with three simple modules such that any block with quaternion defect group and three simple modules is derived equivalent to an algebra in one of these families. According to [START_REF] Holm | Blocks of tame representation type and related algebras: Derived equivalences and Hochschild cohomology[END_REF] the derived classification of the case Q(3K) a,b,c is complete, whereas the classification for the case Q(3A) 2,2 1 (d) is complete up to the scalar d ∈ K \ {0, 1}. The quiver 3A is 

• • • 1 2 3 E E ' ' β δ γ η B(d) := Q(3A)

c 1 c 2

 2 and c 2 c 1 are non closed paths, the same arguments as in the case (c 1 , c 2 ) ∈ B 1 × B 3 apply. Case (c 1 , c 2 ) ∈ B 2 × B 4 : Again since then c 1 c 2 and c 2 c 1 are non closed paths, the same arguments as in the case (c 1 , c 2

3 t

 3 η 3t + u 3 a(βγα) k + 1≤m≤k/3 y 3 m (βγα) 3m .



  2,2 1 (d) is the quiver algebra of 3A modulo the relations βδη= βγβ, δηγ = γβγ, ηγβ = d • ηδη, γβδ = d • δηδ, βδηδ = 0, ηγβγ = 0 for d ∈ K \ {0, 1}.Following[START_REF] Erdmann | Blocks of tame representation type and related algebras[END_REF] the Cartan matrix of B(d) is and the centre is 6-dimensional. The Loewy series of the projective indecomposable modules are given below.We obtain a basis of the socle of B(d) by {s 1 := βδηγ, s 2 := ηγβδ, s 3 := γβδη}. The closed paths of the algebra are {e 0 , e 1 , e 2 , βγ, γβ, δη, ηδ, βδηγ, ηγβδ, γβδη}. The centre is formed by linear combinations of closed paths and has a basis {1, βγ + γβ + 1 d ηδ, βγ + δη + ηδ, βδηγ, ηγβδ, γβδη} as is easily verified. Non closed paths are clearly commutators. Obviously βδηγ ≡ ηγβδ ≡ γβδη mod [B(d), B(d)].

  it has been shown that if K is perfect, then the sequence of Külshammer ideals is invariant under Morita equivalences. Later, it was shown that the sequence of Külshammer ideals is invariant under derived equivalences, and the image of the sequence of Külshammer ideals in the stable centre is invariant under stable equivalences of Morita type. The following theorem recalls part of what is known. Let A and B be finite-dimensional symmetric algebras over a perfect field K of positive characteristic p. If A and B are derived equivalent, then there is an isomorphism ϕ : Z(A) → Z(B) between the centers of A and B such that ϕ(T n (A) ⊥ ) = T n (B) ⊥ for all positive integers n. • (cf e.g. [22, Proposition 6.8.9]) Let A and B be derived equivalent finite dimensional Kalgebras over a field K, which is a splitting field for A and for B. Then the elementary divisors of the Cartan matrices of A and of B coincide. In particular, the determinant of the Cartan matrices coincides. • [14, Corollary 6.5] If A and B are stably equivalent of Morita type, and if K is an algebraically closed field, then dim K

	Theorem 1.	• [18, Theorem 1]

We now suppose that the characteristic

If d is a square in K, then

Let us consider the centre. Denote βγ + γβ + 1 d ηδ = x and βγ + δη + ηδ = y. Then we get

The coefficient matrix above has determinant (d-1) 2 d 4

and since d = 1, the elements x 2 , y 2 , xy are linearly independent, and hence Z(B(d)) ≃ K[x, y]/(x 3 , y 3 , x 2 y, xy 2 ). Moreover, choose the Frobenius form given by ψ(βδηγ) = ψ(δηγβ) = ψ(ηγβδ) = 1 and ψ(c) = 0 if c is a path of length at most 3, following Remark 3. The relations are homogeneous, which shows that in order to prove symmetry of the form we only need to consider paths c 1 and c 2 such that the lengths of c 1 and c 2 sum up to 4. The verification is a trivial and short computation which can be left to the reader.

Suppose now that K is a perfect field. An elementary computation gives that T ⊥ 1 (B(d)) has a basis {x, s 1 , s 2 , s 3 }, and therefore Z(B(d))/T ⊥ 1 (B(d)) ≃ K[y]/y 2 , independently of d. Theorem 13. Let K be a field of characteristic 2, and let B(d) be the algebra

Proof: is done above. Remark 14. Unlike in case of Theorem 7 and its Corollary 10, using Külshammer ideals we cannot distinguish the derived category of Q(3A) 2,2 1 (d) from the derived category of Q(3A) 2,2 1 (d ′ ) for two parameters d, d ′ . If K is perfect of characteristic 2, then all elements of K are squares. Theorem 1 needs that K is perfect for the invariance of Külshammer ideals under derived equivalences and K is even algebraically closed for the invariance under stable equivalences of Morita type. We can only say that the algebra Q(3A) 2,2 1 (d) is not isomorphic to the algebra Q(3A)