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This paper deals with the characterization of flat outputs for structured linear discretetime systems. More precisely, considering a structured discrete-time linear system, we provide a complete set of the flat outputs using constructive polynomial complexity order algorithms. The proposed method is simple to implement. It is based on usual algorithms dedicated to the computation of successors and predecessors of vertex subsets and to the computation and the ordering of strongly connected components in a digraph.

INTRODUCTION

Flatness is a control-theoretical concept introduced in [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. For a flat continuous-time system, flatness is equivalent to a complete parametrization of all system variables (inputs and states) in terms of a finite number of independent variables and a finite number of their time derivatives. Those variables are called flat outputs. For discrete-time systems, a specific treatment must be considered insofar as derivatives are replaced by shifted outputs. Hence, for a flat system, the state variable as well as the input of discrete-time systems can be written as some function of the output (including forward and backward shifts in the output). Flatness-based control has been involved in many applications and has an outstanding interest in trajectory planning (Meurer (20114), [START_REF] Chamseddine | Flatness-based trajectory planning/replanning for a quadrator unmanned aerial vehicle[END_REF]), predictive control and constraint handling [START_REF] De Doná | A flatness-based iterative method for reference trajectory generation in constrained nmpc[END_REF], [START_REF] Kandler | A differential flatness based model predictive control approach[END_REF]). For discrete-time systems, it has been investigated in a much lesser extent in comparison with continuoustime systems. As some exceptions, we can quote [START_REF] Millérioux | Flatness of switched linear discrete-time systems[END_REF], [START_REF] Parriaux | Nilpotent semigroups for the characterization of flat outputs of switched linear and LPV discrete-time systems[END_REF], [START_REF] Sato | On an algorithm for checking whether or not a nonlinear discrete-time system is difference flat[END_REF] and [START_REF] Kaldmae | On flatness of discrete-time nonlinear systems[END_REF].

The point is that flatness-based control requires the knowledge of the flat outputs of the system. There exist substantial results for checking whether or not a given output is a flat output. On the other hand, the characterization of the set of all flat outputs for a given system is a challenging problem. A brute approach consists in attempting to directly meet the definition, that is expressing the input and the state vector as a function exclusively involving derivatives of the output in the continuous case or shifts of the output in the discrete-time case. However, this combinatorial method is clearly heavy and not well adapted for large scale systems. A second approach is to test a posteriori whether a given output is flat or not. As a more advanced method, the work in Lvine et al. (2003) proposed an approach to parametrize all the flat outputs by resorting to some so-called defining matrices. However, this work deals with continuous-time systems. In this paper, we propose to use a graph-oriented approach to characterize all the flat outputs for linear structured SISO discrete-time systems. It is shown that it is computationally more efficient than an exhaustive approach. Let us point out that graph-oriented approaches have been used over the years with success to characterize many structural properties of linear systems [START_REF] Dion | Generic properties and control of linear structured systems: a survey[END_REF]), bilinear systems [START_REF] Boukhobza | Observability Analysis for Structured Bilinear Systems: A Graph-Theoretic Approach[END_REF]) and switching systems (Boukhobza (2012)). The paper is organized as follows. Section 2 is devoted to the problem statement. The digraph representation of a structured linear system and some corresponding definitions are recalled in Section 3. The main result is provided in Section 4. In a first step, the graphical conditions given in [START_REF] Millérioux | Boukhobza Characterization of flat outputs for LPV discrete-time systems: a graph-oriented approach[END_REF] are recalled to check whether or not a given output is flat. Then, in a second step and as the main result, an exact characterization of all the flat outputs is provided. This characterization is constructive and uses well-known algorithms, commonly used for finding successors and predecessors of vertex subsets or for computing and ordering strongly connected components in a digraph. It is shown that the approach is simple to implement, has exponential complexity and is less complex than the exhaustive search. Section 5 is devoted to an illustrative example. Finally, some concluding remarks and perspectives are given in Section 6.

PROBLEM STATEMENT

Consider the following structured SISO linear discretetime system Σ Λ :

x(k + 1) = Ax(k) + Bu(k)
(1) where x ∈ R n is the state vector and u ∈ R the input. The matrices A ∈ R n×n and B ∈ R n×1 are respectively the dynamical and input matrices.

By structured system, it is meant a system where it is assumed only the sparsity pattern of the matrices A and B. Hence, we distinguish between the entries that are fixed and known to be zero and the other ones that can take any value in R. The latter ones are denoted with λ i and collected on a vector Λ = (λ 1 , λ 2 , . . . , λ h )

T belonging to the parameter space Ω Λ ⊆ R h . We obtain a so-called admissible realization of the structured system Σ Λ . A property is true generically (van der Woude (1999)) if it is true for almost all the realizations of the structured system Σ Λ . Hereafter, "for almost all the realizations" will be understood (see [START_REF] Dion | Generic properties and control of linear structured systems: a survey[END_REF]; van der Woude (1999))

as "for all parameters (λ 1 , λ 2 , . . . , λ h ) T ∈ Ω Λ except for those lying in a some proper algebraic variety in Ω Λ " . The proper algebraic variety for which the property is not true is the zero set of some non-trivial polynomial with real coefficients in the h system parameters λ 1 , λ 2 , . . . , λ h or equivalently an algebraic variety which has a Lebesgue measure which is zero.

Let us give the definition of flatness for Σ Λ . Definition 1. The structured linear discrete-time system Σ Λ is said to be generically flat if, for almost all its realizations, there exists a set of p independent variables y referred to as flat outputs, such that all system variables can be expressed as a function of the flat output and a finite number of its backward and/or forward shifts. In particular, there exist two functions F and G such that

{ x(k) = F ( y(k + k F ), . . . , y(k + k ′ F ) ) u(k) = G ( y(k + k G ), . . . , y(k + k ′ G ) ) (2) 
where

k F , k ′ F , k G and k ′ G are Z-valued integers.
The objective of the paper is to provide all the flat outputs in the specific form y(k) = x i (k) or y(k) = u(k) for the structured linear discrete-time system Σ Λ . The method is based on a graph-oriented approach, to be known as well suited and efficient, when dealing with structured systems.

DIGRAPH REPRESENTATION AND DEFINITIONS

Digraph G(Σ Λ ) A digraph G(Σ Λ ), associated to the state equations (1) of the system Σ Λ , is the combination of a vertex set V and an edge set E. The vertices represent the state and the control input components of Σ Λ whereas the edges model the static or dynamic relations between these variables. One has V = X ∪ U where X is the set of state vertices defined as X = {x 1 , . . . , x n } and U is the set of control input vertices. In the case of SISO systems under consideration here, U is a singleton, that is

U = {u}. The edge set is E = {A -edges} ∪ {B -edges}, with {A -edges} = {(x j , x i ) |A(i, j) ̸ = 0 } and {B -edges} = {(u, x i ) |B(i) ̸ = 0 } where A(i, j
) and B(i, j) denote the (i, j)th element of the matrix A and B respectively. In the sequel, we will denote by v or by v j , (j = 0, . . . , n) a vertex of the digraph G(Σ Λ ) that involves n + 1 vertices, regardless whether it is the input or a state vertex.

Path and related definitions

• a sequence of successive edges directed in the same direction which connect a sequence of vertices, is called a path. It is said that a path P covers a vertex if this vertex is the begin or the end vertex of one of the edges of P ; • A path is simple when every vertex occurs only once in this path; • Some paths are disjoint if they have no common vertex; • The length of a path is equal to the number of the edges it involves. Let v 1 , v 2 two vertices. We denote by ℓ(v 1 , v 2 ) the minimal length of a path linking v 1 to v 2 .

Consider the sets V 1 and V 2 as two subsets of

V, V 1 \ V 2 is the set of elements in V 1 which are not in V 2 , Succ(V) denotes the subset of all the successors of the vertices belonging to V 1 that is Succ(V 1 ) def = {v ∈ V,
there exists a path from V 1 to v}, P red(V) denotes the subset of all the predecessors of the ver-

tices belonging to V 1 that is P red(V 1 ) def = {v ∈ V, there exists a path from v to V 1 }.
Then, the following definitions are in order.

• A simple path P is said a V 1 -V 2 path if its begin vertex belongs to V 1 and its end vertex belongs to V 2 . If the only vertices of P belonging to V 1 ∪ V 2 are its begin and its end vertices,

P is a direct V 1 -V 2 path; • A set of maximal number of disjoint V 1 -V 2 paths is called maximum V 1 -V 2 linking; • The vertices which are covered by all the maximum V 1 -V 2 linkings are called the essential vertices for the V 1 -V 2 linkings. These vertices constitute a specific subset denoted V ess (V 1 , V 2 ) which is defined as V ess (V 1 , V 2 ) def = {v ∈ V |v is covered by any maximum V 1 -V 2 linking}.

Cycles and strongly connected components (S.C.C.)

• A cycle is a simple path linking a vertex v i to v i with length ℓ(v i , v i ) > 0 • It is said that a set of cycles are "aligned" if there exists a simple path covering at least one of the vertex of all the cycles.

A convenient way to deal with ordering in a digraph, including the ordering of cycles, is to call for the concept of strongly connected components (S.C.C.). The S.C.C. are well known in the graph theory [START_REF] Murota | System Analysis by Graphs and Matroids[END_REF]).

Let us recall the classical notion of strongly connected vertices in a digraph. Definition 2. Two vertices v i and v j are said to be strongly connected if there exists a path from v i to v j and a path from v j to v i .

It is assumed that a vertex is strongly connected to itself. To illustrate the notion of mutually ordering, let us consider Figure 1.

Figure 1. Two cycles that are not mutually ordered.

MAIN RESULT

In Subsection 4.1, we recall in Proposition 1 the necessary and sufficient conditions which must be satisfied by each vertex of G(Σ Λ ) to be associated to a flat output. Then, in Subsection 4.2, we provide a constructive method to obtain all the flat outputs and acts as the main result.

Preliminaries : recall of necessary and sufficient conditions for a flat output

The following result is borrowed from [START_REF] Millérioux | Boukhobza Characterization of flat outputs for LPV discrete-time systems: a graph-oriented approach[END_REF]. Proposition 1. Consider the structured linear discretetime system Σ Λ described by (1). The output denoted y F associated to a specific vertex v F ∈ X ∪ U is generically a flat output for the structured discrete linear system Σ Λ if and only if, in the associated digraph G(Σ Λ ), the following three conditions hold: C0. v F is a successor of u; C1. The length of all the {u}-{v F } simple paths is equal to ℓ(u, v F ); C2. All the cycles cover at least an element of V ess ({u}, {v F }).

Proof:

The proof has been established in [START_REF] Millérioux | Boukhobza Characterization of flat outputs for LPV discrete-time systems: a graph-oriented approach[END_REF] and recalled in Appendix A for a self-contained and clear understanding. △

Main result: characterization of all the flat outputs

We propose below a method to list all the flat outputs of the form y = x i or y = u for the linear discretetime system Σ Λ . A brute method would consist in an exhaustive search, that is in checking the conditions of Proposition 1 for each vertex v i of the digraph G(Σ Λ ) separately. However, this method is not satisfactory from a computational point of view. Hence, it is proposed below a more efficient method. It consists of the construction of two sets denoted respectively Γ * and Ψ * . The set Γ * will correspond to all the vertices of the digraph G(Σ Λ ) which satisfy Conditions C0 and C1. The set Ψ * will correspond to all the vertices of the digraph G(Σ Λ ) which satisfy Condition C2. Hence, the intersection of Γ * and Ψ * will provide all the flat outputs as stated later in Proposition 2.

Clearly, if there are not any cycle in G(Σ Λ ), Condition C2 and the set Ψ * should not be considered. In this case, the set of flat outputs boils down to Γ * . We describe below the construction of Γ * and Ψ * . The proof of Proposition 2 will be a straightforward consequence of these constructions.

Construction of Γ *

The vertices V of the digraph G(Σ Λ ) necessarily verify conditions C0 and C1. Hence, those vertices are connected to input u using paths of same length. To characterize these vertices, we define the subsets γ i , i = 0, . . . , n such that γ 0 = {u} and for i = 1, . . . , n, γ i def = {x j ∈ X, there exists a simple {u} -{x j } path of length i}. The vertices which satisfy conditions C0 and C1 are necessarily the ones which are included in one and only one vertex subset γ i (i = 0, . . . , n). Let us notice that there is no simple path having a length greater than n. Thus, taking the union of all the subsets γ i (i = 0, . . . , n) and removing all the elements which belong to at least two subsets gives the set Γ * . This can be performed in a recursive way as follows:

     T 0 = ∅ Γ 0 = γ 0 = {u} T i+1 = T i ∪ (Γ i ∩ γ i+1 ) for 0 < i < n Γ i+1 = (Γ i ∪ γ i+1 ) \ T i+1 , for 0 < i < n (3) Thereby, T 1 = γ 0 ∩ γ 1 and Γ 1 = (γ 0 ∪ γ 1 ) \ (γ 0 ∩ γ 1 )
defines the elements which are in γ 0 or γ 1 but which are not common to these two subsets. Similarly, Γ 2 contains the elements which are exclusively in γ 0 , γ 1 or γ 2 and so on. Therefore, by construction, the set Γ * = Γ n contains the vertices that are connected to the input u using paths of same length, the length ranging from 0 to n. The set Γ * corresponds to all the vertices of the digraph G(Σ Λ ) which satisfy conditions C0 and C1.

Construction of Ψ *

Condition C2 is equivalent to state that all the paths between the input and the flat output must cover a vertex of each cycle of G(Σ Λ ). This is fulfilled if the following necessary condition NC2 is verified: NC2. All the cycles in G(Σ Λ ) are "aligned" with the input.

In terms of S.C.C, NC2 is equivalent to that all the connected components associated to the cycles of G(Σ Λ ) and denoted with C i,c can be ordered mutually and can be ordered with C u as well. Let n c be the number of connected components associated to the cycles. In this case, the following ordering holds: 

C 1,c . . . C i,c . . . C nc,c C u ( 
C * = { C 1,c ∪ Succ(C 1,c ) if C 1,c exists and C i,c C u ∅
else Then, NC2 holds if and only if C * is not empty. Furthermore, if Condition C2 of Proposition 1 is fulfilled, a flat output v F necessarily belongs to C 1,c or to the successors of C 1,c . Indeed, if we consider a vertex x i that does not belong to C * , the cycle associated to C 1,c does not cover an element of V ess ({u}, {v F }) and contradicts Condition C2. Remark 1. Let us notice that C * is empty if either, two cycles cannot be mutually ordered (in this case C 1,c does not exist) or if at least one cycle is not connected to the input (in this case, C i,c C u does not hold for every C i,c (i = 1, . . . , n c )).

However, Condition NC2 is not sufficient because all the vertices belonging to C * are not necessarily essential in a {u}-C * linking. Indeed, in addition to the simple path which covers all the cycles (that are aligned), it may exist other simple paths of same length linking u with x i ∈ C * which do not cover at least a vertex of each cycle. In such case, condition C2 is not fulfilled. This situation is illustrated in the digraph below. Consider a vertex x i ∈ C * . To be an admissible vertex Proof: It is a direct consequence of the construction of Γ * and Ψ * . Indeed, the construction guarantees that a state component x i or the input u is a flat output if and only if the corresponding vertex belongs to Γ * ∩ Ψ * . △

Computational complexity

The construction of the set Γ * requires the construction of the subsets γ i , i = 0, . . . , n which in turn necessitates n computations of successors. The underlying algorithm has O(M ) complexity order, where M is the number of edges in the digraph. In the worst case, M = n 2 + n. Then, it must be performed the intersections and unions of vertex subsets γ i containing less than n + 1 elements. This can be done by an O(n log(n)) complexity order algorithm. As a result, the construction of Γ * has a O(n 3 ) complexity order.

For the computation of C * , a search of all the cycles of G(Σ Λ ) is required. This can be done using an algorithm having O(N +M ) complexity order, where N is the number of vertices in the digraph. Thus, this first step has a O(n 2 ) complexity order. The second step to compute C * requires the calculation of the strongly connected components. This can be done using an algorithm with complexity order equal to O(nlog(n)) [START_REF] Fleischer | On Identifying Strongly Connected Components in Parallel[END_REF]). Then, the cycles must be ordered by performing at most n comparisons of successors sets. This can be done with an algorithm of complexity nO(n 2 ) = O(n 3 ) which also yields C 1,c . Finally, the computation of C * using C 1,c requires the computation of the successors of C 1,c using an algorithm of O(n 2 ) complexity order. The computation of X 0 is quite straightforward because it only consists of taking the union of at most n subsets. This can be done using an algorithm of complexity O(n). As a result, the computation of C * has a O(n 3 ) complexity order. All in all, the proposed method to obtain all the flat outputs can be implemented using a algorithm with a polynomial global complexity equal to O(n 3 ). It has been shown in [START_REF] Millérioux | Boukhobza Characterization of flat outputs for LPV discrete-time systems: a graph-oriented approach[END_REF] that the complexity order of checking the flatness conditions on one vertex can be done using an algorithm with O(n 3 ) complexity order. Thus, an exhaustive search of the possible flat outputs by checking all the conditions of Proposition 1 on the whole vertices will have a (n + 1)O(n 3 ) complexity order or equivalently a O(n 4 ) complexity order. Therefore, at least from an algorithmic point of view, the presented approach is more efficient than an exhaustive search.

ILLUSTRATIVE EXAMPLE

Consider the linear discrete-time system represented by the digraph of Figure 3. The aim is to provide all the flat outputs on the form y = x i or y = u. First, let us compute Γ * . To this end, it is required to compute all the vertex subsets γ i (i = 0 . . . , 7). We obtain γ 0 = {u}, γ 1 = {x 1 , x 6 }, γ 2 = {x 2 , x 7 }, γ 3 = {x 3 , x 5 }, γ 4 = {x 4 , x 7 }, γ 5 = γ 6 = γ 7 = ∅. We can infer that, T 0 = ∅, Γ 0 = {u}, T 1 = ∅, Γ 1 = {u, x 1 , x 6 }, T 2 = ∅, Γ 2 = {u, x 1 , x 2 , x 6 , x 7 }, T 3 = ∅, Γ 3 = {u, x 1 , x 2 , x 3 , x 5 , x 6 , x 7 }, T 4 = T 5 = T 6 = T 

  The relation "is strongly connected to" is an equivalence relation. Its equivalence classes are the strongly connected component of G(Σ Λ ). The set of all the S.C.C. is denoted with S C . An S.C.C. which is not singleton necessarily corresponds to one or several connected cycles. Since the input has no incoming edges, the singleton {u} is a particular S.C.C. and will be denoted with C u . The S.C.C. can be ordered using a partial order relation " " defined between two strongly connected components C i and C j . We write C i C j if there exists a path from vertices of C j to the ones of C i . For example, if there exists a path between the input and a vertex of a cycle assigned to C i , it holds that C i C u . Moreover, C u is necessarily a maximal S.C.C. according to the relation , in the sense that there are not any ingoing edges connected to the input vertex u. Finally, we can restate the alignment of cycles in terms of mutually ordering. Definition 3. Let us consider a set of cycles and note by S the set of corresponding S.C.C. These cycles are said to be "aligned" if the corresponding S.C.C are mutually ordered, that is, whatever the couple of S.C.C. C i and C j belonging to S, there always exists a partial order relation C i C j or C j C i .

  4) The S.C.C C 1,c is the minimal S.C.C corresponding to one or several cycles. It corresponds to the "most distant cycle" which can be reached from u. The S.C.C C nc,c is the maximal S.C.C corresponding to one or several cycles. It corresponds to the "closer cycle" which can be reached from u. Let us define the subset C * such that, for every C i,c associated to a cycle of G(Σ Λ )

Figure 2 .

 2 Figure 2. C * = {x 3 }. The path u → x 1 → x 3 does not cover x 2 . There is a cycle covering x 2 whereas x 2 is not in V ess (U, {x 3 }) = {u} satisfying Condition C2, x i must be such that all the paths linking u to x i go through the aligned cycles. It means that all the paths linking the input to the flat output must go through vertices whose corresponding S.C.C C i can be ordered with any of the S.S.C of cycles. Thereby, any C i can be incorporated in the ordering (4), that is there exists two integers i 1 , i 2 ∈ {1, . . . , n c } such that C i1,c C i C i2,c . Let define S * C as the subset of all the strongly components which can be ordered with any cycle and X O = ∪ C i ∈S * C

  7 = {x 5 , x 7 }, Γ 4 = Γ 5 = Γ 6 = Γ 7 = {u, x 1 , x 2 , x 3 , x 4 , x 6 } and so Γ * = {u, x 1 , x 2 , x 3 , x 4 , x 6 }. All these vertices satisfy conditions C0 and C1 of Proposition 1. The strongly connected components (S.C.C) are {u},{x 1 }, {x 2 , x 3 , x 5 }, {x 4 }, {x 6 } and {x 7 }. The S.C.C {x 2 , x 5 } has been omitted since it is equal to {x 2 , x 3 , x 5 }, both S.C.C corresponding to cycles included one in the other. Thus, the digraph admits only two S.C.C corresponding to cycles and they are ordered. The minimal S.C.C is C 1,c = {x 2 , x 3 , x 5 }. Therefore, C * = {x 2 , x 3 , x 4 , x 5 , x 7 }. The S.C.C. {x 6 } can be ordered with none of the other cycles. Thus, X O = {u, x 1 , x 2 , x 3 , x 4 , x 5 , x 7 } and Ψ * = {x 2 , x 3 , x 4 , x 5 , x 7 }. All these vertices satisfy condition C2 of Proposition 1. The flat outputs are all the elements of Γ * ∩ Ψ * i.e. {x 2 , x 3 , x 4 }.

Figure 3 .

 3 Figure 3. Digraph associated to the illustrative example
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Appendix A: Proof of Proposition 1

The proof is based on the structural subdivision of the system into 5 subsystems depicted in Figure .1 and defined as follows: • Σ 0 merges the input vertex u, vertex v F and all the state vertices which are predecessors of v F and are reachable from u without necessarily covering v F i.e. the components of Σ 0 are U ∪ {v F } ∪ (P red(v F ) ∩ Succ(u) ∩ {v i ∈ X, v F / ∈ V ess (U, {v i })}) • Σ 1 merges all the state vertices which are successors of v F and which are not in Σ 0 , i.e. the components of Σ 1 are )

. These vertices can be linked Σ 2 and Σ 3 .

Note that this subdivision is unique and is motivated by the fact that it allows to characterize y F as a flat output using the controllability and observability characteristics of each subsystem. Indeed, we can make two important remarks on subsystems Σ 2 and Σ 4 : Remark 2. Subsystems Σ 2 and Σ 4 are not forced by input u. So, it is clear that if they don't involve any cycle (equivalently to a memorization operator), their state components will go to zero after a finite transient time.

Conversely, if they involve at least one cycle, some of their state components will depend, at time k, on its own past value and so on the initial state value. And yet, the initial state of these subsystems cannot be expressed only as a function of the component associated to v F i.e. y F . Indeed, y F is not sensitive to the state of Σ 4 and since u is an input acts on y F , there is no equation linking the present, past and future values of y F to the state components of Σ 2 only without the past and present values of u. Remark 3. According to Definition 1, it is clear that y F associated to the vertex v F is a flat output if and only if

• The input can be expressed as a function of the past, present, future values of y F ; • There exists an integer k 0 such that for all k ≥ k 0 , all the state components of all the subsystems are either equal to zero or can be expressed as a function of the past, present, future values of y F .

We are now in position of proving the proposition. Sufficiency: When condition C2 is satisfied, there is no cycle in subsystems Σ 2 and Σ 4 . In this case and since these two subsystems are not forced by the input, after a finite time, less or equal to the length of the longest path in these two subsystems, all the state components of these subsystems are equal to zero according to Remark 2. Regarding subsystem Σ 0 , the generic dimension of its observability subspace, considering that y F associated to v F is the output and that u is an unknown input, is equal to the length of the shortest {u}-{v F } path plus one i.e. ℓ(u, v F ) + 1 [START_REF] Boukhobza | Partial state and input observability recovering by additional sensor implementation: a graphtheoretic approach[END_REF]). Moreover, considering now that y F associated to v F is the output and that u is known, the generic dimension of the observability subspace of the structured system Σ 0 is equal to the longest {u}-{v F } path plus the length of all the disjoint cycles which are not covered by this path. Nevertheless, when conditions C0, C1 and C2 are valid, the longest {u}-{v F } path is also the shortest {u}-{v F } and there is no cycles that are disjoint with these paths in Σ 0 . Therefore, if conditions C0, C1 and C2 are satisfied, u can be expressed generically using the present and the past values of y F associated to v F . Furthermore, all the state components of Σ 0 belonging to V ess ({u}, {v F }) can also generically be expressed using the present and the past values of y F since they are generically observable considering that y F is the output [START_REF] Boukhobza | Partial state and input observability recovering by additional sensor implementation: a graphtheoretic approach[END_REF]). Therefore, substituting the input u and all the state vertices of all V ess ({u}, {v F }) by their expression in function of y F , there exists a positive constant ν such that the linear structured system Σ Λ can be written as:

(.1) where, as the cycles involve only elements of V ess ({u}, {v F }), the matrix à is an adjacency matrix for a digraph of a structured system having no cycles. Thus, à is nilpotent and verifies Ãn = 0. As a result, every state can be expressed as a function of the past, present and future values of y F which is thereby a flat output according to Remark 3 and Definition 1.

Necessity: If condition C0 is not satisfied, then y F is not sensitive to u. As a result, the input cannot generically be expressed using the past, present and future values of y F and y F cannot be a flat output. Condition C0 is then necessary. Condition C1 is not applicable to subsystems Σ 1 , Σ 3 or Σ 4 . For subsystem Σ 0 , if conditions C1 is not satisfied (i.e. if there exist paths u-v F with different lengths ℓ 1 ̸ = ℓ 2 ), then the expression of y F at time k, that is y F (k), will involve at least u(k -ℓ 1 ) and u(k -ℓ 2 ). It is the same when Σ 0 involves a cycle. Condition C1 is necessary for Σ 0 . Moreover, if condition C2 is not satisfied (i.e. if there exist cycles which cover the state components which are not in V ess ({u}, {v F }), the generic dimension of the observability subspaces with and without the input knowledge are different. In this case, the input cannot generically be expressed using y F as output. Indeed, Therefore, condition C2 is necessary for Σ 0 . Only condition C2 is applicable to Σ 2 . If it is not satisfied i.e. when there is a cycle in Σ 2 , the expression of y F (k), will always contain at least a term involving a state component of Σ 2 , which never equals 0 because of the cycle, in addition to the u(k -ℓ). So, it is impossible to express the input using only the past, present and future values of y F , and thus y F is not a flat output. Therefore, condition C2 is necessary for Σ 2 . Finally, assume that condition C2 is not satisfied for Σ 1 , Σ 3 or Σ 4 . In such a case, the values of the state components of Σ 1 , Σ 3 and Σ 4 depend always on the values of their initial states which are function of y F . Therefore, these state components cannot be expressed as a function of exclusively the past, present and future values of y F . As a result, y F cannot be a flat output. △