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Abstract 

We report on the demonstration of substrate-freenanowire /polydimethylsiloxane 

(PDMS) membrane light emitting diodes (LEDs). Metal-organic vapor phase epitaxy 

(MOVPE)-grown InGaN/GaN core−shell nanowires were encapsulated into PDMS layer. 

After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the 

membrane was manually peeled from the sapphire substrate, flipped upside down 

onto a steel holder, and transparent ITO contact to n-GaN was deposited. The 

fabricated LEDs demonstrate rectifying diode characteristics. For the 

electroluminescence (EL) measurements the samples were manually bonded using 

silver paint.The EL spectra measured at different applied voltages demonstrate a blue-

shift with the current increase. This shift is explained by the current injection into the 

InGaN areas of the active region with different average Indium content.  
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Background 

Nitride light emitting diodes (LEDs) have found numerous applications in our everyday life (general 

lighting, automotive headlamps, traffic signals, indicator lamps for electronic devices, etc.). Today, 

the market is dominated by two-dimensional devices based on thin film technology. To further boost 

the LED performance and to add new functionalities, three-dimensional nano-materials have recently 

emerged [1,2]. In particular, nitride high aspect ratio nano-crystals (referred to as nanowires 

(NWs))allow to improve the material quality of the LED active region and to facilitate the light 

extraction [3]. The NW LED core-shell structure geometry also allows growth on non-polar m-planes 

to avoid undesirable quantum-confined Stark effect (QCSE).  

The attractive feature of the NWs is that they provide high tolerance for the growth on lattice 

mismatched substrates (e.g. growth of high quality nitride NWs on silicon [4; 5] or sapphire). The 

concept of the “NW substrate independence” can be further extended by transferring the NWs to 

other substrates (including non-crystalline materials) in either planar [6; 7; 8; 9] or vertical [10; 11;12; 

13] architectures. In this way, the NWs are used independently from their growth substrate, which 

can potentially be recycled. New functionalities for LEDs can be imagined.For example, NW LEDs can 

be mounted on metallic layers for efficient heat sinking or LEDs of different colours can be integrated 

on the same holder. In particular, flexible NW devices can be fabricated using this approach [12]. 

First demonstration of nanowire flexible LEDs has been done using ZnO nanowires grown in solution 

on plastic substrate [14] demonstrating the electroluminescence in the visible range. However the 

direct growth on the plastic substrate imposes to use a low temperature and strongly limits the range 

of accessible materials and growth techniques. To achieve high-efficiency visible emission it is 

advantageous to make use of InGaN NWs elaborated at high temperature following standard 

epitaxial methods. The NWs can then be reported to a different substrate for LED fabrication. 

Recently, the first substrate-free nitride NW LED has been demonstrated employing the NW transfer 

[15]. The InGaN/GaN NWs were grown on a non-conventional Si/SiO2/graphene template, embedded 

into a polymer and separated from their growth substrate by wet etching of a sacrificial SiO2 layer 

[15]. In this work, we propose a different fabrication approach based on a mechanical peel-off of the 

NWs with the method described in the literature [10; 16; 17], which does not require any sacrificial 

layerand thus facilitates the fabrication.Self-assembled core/shell NWs containing 7 InGaN/GaN 

quantum wells (QWs) were grown by Metal-Organic Vapor Phase Epitaxy (MOVPE) on c-sapphire 

substrates. The NW structure was probed by cathodoluminescence evidencing two spectrally shifted 

emissions originating from the InGaN/GaN QWs located on the top polar c-plane and on the lateral 

non-polar m-plane facets. For the LEDs fabrication, the NWs were encapsulated into a 

polydimethilsoloxane (PDMS) layer and mechanically peeled from their growth substrate. The 

obtained NW/PDMS composite membrane was electrically contacted and fixed on a steel holder. The 

electrical characteristics of membrane NW LEDs presented a rectifying behavior. The 

electroluminescence (EL) appeared starting from 5V forward bias. The EL spectra exhibited two peaks 

at 412 nm and 466 nm and the relative peak intensity changed with applied bias. In agreement with 

the cathodoluminescence mapping, this spectral behaviour is attributed to the current injection into 

the areas of the active InGaN/GaN QWs with different average In contentlocated on the lateral and 

on the top NW facets.  

 

Nanowire growth and device fabrication 



The GaN core-shell NWs were grown on 2” sapphire substrates by self-assembled MOVPE, see details 

in [18;19]. The growth started with 10 ± 2 µm long n-doped GaN NWs with diameter in the range 

700-1500 nm (1020 cm-3 concentration of Si doping atoms).We note that a SiNx ultra-thin layer is 

spontaneously formed around this wire part due to the high silane flux passivating the wire surface. 

Then another 7 ± 2 µm GaN segment was grown without the silane flux, the material is 

unintentionally doped by1018 cm-3 Si [20]. The active region (AR) was deposited directly on the NWs 

surface by switching the growth conditionsfrom axial growth to radial growth [19; 21]. Due to the 

presence of the SiNx layer around the wire base, the radial growth is inhibited in the lower wire part 

and the core/shell heterostructure is only formed around the upper non-intentionally doped wire 

part, as described in [21].The AR consisted of 7 periods of 5 nm InGaN quantum wells delimited by 10 

nm thick GaN barriers with an Indium contentin the QWs about 15 % [19]. After growth of the AR, 

the p-GaN 100 nm shell layer was deposited, the holes concentration is estimated to be in the 1016-

1017 cm-3 range [20]. The NW density is about 5x106 per cm-2.The NW morphology and the internal 

structure are illustrated in Fig. 1 a) – d).  

 

 

 

Fig 1. The GaN NW core-shell structure:a) Cross-section SEM image of the as-grown NWs with the 

average height of 20 µm b) 45° tilted SEM image of the NWs arrayc) top view SEM image of the 

NWs d) Schematic of the nanowire internal structure. 

For the fabrication of substrate-free NW LEDs, the nanowire embedding and lift-off procedure was 

first optimized on a series of test samples with a similar NW density. The samples were spin-coated 

with PDMS polymer with a 9 :1(base : cure agent) ratio to bury the NWs. The PDMS was cured at 80 



°C for 50 min and then the PDMS/NW composite layer was mechanically peeled off following the 

procedure described in the literature [10; 11;12]. The PDMS/NW membrane was deposited on a 

metallic holder and imaged in Scanning Electron Microscope (SEM). Fig 2 shows an SEM image of the 

edge of the membrane, where several NWs can be distinguished. The layer is highly flexible. Despite 

the small curvature radius (70 µm) of the region imaged in Fig. 2, the embedded NWs preserve their 

integrity, validating the possibility to manipulate and process the composite membranes for 

substrate-free device fabrication. 

 

Fig. 2. SEM image of the nanowire/PDMS membrane. Inset shows a high magnification SEM image of 

the region marked with a black rectangle, where single NWs are visible. The NWs are marked with 

arrows.  

For LED fabrication, the samples were spin-coated and cured to form a 18 ± 2 µm PDMS layer. To 

delete undesirable traces of PDMS on the tops of the NWs, the samples were etched in the CHF3/O2 

plasma for 3 min. Then they were treated with oxygen plasma for 5 min to modify the PDMS surface 

state in order to improve the adhesion of the metal contact[22]. The contact to p-type GaN shell was 

made by depositing either 10 nm Ni / 200 nm Au[23] or 10 nm Cr / 200 nm Au[24]. Both Ni/Au and 

Cr/Au metallizations have resulted in similar performance; in the following we describe the 

characterization of the device with Ni/Au contact. The fabrication process is schematically presented 

in Fig. 3a. 

Thin free-standing composite membranes are rather difficult to manipulate since they are fragile and 

can easily roll up. Therefore an additional PDMS cap layer (0.5 mm thick, cured at 80 °C for 2 hours) 

was deposited on the metal contact to be used as a mechanical support. It helps to peel off the 

structure from the sapphire substrate and prevents the peeled layer from rolling. After the 

mechanical lift-off of thenanowire/PDMS membrane, the sample was flipped upside down and put 

onto asteelholderfor further processing and easy manipulation.Then the second contact was 

deposited on the n-type GaN core bases of the NWs, which after the membrane flipping were 

located on its top part. The 100 nm thick ITO layer was deposited by sputtering through a shadow 

mask with an array of 0.5 mm diameter circularopenings [25]. After that the shadow mask was 

slightly shifted and the 5 nm Ti / 15 nm Al / 5 nm Ti / 100 nm Au metal pads were deposited to 

achieve a partial overlap between the metal and ITO (Fig. 3b), the corresponding work function suits 

ohmicinjection in the n-GaN [26].Thus, we obtain an array of LEDs, each consisting of a large number 



of parallel-connected NWs. The LEDs share the same bottom contact, but can be addressed 

independently by their top metal pad.   

 

 

Fig. 3. Schematic of the processing steps: a) Encapsulated NWs with a metal contact to p-dopedGaN 

shells and a PDMS cap layer before peeling; b) Final device consisting of a flipped membrane with a 

transparent ITO contact to n-doped GaN NW base parts and top metal contact pads. The PDMS cap is 

partially released and aluminium foil is attached to the bottom metal contact. 

To get access to the metal contact to p-GaN shells, which is between the 18 µm PDMS encapsulating 

layer and the 0.5 mm cap layer, the cap layer was mechanically released over a small area at the 

sample edge and a piece of aluminium foil was attached to the metallization with silver paint, as 

schematized in Fig. 3b. The ITO/metal contact to n-GaN NW base parts, which is accessible on the 

sample surface, was connected using metallic probes for the electrical characterizations. For EL 

spectroscopy copper wires were manually attached to the metal pads usingsilver paint and a 

sharpenedwooden toothpick since the composite NW/PDMS structure cannot stand the micro-

bonding procedure. 

 

Results and discussion 

The fabricated membrane LEDs were electrically characterized in a Janis probe station coupled to a 

Keithley 2636 Source-meter. The electrical potential was applied to thebottom metal contact 

connected to the p-doped GaN shells, while the top transparent contact (ITO through Ti/Al/Ti/Au) 

was grounded.Fig. 4 displays a current-voltage (I-V) characteristic at room temperature for a 

representative top contact pad. As expected from the NW structure, the I-V curve has a diode shape. 

The reverse leakage current is  0.1 mA at -8 V compared to the direct current of 10 mA at 8 V. As 

seen from Fig. 4,the I-V curves exhibit low-magnitude current instabilities for direct voltages higher 

than 5 V. These random current fluctuations are accompanied by LED emission blinking. The origin of 

this blinking is not completely understood. We suspect that these fluctuations may arise from the top 

ITO contact instability induced by Joule heating and underlying PDMS deformations. Alternative 

transparent contacts will be further optimized to achieve a stable emission.    



 

Fig. 4. I-V-curve of the nanowire/PDMS membrane LED. 

 

The EL spectra of the NW/PDMS membrane LEDs were measured at room temperature using the 

HR460 spectrometer equipped with a CCD camera. The EL spectra under different applied biases are 

presented in Fig. 5. The EL spectra exhibit two distinct peaks at 412 nm with a full width at half 

maximum (FWHM) of 20 nm and at 466 nm with a FWHM of 35 nm . For better understanding the 

origin of these peaks, cathodoluminescence (CL) mappings have been performed at 5 K on dispersed 

single wires (electron beam acceleration voltage = 20 kV and current = 1 nA, respectively).CL maps 

filtered for different detection wavelengths are displayed in Fig. 6 a)-e). As it is seenin Fig. 6b) – d), 

the short wavelength peak (380-410 nm) is associated with the emission of the radial QWs, whereas 

the long wavelength peak (440 nm – Fig. 6 e)) arises from the axial QWs. Therefore, the two peaks 

observed in the EL spectra are attributed to the radial and axial QWs emission, respectively, as 

explained in detail in [27].Based on the CL peak wavelengths and the confinement modelling with 

Silvaco software, we roughly estimate the average Indium content x in the radial (m-plane) and axial 

(-c plane) InxGa1-xN QWs to be close to 10 ± 3 % and 16 ± 4.5 %, respectively [28]. We conclude that 

the polar NW facet is more favourable for In incorporation than the radial facetin agreement with 

previous reports [29, 30]. 

 



 

Fig. 5. EL spectra at 6, 7 and 8 volts. 

 

Fig. 6.Filtered CL maps of a representative nanowire.  

The LED starts to luminesce at a forward bias of 5 V with a working current inthe order of 1 mA. This 

relatively high light-up voltage is attributed to the non-ohmic nature of the ITO contact to the 

moderately doped p-GaN shell.As previously reported in [27] for single NW LEDs, at low injection the 

low energy peak is dominant. With increasing voltage the short wavelength peak increases faster 

than the long wavelength peak. The short wavelengthpeak becomes dominant at high injection (8 V, 

10 mA). This relative intensity variation between the two peaks can be understood in terms of the 

redistribution of the injection current in the nanowire. The saturation current through the active 

region is exponentially dependent on the In content, and for the mentioned difference in In content 

by several per cent the saturation currents of the axial and radial active region parts are strongly 

different[29]. The high saturation current in the In-rich part favours the preferential injection in this 

region. However, as the injection increases the current spreading in the resistive p-GaN shell part 

starts to play an important role [27]. The current is redistributed due to the potential drop in the 



shell and the injection in the radial part of the active region, which in addition has a larger surface 

compared to the axial region, becomes favourable. It should also be noted that the radial QWs on the 

m-plane are expected to have less defects in comparison to the axial QWs due to their lower In-

content. This would also lead to the lower EL droop at higher currents for the m-plane QWs and 

therefore to a domination of the short wavelengthEL peak at high injection.  

The increase of the injection current above 10 mA resulted in the LED failure. We believe, that the 

device degradation is not caused by the NW structural degradation, but by the top contact failure, 

for which we observe a morphology change.This failure at a relatively low current can be attributed 

to the mechanical deformations of the soft PDMS layer and to the Joule heating. The degradation 

also can be caused by ion diffusion into polymer layer during current spreading in the ITO contact 

[32]. In the future contact optimizations, this effect can be suppressed by creating a thin metal layer 

between ITO and PDMS layer[33]. Alternative transparent contacts based on CVD-grown graphene 

layers can also be used [34].  

The LED fabrication has been performed on several membranes showing good process 

reproducibility. EL measurements of the LED after 2 weeks storage in ambient air have not evidenced 

any device degradation. 

 

Conclusions 

Substrate-free NW LEDs have been fabricated using the polymer embedding and peel-off procedure. 

The devices showrectifying electrical behaviour and emission in the blue spectral range. Further 

improvement of the transparent contact would make these LEDs competitive with the NW LEDs 

fabricated on rigid crystalline substrates. The developedfabrication approach allows for sapphire 

substrate recycling, which is important for the LED cost reduction.In addition, the proposed LED 

architecture allows for the fabrication of flexible high-brightness LEDs in the blue spectral range 

providing that an appropriate flexible transparent contact is optimized.  
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