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A compactness theorem for surfaces

with Bounded Integral Curvature

by Clément Debin∗

July 2, 2016

Abstract

We prove a compactness theorem for metrics with Bounded Integral Curva-
ture on a fixed closed surface Σ. As a corollary, we obtain a compactification of
the space of Riemannian metrics with conical singularities, where an accumula-
tion of singularities is allowed.

Introduction and statement of the Main theorem

The aim of this article is to compactify the space of metrics with conical singularities,
on a fixed compact surface Σ. These metrics are Riemannian everywhere but at a
finite number of points, where they look like an Euclidean cone; see section 1.3 for
a precise definition. Since we allow cone points to accumulate, we need to define
metrics with conical singularities “along a curve”, or along a more complicated set, a
Cantor set for example. In the case of flats metrics with conical singularities (we can
think of polyhedras), the curvature is, in some sense to be made precise, concentrated
at the cone points. Hence we need to understand what is a metric with curvature
concentrated along a Cantor set.

In the late 1940’s, Alexandrov and the school of Leningrad developped a very rich
theory of singular surfaces. These are smooth surfaces, endowed with intrisics metrics,
for which there exists a natural notion of curvature, which is a Radon measure. They
are called surfaces (respectively, metrics) with Bounded Integral Curvature, denoted by
“B.I.C.“ in the sequel. The precise definition is given in section 1.1. For an exposition
of the theory, see [A-Z], [Re1] and [Re2], and for a modern concise survey, see [T1].

The curvature measure is a fundamental object in this singular geometry, it gener-
alizes the Gauss-Bonnet formula: if ABC is a geodesic triangle, we define its (upper)
excess by a + b + c − π, where a, b and c are the (upper) angles at A, B and C (see
section 1.1.1). This theory includes smooth Riemannian metrics: in this case, the cur-
vature measure is Kg dAg, where Kg stands for the Gauss curvature, as well as metrics
with conical singularities, where the curvature measure is Kg dAg + a sum of Dirac
masses at the cone points (Kg is the Gauss curvature of the smooth part). Alexandrov
surfaces of curvature bounded by above (the "CBA-spaces") or bounded by below (the
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"CBB-spaces") are also surfaces with B.I.C. The next example shows how a sequence
of metrics with conical singularities can converge to a surface with B.I.C.:

(Σ, d1) (Σ, d2) (Σ, d3)

m→∞

(Σ, d)

Figure 1: accumulation of singularities

The limit space is a cylinder, and the curvature measure of this singular surface is
the usual angle measure on the two circles, at the top and at the bottom of the
cylinder. We can imagine more complicated examples, for example the cone points
may accumulate along a Cantor set in S1; the limit metric would then have conical
singularities along a Cantor set, and the curvature measure would be the Hausdorff
measure of the Cantor set.

Since these singular surfaces may be defined by approximation by smooth Rieman-
nian surfaces (see definition 8), most of the properties of smooth surfaces extend to
this setting: there is always a definite angle between any two geodesic, we have the
existence of local conformal coordinates (see theorem-definition 11)... This last prop-
erty is crucial in our article: the metric is locally induced by a (singular) Riemannian
metric gω,h = e2V [ω](z)+2h(z)|dz|2, where V [ω] is the potential of the curvature measure
ω, and h is a harmonic function. Hence, if we know the curvature measure, then we
know the local expression the metric, up to a harmonic function. One of the key step
in this article is to obtain a control on this harmonic term (see theorem 28). When we
forget it (that is, we put h = 0), then we have the following local convergence theorem,
due to Reshetnyak (see section 1.2 for the definition of dωm,0 and dω,0):

Theorem 1 (Reshetnyak, see [Re1], theorem 7.3.1). Let ω+
m and ω−

m be a sequence of
non-negative Radon measures with support in D(1/2), weakly converging to measures
ω+ and ω−. Let ωm := ω+

m − ω−
m and ω := ω+ − ω−. Then

dωm,0 −→
m→∞

dω,0,

uniformly on any closed set A ⊂ D(1/2) such that ω+({z}) < 2π for every z ∈ A.
That is, if zm → z and z′

m → z′, with ω+({z}) < 2π and ω+({z′}) < 2π, then
dωm,0(zm, z′

m)→ dω,0(z, z′).

In this article, we use this local theorem to prove a global convergence theorem
for surfaces with B.I.C., and as a corollary we obtain a compactification of the space
of metrics with conical singularities. In the (classical) smooth setting, there are very
well-known compactness results. Let Mn(Λ, i, V ) be the set of compact Riemannian
n-manifolds with
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1. |sectional curvature| ≤ Λ,

2. injectivity radius ≥ i,

3. volume ≤ V .

In the early 1980’s, Gromov, in [G-L-P], stated the precompactness of the setMn(Λ, i, V ),
in the Lipschitz topology: for every sequence (Xm, gm) ∈ Mn(Λ, i, V ), there exists a
Riemannian n−manifold X, a Riemannian metric g and diffeomorphisms ϕm : X →
Xm such that, after passing to a subsequence, (X, (ϕm)∗dgm

) → (X, dg) in the Lip-
schitz topology (dgm

and dg are the length distance associated to the Riemannian
metrics gm and g). This so-called Cheeger-Gromov convergence theorem was already
implicit in the thesis of Cheeger in 1970. Since then, many articles were published on
the subject, and the initial statement of Gromov was improved in two different ways:
one only needs a bound on the Ricci curvature, and the convergence is much stronger
than in the Lipschitz topology (see [An], [A-C], [G-W], [K] and [P]). We need to use
harmonic coordinates in order to obtain the optimal regularity in the convergence (see
[DT-K] and [J-K]).

For surfaces with B.I.C., the only convergence theorem known to the author deals
with a sequence of metrics in a fixed conformal class (see the theorem 6.2 in [T1]): it
is a direct consequence of the local convergence theorem (theorem 1). When we look
for a convergence theorem for a sequence of metrics dm on a surface Σ, at some point
one needs to construct the diffeomorphisms ϕm : Σ → Σ. It always involves serious
work, for example by embedding the manifolds in some bigger space (see [G-L-P],
[H-H] or the present article). Some of the consequences of a uniform convergence
dm → d, up to diffeomorphism (that is, there are diffeomorphisms ϕm : Σ → Σ such
that (ϕm)∗dm → d uniformly on Σ) are described in [Re1] and [A-Z]: it deals with the
length of converging curves, convergence of polygons, weak convergence of curvature
measures, convergence of angles...

We want to adapt the three hypothesis of the compactness theorem for smooth
Riemannian metrics to our singular setting. The hypothesis 1. deals with the sectional
(Gauss) curvature, which does not exist everywhere in the singular setting, hence we
ask for a bound on the curvature measure instead. In order to avoid a cusp, that is,
a point x ∈ Σ where the non-negative part of the curvature measure is ω+({x}) = 2π
(such a point may be at infinite distance to any other point of the surface, see remark
9), we ask for the inequality ω+(B(x, ε)) ≤ 2π−δ for every x ∈ Σ (ε and δ are positive
constants). The hypothesis 3. already makes sense (there is a natural notion of area
on a surface with B.I.C.).

So let us look at the hypothesis 2. In the smooth setting, a lower bound on the
injectivity radius avoids a pinching of the manifold (as may happen, for example, when
one factor of a torus S1 × S1 shrinks to a point). But for surfaces with B.I.C., the
injectivity radius does not make sense, and even for a surface with conical singularities,
the injectivity radius of the (open) smooth part is zero (if x is at a distance r of a cone
point, then inj(x) < r). Hence we need to define some similar quantity, which makes
sense for non-Riemannian metric spaces. We introduce the new notion of contractibility
radius (see section 2), which is the biggest r such that all the closed balls of radius
s < r are homeomorphic to a closed disc (hence they are contractible). The important
point is that a lower bound on the contractibility radius avoids a pinching of the
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surface. This notion is very natural: in the classical Cheeger-Gromov convergence
theorem, one can replace a lower bound on the injectivity radius by a lower bound on
the contractibility radius (see proposition 20).

From now on, we fix Σ, a closed surface: that is, a connected compact smooth
surface, without boundary. Let A, c, ε, δ be some positive constants. LetMΣ(A, c, ε, δ)
be the class of metrics d with B.I.C. on Σ such that:

1. For every x ∈ Σ we have

ω+(B(x, ε)) ≤ 2π − δ;

2. the contractibility radius of (Σ, d) verifies

cont(Σ, d) ≥ c;

3. the area of (Σ, d) verifies
Area(Σ, d) ≤ A.

Remark 2. From now on, when considering a set MΣ(A, c, ε, δ), we always assume
ε < c (hence there exists conformal charts on balls of radius ε, see theorem-definition
11 and property 18).

The main result of the article is the following

Main theorem. The space MΣ(A, c, ε, δ) is compact, in the uniform metric sense.
That is for every sequence dm ∈ MΣ(A, c, ε, δ), there exists a metric d with B.I.C.
such that, after passing to a subsequence, there are diffeomorphisms ϕm : Σ→ Σ with

(ϕm)∗dm −→
m→∞

d uniformly on Σ.

In the classical Cheeger-Gromov theorem, an easy packing argument shows that
one can replace an upper bound on the area by an upper bound on the diameter. In
our setting, if we want to do so, we also need to ask for an upper bound on the total
measure curvature |ω| := ω+ + ω− (see proposition 27):

Corollary 3. The space of metrics with B.I.C. verifying the conditions 1. and 2.
above, and with diameter diam(Σ, d) ≤ D and total measure curvature |ω|(Σ, d) ≤ Ω
is compact, in the uniform metric sense. That is, for every sequence of metrics dm

verifying the conditions above, there exists a metric d with B.I.C. such that, after
passing to a subsequence, there are diffeomorphisms ϕm : Σ → Σ with (ϕm)∗dm → d
uniformly on Σ.

A fortiori, we have compactness in the Gromov-Hausdorff sense of the sequence
of metric spaces (Σ, dm). This property is true under very weaker assumptions: the
set of surfaces with B.I.C. with diameter ≤ D and total measure curvature ≤ Ω is
precompact in the Gromov-Hausdorff topology, see [S]. Of course, in this case, the
limit metric space may not be a surface (a sphere can for example shrink to a point).

For metrics with conical singularities, we obtain the following

Corollary 4. Consider on Σ a sequence (gm) of Riemannian metrics with conical
singularities at points (pm

i )i∈Im
, with angles θm

i . Suppose that
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1. For every x ∈ Σ, we have
∫

Bm(x,ε)
K+

m dAm +
∑

i

(2π − θm
i )+ ≤ 2π − δ,

where the sum is taken over i ∈ Im such that pm
i ∈ Bm(x, ε);

2. the contractibility radius of (Σ, dm) verifies

cont(Σ, dm) ≥ c;

3. the area of (Σ, dm) verifies

Area(Σ, dm) ≤ A.

Then, there exists a metric d with B.I.C. such that, after passing to a subsequence,
there are diffeomorphisms ϕm : Σ→ Σ with

(ϕm)∗dm −→
m→∞

d uniformly on Σ.

The article is organized as follows:
In section 1, we define metrics with B.I.C., as well as metrics with conical singu-

larities. We also state the existence of local conformal charts.
In section 2, we define the new notion of contractibility radius, we give some

properties and we look at some examples. We also explain the link with the injectivity
radius in the case of smooth Riemannian metrics with bounded sectional curvature.

In section 3, we prove two properties for surfaces with B.I.C.: one result concerns
the volume of balls (by analogy with the case of smooth Riemannian metrics, when
one has a control on the sectional curvature); another one is on the length of a line
segment, for a singular Riemannian metric which has no harmonic term.

The heart of the article is the section 4: we prove preliminary properties for the set
MΣ(A, c, ε, δ). Let d ∈ MΣ(A, c, ε, δ), and let H : B(x, ε) → D(1/2) be a conformal
chart, with H(x) = 0. First, we prove that the harmonic term for the metric is
bounded on every compact set of D(1/2) (this is theorem 28). Then, we prove the
fundamental theorem 34. Roughly speaking, we have a control on the images by H
of balls of "big" radii B(x, ε/2) and B(x, ε/4), and balls of "small" radii B(x, κε) (for
some small constant κ > 0). This control has to be uniform, that is independant of
the metric d ∈MΣ(A, c, ε, δ) we consider.

In section 5, we prove the Main theorem. We present a detailed sketch of the proof
at the beginning of the section: this is an adaptation of the proof of Cheeger-Gromov’s
compactness theorem presented in [H-H].

In the appendix, we state some results of conformal geometry of annuli, needed in
section 4.

Notations: the usual non-negative and non-positive parts of a real number x
are x+ := max(x, 0) and x− := max(−x, 0). If f is a function, its non-negative and
non-positive parts are f+(x) := (f(x))+ and f−(x) := (f(x))−, and if ν is a Radon
measure, we define its non-negative and non-positive parts by

ν+(X) := sup
A⊂X

ν(A) and ν−(X) := sup
A⊂X
−ν(A).

ν+ and ν− are two non-negative measures; we have ν = ν+ − ν−, and we set |ν| :=
ν+ + ν−.
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1 Surfaces with Bounded Integral Curvature

We give two definitions of a surface with B.I.C. : the first one is geometric, and
the second one is by approximation by smooth Riemannian surfaces. Then we state
the fundamental property that they are locally isometric to a (singular) Riemannian
metric, conformal to the euclidean metric |dz|2. Finally we give the definition of a
metric with conical singularities. All the notions presented here are taken from [Re1],
[Re2] and [T1].

Let Σ be a closed surface. Recall that a metric d on Σ is intrisic if for every x, y ∈ Σ
we have

d(x, y) = inf L(γ),

where the infimum is taken over all continuous curves γ : [0, 1] → Σ, with γ(0) = x
and γ(1) = y, and where the length of γ is defined by

L(γ) := sup
0=t0≤...≤tn=1

(
n−1∑

i=0

d(γ(ti), γ(ti+1))

)
.

In our setting, Σ is compact, so if d is an intrisic metric on Σ compatible with the
topology, there always exists a minimizing geodesic between two points. That is for
every x, y ∈ Σ, there exists a continuous curve γ : [0, 1] → Σ, with γ(0) = x and
γ(1) = y, such that d(x, y) = L(γ).

1.1 Definition

1.1.1 A geometric definition

For this definition, see [Re2]. Roughly speaking, metrics with B.I.C. are intrisics
metrics, for which a curvature measure is well-defined; we first define the curvature
measure of a geodesic triangle (by analogy with the smooth case, where this is equal
to the sum of the angles minus π), then we extend it to any Borel set.

Recall that if OXY is a triangle in the Euclidean space, then if x = |OX|, y = |OY |
and z = |XY |, then the angle at O is

arccos
x2 + y2 − z2

2xy
.

Now, let d be an intrisic metric on Σ (compatible with the topology), and let
γ1, γ2 : [0, ε) → Σ be two continous curves with γ1(0) = γ2(0) = O. Then we can
define the upper angle at O between γ1 and γ2 by

a = lim sup
X→O,Y →O

(
arccos

d(O, X)2 + d(O, Y )2 − d(X, Y )2

2d(O, X)d(O, Y )

)

(the lim sup is taken over points X ∈ γ1 and Y ∈ γ2). If we replace the lim sup by a
lim inf, we obtain the lower angle a at O. If a = a, then we say that the angle at O
between γ1 and γ2 exists, and we set a := a = a.

If T = ABC is a triangle (that is, A, B, C ∈ Σ, and we specify some geodesics
γ1 = [AB], γ2 = [BC] and γ3 = [CA]), then we can define the upper excess of the
triangle ABC by

δ(T ) := a + b + c− π,
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where a is the upper angle at A between γ1 and γ3, b is the upper angle at B between
γ1 and γ2, and c is the upper angle at C between γ2 and γ3.

Remark that if the metric is Riemannian, then by the Gauss-Bonnet formula this
quantity is δ(T ) =

∫
T Kg dAg.

Definition 5. d is a metric with B.I.C. on Σ (and we say that (Σ, d) is a surface with
B.I.C.) if:

1. d is an intrisic metric on Σ;

2. d is compatible with the topology of Σ;

3. for every x ∈ Σ, there exists a neighbourhood U , homeomorphic to an open
disc, and a constant M(U) < ∞ such that for any system T1, ..., Tn of pairwise
non-overlapping simple (this technical condition is explained in detail in [Re1])
triangles contained in U we have the inequality

n∑

i=1

δ(Ti) ≤M(U).

If (Σ, d) is a surface with B.I.C., then we know that the angle between two geodesics
always exists, and for a geodesic triangle T with angles a, b, c we set δ(T ) := a+b+c−π.
We can then define the curvature measure: ω writes ω = ω+ − ω−, where ω+ and ω−

are two non-negative Radon measures, which are defined as follows. If U ⊂ Σ is an
open set, we set

ω+(U) = sup

(
n∑

i=1

δ(Ti)
+

)
and ω−(A) = sup

(
n∑

i=1

δ(Ti)
−

)
,

where the supremum is taken over all system (T1, ..., Tn) of pairwise non-overlapping
simple triangles contained in U , and if A ⊂ Σ is Borel set we set

ω+(A) := inf
open sets U⊃A

ω+(U) and ω−(A) := inf
open sets U⊃A

ω−(U)

(see [A-Z], chapter 5). We will see another definition of the curvature measure ω by
approximation with smooth Riemannian metrics (see the next section).

Remark 6. In the general case, for a geodesic triangle T with angles a, b, c, we do not
have the equality ω(T ) = a + b + c− π. See [Re1] and [A-Z] for more details.

If d is a Riemannian metric, then the curvature measure is ω = Kg dAg, and we
have ω+ = K+

g dAg and ω− = K−
g dAg.

Example 7. Let us see on an example how we can compute the excess of a triangle.
Look at a geodesic triangle T = ABC on a cylinder:

•A
•B

•
C

•P
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We assume that A is the center of the circle at the top of the cylinder, B is on this
circle, and C is not on the top. Let P be the intersection point between the circle and
the geodesic between A and C. Call θ the angle at A; in the geodesic triangle ABC,
we are looking for the angles at B and C. If we cut the cylinder along the circle, we
obtain two parts:

•A
θ

•
B

•
P

and
b

c

B P

C

Call b and c the angles at B and C in the right (Euclidean) triangle BP C: we have
b + c = π/2. Then in the geodesic triangle ABC, the angle at B is b + π/2, and the
angle at C is c, hence the excess of the triangle is

δ(T ) = (θ + b + π/2 + c)− π = θ.

1.1.2 A definition by approximation

Metrics with B.I.C. can be uniformly approximated by Riemannian metrics. Indeed,
we have the following alternative definition (see [T1]):

Definition 8. d is a metric with B.I.C. on Σ if:

1. d is an intrisic distance on Σ;

2. d is compatible with the topology of Σ;

3. there exists a sequence gm of Riemannian metrics on Σ, with (
∫

Σ |Kgm
|dAm)m∈N

bounded, such that d is the uniform limit of the metrics dgm
on Σ.

The third condition explains the terms “Bounded Integral Curvature”. We can
then define ω as the weak limit of Kgm

dAm, and the area measure dA as the weak
limit of dAm (because of the equivalence of the two definitions, these measures do not
depend of the choice of the sequence (gm)). Note that the area measure coincides with
the two-dimensional Hausdorff measure of the metric space (Σ, d).

1.2 Conformal charts

In the sequel, for r > 0, we set

D(r) := {z ∈ C, |z| < r},

and
D(r) := {z ∈ C, |z| ≤ r}.
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Let ω be a Radon measure with support in D(1/2), and h a harmonic function on
D(1/2). Consider the following (singular) Riemannian metric:

gω,h = e2V [ω](z)+2h(z)|dz|2.

The map V [ω] is the potential of the measure ω, and is defined by

V [ω](z) :=
∫∫

C

(−1

2π

)
ln |z − ξ|dω(ξ) :

it is defined for almost every z ∈ C, and V [ω] ∈ L1
loc(C). It verifies ∆V [ω] = ω in the

weak sense, where the sign convention for the Laplace operator on C is ∆ = − ∂2

∂x2− ∂2

∂y2 .
Since

V [ω](z) =
∫∫

D(1/2)

(−1

2π

)
ln |z − ξ|dω(ξ),

and ω = ω+ − ω−, we can write V [ω] = V [ω+] − V [ω−]. Moreover, for every z, ξ ∈
D(1/2) we have ln |z − ξ| ≤ 0, so for almost every z ∈ D(1/2) we have V [ω+](z) ≥ 0
and V [ω−](z) ≥ 0, hence

−V [ω−](z) ≤ V [ω](z) ≤ V [ω+](z).

These inequalities will be used many times in the sequel. We would not have such
inequalities if D(1/2) had been replaced by another set (the unit disc D(1) for exam-
ple); this explains why in theorem-definition 11, the conformal charts are defined on
D(1/2).

Consider γ : [0, 1] → D(1/2) a continous simple curve (that is, γ is injective),
parametrized with constant speed s (that is, the Euclidean length of the curve γ|[t1,t2]

is s · (t2− t1) for every t1 ≤ t2). We define the length of γ for the singular Riemannian
metric gω,h by

Lω,h(γ) :=
∫ 1

0
eV [ω](γ(t))+h(γ(t))s · dt

(we use a curve with constant speed because we only make a continuity assumption,
so the quantity |γ′(t)| may not exist). This integral makes sense, that is V [ω](γ(t))
is well defined for almost every t ∈ [0, 1] (this is because V [ω] is the difference of two
subharmonic functions; see [Re1]).

Then we set
dω,h(z, z′) := inf

{
Lω,h(γ)

}
,

where the infimum is taken over all continuous simples curves γ : [0, 1] → D(1/2),
parametrized with constant speed, with γ(0) = z and γ(1) = z′. A sufficient condition
for dω,h to be a distance is the following:

for every z ∈ D(1/2), ω+({z}) < 2π. (1)

Remark 9. If ω+({z0}) = 2π for some z0 ∈ D(1/2) (we say that z0 is a cusp), then
z0 may be at infinite distance to any other point z ∈ D(1/2). For example, if we set
ω = 2πδ0 (δ0 is the Dirac mass at 0 ∈ C) and h = 0, then gω,h = |z|−2|dz|2, and we
easily see that dω,h(0, z) =∞ for any z 6= 0.
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If the condition (1) is satisfied, then we say that the metric has no cusp. dω,h is
then compatible with the topology of D(1/2) (as a subset of C), and (D(1/2), dω,h) is
a surface with B.I.C. In the sequel, we will always assume that the metrics have no
cusp. By the hypothesis 1., this is true for every d ∈ MΣ(A, c, ε, δ).

To state the local convergence theorem (theorem 1), we also need the following
definition: if z, z′ ∈ D(1/2), we set

dω,0(z, z′) := inf
{
Lω,0(γ)

}
(2)

where the infimum is taken over all continuous simples curves γ : [0, 1] → D(1/2),
parametrized with constant speed, with γ(0) = z and γ(1) = z′. The difference with
dω,0(z, z′) is that the curves we are considering here can meet ∂D(1/2). This technical
detail is only needed in the proof of corollary 37. At every other place in the article,
we will use dω,h or dω,0.

Example 10. Let g be a smooth Riemannian metric on Σ, and let x ∈ Σ. Around
x, we can find local coordinates z ∈ D(1/2) such that the metric is conformal to the
Euclidean metric, that is

g = e2u(z)|dz|2.
For the Gauss curvature and the area, we have the following formulas:

Kg = (∆u)e−2u and dAg = e2udλ(z)

(in all the sequel, dλ is the Lebesgue measure on C), so the curvature measure is
ω = Kg dAg = ∆u dλ(z). Let h := u− V [ω]: by definition of the potential V [ω], h is
harmonic, so the metric has the following form:

g = e2V [ω]+2h|dz|2 = gω,h.

Next property is fundamental. Like Riemannian metrics, metrics with B.I.C. are
locally conformal to the Euclidean metric: this is Theorem 4 in [Re2].

Theorem-Definition 11. Let (Σ, d) be a surface with B.I.C., with no cusp, and let
U be an open set, homeomorphic to an open disc, such that U is homeomorphic to
a closed disc. Then there exists a map H, a measure ωH , defined in D(1/2), and a
harmonic function h on D(1/2) such that

H : (U, d|U)→ (D(1/2), dωH,h)

is an isometry. Such a map H is called a conformal chart.
We denote by d|U the intrisic distance induced by d on U : that is, d|U(x, y) is the

infimum of the d−length of curves joigning x and y in U .
The measure ωH is defined by ωH = H#ω (ω is the standard curvature measure

associated to every surface with B.I.C.); that is, ωH(A) = ω(H−1(A)) for every Borel
set A ⊂ D(1/2).

Like for surfaces with Riemannian metrics, the area of any Borel set A ⊂ U is

Area(A) =
∫

H(A)
e2V [ωH ](z)+2h(z)dλ(z).

Moreover, this theorem shows that the surface Σ has a natural structure of a Rie-
mann surface (see [Re1]).
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1.3 Surfaces with conical singularities

Definition 12. A metric with conical singularities is a metric d with B.I.C., with no
cusp such that, if the Radon-Nikodym decomposition of the curvature measure ω with
respect to the area measure dA reads

ω = µ + K dA

for some function K ∈ L1
loc(dA), then the singular measure µ is a finite sum of Dirac

masses.

If µ =
∑

i∈I kiδpi
(where δpi

is the Dirac mass at pi, and ki < 2π), then in a
neighbourhood of any pi there are complex coordinates z ∈ D(1/2) such that the
singular metric reads

g = |z|2βie2ui(z)|dz|2,

with βi := −ki/2π > −1, and ui ∈ L1
loc(D(1/2)), with ∆ui ∈ L1

loc(D(1/2)) in the weak
sense.

The metric looks like an Euclidean cone: the plane, endowed with the metric
g = |z|2β|dz|2, is isometric an Euclidean cone of radius

θ = 2π(β + 1) = 2π − k.

For θ ∈ (0, 2π), this can be obtained by gluing an angular sector of the plane:

θ

2 Contractibility radius

We have already mentioned in the introduction that the contractibility radius is, in
some sense, a generalization of the injectivity radius to non-Riemannian metric spaces:
the important point is that a lower bound on the contractibility radius avoids a pinch-
ing of the surface. We first prove a proposition on the topology of closed balls, needed
for the definition; then we give a criteria which ensures the positivity of the contractibil-
ity radius of some surface (Σ, d). We also look at some examples (the Euclidean cones),
and we end this section by proving that, in Cheeger-Gromov’s convergence theorem,
one can replace a lower bound on the injectivity radius by a lower bound on the
contractibility radius

11



2.1 Definition

Let (Σ, d) be a closed surface with B.I.C. If x ∈ Σ, we denote by B(x, r) the closed
ball centered in x and with radius r (that is, the set of y ∈ Σ with d(x, y) ≤ r). Since
the metric is intrisic, it is the closure of B(x, r). To define the contractibility radius,
we need the following

Proposition 13. For every x ∈ Σ, there exists some r > 0 such that for every s < r,
B(x, s) is homeomorphic to a closed disc.

To prove this proposition, we need a lemma, which is a direct consequence of a
result due to Burago and Stratilatova, see [Re1], theorem 9.1. Let S(x, r) be the sphere
with center x and radius r (that is, the set of y ∈ Σ with d(x, y) = r). In the general
case, the set S(x, r) may be arranged in a rather complicated way.

Theorem 14 (Burago and Stratilatova). Let U be a set homeomorphic to an open
disc, with x ∈ U and ω+(U−{x}) < π. If S(x, r) ⊂ U , then S(x, r) is a Jordan curve.

Lemma 15. Let U be a set homeomorphic to an open disc, with x ∈ U and ω+(U −
{x}) < π. If B(x, r) ⊂ U , then for every s ≤ r, B(x, s) is homeomorphic to a closed
disc.

Proof of lemma 15. Let h : U → C be a homeomorphism, and let s ≤ r. Since
S(x, s) ⊂ B(x, r) ⊂ U , we can apply theorem 14: h(S(x, s)) is a Jordan curve Γ.
C−Γ has two connected components: call the bounded component the "interior" of Γ,
and the unbounded component the "exterior" of Γ. Since B(x, s) is open and closed
in U − S(x, s), h(B(x, s)) is a connected component of h(U − S(x, s)) = C− Γ, hence
we have either

h(B(x, s)) = interior of Γ, or h(B(x, s)) = exterior of Γ.

The second case is impossible, since the closure of h(B(x, s)) is h(B(x, s)), which is
compact, and the closure of the exterior of Γ is non-compact.

Hence h(B(x, s)) is the interior of Γ, and h(B(x, s)) is the closure of the interior
of Γ. By the Jordan-Schoenflies’ theorem, we know that these sets are (respectively)
homeomorphic to an open (respectively closed) disc on the plane, and this ends the
proof of lemma 15.

Proof of proposition 13. By the structure of smooth surface of Σ, we know that we can
construct a decreasing sequence of open sets (Ui), such that every Ui is homeomorphic
to an open disc, with

{x} =
⋂

i∈N

Ui.

We have
0 = ω+

( ⋂

i∈N

(Ui − {x})
)

= lim
i→∞

ω+(Ui − {x}),

hence there exists some i0 ∈ N with ω+(Ui0
−{x}) < π. Consider some r > 0 such that

B(x, r) ⊂ Ui0
: we can apply lemma 15, and for every s ≤ r, B(x, s) is homeomorphic

to a closed disc. This ends the proof of proposition 13.
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We can then define the following contractibility radius:

cont(Σ, d, x) := sup
{
r > 0

∣∣∣ for every s < r, B(x, s) is homeomorphic to a closed disc
}

(by definition, cont(Σ, d, x) > 0) and

cont(Σ, d) := inf
x∈Σ

cont(Σ, d, x).

Since B(x, diam Σ) = Σ is not homeomorphic to a closed disc, we have the inequalities

cont(Σ, d, x) ≤ diam Σ, and cont(Σ, d) ≤ diam Σ.

The following proposition gives a criteria which ensures that cont(Σ, d) > 0. This will
not be used in the sequel.

Proposition 16. If the non-negative part of the curvature measure of (Σ, d) verifies
ω+({x}) < π for every x ∈ Σ, then cont(Σ, d) > 0.

Conversely, in the next section, we show that the contractibility radius of an Eu-
clidean cone with curvature at the vertex p greater than π (that is with ω+({p}) > π)
is zero.

Proof. Let (xm) be a sequence in Σ such that

cont(Σ, d, xm) −→
m→∞

cont(Σ, d).

By compactness, we may assume xm → x ∈ Σ. As in the proof of proposition 13,
consider a decreasing sequence of open sets (Ui), such that every Ui is homeomorphic
to an open disc, with

{x} =
⋂

i∈N

Ui.

Since ω+({x}) = limi→∞ ω+(Ui) < π, there exists some i0 ∈ N such that ω+(Ui0
) <

π. Consider some r > 0 such that B(x, r) ⊂ Ui0
. Then for m large enough, we

have B(xm, r/2) ⊂ B(x, r) ⊂ Ui0
: since ω+(Ui0

− {xm}) ≤ ω+(Ui0
) < π, we can

apply lemma 15 to obtain cont(Σ, d, xm) ≥ r/2. We m tends to infinity, we obtain
cont(Σ, d) ≥ r/2.

A lower bound for cont(Σ, d) avoids a pinching of the surface at the point x. In
the following situation, cont(Σ, d, x) is very small:

•x

Remark 17. We could have defined the following natural quantity:

sup
{
r > 0

∣∣∣B(x, r) is homeomorphic to a closed disc
}
,

but it is not relevant, since it is not small in the example given above.
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The definition of the contractibility radius deals with closed balls. To be able to
apply theorem-definition 11 with the open balls B(x, r), we need the following

Proposition 18. For every s < cont(Σ, d, x), B(x, s) is homeomorphic to an open
disc.

Proof. Let r ∈ (s, cont(Σ, d, x)). Let H a homeomorphism between B(x, r) and the
closed unit disc D(1). Since H(B(x, s)) is an open set of the plane, by the uniformiza-
tion theorem, we only need to show that H(B(x, s)) is simply connected.

Let γ : S1 → H(B(x, s)) be a continuous simple curve. By compactness, the
curve H−1(γ) in Σ is included in some ball B(x, s − ι) for some ι > 0. Then γ is in
H(B(x, s − ι)), which is homeomorphic to a closed disc, hence simply connected. γ
is homotopic to zero in H(B(x, s− ι)), hence is homotopic to zero in H(B(x, s)) and
this ends the proof.

2.2 An example: the case of an Euclidean cone

Let us look at the case of a Euclidean cone of cone angle θ ∈ (0, 2π). Recall that the
curvature at the vertex p of the cone is k = 2π − θ.

• If θ > π, then the contractibility radius at every point is infinite: every closed
ball with center x and radius r is homeomorphic to a closed disc. Indeed, if p
is not in this ball, then it is a flat Euclidean ball; and if the vertex p is in this
ball, then we can cut the cone along the line passing by p and x to obtain the
following picture (where we have drawn S(x, r)) :

•
x

•
x•p

Gluing the cone back we see that B(x, r) is homeomorphic to a closed disc.

Remark 19. We already knew this result, by use of the lemma 15.

• But if θ < π, the contractibility radius at x goes to zero when x tends to the
vertex p of the cone: if x 6= p, we have cont(Σ, d, x) < d(x, p). Indeed, cut the
cone along the line passing by p and x. Then consider some r such that the
following situation occurs. The two balls, centered in x and with radius r, have
a non-empty intersection, and do not contain p (this is possible because the angle
at the vertex of the cone is less than π):

•
x

•
x

•
p
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Gluing the cone back, we see that B(x, r) is not homeomorphic to a closed disc
(it does not contain the vertex p).

This example shows that a surface with a conical singularity of angle < π has
a contractibility radius equal to zero (so in corollary 4, conical singularities of
angles < π are not allowed). This does not avoid an accumulation of singularities
(as in Figure 1 in the introduction): in such a situation, the pointwise curvature
of the singularities has to go to zero, hence the cone angles converge to 2π. In the
example described in figure 1, we do have a lower bound for the contractibility
radius.

The last example shows that in the Main Theorem, we can not have a conical
singularity at p of angle < π (that is, we have ω+({p}) ≤ π). We can then won-
der if hypothesis 1. is needed in the definition of MΣ(A, c, ε, δ); in other words, if
cont(Σ, d) ≥ c implies the existence of some ε > 0 and δ > 0 such that for every x ∈ Σ
we have ω+(B(x, ε)) ≤ 2π − δ. This is not true, as the next example shows:

Consider the plane outside the box, plus the four sides of the box, plus the top of the
box. This flat surface is homeomorphic to the plane, and has 8 conical singularities:
at the top of the box, 4 singularities of angle 3π/2 (that is, of curvature π/2), and at
the bottom of the box, 4 singularities of angle 5π/2 (that is, of curvature −π/2). If
the height of the box is small enough, then the contractibility radius is infinite (all the
balls B(x, r) are homeomorphic to closed discs). So if we rescale the picture so that
the box shrinks to a point x, the contractibility radius is still infinite, but ω+ converge
weakly to a Dirac mass at x, with mass 2π.

2.3 Equivalence of a lower bound on the injectivity radius

and on the contractibility radius

If d is a Riemannian metric and x ∈ Σ, for every r < inj(x), the exponential map at
the point x is a homeomorphism between a closed disc on the plane and the closed
ball with center x and radius r. Then we clearly have the inequality

cont(Σ, d) ≥ inj(Σ, g).

Conversly, the next proposition shows that in the classical Cheeger-Gromov compact-
ness theorem, one can replace a lower bound on the injectivity radius by a lower bound
on the contractibility radius. This result will not be used in the sequel.

Proposition 20. Let Λ > 0 and c > 0. There exists a constant i = i(Λ, c) verifying
the following property. For every closed Riemannian surface (Σ, g) with |Kg| ≤ Λ and
cont(Σ, dg) ≥ c, we have

inj(Σ, g) ≥ i.
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Proof. By a well-known result of Klingenberg, we know that we can find a lower bound
for the injectivity radius in the following way:

inj(Σ, g) ≥ min
(
π/
√

Λ,
1

2
· length of the smallest closed geodesic

)
.

Let γ be a closed geodesic, of length l. We may assume l < c, and we look for a lower
bound for l. γ is included is some open ball B with radius l < cont(Σ, d), which is
homeomorphic to an open disc (see proposition 18). Hence γ bounds a domain U ⊂ B
homeomorphic to an open disc. Since the geodesic curvature of the boundary ∂U of
U is identically zero, the Gauss-Bonnet’s formula writes

2π =
∫

U
Kg dAg,

hence
2π ≤ Λ · Areag(U).

But U ⊂ B, and since Kg ≥ −Λ, the area of the ball B is at most the area of a ball
of radius l in a simply connected surface of constant curvature −Λ < 0. This area is
less than

√
Λ · exp(l/

√
Λ), so we get

2π ≤ Λ3/2 · exp(l/
√

Λ).

Thus we have obtained

inj(Σ, g) ≥ min
( π√

Λ
,

c

2
,

√
Λ ln(2π/Λ3/2)

2

)
,

and this ends the proof.

3 Some results on surfaces with B.I.C.

We prove two results for surfaces with B.I.C., which will be needed in the proof of the
Main theorem.

3.1 On the volume of balls

We need to find an upper bound (respectively, a lower bound) for the volume of balls of
radius r in surfaces with B.I.C. In Riemannian geometry, this is a well-known fact that
a lower bound (respectively, an upper bound) on the sectional curvature is sufficient.
To generalize such results for surfaces with B.I.C., we need to have a property in
Riemannian geometry which depends only on the curvature measure ω, and not on
the pointwise (Gauss) curvature. In [S], Shioya proves the following:

Theorem 21. Let (Σ, g) be a closed Riemannian surface, and let x ∈M .

1. Let r > 0. We have

Area(B(x, r)) ≤
(
2π + ω−(B(x, r))

)
r2/2,

where
ω−(B(x, r)) =

∫

B(x,r)
K−

g dAg

is the non-positive part of the curvature of B(x, r).
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2. Let r > 0 such that cont(Σ, dg, x) ≥ r (that is for every s < r, B(x, s) is
homeomorphic to a closed disc). Then

Area(B(x, r)) ≥
(
2π − ω+(B(x, r))

)
r2/2,

where
ω+(B(x, r)) =

∫

B(x,r)
K+

g dAg

is the non-negative part of the curvature of B(x, r).

Remark 22. The hypothesis needed to get a lower bound for the area is not surprising:
an Euclidean cylinder is flat (so ω+ = 0), and when the cylinder is very thin, the area
of a ball may be arbitrarly small .

As a direct consequence, we obtain the

Corollary 23. Let (Σ, d) be a surface with B.I.C., and let x ∈ Σ.

1. Let r > 0. We have

Area(B(x, r)) ≤
(
2π + ω−(B(x, r))

)
r2/2.

2. Let r > 0 such that cont(Σ, d, x) ≥ r. Then

Area(B(x, r)) ≥
(
2π − ω+(B(x, r))

)
r2/32.

The second inequality is not optimal, since r2/2 is replaced by r2/32; see the proof
below.

Remark 24. If x is the vertex of a cone of angle θ, then the curvature measure is
ω = (2π − θ)δx (where δx is the Dirac mass at x), and Area(B(x, r)) = θr2/2, hence

(
2π + ω−(B(x, r))

)
r2/2 = max(πr2, θr2/2) ≥ Area(B(x, r))

and (
2π − ω+(B(x, r))

)
r2/2 = min(πr2, θr2/2) ≤ Area(B(x, r)).

For the proof of corollary 23, we need the following

Lemma 25. Let U be an open set of Σ, and K ⊂ U a compact set. Let µm be a
sequence of Radon measures on Σ, with µm → µ weakly on Σ. Then for every ε > 0,
for m large enough we have

(1) µ(K) < µm(U) + ε

and
(2) µm(K) < µ(U) + ε.
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Proof. We know that there exists a smooth map ϕ : Σ→ [0, 1], with ϕ = 1 on K, and
with support in U . For m large enough, we have | ∫Σ ϕdµ− ∫Σ ϕdµm| < ε, so we get

µ(K) ≤
∫

Σ
ϕdµ <

∫

Σ
ϕdµm + ε ≤ µm(U) + ε,

and
µm(K) ≤

∫

Σ
ϕdµm <

∫

Σ
ϕdµ + ε ≤ µ(U) + ε.

Proof of corollary 23. Let gm be a sequence of Riemannian metrics on Σ, such that
dm := dgm

→ d uniformly on Σ when m goes to infinity. Let dAm (resp. dA) be
the area measure for (Σ, dm) (resp. (Σ, d)), and as usual, let ωm = ω+

m − ω−
m (resp.

ω = ω+ − ω−) be the curvature measure for (Σ, dm) (resp. (Σ, d)), with its non-
negative and non-positive parts. Then we know (see [Re1], theorems 8.1.9 and 8.4.3)
that dAm → dA, ω+

m → ω+ and ω−
m → ω− weakly on Σ.

Proof of 1. Remark that ∪ε>0B(x, r − ε) = B(x, r), so

Area(B(x, r)) = lim
ε→0
Area(B(x, r − ε)).

Now, let ε > 0. Using lemma 25 we know that for m large enough we have

Area(B(x, r − ε)) < Aream(B(x, r − 3ε/4)) + ε,

and with B(x, r − 3ε/4) ⊂ Bm(x, r − ε/2) for m large enough we get

Area(B(x, r − ε)) < Aream(Bm(x, r − ε/2)) + ε.

Using theorem 21 with r − ε/2 we obtain

Area(B(x, r − ε)) ≤
(
2π + ω−

m(Bm(x, r − ε/2))
)
(r − ε/2)2/2 + ε

and with Bm(x, r − ε/2) ⊂ B(x, r − ε/4) for m large enough, we get

Area(B(x, r − ε)) ≤
(
2π + ω−

m(B(x, r − ε/4))
)
r2/2 + ε.

Using again lemma 25, for m large enough we get

Area(B(x, r − ε)) ≤
(
2π + ω−(B(x, r)) + ε

)
r2/2 + ε,

and letting ε→ 0 this ends the proof.
Proof of 2. The assertion is trivial if ω+(B(x, r)) ≥ 2π, so we may assume ω+(B(x, r)) <
2π. We can not directly apply theorem 21 for the Riemannian metrics dm, because we
may not have cont(Σ, dm, x) ≥ r (this is the reason why r2/2 is replaced by r2/32).
Let y ∈ B(x, r) be some point with d(x, y) = r/2. Then we have

B(x, r/4)
⋂

B(y, r/4) = ∅,

and
B(x, r/4)

⋃
B(y, r/4) ⊂ B(x, r).
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Since ω+(B(x, r)) < 2π, this shows that we have ω+(B(x, r/4)) < π, or ω+(B(y, r/4)) <
π. Let z (z = x or y) be a point with

ω+(B(z, r/4)) < π. (3)

Let ε > 0. After passing to a subsequence, we may assume

Bm(z, r/4− ε) ⊂ B(z, r/4− ε/2) (4)

and by lemma 25 and equation (3) we may also assume

ω+
m(B(z, r/4− ε/2)) < π. (5)

Let U := B(z, r/4−ε/2). U is homeomorphic to an open disc, and we have Bm(z, r/4−
ε) ⊂ U and ω+

m(U − {z}) ≤ ω+
m(U) < π. We can then apply lemma 15 to obtain

cont(Σ, dm, z) ≥ r/4− ε.

We can then apply theorem 21, with the metric dm, the point z and the radius r/4−ε:
for m large enough we have

Aream(Bm(z, r/4− ε)) ≥
(
2π − ω+

m(Bm(z, r/4− ε))
)
(r/4− ε)2/2. (6)

For m large enough we also have

Bm(z, r/4− ε) ⊂ B(x, r − ε),

and by lemma 25, for m large enough we get
{
Area(B(x, r)) ≥ Aream(B(x, r − ε))− ε
ω+(B(x, r)) ≥ ω+

m(B(x, r − ε))− ε,

which gives {
Area(B(x, r)) ≥ Aream(Bm(z, r/4− ε))− ε
ω+(B(x, r)) ≥ ω+

m(Bm(z, r/4− ε))− ε.

With equation (6) we get

Area(B(x, r)) ≥
(
2π − ω+(B(x, r))− ε

)
(r/4− ε)2/2− ε,

and letting ε→ 0 this ends the proof.

3.2 An upper bound for the length of a line segment

We want to find an upper bound for the length of a line segment, for a singular
Riemannian metric which has "no harmonic term", that is, when g = e2V [ω](z)|dz|2 for
some Radon measure ω.

First, consider a Riemannian metric on D(1/2) with a conical singularity at 0:
g = |z|2β|dz|2 (for some β > −1), and let γ be the line segment joigning 0 and a point
z ∈ D(1/2). The length of γ is

L(γ) =
∫ 1

0
|tz|β |z|dt =

1

1 + β
|z|1+β .
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Moreover, the curvature measure is ω = −2πβ · δ0 (where δ0 is the Dirac mass at 0),
so the non-negative part of the curvature measure is ω+(D(1/2)) = max(0,−2πβ) =
2πβ− and we get

1 + β ≥ 1− β− = 1− ω+(D(1/2))/2π,

hence

L(γ) ≤ 1

1− ω+(D(1/2))/2π
|z|1−ω+(D(1/2))/2π .

The next proposition shows how we can extend this result to arbitrary curvature
measures.

Proposition 26. Let ω be a Radon measure defined in D(1/2), with ω+(D(1/2)) < 2π.
Let z, z′ ∈ D(1/2), and let γ(t) := (1− t)z + tz′ be the line segment [zz′]. Let L(γ) be
the length of this line segment for the singular metric g = e2V [ω](z)|dz|2, then

L(γ)
(

=
∫ 1

0
eV [ω](γ(t))|z − z′|dt)

)
≤ 2

1− ω+(D(1/2))/2π
|z − z′|1−ω+(D(1/2))/2π . (7)

Proof. First step. We first show that this is sufficient to prove the proposition,
in the case where ω is a sum of Dirac masses. If so, let ω be a Radon measure with
ω+(D(1/2)) < 2π, and write ω as ω = ω+ − ω−, where ω+ and ω− are non-negative
Radon measures. Let ω+

m and ω−
m be a sequence of sums of Dirac masses such that

ω+
m → ω+ and ω−

m → ω− weakly, and let ωm := ω+
m − ω−

m.
Let Lm(γ) be the length of the line segment γ for the singular metric gm =

e2V [ωm](z)|dz|2. For almost every t ∈ [0, 1] we have

V [ωm](γ(t)) =
∫∫

D(1/2)

(−1

2π

)
ln |γ(t)− ξ|dωm(ξ) −→

m→∞

∫∫

D(1/2)

(−1

2π

)
ln |γ(t)− ξ|dω(ξ) = V [ω](γ(t)),

hence by Fatou’s lemma we get

L(γ) =
∫ 1

0
eV [ω](γ(t))|z − z′|dt

=
∫ 1

0
lim inf
m→∞

(
eV [ωm](γ(t))|z − z′|

)
dt

≤ lim inf
m→∞

( ∫ 1

0
eV [ωm](γ(t))|z − z′|dt

)

= lim inf
m→∞

Lm(γ).

If we apply the inequality (7) with the measures ωm (which are a sum of Dirac masses,
with ω+

m(D(1/2)) < 2π for m is large enough), we get

Lm(γ) ≤ 2

1− ω+
m(D(1/2))/2π

|z − z′|1−ω+
m(D(1/2))/2π,

so

L(γ) ≤ lim inf
m→∞

(
2

1− ω+
m(D(1/2))/2π

|z − z′|1−ω+
m(D(1/2))/2π

)

=
2

1− ω+(D(1/2))/2π
|z − z′|1−ω+(D(1/2))/2π .
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Second step. We may now assume that ω is a sum of Dirac masses: there exists
p1, ..., pn ∈ D(1/2) and k1, ..., kn ∈ R such that

ω =
n∑

s=1

ksδps

(δps
is the Dirac mass at ps), and

ω+(D(1/2)) =
n∑

s=1

k+
s < 2π.

For almost every z ∈ D(1/2) we have

V [ω](z) =
∫∫

D

(−1

2π

)
ln |z − ξ|dω(ξ) =

n∑

s=1

(−ks

2π

)
ln |z − ps| ≤

n∑

s=1

(−k+
s

2π

)
ln |z − ps|,

so if we set βs := −ks/2π, then we have β−
s = max(0,−βs) = max(0, ks/2π) = k+

s /2π,
hence

eV [ω](z) ≤
n∏

s=1

|z − ps|−β−

s .

We then have

L(γ) =
∫ 1

0
eV [ω](γ(t))|z − z′|dt ≤

∫ 1

0

( n∏

s=1

|γ(t)− ps|−β−

s

)
|z − z′|dt.

Let S := {s such that β−
s > 0}.

If S = ∅, then β−
s = 0 for every s: we have ω+(D(1/2)) = 0, and the last inequality

shows that L(γ) ≤ |z − z′|, so the inequality (7) is true (the factor 2 will be needed
for the case S 6= ∅).

Then we may assume S 6= ∅. Let M := −∑s∈S β−
s : by hypothesis we have

−1 < M < 0. For s ∈ S, let qs := −M/β−
s : we have

qs ≥ 1 and
∑

s∈S

1

qs

= 1.

Since |γ(t)− ps|−β−

s ≤ 1 if β−
s ≤ 0, we can apply Hölder’s inequality as follows:

∫ 1

0

( n∏

s=1

|γ(t)− ps|−β−

s

)
dt ≤

∫ 1

0

( ∏

s∈S

|γ(t)− ps|−β−

s

)
dt (8)

≤
∏

s∈S

( ∫ 1

0
|γ(t)− ps|−qsβ−

s dt
)1/qs

(9)

=
∏

s∈S

( ∫ 1

0
|γ(t)− ps|Mdt

)1/qs

. (10)

Now, fix some s ∈ S and consider
∫ 1

0 |γ(t) − ps|Mdt. Let p′
s be the projection of the

point ps on the line (zz′);

×
z

×
z′

•
γ(t)

•ps

•
p′

s
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We have |γ(t)− p′
s| ≤ |γ(t)− ps|, so with M < 0 we get

∫ 1

0
|γ(t)− ps|Mdt ≤

∫ 1

0
|γ(t)− p′

s|Mdt.

Since p′
s belongs to the line (zz′), we can write p′

s = (1− λs)z + λsz
′ for some λs ∈ R,

hence
|γ(t)− p′

s| = |(1− t)z + tz′ − (1− λs)z − λsz
′| = |t− λs||z − z′|.

Moreover, we easily see that the map λ 7→ ∫ 1
0 |t − λ|Mdt admits its maximum for

λ = 1/2 (recall that M < 0), hence

∫ 1

0
|t− λs|Mdt ≤

∫ 1

0
|t− 1

2
|Mdt =

1

(M + 1)2M+1
,

so we obtain ∫ 1

0
|γ(t)− ps|Mdt ≤ |z − z′|M

(M + 1)2M
.

If we put this in the inequality (10), with
∑

s∈S 1/qs = 1, we get

∫ 1

0

( ∏

s∈S

|γ(t)− ps|−β−

s

)
dt ≤ |z − z′|M

(M + 1)2M
.

Since M > −1 we have 2M ≥ 1/2, and with the equality M = −ω+(D(1/2))/2π we
obtain

L(γ) ≤ 2

1− ω+(D(1/2))/2π
|z − z′|1−ω+(D(1/2))/2π .

4 Preliminary properties of MΣ(A, c, ε, δ)

Before starting the proof of the Main theorem, we prove some important preliminary
properties for the set MΣ(A, c, ε, δ).

4.1 Another definition of MΣ(A, c, ε, δ)

By analogy with Cheeger-Gromov’s convergence theorem, where we can replace a
bound on the volume by a bound on the diameter, the following proposition shows
that in the Main theorem, we can replace a bound on the area by a bound on the
diameter and on the total curvature (this is corollary 3). Recall that |ω|(Σ, d) =
ω+(Σ, d) + ω−(Σ, d).

Proposition 27. Let Σ be a closed surface and let c, ε, δ > 0. Let d be a metric with
B.I.C. on Σ, verifying the properties 1. and 2. in the definition of MΣ, that is

1. for every x ∈ Σ, ω+(B(x, ε)) ≤ 2π − δ
2. cont(Σ, d) ≥ c.

Then:
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• for every A > 0, there exists some positive constants D and Ω such that

Area(Σ, d) ≤ A =⇒
{

diam(Σ, d) ≤ D
|ω|(Σ, d) ≤ Ω,

that is

d ∈MΣ(A, c, ε, δ) =⇒
{

diam(Σ, d) ≤ D
|ω|(Σ, d) ≤ Ω.

• Conversly, for every Ω, D > 0, there exists a positive constant A such that

diam(Σ, d) ≤ D
|ω|(Σ, d) ≤ Ω

}
=⇒ Area(Σ, d) ≤ A,

that is
diam(Σ, d) ≤ D
|ω|(Σ, d) ≤ Ω

}
=⇒ d ∈MΣ(A, c, ε, δ).

Proof. To prove the first property, consider some d ∈ MΣ(A, c, ε, δ). Let B(xi, ε/2),
for i ∈ {1, ..., N}, be a maximal number of disjoint balls of radius ε/2 in Σ. By
property 23, all these balls have an area bounded by below; since the area of (Σ, d)
is bounded by above, the integer N is also bounded. If the diameter was arbitrarly
large, then we could find an arbitrarly large number of disjoint balls: this shows that
there exists some D > 0 such that diam(Σ, d) ≤ D. And by an elementary covering
argument, the N balls B(xi, ε) cover Σ; but the positive curvature of these balls are
bounded by above, so the positive curvature ω+(Σ, d) of Σ is also bounded by above.
The Gauss-Bonnet formula gives us ω+(Σ, d)−ω−(Σ, d) = 2πχ(Σ) (where χ(Σ) is the
Euler characteristic of Σ), so ω−(Σ, d) is as well bounded by above, and this shows
that there exists some Ω > 0 such that |ω|(Σ, d) ≤ Ω.

Conversly, if diam(Σ, d) ≤ D and |ω|(Σ, d) ≤ Ω, then Σ is equal to some ball
B(x, D + 1). Since ω−(Σ) is bounded, by corollary 23, we know that the area of such
a ball is bounded by above, and this shows that there exists a constant A > 0 such
that Area(Σ, d) ≤ A.

From now on, we fix a closed surface Σ and A, c, ε, δ > 0; we then have some
positive constants D and Ω verifiying the first part in proposition 27.

4.2 A bound for the harmonic term

This section is devoted to the proof of the following theorem, which gives a bound
for the harmonic term h when we express (locally) any metric d ∈MΣ(A, c, ε, δ) as a
singular Riemannian metric g = e2V [ω]+2h|dz|2. This born has to be uniform, that is
independant of the metric d ∈ MΣ(A, c, ε, δ). This theorem is very important in the
sequel, and relies on conformal geometry of an annulus (see the Appendix).

Theorem 28. Let K ⊂ D(1/2) be a compact set. There exists a constant M(K) =
M(K, Σ, A, c, ε, δ) verifying the following property.

Let d be a metric in MΣ(A, c, ε, δ), and let H : B(x, ε) → D(1/2) be a conformal
chart, with H(x) = 0. As usual, we denote by h the harmonic term for the metric in
this chart (see theorem-definition 11). We then have

|h(z)| ≤M(K) for every z ∈ K.
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We first give an upper bound for h. The (explicit) upper bound will be used in the
next section:

Proposition 29. Under the hypothesis of theorem 28 we have, for every z ∈ D(1/2),

eh(z) ≤ ε

(1/2− |z|)1+Ω/2π
· C(Ω), (11)

where C(Ω) :=
√

1 + Ω/2π · eΩ/4π.

Proof. Let a ∈ D(1/2), and set s = 1/2 − |a| > 0: we have D(a, s) ⊂ D(1/2). Let
u := V [ωH]+h, so that the singular Riemannian metric reads g = e2u|dz|2. By Jensen’s
inequality we get

exp
( ∫∫

D(a,s)
2u(z)

dλ(z)

πs2

)
≤
∫∫

D(a,s)
e2u(z) dλ(z)

πs2
≤ Area(B(x, ε))

πs2
,

and by corollary 23 we have Area(B(x, ε)) ≤ (π + Ω/2) · ε2, hence

1

πs2

∫∫

D(a,s)
2u(z)dλ(z) ≤ ln

(
(1 + Ω/2π)

ε2

s2

)
.

h is harmonic, hence it verifies the mean-value property:

h(a) =
1

πs2

∫∫

D(a,s)
h(z)dλ(z),

so we get

h(a) =
1

πs2

∫∫

D(a,s)
u(z)dλ(z)− 1

πs2

∫∫

D(a,s)
V [ωH ](z)dλ(z) (12)

≤ 1

2
ln
(
(1 + Ω/2π)

ε2

s2

)
− 1

πs2

∫∫

D(a,s)
V [ωH](z)dλ(z), (13)

and to conclude we need to find a lower bound for
∫∫

D(a,s) V [ωH ](z)dλ(z).

We know that V [ωH](z) = V [ω+
H ](z) − V [ω−

H](z) ≥ −V [ω−
H ](z) for almost every

z ∈ D(1/2), so
∫∫

D(a,s)
V [ωH ](z)dλ(z) ≥ −

∫∫

D(a,s)

( ∫∫

D(1/2)

(−1

2π

)
ln |z − ξ|dω−

H(ξ)
)
dλ(z) (14)

= −
∫∫

D(1/2)

( ∫∫

D(a,s)

(−1

2π

)
ln |z − ξ|dλ(z)

)
dω−

H(ξ).(15)

And for ξ ∈ D(1/2), we have
∫∫

D(a,s)

(−1

2π

)
ln |z − ξ|dλ(z) =

∫∫

D(a−ξ,s)

(−1

2π

)
ln |z|dλ(z),

and we easily see that this function of ξ is maximum for ξ = a (that is when the disc
is centered in 0). So for every ξ ∈ D(1/2),

∫∫

D(a,s)

(−1

2π

)
ln |z − ξ|dλ(z) ≤

∫∫

D(0,s)

(−1

2π

)
ln |z|dλ(z)

= −
∫ s

0
r ln rdr =

s2

4
− s2 ln s

2
.
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Using inequality (15) we get

∫∫

D(a,s)
V [ωH ](z)dλ(z) ≥

(
− s2

4
+

s2 ln s

2

)
· ω−

H(D) ≥
(
− s2

4
+

s2 ln s

2

)
· Ω

(recall that Ω satisfies ω+
H(D) + ω−

H(D) ≤ Ω). With the inequality (13) we obtain

h(a) ≤ 1

2
ln
(
(1 + Ω/2π)

ε2

s2

)
+

Ω

4π
− Ω ln s

2π
,

and this ends the proof.

We now prove that the image by the conformal chart H of the ball B(x, ε/2) can
not go to close to the boundary of the disc D(1/2). We use the results stated in the
appendix, by looking at the annulus D(1/2) − H(B(x, ε/2)). On the one hand, by
definition, this annulus has a modulus bounded by below; and on the other hand, by
Grötzsch’s theorem (see theorem 65 in the appendix), if H(B(x, ε/2) was arbitrarly
close to ∂D(1/2), then the modulus of D(1/2) − H(B(x, ε/2)) would be arbitrarly
close to zero. We need this result to prove theorem 28, but we will also need it later
(see theorem 34).

Proposition 30. Let r < 1/2 be such that the modulus of the Grötzsch annulus G(2r)
verifies mod(G(2r)) < ε2/4A (see the appendix). Let d ∈ MΣ(A, c, ε, δ), and let
H : B(x, ε)→ D(1/2) be a conformal chart, with H(x) = 0. Then

H(B(x, ε/2)) ⊂ D(r).

Proof. The following subset of C:

U := D(1/2)−H(B(x, ε/2))

is a topological annulus (in the sense given in the appendix, see definition 63). We
know that H is an isometry between (B(x, ε), d|B(x,ε)) and (D(1/2), dωH ,h). Recall that
the modulus of U is

mod(U) = sup
ρ

infγ∈Γ Lρ(γ)2

Aρ(U)
,

(see the appendix), where Γ is the set of continuous simples curves γ in U , parametrized
by arc-length, joigning ∂D(1/2) and a point in H(B(x, ε/2)). We take ρ := eV [ωH ]+h.

We see that for every γ ∈ Γ, the ρ-length of γ is equal to the d-length of the curve
H−1(γ) in Σ, joigning a point in B(x, ε/2) and a point which is not is B(x, ε), so is
greater than or equal to ε/2. Since the ρ−area of U is less than or equal to the area
of (Σ, d) we get

mod(U) ≥ (ε/2)2

A
= ε2/4A.

We prove the lemma by contradiction: assume we have H(B(x, ε/2)) 6⊂ D(r). Then,
after a rotation (such that the complex number of maximum modulus of H(B(x, ε/2)),
which is greater than or equal to r, belongs to the real axis), and after an homothetie
with scale factor 2, we see that U is conformal to an annulus U ′ ⊂ D(1), not containing
0 (since H(x) = 0) and 2r. By Grötzsch’s theorem (see theorem 65 in the appendix),
we have mod(U) = mod(U ′) ≤ mod G(2r), which is impossible with the choice of
r we made. We then have H(B(x, ε/2)) ⊂ D(r) and this ends the proof of the
proposition.
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Let p∗ := 4π/δ > 1. To obtain a lower bound for the harmonic term h, we need
the following lemma, which gives a lower bound for a certain integral involving h:

Lemma 31. Under the hypothesis of theorem 28, we have

(
δ2ε2

2048π2

)p∗

≤
∫∫

D(r)
e2p∗h(z)dλ(z).

Proof. We will use the following proposition, see [T2]:

Proposition 32 (Troyanov). Let ν be a non-negative Radon measure defined in D(1/2).
Suppose there exists some p > 1 such that ν(D(1/2)) < 2π/p. Then

( ∫∫

D(1/2)
e2pV [ν](z)dλ(z)

)1/p ≤ 4π

1− p
2π

ν(D(1/2))
.

Let p > 1 be such that 1/p + 1/p∗ = 1. By property 1. in the definition of
MΣ(A, c, ε, δ) we have

ω+
H(D(1/2)) = ω+(B(x, ε)) ≤ 2π − δ = 2π(1− 2/p∗) = 2π(1/p− 1/p∗) < 2π/p.

Proposition 32 shows that

( ∫∫

D(1/2)
e2pV [ω+

H
](z)dλ(z)

)1/p ≤ 4π

1− p
2π

ω+
H(D(1/2))

,

and with 1− p
2π

ω+
H(D(1/2)) = p

p∗
≥ 1

p∗
= δ/4π we obtain

( ∫∫

D(1/2)
e2pV [ω+

H
](z)dλ(z)

)1/p ≤ 16π2

δ
. (16)

By proposition 30 we have H(B(x, ε/2)) ⊂ D(r), hence
∫∫

D(r)
e2u(z)dλ(z) ≥ Area(B(x, ε/2)).

Corollary 23 shows that

Area(B(x, ε/2)) ≥
(
2π − ω+(B(x, ε/2))

)
· (ε/2)2/32 ≥ δε2/128.

Since u = V [ωH ] + h, by Hölder’s inequality we get:

δε2/128 ≤ Area(B(x,ε/2)) ≤
∫∫

D(r)
e2u(z)dλ(z)

≤
( ∫∫

D(r)
e2pV [ωH ](z)dλ(z)

)1/p( ∫∫

D(r)
e2p∗h(z)dλ(z)

)1/p∗

≤
( ∫∫

D(1/2)
e2pV [ωH ](z)dλ(z)

)1/p( ∫∫

D(r)
e2p∗h(z)dλ(z)

)1/p∗

,

With the inequality V [ωH ](z) = V [ω+
H ](z) − V [ω−

H](z) ≤ V [ω+
H ](z) valid for almost

every z ∈ D(1/2), and with equation (16) we get

δε2/128 ≤ 16π2

δ
·
( ∫∫

D(r)
e2p∗h(z)dλ(z)

)1/p∗

, (17)

and this ends the proof of the lemma.
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To prove theorem 28, we finally need the following Harnack’s lemma for non-
negative harmonic functions (see [A-B-R]):

Theorem 33 (Harnack’s lemma). Let fm be a sequence of non-negative harmonic
functions on a connected open set U ⊂ C. We then have the following alternative:
either (1) fm → +∞ locally uniformly on U , or (2) there exists a subsequence mj of
m such that fmj

→ f locally uniformly on U , where f is a harmonic function on U .

We can now finish the proof of theorem 28.

Proof of theorem 28. First, proposition 29 ensures that for every compact set K ⊂
D(1/2), there exists a constant M ′(K) such that under the hypothesis of theorem 28
we have h(z) ≤ M ′(K) for every z ∈ K.

We prove theorem 28 by contradiction. Suppose there exist a compact set K ⊂
D(1/2) (we may assume D(r) ⊂ K), a sequence dm ∈ MΣ(A, c, ε, δ), a sequence of
points xm ∈ Σ, and a sequence of conformal charts Hm : Bm(xm, ε) → D(1/2), with
Hm(xm) = 0, such that the harmonic term hm for the metric in this chart verifies

min
z∈K

hm(z) →
m→∞

−∞.

Choose some zm ∈ K such that minz∈K hm(z) = hm(zm). After passing to a sub-
sequence, we may assume zm → z ∈ K. Let U be a connected open set, with
K ⊂ U ⊂ U ⊂ D(1/2).

Since hm(z) ≤ M ′(U) for every z ∈ U , we can consider the following sequence of
non-negative harmonic functions on U :

fm := M ′(U)− hm.

Since fm(zm)→ +∞, alternative (2) in theorem 33 can not occur. So we have fm →
+∞ locally uniformly on U , hence hm → −∞ locally uniformly on U . But lemma 31
tells us that (

δ2ε2

2048π2

)p∗

≤
∫∫

D(r)
e2p∗hm(z)dλ(z).

This is a contradiction, since the right-hand side term goes to zero as m → ∞, by
Lebesgue’s dominated convergence theorem: we have e2p∗hm(z) → 0 for every z ∈
D(r) ⊂ U , and since D(r) ⊂ U , we can dominate e2p∗hm(z) by the integrable function

e2p∗M ′(U).

4.3 Conformal images of balls

This section is devoted to the proof of the next theorem. It is the key step in our article,
and also relies on the conformal geometry of an annulus. Roughly, it says the following.
Let H : B(x, ε) → D(1/2) be a conformal chart for some metric d ∈ MΣ(A, c, ε, δ),
with H(x) = 0. Then we have a control on the images of balls of "large" radii B(x, ε/4)
(that is, we have D(2α) ⊂ H(B(x, ε/4))), and balls of "small" radii B(x, κε) (that is,
we have H(B(x, κε)) ⊂ D(α)), for some positive constants α and κ (the picture in the
theorem explains the situation). Of course, for any metric d ∈ MΣ(A, c, ε, δ), such
constants α and κ do exist, but the hard part of the work is to show that they can be
chosen uniformly: they do not depend on the metric d ∈MΣ(A, c, ε, δ).
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Theorem 34. There exists constants α = α(Σ, A, c, ε, δ) > 0 and κ = κ(Σ, A, c, ε, δ) >
0 verifying the following property. Let d ∈ MΣ(A, c, ε, δ), and let H : B(x, ε) →
D(1/2) be a conformal chart, with H(x) = 0. We are in the following situation:

D(1/2) = H(B(x, ε))

D(r)

D(2α)

D(α)

H(B(x, ε/2))

H(B(x, ε/4))

H(B(x, κε))

0 = H(x)

•

(The inclusion H(B(x, ε/2)) ⊂ D(r) has already been proved in proposition 30).
Thus, this is sufficient to prove the following two properties:

1. If γ is the line segment joigning 0 and a point in D(2α), then the length of the
curve H−1(γ) in Σ is smaller than ε/4. This proves that D(2α) ⊂ H(B(x, ε/4));

2. we have the inclusion H(B(x, κε)) ⊂ D(α).

Remark 35. In practice, α may be very small; for the need of the picture, we have
chosen α = 0.125.

We first choose α small enough so that property 1. is true. The idea is the
following: by theorem 29, we have an (explicit) upper bound for the harmonic term h,
and proposition 26 gives an upper bound for the length of a line segment, when there
is no harmonic term in the expression of the singular metric.

We then prove a convergence theorem for distances (a corollary of the local conver-
gence theorem due to Reshetnyak, theorem 1). We need it to prove part 2. of theorem
34, but we will also need it later (see section 5.5.1).

With this convergence theorem, we are able to choose κ small enough so that
the annulus D(1/2) − H(B(x, κε)) has a modulus big enough. Hence by Grötzsch’s
theorem, H(B(x, κε) will be far away from the boundary ∂D(1/2), that is we will have
H(B(x, κε)) ⊂ D(α).

4.3.1 Choice of α

Recall that C(Ω) =
√

1 + Ω/2π · eΩ/4π is the constant which appears in proposition

29. Choose 0 < α < 1/8 such that

(2α)δ/2π · 4π

δ
· C(Ω)

(1/4)1+Ω/2π
≤ 1/4. (18)
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Proof of the first part of theorem 34. Let |z| < 2α, and γ(t) := tz the line segment
[0, z]. We want to find an upper bound for the length of H−1(γ):

L(H−1(γ)) =
∫ 1

0
eV [ωH ](γ(t))+h(γ(t)) |z|dt.

We have the following

Fact 36. For every z′ ∈ D(2α) we have

(2α)δ/2π · 4π

δ
· eh(z′) ≤ ε/4.

Proof. Proposition 29 shows that, for every z′ ∈ D(1/2),

eh(z′) ≤ ε

(1/2− |z′|)1+Ω/2π
· C(Ω),

so by multiplying with the inequality (18) we get

(2α)δ/2π · 4π

δ
· C(Ω)

(1/4)1+Ω/2π
· eh(z′) ≤ ε/4 · C(Ω)

(1/2− |z′|)1+Ω/2π
.

For every z′ ∈ D(2α) we have |z′| ≤ 1/4, hence (1/2−|z′|)1+Ω/2π ≥ (1/4)1+Ω/2π. After
simplification we obtain the inequality announced in fact 36.

The line segment [0, z] is included in D(2α) so by fact 36 we have

eh(γ(t)) ≤ δ

(2α)δ/2π · 4π
· ε/4,

hence

L(H−1(γ)) ≤ δ

(2α)δ/2π · 4π
· ε/4 ·

∫ 1

0
eV [ωH ](γ(t))|z|dt. (19)

Moreover, proposition 26 shows that

∫ 1

0
eV [ωH ](γ(t))|z|dt ≤ 2

1− ω+
H(D(1/2))/2π

· |z|1−ω+

H
(D(1/2))/2π

=
2

1− ω+(B(x, ε))/2π
· |z|1−ω+(B(x,ε))/2π .

With the inequality ω+(B(x, ε)) ≤ 2π − δ we obtain

∫ 1

0
eV [ωH ](γ(t))|z|dt <

4π

δ
· (2α)δ/2π,

and with (19) we finally obtain L(H−1(γ)) < ε/4. This ends the proof of the first part
of theorem 34.

29



4.3.2 Convergence of metrics: a corollary of theorem 1

We now prove a corollary of theorem 1, which is needed to finish the proof of theorem
28. This result will also be a key step at the end of this article (see section 5.5.1).

Corollary 37. Let dm ∈ MΣ(A, c, ε, δ) be a sequence of metrics, and for every xm ∈ Σ,
consider some conformal chart Hm : Bm(xm, ε)→ D(1/2), with Hm(xm) = 0. Let ωm

be the curvature measure of (Σ, dm), and let ωHm
:= (Hm)#ωm be the measure and hm

be the harmonic map such that Hm is an isometry between (Bm(xm, ε), dm|Bm(xm,ε))
and (D(1/2), dωHm,hm

). Then after passing to a subsequence, the following is true.
There is a constant C > 0 and a measure ω̃, with support in D(1/2), such that

dωHm ,hm
converges to C · dω̃,0, locally uniformly on D(2α)

(that is, if zm → z ∈ D(2α) and z′
m → z′ ∈ D(2α), then dωHm ,hm

(zm, z′
m) → C ·

dω̃,0(z, z′)).

For the proof, we need to apply theorem 1, which is a convergence theorem for
distances, when there is no harmonic term in the metric. Hence we need to get rid of
hm: to do so, we express hm as the potential of some measure, with support on a cirle.

Proof. We know that we can express an harmonic map in terms of its normal deriva-
tives along a circle: for z ∈ D(r) we have

hm(z) = hm(0)− 1

π

∫

∂D(r)
ln |z − ξ| · ∂hm

∂ν
(ξ)|dξ|,

where ∂hm

∂ν
is the radial derivative of hm. Hence for z ∈ D(r), we can write hm as

hm(z) = hm(0) + V [µm](z), (20)

where µm is the following measure with support in ∂D(r) : µm := 1
2

∂hm

∂ν
|dξ|. Let

ω̃m := ωHm
+ µm.

We have the following fact, which needs some justifications, since representation (20)
is only valid for z ∈ D(r):

Fact 38. For u, u′ ∈ D(2α) we have

dωHm ,hm
(u, u′) = ehm(0) · dω̃m,0(u, u′).

Proof. By definition,

dωHm ,hm
(u, u′) = inf

γ

∫ l

0
eV [ωHm ](γ(t))+hm(γ(t))dt, (21)

where the infimum is taken over all simple continuous curves γ : [0, l] → D(1/2),
parametrized by arc length, with γ(0) = u and γ(l) = u′. Let ym = (Hm)−1(u) and
y′

m = (Hm)−1(u′). Since property 1. of theorem 34 has already been proved, we have
(Hm)−1(D(2α)) ⊂ Bm(xm, ε/4), hence dm(xm, ym) < ε/4 and dm(xm, y′

m) < ε/4.
Now, assume that γ : [0, l]→ D(1/2) is a continuous simple curve between u and u′,

parametrized by arc length, which is not included in D(r). Let γ̃ := (Hm)−1(γ): this is
a curve between ym and y′

m, and since Hm(Bm(xm, ε/2)) ⊂ D(r) (this is property 30),
γ̃ is not included in Bm(xm, ε/2). But γ̃ is a curve joigning two points in Bm(xm, ε/4),
and has to leave Bm(xm, ε/2), so its length is greater than or equal to 2 · ε/4 = ε/2:
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•xm

Bm(xm, ε/4)

Bm(xm, ε/2)
ym

y′
m

γ̃

Since the distance between ym and y′
m is less than ε/2, this shows that in the formula

(21) we can only consider curves γ included in D(r). For such curves γ we can use the
representation (20), so we get

dωHm ,hm
(u, u′) = ehm(0) · inf

γ

∫ l

0
eV [ω̃m](γ(t))dt,

where the infimum is taken over all continuous simples curves γ : [0, l] → D(r),
parametrized by arc length, with γ(0) = u and γ(l) = u′. For the same reason as before,
this is equal to the infimum of the same quantity, over all the curves γ : [0, l]→ D(1/2),
and this is exactly ehm(0) · dω̃m,0(u, u′) (see the equation (2) in section 1.2 for the

definition of dω̃m,0). This ends the proof of fact 38.

By theorem 28, the sequence (hm(0))m∈N is bounded, so after passing to a sub-
sequence, we may assume that ehm(0) → C > 0. Moreover, for (bounded) harmonic
maps, Cauchy’s formula gives a bound for the derivatives (at some point x) of the
map, in terms of a bound for the modulus of the map (on some ball centered in x).
Since the harmonic maps hm are bounded on every compact subset of D(1/2), this
shows that ∂hm

∂ν
is bounded on ∂D(r) by a quantity which does not depend on m,

hence µ+
m(D(1/2)) and µ−

m(D(1/2)) are bounded, so after passing to a subsequence
we may assume that µ+

m → µ+ and µ−
m → µ− weakly. Since the supports of µ+

m and
µ−

m are included in ∂D(r), the supports of µ+ and µ− are also included in ∂D(r). Let
µ := µ+ − µ−.

We may also assume that ω+
Hm
→ ω+, and ω−

Hm
→ ω− weakly. We set ω := ω+−ω−.

Since ω̃m = ωHm
+ µm, we have ω̃m → ω̃ := ω + µ weakly.

Since ω+
Hm

(D(1/2)) = ω+
m(Bm(xm, ε)) ≤ 2π − δ, we have ω+({z}) < 2π for every

z ∈ D(2α), and µ+ has its support in ∂D(r), hence µ+({z}) = 0 for every z ∈ D(2α).
We have obtained ω̃+({z}) < 2π for every z ∈ D(2α), we can then apply theorem 1:
if zm → z ∈ D(2α) and z′

m → z′ ∈ D(2α), then

dω̃m,0(zm, z′
m)→ dω̃,0(z, z′),

and fact 38 gives

dωHm ,hm
(zm, z′

m) = ehm(0) · dω̃m,0(zm, z′
m)→ C · dω̃,0(z, z′).
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4.3.3 Choice of κ

We first choose κ small enough so that the annulus D(1/2)−H(B(x, κε)) has a modulus
big enough (this is lemma 39); we can then use Grötzsch theorem to finish the proof
of theorem 34 (see below). Recall that mod G(2α) is the modulus of the Grötzsch
annulus G(2α).

Lemma 39. There exists a constant κ = κ(Σ, A, c, ε, δ) > 0 verifying the following
property. Under the hypothesis of theorem 34, the topological annulus (in the sense
given in the appendix, see definition 63) D(1/2)−H(B(x, κε)) has a modulus greater
than mod G(2α).

Remark 40. This property is obvious in the Euclidean plane: an annulus A(R1, R2)
of boundary two concentric circles of radii R1 < R2 has modulus 1

2π
ln(R2/R1), so this

quantity goes to infinity when R1 goes to zero.

Proof. We prove the lemma by contradiction. Suppose there exists a sequence dm ∈
MΣ(A, c, ε, δ), a sequence of points xm ∈ Σ, a sequence of harmonic charts Hm :
Bm(xm, ε)→ D(1/2), with Hm(xm) = 0, such that

mod
(
D(1/2)−Hm(Bm(xm, ε/m))

)
≤ mod(G(2α)).

Let ι > 0 be such that 1
2π

ln(1/2ι) > mod G(2α) (we may assume ι < 2α). We have
the following

Fact 41. We have Hm(Bm(xm, ε/m)) 6⊂ D(ι).

Proof. Suppose Hm(Bm(xm, ε/m)) ⊂ D(ι). Then we have

D(1/2)−D(ι) ⊂ D(1/2)−Hm(Bm(x, ε/m)),

hence

mod
(
D(1/2)−Hm(Bm(x, ε/m))

)
≥ mod

(
D(1/2)−D(ι)

)
=

1

2π
ln(1/2ι) > mod G(2α),

and this is a contradiction.

Consider the singular Riemannian metric gm = e2V [ωm]+2hm|dz|2, such that Hm is
an isometry between (Bm(xm, ε), dm|Bm(xm,ε)) and (D(1/2), dωm,hm

).
By fact 41, there exists complex numbers zm, with |zm| ≥ ι, and dωm,hm

(0, zm) ≤
ε/m. By considering the intersection point between a geodesic from 0 to zm and ∂D(ι),
we may even assume that |zm| = ι and dωm,hm

(0, zm) ≤ ε/m. By compactness, after
passing to a subsequence we may assume zm → z 6= 0. Since |z| = ι < 2α, by corollary
37, we know that there exists a constant C > 0 and a Radon measure ω̃, with support
in D(1/2), such that, after passing to a subsequence, we have

dωm,hm
(0, zm) −→

m→∞
C · dω̃,0(0, z) 6= 0,

and this is absurd since dωm,hm
(0, zm) ≤ ε/m→ 0.

32



Proof of the second part of theorem 34. Suppose we have

H(B(x, κε)) 6⊂ D(α).

After a rotation, we may assume that H(B(x, κε)) does not contain the point α ∈
R ⊂ C. Then, after an homothetie of scale factor 2, we see that the annulus D(1/2)−
H(B(x, κε)) is conformal to an annulus U ⊂ D(1), not containing 0 and 2α. By
Grötzsch’s theorem (see theorem 65 in the appendix), we know that the modulus of
this annulus is

mod(U) = mod
(
D(1/2)−H(B(x, κε))

)
≤ mod G(2α),

and this is a contradiction by lemma 39. This ends the proof of theorem 34.

5 Proof of the Main theorem

We can now start the proof of the Main theorem. From now on, we consider a sequence
of metrics dm ∈ MΣ(A, c, ε, δ), that is

1. for every x ∈ Σ we have ω+
m(Bm(x, ε)) ≤ 2π − δ;

2. cont(Σ, dm) ≥ c;

3. Area(Σ, dm) ≤ A.

Recall that we always assume ε < c. By proposition 27, we also have some constants
D > 0 and Ω > 0 such that

diam(Σ, dm) ≤ D and |ω|(Σ, dm) ≤ Ω,

and we have some constants α > 0 and κ > 0 such that theorem 34 is true.
We will often consider subsequences of the original sequence (dm); we will never

change the name of the sequence, and we will assume that the sequence has the desired
properties from the beginning.

Sketch of the proof

The proof is an adaptation of the proof of Cheeger-Gromov’s compactness theorem,
presented in [H-H]. We give an outline of the proof here: to understand it in its
globality, we have simplified many of the arguments. See the proof below for precise
statements.

1. We cover Σ by open sets Bm(xm
i , ε), for i ∈ {1, ..., N} (by volume arguments,

the number N is independant of m). We can then define conformal charts
Hm

i : Bm(xm
i , ε)→ D with Hm

i (xm
i ) = 0.

2. We extend the charts Hm
i to the whole surface Σ by defining maps Hm

i : Σ→ D,
which are equal to Hm

i near xm
i . We then embedd Σ into an Euclidean space Rq:

Ψm(x) :≃ (Hm
1 (x), ..., Hm

N (x)) ∈ R
q.
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The embedded surface Σm is locally a graph over some subset D′ ⊂ D: for
example with i = 1, we have, for z ∈ D′,

Ψm((Hm
1 )−1(z)) ≃ (z, Θm

1 (z)) (22)

where Θm
1 (z) = (Hm

2 ◦ (Hm
1 )−1(z), ..., Hm

N ◦ (Hm
1 )−1(z)).

3. The maps Hm
j ◦ (Hm

i )−1 are either zero, or looks like Hm
j ◦ (Hm

i )−1 when this
last expression makes sense. Moreover, since the charts Hm

i are conformal, the
transition maps Hm

j ◦ (Hm
i )−1 are conformal maps between open sets of C: since

they are bounded, by Montel’s theorem they will converge uniformly (up to a
subsequence). We can pass to the limit in the representation of Σm as a union
of graphs (see the equation (22)) , and define a subset Σ∞ ⊂ Rq. We prove that
Σ∞ is an embedded surface.

4. For m large enough, the embedded surfaces Σm are in a tubular neighbourhood
of Σ∞. We can then project Σm along the normals onto Σ∞ and define a map
Πm : Σm → Σ∞. Since Σm converge to Σ∞ (in the sense given above), we prove
that Πm is actually a diffeomorphism.

5. We have diffeomorphisms Σ
∼−→ Σm ⊂ Rq ∼−→ Σ∞ ⊂ Rq. We transport the

initial metric dm to a metric d̃m on Σ∞, so that (Σ, dm) is isometric to (Σ∞, d̃m).

We finally show that the metric d̃m converge, by using the local convergence
theorem due to Reshetnyak (theorem 1).

5.1 Covering of Σ and notations

Let m ∈ N. Consider a maximal number N(m) of disjoint balls Bm(xm
i , κε/4) in Σ. By

corollary 23, we know that the area of these balls are bounded from below. Since the
area of (Σ, dm) is bounded from above, this shows that the integer N(m) is bounded:
after passing to a subsequence, we can assume that N(m) = N is constant. Moreover,
by an elementary doubling property, we have

Σ =
N⋃

i=1

Bm(xm
i , κε/2). (23)

By proposition 18 and theorem-definition 11 we can consider conformal charts

Hm
i : Bm(xm

i , ε)→ D(1/2),

with Hm
i (xm

i ) = 0. In the sequel, we set ωm
i := (Hm

i )#ω, and hm
i is the harmonic

function on D(1/2) such that the singular Riemannian metric writes

gm
i := e2V [ωm

i
](z)+2hm

i
(z)|dz|2.

Property 2. in theorem 34 shows that we have

Hm
i (Bm(xm

i , κε)) ⊂ D(α),

and with the relation (23) we obtain the following

Fact 42. We have the covering

Σ =
N⋃

i=1

(Hm
i )−1(D(α)).
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5.2 Embedding in an Euclidean space

We use a cut-off map ϕ : C→ [0, 1] to extend the charts Hm
i to the whole surface Σ;

then, by an analog to Whitney’s embedding theorem, we embedd Σ into an Euclidean
space, and we show that this set is locally a graph.

Let ϕ : C → [0, 1] be a smooth function, with value 1 on D(5α/3) and 0 outside
D(2α) (see the picture in theorem 34). For 1 ≤ i ≤ N , we define on Σ the following
smooth maps:

• ϕm
i := ϕ ◦Hm

i : Σ→ [0, 1]. By theorem 34, this map has value 1 on Bm(xm
i , κε),

and 0 outside Bm(xm
i , ε/4);

• Hm
i := ϕm

i Hm
i : Σ → D(1/2). This map extends Hm

i . It is equal to Hm
i on

Bm(xm
i , κε), and is 0 outside Bm(xm

i , ε/4).

Let us now describe Withney’s embedding. Let q := 2N + N . We define

Ψm : Σ −→ Rq

x 7−→ Ψm(x) = (Hm
1 (x), ..., Hm

N (x), ϕm
1 (x), ..., ϕm

N (x)).

This is an easy verification to show that Ψm is a smooth embedding, from Σ into
Rq: the 2N first coordinates ensure the immersion property, and with the N last
coordinates we obtain injectivity. We denote by

Σm := Ψm(Σ)

the submanifold of Rq we have obtained.
Since ϕ = 1 on D(5α/3), we remark that these submanifolds are locally graphs,

parametrized by D(5α/3). Indeed, for 1 ≤ i ≤ N , the open sets (Hm
i )−1(D(5α/3))

cover Σ (this is fact 42), and for z ∈ D(5α/3) we have

ϕm
i ((Hm

i )−1(z)) = ϕ(z) = 1 and Hm
i ((Hm

i )−1(z)) = z,

hence
Φm

i (z) := Ψm((Hm
i )−1(z)) =

(
Hm

1 ((Hm
i )−1(z)), ..., z, ..., Hm

N ((Hm
i )−1(z)), ϕm

1 ((Hm
i )−1(z)), ..., 1, ..., ϕm

N((Hm
i )−1(z))

)
.

(24)
Σm is then the union of N pieces of graphs:

Σm =
N⋃

i=1

Φm
i (D(5α/3)).

If x ∈ Φm
i (D(5α/3)), we say that x is in the graph number i.

5.3 Convergence of the embedded surfaces Σm to an embed-

ded surface Σ∞

We want to show the convergence of the maps defining Σm as graphs, that is the
convergence of the maps Hm

j ◦ (Hm
i )−1 and ϕm

j ◦ (Hm
i )−1. We first show that, on some
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good open sets V , these maps are either zero on V (for every m ∈ N), or Hm
j ◦ (Hm

i )−1

is well defined on V (for every m ∈ N). In the first case, the sequence of maps
Hm

j ◦ (Hm
i )−1 converges trivially; and in the second case, Montel’s theorem allows us

to conclude that this sequence of bounded conformal maps converges locally uniformly
on V . By passing to the limit, we can define a subset Σ∞ ⊂ R

q. We prove that this
set is an embedded surface.

5.3.1 A preliminary study of the maps Hm
j ◦ (Hm

i )−1 and ϕm
j ◦ (Hm

i )−1

These maps are difficult to manipulate. If z ∈ D(1/2), then if the expression Hm
j ◦

(Hm
i )−1(z) makes sense we have

{
Hm

j ◦ (Hm
i )−1(z) = ϕ(Hm

j ◦ (Hm
i )−1(z)) ·Hm

j ◦ (Hm
i )−1(z)

ϕm
j ◦ (Hm

i )−1(z) = ϕ(Hm
j ◦ (Hm

i )−1(z)),

otherwise we have

Hm
j ◦ (Hm

i )−1(z) = 0 and ϕm
j ◦ (Hm

i )−1(z) = 0.

In some sense, we want to show that this dichomoty is valid uniformly in m ∈ N.
After passing to a subsequence, the following proposition is true:

Proposition 43. There exists a finite covering with open sets

D(2α) =
⋃

t∈T

Vt

such that, for every i, j ∈ {1, ..., N} and t ∈ T , at least one of the following two
properties is true:

• (A) for every m ∈ N, Vt ⊂ Hm
i (Bm(xm

i , ε) ∩Bm(xm
j , ε)).

Then Hm
j ◦ (Hm

i )−1 is well defined on Vt.

• (B) for every m ∈ N, ϕm
j ◦ (Hm

i )−1 = 0 on Vt.

Then for every m ∈ N, Hm
j ◦ (Hm

i )−1 = 0 Vt.

Remark 44. An open set Vt may of course verify the two properties. Moreover,
proposition (B) is verified when there are no transition maps between Bm(xm

i , ε) and
Bm(xm

j , ε), that is when Bm(xm
i , ε) ∩ Bm(xm

j , ε) = ∅.

This proposition is a direct consequence of the following lemma. We set η > 0 the
constant verifying

eM(D(2α)) · 4π

δ
· ηδ/2π = 3ε/4 (25)

(recall that M(D(2α)) is the constant which appears in theorem 28 for the compact
set K = D(2α)).

Lemma 45. Let m ∈ N, i, j ∈ {1, ..., N} and z0, z ∈ D(2α). Suppose ϕm
j ◦(Hm

i )−1(z0) 6=
0. Then

|z − z0| ≤ η =⇒ (Hm
i )−1(z) ∈ Bm(xm

j , ε) (hence Hm
j ◦ (Hm

i )−1(z) exists).
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Proof. Since ϕm
j ◦ (Hm

i )−1(z0) = ϕ(Hm
j ◦ (Hm

i )−1(z0)) 6= 0, we have Hm
j ◦ (Hm

i )−1(z0) ∈
D(2α), so by theorem 34 we have Hm

j ◦ (Hm
i )−1(z0) ∈ Hm

j (Bm(xm
j , ε/4)), hence

dm(xm
j , (Hm

i )−1(z0)) < ε/4. (26)

Now we will use the same arguments as in the proof of the first part of theorem 34.
Let γ(t) := (1− t)z0 + tz be the line segment between z0 and z. We have

Lm((Hm
i )−1(γ)) =

∫ 1

0
eV [ωm

i ](γ(t))+hm
i (γ(t))|z − z0|dt.

Since the line segment γ is included in D(2α), we have ehm
i (γ(t)) ≤ eM(D(2α)). And using

proposition 26, we have

∫ 1

0
eV [ωm

i
](γ(t))|z − z0|dt ≤ 2

1− (ωm
i )+(D(1/2))/2π

· |z − z0|1−(ωm
i

)+(D(1/2))/2π

≤ 4π

δ
· |z − z0|δ/2π.

Thus we obtain

Lm((Hm
i )−1(γ)) ≤ eM(D(2α)) · 4π

δ
· |z − z0|δ/2π ≤ eM(D(2α)) · 4π

δ
· ηδ/2π = 3ε/4

(we have chosen η so that the last equality is true). Since (Hm
i )−1(γ) is a continuous

curve in Σ joigning (Hm
i )−1(z0) and (Hm

i )−1(z), we have dm((Hm
i )−1(z0), (Hm

i )−1(z)) ≤
3ε/4, and with the inequality (26) we obtain dm(xm

j , (Hm
i )−1(z)) < 3ε/4 + ε/4 = ε,

and this ends the proof.

Proof of proposition 43. The following fact is a direct consequence of lemma 45:

Fact 46. Let m ∈ N, i, j ∈ {1, ..., N}, and V ⊂ D(2α) be an open set with diameter
less than η. Then at least one of the following two properties is true:

• (A’) we have V ⊂ Hm
i (Bm(xm

i , ε) ∩ Bm(xm
j , ε)),

• (B’) we have ϕm
j ◦ (Hm

i )−1 = 0 on V .

Proof. Assume (B’) is not true. Then there exists some z0 ∈ V with ϕm
j ◦(Hm

i )−1(z0) 6=
0. Then every z ∈ V satisfies |z − z0| ≤ η, so (Hm

i )−1(z) ∈ Bm(xm
j , ε) by lemma 45:

this shows that property (A’) is true.

Now, cover D(2α) by a finite number of open sets Vt, for t ∈ T , with diameter less
than η. For every i, j ∈ {1, ..., N} and every t ∈ T , by the preceeding fact, there exists
an infinite number of integer m verifying the same proposition, (A’) or (B’). Hence
there exists a subsequence m′ of m such that this property ((A’) or (B’)) is verified
for every m′. Taking a finite number of successive extractions, when i, j ∈ {1, ..., N}
and t ∈ T , we obtain proposition 43.
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5.3.2 Convergence of the transition maps

Let i, j ∈ {1, ..., N}. We want to show the convergences of the sequences of maps
Hm

j ◦ (Hm
i )−1 and ϕm

j ◦ (Hm
i )−1 on D(2α).

On an open set Vt verifying property (B) in proposition 43, we have Hm
j ◦(Hm

i )−1 =
0 and ϕm

j ◦ (Hm
i )−1 = 0 on Vt, hence the sequences converge trivially.

Consider some open set Vt such that property (A) in proposition 43 is satisfied.
Then Hm

j ◦ (Hm
i )−1 is well defined on Vt. The maps Hm

i and Hm
j are conformal

charts, so Hm
j ◦ (Hm

i )−1 is a conformal map between open subsets of C: this classical
property for surfaces with smooth Riemannian metrics extends to the class of surfaces
with B.I.C. (this is theorem 7.3.1 in [Re1]). (Hm

j ◦ (Hm
i )−1)m∈N is then a sequence

of uniformly bounded holomorphics (or anti-holomorphics) maps on Vt: by Montel’s
theorem, we know that after passing to a subsequence, Hm

j ◦ (Hm
i )−1 converge locally

uniformly (as well as the derivatives) to some holomorphic (or anti-holomorphic) map
on Vt.

Let Aji := the union of the open sets Vt such that property (A) in proposition 43 is
satisfied, and Bji := the union of the open sets Vt such that property (B) is satisfied.
We have D(2α) = Aji ∪ Bji.

After considering successives subsequences, we can define a smooth map Hji on
Aji by Hji(z) := limm→∞ Hm

j ◦ (Hm
i )−1(z).

After passing to subsequences for i, j ∈ {1, ..., N} and t ∈ T , we have the following
properties: for every i, j ∈ {1, ..., N},

• there exists a smooth map ϕji on D(2α) such that

ϕm
j ◦ (Hm

i )−1 −→
m→∞

ϕji locally uniformly (as well as the derivatives) on D(2α) :

ϕji is defined by ϕji = ϕ ◦Hji on Aji, and ϕji = 0 on Bji.

• There exists a smooth map Hji on D(2α) such that

Hm
j ◦ (Hm

i )−1 −→
m→∞

Hji locally uniformly (as well as the derivatives) on D(2α) :

Hji is defined by Hji = ϕjiHji on Aji, and Hji = 0 on Bji.

5.3.3 Construction of the limit embedded surface Σ∞

Let m tend to infinity in relation (24): for z ∈ D(5α/3), set

Φ∞
i (z) :=

(
H1i(z), ..., z, ..., HNi(z), ϕ1i(z), ..., 1, ..., ϕNi(z)

)
. (27)

We also define the following subset of Rq:

Σ∞ :=
N⋃

i=1

Φ∞
i (D(5α/3)).

If x ∈ Σ∞ is in the open set Φ∞
i (D(5α/3)), we will say that x is in the graph number

i. Since Σm is covered by the sets (Hm
i )−1(D(α)), for 1 ≤ i ≤ N , the following

proposition is a straightforward verification:
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Proposition 47. We have

Σ∞ =
N⋃

i=1

Φ∞
i (D(α)),

hence

Σ∞ =
N⋃

i=1

Φ∞
i (D(4α/3)).

Proof. Let x ∈ Σ∞: by definition, there exists some points xm ∈ Σm with xm → x.
Every xm belongs to some open set Φm

i(m)(D(α)), for some i(m) ∈ {1, ..., N}: after
passing to a subsequence, we may assume this i(m) is constant. For simplicity, assume
i(m) = 1. Thus there exists a sequence of complex numbers zm ∈ D(α) with

xm = Φm
1 (zm) =

(
zm, ..., Hm

N ((Hm
1 )−1(zm)), 1, ..., ϕm

N((Hm
1 )−1(zm))

)
.

By compactness, after passing to a subsequence, we may assume zm → z ∈ D(α),
and by uniform convergence of all the maps which appear in the last equality, we get
x = Φ∞

1 (z), and this ends the proof.

We easily see that such a limit of graphs of submanifolds may not be a submanifold:

−→
But in this case, we have the following

Proposition 48. Σ∞ is a (possibly disconnected) smooth embedded compact surface
in Rq.

This is a straightforward consequence of the following technical lemma, which will
also be used later: points of Σm (or points of Σ∞) which are close to points in the
graph number i, are also in the graph number i.

Lemma 49. The following properties are true for every i ∈ {1, ..., N}:

1. Let m ∈ N, and x0 ∈ Φm
i (D(4α/3)) ⊂ Σm. For every x ∈ Σm,

||x− x0|| < α/6 =⇒ x ∈ Φm
i (D(5α/3)).

2. Let x0 ∈ Φ∞
i (D(4α/3)) ⊂ Σ∞. For every x ∈ Σ∞,

||x− x0|| < α/6 =⇒ x ∈ Φ∞
i (D(5α/3)).

2’. Let x0 ∈ Φ∞
i (D(α)) ⊂ Σ∞. For every x ∈ Σ∞,

||x− x0|| < α/6 =⇒ x ∈ Φ∞
i (D(7α/6)).

(||.|| is the Euclidean norm of Rq.)
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Proof of proposition 48. Compactness follows from proposition 47. Now, let x0 ∈ Σ∞.
By proposition 47, there exists i ∈ {1, ..., N} such that x0 ∈ Φ∞

i (D(4α/3)). Second
part of lemma 49 shows that

Beuc(x0, α/6) ∩ Σ∞ = Beuc(x0, α/6) ∩ Φ∞
i (D(5α/3))

(Beuc(x0, α/6) is the Euclidean ball with center x0 and radius α/6). Since Φ∞
i (z) is a

graph of a map (see the equality 27), this shows that Σ∞ is a submanifold of Rq.

Proof of lemma 49. We do the computations in the case i = 1.
Proof of 1. There exists some z0 ∈ D(4α/3)) such that

x0 = Φm
1 (z0) =

(
z0, ..., Hm

N ((Hm
1 )−1(z0)), 1, ..., ϕm

N((Hm
1 )−1(z0))

)
,

and we consider some x ∈ Σm with ||x − x0|| < α/6. There exists an integer i ∈
{1, ..., N} and z ∈ D(4α/3) such that

x =

(
Hm

1 ((Hm
i )−1(z)), ..., z, ..., Hm

N ((Hm
i )−1(z)), ϕm

1 ((Hm
i )−1(z)), ..., 1, ..., ϕm

N((Hm
i )−1(z))

)
.

Set z′ = Hm
1 ((Hm

i )−1(z)): we want to show |z′| < 5α/3 and x = Φm
1 (z′).

Since |z′− z0| ≤ ||x−x0|| < α/6, we have |z′| < 4α/3 + α/6 = 3α/2. For the same
reason, |ϕm

1 ((Hm
i )−1(z))− 1| ≤ ||x− x0|| < α/6 < 1/10, so ϕm

1 ((Hm
i )−1(z)) > 9/10.

Since ϕm
1 ((Hm

i )−1(z)) 6= 0, we know that Hm
1 ((Hm

i )−1(z)) exists, so we have z′ =
Hm

1 ((Hm
i )−1(z)) = ϕm

1 ((Hm
i )−1(z)) · Hm

1 ((Hm
i )−1(z)). Since ϕm

1 ((Hm
i )−1(z)) ≥ 9/10

we have

|z′| ≥ 9

10
· |Hm

1 ((Hm
i )−1(z))|,

hence

|Hm
1 ((Hm

i )−1(z))| ≤ 10

9
· |z′| < 10

9
· 3α

2
=

5α

3
.

Since ϕ = 1 on D(5α/3), we get

ϕm
1 ((Hm

i )−1(z)) = ϕ(Hm
1 ((Hm

i )−1(z)))) = 1,

and we finally obtain z′ = Hm
1 ((Hm

i )−1(z)). We already have |z′| < 5α/3. To show
the equality x = Φm

1 (z′), we need to show

x =

(
z′, ..., Hm

N ((Hm
1 )−1(z′)), 1, ..., ϕm

N((Hm
1 )−1(z′))

)
,

so we need to prove the following equalities, for j ≥ 2:

Hm
j ((Hm

1 )−1(z′)) = Hm
j ((Hm

i )−1(z))

and
ϕm

j ((Hm
1 )−1(z′) = ϕm

j ((Hm
i )−1(z)),

and these are directs consequences of the equality (Hm
1 )−1(z′) = (Hm

i )−1(z).
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Proof of 2. (The proof of 2’. is perfectly analoguous). The proof looks like the proof
of 1., only the end will change.

There exists some z0 ∈ D(4α/3)) such that

x0 = Φ∞
1 (z0) =

(
z0, H21(z0), ..., HN1(z0), 1, ϕ21(z0)..., ϕN1(z0)

)
,

and some i ∈ {1, ..., N} and z ∈ D(4α/3) with

x =

(
H1i(z), ..., z, ..., HNi(z), ϕ1i(z), ..., 1, ..., ϕNi(z)

)
.

We set z′ = H1i(z), and we want to show that |z′| < 5α/3, and x = Φ∞
1 (z′).

For the same reasons than in the proof of 1., we have |z′| < 3α/2, and ϕ1i(z) > 9/10:
H1i(z) exists (that is z is in some open set Vt verifying property (A) in proposition
43), and we have

|H1i(z)| < 5α/3.

We get ϕ1i(z) = 1, and finally z′ = ϕ1i(z) · H1i(z) = H1i(z). We have to show the
equality:

x = Φ∞
1 (z′) =

(
z′, H21(z

′), ..., HN1(z
′), 1, ϕ21(z

′)..., ϕN1(z
′)

)
.

So we need to show the following equalities, for j ≥ 2:

Hj1(z
′) = Hji(z)

and
ϕj1(z

′) = ϕji(z).

The first equality writes

lim
m→∞

Hm
j ◦ (Hm

1 )−1

(
lim

m′→∞
Hm′

1 ◦ (Hm′

i )−1(z)

)
= lim

m→∞
Hm

j ◦ (Hm
i )−1(z),

and this equality is true because all the convergences are uniform. Indeed, we are in
the following situation: we have maps such that am ◦bm = cm, with am → a uniformly,
bm → b uniformly, cm → c uniformly. This is an easy computation to verify that we
then have a ◦ b = c.

The second equality writes

lim
m→∞

ϕm
j ◦ (Hm

1 )−1

(
lim

m′→∞
Hm′

1 ◦ (Hm′

i )−1(z)

)
= lim

m→∞
ϕm

j ◦ (Hm
i )−1(z),

and is true for the same reason.

5.4 Construction of a diffeomorphism Πm : Σm → Σ∞

For m large enough, Σm is in a tubular neighbourhood of Σ∞: hence we can define
a projection Σm → Σ∞. Since Σm converges to Σ∞ (in the sense given above), this
projection is actually a diffeomorphism.
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5.4.1 Construction of a projection Πm : Σm → Σ∞

Σ∞ is a smooth compact embedded surface in Rq, possibly disconnected, with only a
finite number of connected components. We can thus consider the normal projection
onto Σ∞: there exists τ > 0 (we may assume τ < α/12), a tubular neighbourhood

V = {x ∈ R
q | distance(x, Σ∞) < τ}

and a smooth projection Π : V → Σ∞ verifying the following property (see [B]): if
x ∈ V, then Π(x) is the closest point of Σ∞. For every x ∈ V we then have

x−Π(x) ∈ (Tπ(x)Σ
∞)⊥

(Tπ(x)Σ
∞ ⊂ Rq is the tangent space of Σ∞ at the point π(x), and (Tπ(x)Σ

∞)⊥ is its
orthogonal in Rq).

Thanks to section 5.3.2, we know that after passing to a subsequence the following
is true:

Fact 50. For every m ∈ N, i ∈ {1, ..., N} and z ∈ D(5α/3) we have

||Φm
i (z)− Φ∞

i (z)|| < τ.

Since every x ∈ Σm can be written x = Φm
i (z) for some i ∈ {1, .., N} and some

z ∈ D(α), we have distance(x, Σ∞) < τ , so Σm ⊂ V. We can thus consider the
following restriction:

Πm := Π|Σm : Σm → Σ∞.

•
Πm(x)

•x
Σm

Σ∞

5.4.2 Πm : Σm → Σ∞ is a diffeomorphism

We want to show the following

Proposition 51. After passing to a subsequence, for every m ∈ N, Πm : Σm → Σ∞

is a smooth diffeomorphism.

For technical reasons, we first show that for every i ∈ {1, ..., N}, points in Σm in
the graph number i are sent to points in Σ∞ in the graph number i, and conversly:

Proposition 52. The following inclusions are true for every m ∈ N and every i ∈
{1, ..., N}:

1. (Πm)−1(Φ∞
i (D(4α/3))) ⊂ Φm

i (D(5α/3)),

2. Πm(Φm
i (D(4α/3))) ⊂ Φ∞

i (D(5α/3)),

and
2′. Πm(Φm

i (D(α))) ⊂ Φ∞
i (D(7α/6)).
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Proof. This is a straightforward consequence of lemma 49 and fact 50.
Proof of 1. Let x ∈ (Πm)−1(Φ∞

i (D(4α/3))). There exists z ∈ D(4α/3) such that
Πm(x) = Φ∞

i (z). By proposition 50 we have

||Πm(x)− Φm
i (z)|| = ||Φ∞

i (z)− Φm
i (z)|| < τ < α/12,

and we also have ||Πm(x) − x|| < τ < α/12. Hence ||x − Φm
i (z)|| < α/6, and the

identity 1. in lemma 49 shows that x ∈ Φm
i (D(5α/3)).

Proof of 2. (The proof of 2’. is perfectly analoguous, using 2’. in lemma 49 instead of
2.) Let z ∈ D(4α/3) and x = Φm

i (z). By proposition 50 we have

||x− Φ∞
i (z)|| = ||Φm

i (z)− Φ∞
i (z)|| < τ < α/12,

and we also have ||x− Πm(x)|| < τ < α/12. Hence ||Πm(x)− Φ∞
i (z)|| < α/6, and we

can use the identity 2. in lemma 49 to show that Πm(x) ∈ Φ∞
i (D(5α/3)).

We can now prove the following

Proposition 53. Σ∞ is path-connected.

Proof. Let x = Φ∞
i (z) and y = Φ∞

j (z′) be two points in Σ∞, with z, z′ ∈ D(4α/3).
For m = 1, let γ be a continous path in Σm joigning Φm

i (z) and Φm
j (z′) (recall that

Σm is connected). Then, Πm ◦ γ is a continuous path in Σ∞ joigning Πm(Φm
i (z)) and

Πm(Φm
j (z′)). We have

Πm(Φm
i (z)) ∈ Πm(Φm

i (D(4α/3))) ⊂ Φ∞
i (D(5α/3)),

and since x ∈ Φ∞
i (D(5α/3)) and Φ∞

i (D(5α/3)) is path-connected, we can join Πm(Φm
i (z))

and x by a continous path. For the same reason we can also join Πm(Φm
j (z′)) and y

by a continous path, thus we can join x and y by a continuous path.

To prove proposition 51, we only need to prove the following

Lemma 54. After passing to a subsequence, for every m ∈ N, Πm is an injective
immersion.

Proof of proposition 51. Πm is a diffeomorphism onto its image, which is an open and
closed subset of Σ∞, thus is Σ∞ itself by connectedness.

Proof of lemma 54. There are two distincts steps. We prove both steps by contra-
diction: roughly speaking, since Σm converges to Σ∞ (in the sense given above), the
tangent spaces have to converge as well, and this will give a contradiction.
First step: after passing to a subsequence, Πm : Σm → Σ∞ is an immersion.

Suppose this is not true. After passing to a subsequence, there exists a sequence
xm ∈ Σm verifying ker(DΠm(xm)) 6= {0}. By compactness, we may assume xm → x ∈
Σ∞; we also have Πm(xm) = Π(xm)→ Π(x) = x.

Moreover, x ∈ Φ∞
i (D(4α/3) for some i ∈ {1, ..., N}: for simplicity, we may assume

i = 1. Let z ∈ D(4α/3) such that x = Φ∞
1 (z). For m large enough, Πm(xm) ∈

Φ∞
1 (D(4α/3)), so by proposition 52 we get

xm ∈ (Πm)−1(Φ∞
1 (D(4α/3))) ⊂ Φm

1 (D(5α/3)).
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We then have sequences zm and z′
m in D(5α/3) such that xm = Φm

1 (zm) and Πm(xm) =
Φ∞

1 (z′
m). For simplicity, we write xm and Πm(xm) under the following form:

xm = (zm, Θm(zm)) and Πm(xm) = (z′
m, Θ∞(z′

m)),

where Θm and Θ∞ are smooth maps, and Θm → Θ∞ uniformly (and all the derivatives)
on every compact set of D(2α) (see section 5.3.2). We have

ker(DΠm(xm)) = Txm
Σm ∩ (TΠm(xm)Σ

∞)⊥ 6= {0},

so we can consider a unit vector um in this vector space. We know a basis of Txm
Σm,

so there exists real numbers am and bm such that

um = am(1, 0, ∂xΘm(zm)) + bm(0, 1, ∂yΘm(zm)).

Since um is a unit vector, we have |am| ≤ 1 and |bm| ≤ 1. We can consider the following
vector in TΠm(xm)Σ

∞:

vm = am(1, 0, ∂xΘ∞(z′
m)) + bm(0, 1, ∂yΘ∞(z′

m)).

Since um and vm are orthogonal, we have 1 = ||um||2 ≤ ||um−vm||2, so 1 ≤ ||um−vm||
and

1 ≤ |am| · ||∂xΘm(zm)− ∂xΘ∞(z′
m)||+ |bm| · ||∂yΘm(zm)− ∂yΘ∞(z′

m)||
≤ ||∂xΘm(zm)− ∂xΘ∞(z′

m)||+ ||∂yΘm(zm)− ∂yΘ∞(z′
m)||.

This is a contradiction: when m goes to infinity, xm and Πm(xm) converge to x, so
zm and z′

m converge to z, and we have uniform convergence of the derivatives of Θm

to the derivatives of Θ∞, which shows that the right-hand side term of the inequality
goes to zero.
Second step: after passing to a subsequence, Πm : Σm → Σ∞ is injective.

Suppose this is not true. After passing to a subsequence, we can consider sequences
xm, x′

m ∈ Σm, with xm 6= x′
m for every m ∈ N, such that Πm(xm) = Πm(x′

m), so we
have xm − x′

m ∈ (TΠm(xm)Σ
∞)⊥:

Σm

Σ∞

•xm

•
x′

m

•
Πm(xm) = Πm(x′

m)

We can also suppose that xm and x′
m converge, and these sequences have the same

limit x ∈ Σ∞, since lim xm = lim Πm(xm) and lim x′
m = lim Πm(x′

m). We know that
there exists some i ∈ {1, ..., N} such that x ∈ Φ∞

i (D(4α/3)); for simplicity, we may
assume i = 1. There exists z ∈ D(4α/3) such that x = Φ∞

1 (z). If m is large enough,
xm and x′

m are also in Φ∞
1 (D(4α/3)), so there exists zm and z′

m such that

xm = (zm, Θm(zm)) and x′
m = (z′

m, Θm(z′
m))
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(with the notations as above); we then have

xm − x′
m = (zm − z′

m, Θm(zm)−Θm(z′
m)).

If m is large enough, Πm(xm) = Πm(x′
m) is also in Φ∞

1 (D(4α/3)), so we can also write

Πm(xm) = Πm(x′
m) = (um, Θ∞(um)),

for some um ∈ D(4α/3).
Write zm = am + ibm and z′

m = a′
m + ib′

m for am, bm ∈ R and consider the following
vector in TΠm(xm)Σ

∞:

am − a′
m

|zm − z′
m|2
·
(
1, 0, ∂xΘ∞(um)

)
+

bm − b′
m

|zm − z′
m|2
·
(
0, 1, ∂yΘ∞(um)

)

(xm 6= x′
m implies zm 6= z′

m). By taking the scalar product with xm−x′
m ∈ (TΠm(xm)Σ

∞)⊥

we obtain

0 = 1+ <
Θm(zm)−Θm(z′

m)

|zm − z′
m|

, DΘ∞(um)

(
zm − z′

m

|zm − z′
m|

)
>

(we denote by < , > the Euclidean scalar product in Rq−2). We can write the
components of Θm and Θ∞ as

Θm = (Θm,1, ..., Θm,q−2) and Θ∞ = (Θ∞,1, ..., Θ∞,q−2)

with functions Θm,j , Θ∞,j : D(5α/3)→ R. We can then write

0 = 1 +
q−2∑

j=1

(
Θm,j(zm)−Θm,j(z′

m)

|zm − z′
m|

)
·DΘ∞,j(um)

(
zm − z′

m

|zm − z′
m|

)
.

Since the Θm,j are functions with values in R, we know that for every j ∈ {1, ..., q−2},
there exists some ζj

m ∈ [zm, z′
m] such that Θm,j(zm)−Θm,j(z′

m) = DΘm,j(ζj
m)·(zm−z′

m):
we then have

0 = 1 +
q−2∑

j=1

DΘm,j(ζj
m) ·

(
zm − z′

m

|zm − z′
m|

)
·DΘ∞,j(um)

(
zm − z′

m

|zm − z′
m|

)
.

By compactness we can suppose that zm−z′

m

|zm−z′
m|
→ v ∈ S1, and since Θm (and its deriva-

tives) converge to Θ∞, we get 0 = 1 + ||DΘ∞(z) · (v)||2 and this is a contradiction.

5.5 End of the proof of the Main theorem

We recall that we have constructed the following diffeomorphisms:

Σ
∼−→

Ψm
Σm ⊂ R

q ∼−→
Πm

Σ∞ ⊂ R
q,

so we can consider the following metric on Σ∞:

d̃m := ((Πm ◦Ψm)−1)∗dm,
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that is
d̃m(x, y) = dm((Πm ◦Ψm)−1(x), (Πm ◦Ψm)−1(y)),

so that (Σ, dm) is isometric to (Σ∞, d̃m). To finish the proof of the Main theorem, we

need to show that d̃m converges uniformly to some metric with B.I.C. d̃ on Σ∞.
In section 5.5.1, we prove that (d̃m(x, y)) converges, if x and y are in the same

graph Φ∞
i (D(4α/3)). Then, in section 5.5.2, we prove that (d̃m(x, y)) converges for

every x and y in Σ; we can define d̃(x, y) := limm→∞ d̃m(x, y). To finish the proof of

the main theorem, we show that d̃m converges uniformly to d̃, and d̃ is a metric with
B.I.C.

5.5.1 Local properties

By proposition 52, for every m ∈ N and every i ∈ {1, ..., N} we have

(Πm)−1(Φ∞
i (D(4α/3))) ⊂ Φm

i (D(5α/3)),

so we can consider a map fm
i : D(4α/3)→ D(5α/3) such that the following diagram

commutes:
D(5α/3)

∼←− Φm
i (D(5α/3))

fm
i

x (Πm)−1

x
D(4α/3)

∼−→ Φ∞
i (D(4α/3))

Proposition 55. For every i ∈ {1, ..., N}, fm
i : D(4α/3) → D(5α/3) converges

uniformly to the inclusion D(4α/3) →֒ D(5α/3).

Proof. For every z ∈ D(4α/3), let z′ = fm
i (z) ∈ D(5α/3). Since z (resp. z′) is the

i-th component of Φ∞
i (z) (resp. Φm

i (z′)), we have

|z − z′| ≤ ||Φ∞
i (z)− Φm

i (z′)|| = ||Πm(Φm
i (z′))− Φm

i (z′)|| ≤ ||Φ∞
i (z′)− Φm

i (z′)|| :

the last inequality comes from the fact that ||Πm(Φm
i (z′)) − Φm

i (z′)|| is the distance
between Φm

i (z′) and the embedded surface Σ∞, and we have Φ∞
i (z′) ∈ Σ∞. We then

have
|z − fm

i (z)| ≤ sup
u∈D(5α/3)

||Φ∞
i (u)− Φm

i (u)||,

and we know that the right-hand side goes to zero as m goes to infinity.

We know that for every m ∈ N and every i ∈ {1, ..., N} we have an isometry

(Bm(xm
i , ε), dm|Bm(xm

i
,ε))

∼−→
Hm

i

(D(1/2), dωm
i

,hm
i

). (28)

Moreover, for every i ∈ {1, ..., N}, by the important corollary 37, there exists a measure
ω̃i, with support in D(1/2), and a constant Ci > 0 such that, after passing to a
subsequence, dωm

i
,hm

i
converge locally uniformly on D(2α) to the metric di := Ci · dω̃i,0

(when m goes to infinity).
Now, if we look the diagram at the beginning of section 5.5 we can consider the

following metric on Φ∞
i (D(4α/3)):

d̃i := ((Φ∞
i )−1)∗di.
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Proposition 56. Let i ∈ {1, ..., N} and (xm), (ym) be two sequences of points in Σ∞

such that xm → x ∈ Φ∞
i (D(4α/3)) and ym → y ∈ Φ∞

i (D(4α/3)). Then

d̃m(xm, ym) −→
m→∞

d̃i(x, y).

Proof. Suppose m is large enough so that xm, ym ∈ Φ∞
i (D(4α/3)). By corollary 37,

dωm
i

,hm
i

converge locally uniformly to di on D(2α), and fm
i : D(4α/3) → D(5α/3)

converges uniformly to the inclusion D(4α/3) →֒ D(5α/3) (this is proposition 55), so

d̃i(x, y) = di((Φ∞
i )−1(x), (Φ∞

i )−1(y)

= lim
m→∞

dωm
i

,hm
i

(fm
i ◦ (Φ∞

i )−1(xm), fm
i ◦ (Φ∞

i )−1(ym)).

And by the isometry (28), we have, for every z, z′ ∈ D(5α/3),

dωm
i

,hm
i

(z, z′) = dm|Bm(xm
i

,ε)((H
m
i )−1(z), (Hm

i )−1(z′)) = dm((Hm
i )−1(z), (Hm

i )−1(z′)) :

indeed, by theorem 34, we have (Hm
i )−1(z), (Hm

i )−1(z′) ∈ Bm(xm
i , ε/4), so a curve

which (almost) minimizes the distance dm((Hm
i )−1(z), (Hm

i )−1(z′)) has to stay inside
Bm(xm

i , ε). Hence we get

d̃i(x, y) = lim
m→∞

dm((Hm
i )−1 ◦ fm

i ◦ (Φ∞
i )−1(xm), (Hm

i )−1 ◦ fm
i ◦ (Φ∞

i )−1(ym)).

By definition of Φm
i , we have (Hm

i )−1 = (Ψm)−1 ◦ Φm
i , and with the equality fm

i ◦
(Φ∞

i )−1 = (Φm
i )−1 ◦ (Πm)−1 (see the commutative diagram at the beginning of this

section) we obtain

d̃i(x, y) = lim
m→∞

dm((Ψm)−1 ◦ (Πm)−1(xm), (Ψm)−1 ◦ (Πm)−1(ym))

= lim
m→∞

d̃m(xm, ym),

and this ends the proof.

5.5.2 Construction of the limit metric d̃ and conclusion

We already know that limm→∞ d̃m(x, y) exists if x and y are in the same graph (that
is, if there exists some i ∈ {1, ..., N} with x, y ∈ Φ∞

i (D(4α/3))); see proposition 56.

To prove that this limit exists for every x, y ∈ Σ, the idea is to consider d̃m−geodesics
between x and y, γm : [0, 1] → Σ, and to cut the segment [0, 1] into subintervals for
which we can apply proposition 56.

Proposition 57. Let x, y ∈ Σ∞: the limit limm→∞ d̃m(x, y) exists, and we set

d̃(x, y) := lim
m→∞

d̃m(x, y) ∈ [0, +∞).

Proof. Let x, y ∈ Σ∞. Consider some subsequence (mj) of (m) such that

d̃mj
(x, y) −→

j→∞
lim inf
m→∞

d̃m(x, y).

Let γmj
: [0, 1] → Σ∞ be minimizing geodesics for the metric d̃mj

, between x and y
(with γmj

(0) = x and γmj
(1) = y), and with constant speed: we have, for t, t′ ∈ [0, 1],

d̃mj
(γmj

(t), γmj
(t′)) = d̃mj

(x, y) · |t− t′|.
After taking a subsequence of mj (as usual, we do not change the name of the se-
quence), the following fact is true:
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Fact 58. Let n ∈ N be an integer such that D/n ≤ κε/2. For every k ∈ {0, ..., n− 1},
there exists i(k) ∈ {1, ..., N} such that for every j ∈ N,

γmj
(k/n) and γmj

((k + 1)/n) belong to Φ∞
i(k)(D(7α/6)).

Proof. By the covering (23), we know that for every k ∈ {0, ..., n − 1} and for every
j ∈ N, there exists an integer i(k, j) ∈ {1, ..., N} such that

(Πmj ◦Ψmj )−1(γmj
(k/n)) ∈ Bmj

(x
mj

i(k,j), κε/2). (29)

Since i(k, j) belongs to a finite set, after taking a subsequence of (mj), we may assume
that for every k ∈ {0, ..., n−1}, i(k, j) does not depend on j: we can write i(k, j) = i(k).
To finish the proof, we will show that

γmj
([k/n, (k + 1)/n]) ⊂ Φ∞

i(k)(D(7α/6)).

Let t ∈ [k/n, (k + 1)/n]: we have

d̃mj
(γmj

(t), γmj
(k/n)) = dmj

(x, y) · |t− k/n|,

so

dmj
((Πmj ◦Ψmj )−1(γmj

(t)), (Πmj ◦Ψmj )−1(γmj
(k/n))) ≤ D · 1/n ≤ κε/2,

and with (29) this shows that

(Πmj ◦Ψmj )−1(γmj
(t)) ∈ Bmj

(x
mj

i(k), κε).

So

(Πmj )−1(γmj
(t)) ∈ Ψmj (Bmj

(x
mj

i(k), κε)) = Φ
mj

i(k) ◦H
mj

i(k)(Bmj
(x

mj

i(k), κε)) ⊂ Φ
mj

i(k)(D(α))

(the last inclusion comes from theorem 34). With the identity 2’. in proposition 52,
we obtain

γmj
(t) ∈ Πmj (Φ

mj

i(k)(D(α))) ⊂ Φ∞
i(k)(D(7α/6)),

and this ends the proof of fact 58.

After passing to a subsequences of (mj), we may also assume that for every k ∈
{0, ..., n},

γmj
(k/n) −→

j→∞
αk/n ∈ Φ∞

i(k)(D(7α/6)) ⊂ Φ∞
i(k)(D(4α/3)),

where we have α0 = x and α1 = y. For every k ∈ {0, ..., n−1} we have αk/n, α(k+1)/n ∈
Φ∞

i(k)(D(4α/3)), and proposition 56 gives

d̃mj
(γmj

(k/n), γmj
((k + 1)/n)) −→

j→∞
d̃i(k)(αk/n, α(k+1)/n).

Since the curves γmj
are minimizing geodesics, we have

d̃mj
(x, y) =

n−1∑

k=0

d̃mj
(γmj

(k/n), γmj
((k + 1)/n)),
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hence when j goes to infinity we obtain

lim inf
m→∞

d̃m(x, y) =
n−1∑

k=0

d̃i(k)(αk/n, α(k+1)/n)

=
n−1∑

k=0

lim sup
m→∞

d̃m(αk/n, α(k+1)/n)

≥ lim sup
m→∞

n−1∑

k=0

d̃m(αk/n, α(k+1)/n)

≥ lim sup
m→∞

d̃m(x, y).

Hence limm→∞ d̃m(x, y) exists in [0, +∞], and this limit is finite since d̃m(x, y) ≤ D.
This ends the proof of proposition 57.

We know prove the uniform convergence of (d̃m) to d̃:

Corollary 59. Let (xm) and (ym) be two sequences in Σ∞, such that xm → x ∈ Σ∞

and ym → y ∈ Σ∞. Then
d̃m(xm, ym) −→

m→∞
d̃(x, y).

Proof. We have

|d̃m(xm, ym)− d̃(x, y)| ≤ |d̃m(xm, ym)− d̃m(x, y)|+ |d̃m(x, y)− d̃(x, y)|
≤ d̃m(xm, x) + d̃m(ym, y) + |d̃m(x, y)− d̃(x, y)|.

By definition, |d̃m(x, y) − d̃(x, y)| goes to zero. And if i ∈ {1, ..., N} is such that

x ∈ Φ∞
i (D(4α/3)), then proposition 56 shows that d̃m(xm, x)→ d̃i(x, x) = 0. For the

same reason d̃m(ym, y)→ 0, and this ends the proof.

To finish the proof of the Main theorem, we need to show that d̃ is a metric with
B.I.C. on Σ∞.

Proposition 60. d̃ is a distance on Σ∞.

Proof. By definition of d̃(x, y) = limm→∞ d̃m(x, y), symmetry and triangular inequality

are clear. Now, consider some x, y ∈ Σ∞ with d̃(x, y) = 0. Then d̃m(x, y) → 0. For
every m ∈ N, there exists an integer i(m) ∈ {1, ..., N} such that

(Πm ◦Ψm)−1(x) ∈ Bm(xm
i(m), κε/2);

since i(m) belong to a finite set, there exists a subsequence mj of (m) and an integer
i ∈ {1, ..., N} such that i(mj) = i for all j ∈ N:

(Πmj ◦Ψmj )−1(x) ∈ Bmj
(x

mj

i , κε/2).

If j is large enough so that d̃mj
(x, y) ≤ κε/2, we have

dmj
((Πmj ◦Ψmj )−1(x), (Πmj ◦Ψmj )−1(y)) ≤ κε/2,
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hence
(Πmj ◦Ψmj )−1(x) and (Πmj ◦Ψmj )−1(y) belong to Bmj

(x
mj

i , κε).

Then as in the end of the proof of fact 58 we have

(Πmj )−1(x) and (Πmj )−1(y) belong to Ψmj (Bmj
(x

mj

i , κε)),

and we have

Ψmj (Bmj
(x

mj

i , κε)) = Φ
mj

i (H
mj

i (Bmj
(x

mj

i , κε))) ⊂ Φ
mj

i (D(α))

(the last inclusion comes from theorem 34). Hence we obtain

x and y belong to Πmj (Φ
mj

i (D(α))) ⊂ Φ∞
i (D(7α/6))

(the last inclusion comes from the identity 2’. in proposition 52). Since x, y ∈
Φ∞

i (D(4α/3)), we can apply proposition 56 to obtain d̃mj
(x, y)→ d̃i(x, y), so d̃i(x, y) =

0 and x = y.

The fact that d̃ is an intrisic distance comes from the following lemma, which has
its own interest:

Proposition 61. Let x, y ∈ Σ∞ and γm : [0, 1] → Σ∞ be minimizing geodesics for

the metric d̃m, between x and y (with γm(0) = x and γm(1) = y), and parametrized
with constant speed. Then there exists a subsequence (mj) of (m) such that γmj

con-

verges uniformly to a continuous curve γ : [0, 1] → Σ∞, and for the metric d̃, γ is a
minimizing geodesic between x and y.

Proof. We adapt the proof of Arzela-Ascoli’s lemma to our setting. We have

d̃m(γm(t), γm(t′)) = d̃m(x, y) · |t− t′| ≤ D · |t− t′|.

Now let {tk, k ∈ N} be a dense subset of [0, 1]: by a diagonal argument, we can
construct a subsequence (mj) of (m) such that for every k ∈ N, γmj

(tk) →j→∞ αk ∈
Σ∞. Let γ : {tk, k ∈ N} → Σ∞ be the map defined by γ(tk) := αk. We have

d̃mj
(γmj

(tk1
), γmj

(tk2
)) ≤ D · |tk1

− tk2
|,

and when j goes to infinity, with corollary 59 we get

d̃(γ(tk1
), γ(tk2

)) ≤ D · |tk1
− tk2

|.

γ is then lipschitz on {tk, k ∈ N}, which is dense in [0, 1], so there exists a (unique)
lipschitz extension γ : [0, 1]→ Σ∞. Then, when j goes to infinity,

γmj
converges uniformly on [0, 1] to γ.

Indeed, let (umj
) be a sequence in [0, 1] such that umj

→ u ∈ [0, 1]: we want to show
that γmj

(umj
) → γ(u) when j goes to infinity. Let ε > 0, and suppose j is large
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enough so that d̃ ≤ d̃mj
+ ε on Σ∞ ×Σ∞. Take some k ∈ N such that |tk − u| ≤ ε/D.

Then we have

d̃(γmj
(umj

), γ(u)) ≤ d̃(γmj
(umj

), γmj
(tk)) + d̃(γmj

(tk), γ(tk)) + d̃(γ(tk), γ(u))

≤ d̃mj
(γmj

(umj
), γmj

(tk)) + ε + d̃(γmj
(tk), γ(tk)) + d̃(γ(tk), γ(u))

≤ D · |umj
− tk|+ ε + d̃(γmj

(tk), γ(tk)) + D · |tk − u|
≤ D · |umj

− tk|+ ε + d̃(γmj
(tk), γ(tk)) + ε,

and the right-hand side is ≤ 3ε if j is large enough, so γmj
(umj

) converges to γ(u) as
j goes to infinity.

Finally, the metric d̃, γ is a minimizing geodesic between x and y: for every subivi-
sion 0 = λ1 ≤ λ2 ≤ ... ≤ λp = 1 of [0, 1], since γmj

is a minimizing geodesic we
have

d̃mj
(x, y) =

p−1∑

k=0

d̃mj
(γmj

(λk), γmj
(λk+1)).

When j goes to infinity we get

d̃(x, y) =
p−1∑

k=0

d̃(γ(λk), γ(λk+1)),

and this proves the claim, taking the supremum over all subdivisions 0 = λ1 ≤ λ2 ≤
... ≤ λp = 1 of [0, 1]: d̃(x, y) is equal to the d̃−length of the curve γ.

The next proposition finishes the proof of the Main theorem.

Proposition 62. d̃ is a metric with B.I.C. on Σ∞.

Proof. d̃ is an intrisic metric, and is compatible with the topology of Σ∞: for every
ε > 0, if m is large enough, for any x ∈ Σ we have

B
d̃
(x, ε/2) ⊂ B

d̃m
(x, ε) ⊂ B

d̃
(x, 2ε)

(with obvious notations), and the metric d̃m is compatible with the topology of Σ∞,
so d̃ is also compatible with the topology of Σ∞.

And for every ε > 0, consider some m ∈ N such that ||d̃m − d̃||∞ ≤ ε. Since d̃m

is a metric with B.I.C., there exists some smooth Riemannian metric g on Σ∞ with
||d̃m − dg|| ≤ ε, and with

∫
Σ∞ |Kg |dAg ≤ Ω + 1. We then have ||d̃− dg|| ≤ 2ε: d̃ can

be uniformly approximate by Riemannian metrics, with
∫

Σ |Kg |dAg bounded, hence

d̃ is a metric with B.I.C. (see definition 8).

Appendix: conformal geometry of an annulus

For all this section, the main reference is the book [Ah1].

Definition 63. A topological annulus is a bounded open set of the plane U , such that
C−U has only one bounded component, and this component is not reduced to a point.

This is a well-known fact (see [Ah2]) that every topological annulus U is conformal
to a regular annulus

A(R1, R2) = {z ∈ C| R1 < |z| < R2},
for some 0 < R1 < R2 <∞, and the ratio R2/R1 is uniquely determined by U .
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Modulus of a topological annulus U

Let U be a topological annulus. Let Γ be the set of continuous simple curves γ : [0, l]→
U , parametrized by arc-length, joigning the bounded and the unbounded components
of C − U : that is, γ(0) (resp., γ(1)) belongs to the bounded (resp., unbounded)
component of C − U , and γ(t) ∈ U for t ∈ (0, 1). If ρ : U → [0, +∞] is a mesurable
map, we define the ρ−length of γ by

Lρ(γ) :=
∫

γ
ρ|dz| =

∫ l

0
ρ(γ(t))dt,

and the ρ−area of U by

Aρ(U) :=
∫∫

U
ρ2dλ.

These are the length of γ (resp., the area of U) for the (singular) Riemannian metric
g = ρ2|dz|2. We define the modulus of U as follows:

mod(U) := sup
ρ

infγ∈Γ Lρ(γ)2

Aρ(U)
,

where the supremum is taken over all mesurable maps ρ with 0 < Aρ(U) < +∞.

Example 64. For a regular annulus U = A(R1, R2), we have

mod(U) =
1

2π
ln(R2/R1) :

the supremum is obtained by taking ρ(z) = 1/|z|.
By definition, the modulus of an annulus is a conformal invariant; roughly speaking,

it measures the thickness of the annulus. If U and U ′ are two annuli with U ⊂ U ′,
then mod(U) ≤ mod(U ′).

The Grötzsch annulus

Let 0 < r < 1. The Grötzsch annulus is the following topological annulus:

G(r) := D(1)− [0, r].

•
0

•
r

G(r)

It is often defined as the set of complex numbers z with |z| > 1 and z /∈ [1/r, +∞);
we can pass from one definition to the other by the conformal map z 7→ 1/z.

The map r ∈ (0, 1) 7→ mod G(r) is decreasing (since G(r′) ⊂ G(r) for r ≤ r′),
and we have limr→0+ mod G(r) = +∞ and limr→1− mod G(r) = 0. By a symmetry
argument, Grötzsch showed that this annulus has the fundamental property to be the
"thicker" annulus, in the following sense:
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Theorem 65 (Grötzsch). Let U ⊂ D(1) be a topological annulus, not containing 0
and r. Then

mod(U) ≤ mod G(r).

If the annulus U does not intersect the whole line segment [0, r], then U ⊂ G(r) and
the theorem is useless. But in the following case, the inequality mod(U) ≤ mod G(r)
is not obvious:

U

•
0

•
r
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