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Subspace tracking for signal processing

Jean Pierre Delmas

. INTRODUCTION

Research in subspace and component-based techniquesnganated in Statistics in the middle of the last
century through the problem of linear feature extractioweshby the Karhunen-Loeve Transform (KLT). Then,
it application to signal processing was initiated threeadiss ago, and has met considerable progress. Thorough
studies have shown that the estimation and detection tasksainy signal processing and communications
applications such as data compression, data filtering,npetea estimation, pattern recognition, and neural
analysis can be significantly improved by using the subspaxk component-based methodology. Over the
past few years new potential applications have emerged,sabdpace and component methods have been
adopted in several diverse new fields such as smart anteseasor arrays, multiuser detection, time delay
estimation, image segmentation, speech enhancemenmtinigaystems, magnetic resonance spectroscopy, and
radar systems, to mention only a few examples. The intemestibspace and component-based methods stems
from the fact that they consist in splitting the observatianto a set of desired and a set of disturbing
components. They not only provide new insight into many spiciblems, but they also offer a good tradeoff
between achieved performance and computational compldritmost cases they can be considered to be
low-cost alternatives to computationally intensive maximlikelihood approaches.

In general, subspace and component-based methods ar@meabtay using batch methods, such as the
eigenvalue decomposition (EVD) of the sample covarianctixar the singular value decomposition (SVD)
of the data matrix. However, these two approaches are ntaldeifor adaptive applications for tracking
nonstationary signal parameters, where the required it@pe¢stimation of the subspace or the eigenvectors
can be a real computational burden because their iteratipdementation need®(n?) operations at each
update, where: is the dimension of the vector-valued data sequence. Beimeceding with a brief literature
review of the main contributions of adaptive estimation obspace or eigenvectors, let us first classify these
algorithms with respect to their computational complexityr denotes the rank of the principal or dominant)
or minor subspace we would like to estimate, since usualkg n, it is classic to refer to the following

classification. Algorithms requiring(n?r) or O(n?) operations by update are classified as high complexity;

Jean Pierre Delmas is with Telecom SudParis, CNRS UMR 51Bieksité Paris Saclay, Evry, France. E-mail: jean-pideknas@it-
sudparis.eu

June 6, 2016 DRAFT



algorithms withO(nr?) operations as medium complexity and finally, algorithmshwit(nr) operations as
low complexity. This last category constitutes the mostantgnt one from a real time implementation point of
view, and schemes belonging to this class are also knowreititdrature as fast subspace tracking algorithms.
It should be mentioned that methods belonging to the highptexity class usually present faster convergence
rates compared to the other two classes. From the paper bye®DV&S], that first introduced an adaptive
procedure for the estimation of the signal subspace With?r) operations, the literature referring to the
problem of subspace or eigenvectors tracking from a sigratgssing point of view is extremely rich. The
survey paper [20] constitutes an excellent review of rasuft to 1990, treating the first two classes, since
the last class was not available at the time. The most poldarithm of the medium class was proposed
by Karasalo in [39]. In [20], it is stated that this dominanbspace algorithm offers the best performance to
cost ratio and thus serves as a point of reference for subsealgorithms by many authors. The merger of
signal processing and neural networks in the early 1990sHB8ight much attention to a method originated
by Oja [49] and applied by many others. The Oja method requirdy O(nr) operations at each update. It
is clearly the continuous interest in the subject and sicgnifi recent developments that gave rise to this third
class. It is out of the scope of this chapter to give a comprsiie survey of all the contributions, but rather to
focus on some of them. The interested reader may refer topj2830-43] for an exhaustive literature review
and to [8] for tables containing exact computational comititess and ranking with respect to convergence of
recent subspace tracking algorithms. In the present woekjnainly emphasize on the low complexity class for
both dominant and minor subspace, and dominant and mineneégtor tracking, while we briefly address the
most important schemes of the other two classes. For thgsethms, we will focus on their derivation from
different iterative procedures coming from linear algeana on their theoretical convergence and performance
in stationary environments. Many important issues sucthadihite precisions effects on their behavior (e.g.,
possible numerical instabilities due to roundoff errorwanalation), the different adaptive step size strategies
and the tracking capabilities of these algorithms in ndigtary environments will be left aside. The interested
reader may refer to the simulation Sections of the diffepayers that deal with these issues.

The derivation and analysis of algorithms for subspaceingcrequire a minimum background from linear
algebra and matrix analysis. This is the reason why in Se@ijostandard linear algebra materials necessary
to this chapter are recalled. This is followed in Section 3thg general studied observation model to fix
the main notations and by the statement of the adaptive aukitg of principal or minor subspaces (or
eigenvectors) problems. Then, Oja’s neuron is introduce8dction 4 as a preliminary example to show that
the subspace or component adaptive algorithms are derimpitieally from different adaptations of standard
iterative computational techniques issued from numennathods. In Sections 5 and 6 different adaptive
algorithms for principal (or minor) subspace and comporaralysis are introduced respectively. As for Oja’s

neuron, the majority of these algorithms can be viewed asdwguristic variations of the power method. These
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heuristic approaches need to be validated by convergernt@enformance analysis. Several tools such as the
stability of the ordinary differential equation (ODE) as&ied with a stochastic approximation algorithm and
the Gaussian approximation to address these points irossayi environment are given in Section 7. Some
illustrative applications of principal and minor subspa@eking in signal processing are given in Section 8.
Section 9 contains some concluding remarks. Finally, soxeec&ces are proposed in Section 10, essentially

to prove some properties and relations introduced in therathctions.

II. LINEAR ALGEBRA REVIEW

In this section several useful notions coming from lineayehla as the EVD, the QR decomposition and
the variational characterization of eigenvalues/eigetors of real symmetric matrices, and matrix analysis as
a class of standard subspace iterative computational itrods are recalled. Finally a characterization of the
principal subspace of a covariance matrix derived from tl@mization of a mean square error will complete

this section.

A. Eigenvalue value decomposition

Let C be ann x n real symmetric [resp. complex Hermitian] matrix, which isanon-negative definite
becauseC will represent throughout this chapter a covariance malien, there exists (see e.g., [36, Sec.2.5])
an orthonormal [resp. unitary] matri& = [uy,...,u,] and a real diagonal matriA = Diag(A4, ..., A,) such

that C can be decomposéas follows
C=UAU" =) Nuu/, [resp.,UAUY =) Nuuf. (11.1)
=1 =1

The diagonal elements @k are calledeigenvaluegnd arranged in decreasing order, satisfy> ... > A, > 0,
while the orthogonal columngu;);—; ..., of U are the corresponding unit 2-noreigenvectorof C.

For the sake of simplicity, only real-valued data will be swmiered from the next subsection and throughout
this chapter. The extension to complex-valued data is ofteaightforward by changing the transposition
operator to the conjugate transposition one. But we note difficulties. First, for simplé eigenvalues, the
associated eigenvectors are unique up to a multiplicaigyreis the real case, but only to a unit modulus constant
in the complex case, and consequently a constraint oughe tdded to fix them to avoid any discrepancies
between the statistics observed in numerical simulationsthe theoretical formulas. The interested reader by
the consequences of this nonuniqueness on the derivatithre gfsymptotic variance of estimated eigenvectors

from sample covariance matrices can refer to [33], (see Bisrcices X). Second, in the complex case, the

!Note that for non-negative real symmetric or complex Heiamimatrices, this EVD is identical to the SVD where the amged
left and right singular vectors are identical.

2This is in contrast to multiple eigenvalues for which onlg $ubspaces generated by the eigenvectors associatedhesthmultiple
eigenvalues are unique.
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second-order properties of multidimensional zero-meadaen variables are not characterized by the complex
Hermitian covariance matrik(xx?) only, but also by the complex symmetric complementary danae [57]
matrix E(xx’).

The computational complexity of the most efficient existiteyative algorithms that perform EVD of real
symmetric matrices is cubic by iteration with respect to thatrix dimension (more details can be sought in
[34, chap. 8]).

B. QR factorization

The QR factorization of am x r real-valued matriXW, with n > r is defined as (see e.g., [36, Sec. 2.6])
W =QR=QRy, (1.2)

whereQ is ann x n orthonormal matrixR ann x r upper triangular matrixQ; denotes the first columns of

Q andR, ther xr matrix constituted with the first rows of R. If W is of full column rank, the columns d®,
form an orthonormal basis for the rangeWf. Furthermore, in this case the "skinny" factorizatiQaR, of W

is unique ifR; is constrained to have positive diagonal entries. The caatiom of the QR decompaosition can
be performed in several ways. Existing methods are basedonisdtholder, block Householder, Givens or fast
Givens transformations. Alternatively, the Gram-Schnmadhonormalization process or a more numerically
stable variant called modified Gram-Schmidt can be used. iltezested reader can seek details for the
aforementioned QR implementations in [34, pp. 224-233]eke the complexity is of the order @&¥(nr?)

operations.

C. Variational characterization of eigenvalues/eigernoes of real symmetric matrices

The eigenvalues of a generak n matrix C are only characterized as the roots of the associated ¢hestic
equation. But for real symmetric matrices, they can be ahtarzed as the solutions of a series of optimization
problems. In particular, the largest and the smallesh,, eigenvalues ofC are solutions of the following
constrained maximum and minimum problem (see e.g., [36.434%

A\ = wl'Cw and )\, = min  w’!Cw. (11.3)
[wll2=1, weR" [wl2=1, weRn

Furthermore, the maximum and minimum are attained by the 2inbrm eigenvectors; and u,, associated
with \; and \,, respectively, which are unique up to a sign for simple eighkres); and \,,. For non-zero
vectorsw € R", the expressioﬁ% is known as theRayleigh’s quotienand the constrained maximization

and minimization (11.3) can be replaced by the following anstrained maximization and minimization

wlCw . wlCw
and )\, = min —
w#0, weR” W'W

(I1.4)

A1 = max T
w#0, weR” W'W
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For simple eigenvalues\i, Aa,..., A+ OF Ay, An—1, .., An—ra1, (11.3) extends by the following iterative

constrained maximizations and minimizations (see e.®., §&c.4.2])

= wliCw, k=2,.,r (11.5)
[wll2=1, wlui,us,..,ux_1, wWER"

= min wliCw, k=n—1,..,n—r+1, (11.6)
[[wll2=1, wlu,,un_1,..,uxt1, WER™

and the constrained maximum and minimum are attained by rtlite2enorm eigenvectors,;, associated with
Ar Which are unique up to a sign.

Note that when), > X\.4; or A\,_, > A\,_,4+1, the following global constrained maximizations or
minimizations (denotedubspace criterion

Tr(WITCW) = T'c
Wy, TOVIOW) = e D wi v

or . T . T
Tr(WICW) = C .7
whin T ) =, min szk Wi, (11.7)

where W = [wy,...,w,] iS an arbitraryn x r matrix, have for solutions (see e.g., [69] and Exercice X)
W = [uy,...,u,;]Q or W = [u;,41, ..., u,|Q respectively, wher& is an arbitraryr x r orthogonal matrix.
Thus, subspace criterion (l1.7) determines the subspamensg by{u,...,u,} or {u,_,41,...,u,}, but does
not specify the basis of this subspace at all.

Finally, when now,A; > Xg > ... > A > Ag1 OF Ay > Apopgr > oo > Ayt > A2 i (Wp)ke1, s
denotesr arbitrary positive and different real numbers such that> ws > ... > w, > 0, the following
modification of subspace criterion (l.7) denotedighted subspace criterion

Tr(QW'CW) = LC
Wi, T )= Wi, 2 i Om

k=1
T
or . T . T
Tr(QW* CW) = C 1.8
Wgnvbnzl r( ) ng\?{/nzl,.kzlwkwk W, (11.8)

with Q = Diag(ws, ..,w,), has [53] the unique solutiof-uy, ..., £u, } or {+u,_41,...,

+u,}, respectively.

D. Standard subspace iterative computational techniques

The first subspace problem consists in computing the eigéowassociated with the largest eigenvalue. The
power methodoresented in the sequel is the simplest iterative techsidoethis task. Under the condition
that \; is the unique dominant eigenvalue associated withof the real symmetric matrixC, and starting

from arbitrary unit 2-normw, not orthogonal tau;, the following iterations produce a sequeriog, w,) that

30r simply A1 > X2 > ... > ...\, whenr = n, if we are interested by all the eigenvectors.
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converges to the largest eigenvalieand its corresponding eigenvector unit 2-natm;.

wo arbitrary such thatvy’u; # 0

fori=0,1,.. wj,; = Cw;
/ /
Wit1 = Wz‘+1/HWz'+1H2
aip1 = Wi Cwiyg. (1.9)

The proof can be found in [34, p. 406], where the definition #relspeed of this convergence are specified in
the following. Defined; € [0, 7/2] by cos(6;) def |wlu;| satisfyingcos(6y) # 0, then

7 21
|sin(6;)] < tan(6o) % and Jas — 1| < [ A1 — An| tan2(d) | 2 (11.10)

22
A1

1

i
Consequently the convergence rate of the power method isnexpial and proportional to the rat for

¢

2
for the associated eigenvalue W, is selected randomly, the probability that this

the eigenvector and tR—f

vector is orthogonal tar; is equal to zero. Furthermore, W is deliberately chosen orthogonal tg, the
effect of finite precision in arithmetic computations wititioduce errors that will finally provoke loss of this
orthogonality and therefore convergencetta;.

Suppose now tha® is non-negative. A straightforward generalization of tleevpr method allows for the
computation of the: eigenvectors associated with théargest eigenvalues & when its firstr + 1 eigenvalues
are distinct, or of the subspace corresponding torthargest eigenvalues o when A\, > A1 only. This
method can be found in the literature under the namertifogonal iteration e.g., in [34],subspace iteration
e.g., in [56] orsimultaneous iteration methp@.g., in [63]. First, consider the case where the 1 largest

def

eigenvalues ofC are distinct. WithU,, = [uy,...,u,] and A, = Diag()\q,...,\,), the following iterations

produce a sequendd,;, W,) that converges t9A,, [+uy, ..., £u,|).

W, arbitraryn x r matrix such thaW¢ U, not singular

fori=0,1,.. Wi, = CW;
i1 = Wi R "skinny” QR factorization
A1 = Diag (W] ,CW,4). (I1.11)

The proof can be found in [34, p. 411]. The definition and theespof this convergence are similar to those
of the power method, it is exponential and proportional(ﬁg%)i for the eigenvectors and té%)m for
the eigenvalues. Note thatqif= 1, then this is just the power method. Moreover for arbitraryhe sequence
formed by the first column oW, is precisely the sequence of vectors produced by the powtroahevith the

first column of W as starting vector.
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Consider now the case whek > A,.1. Then the following iteration method

W, arbitraryn x r matrix such thaW{ U, not singular

fori=0,1,... W;;; = Orthonorr{CW,}, (.12)

where the orthonormalization (Orthonorm) procedure isnemessarily given by the QR factorization, generates
a sequenc8®V; that “converges” to the dominant subspace generatefdiby..., u,.} only. This means precisely
that the sequenc®,; W (which here is a projection matrix becaude! W, = I,.) converges to the projection

def

matrix IT, = U, UZ. In the particular case where the QR factorization is usettiénorthonormalization step,

the speed of this convergence is exponential and propaitk:n(k;—j)l, i.e., more precisely [34, p. 411]

A1\
W W] —1IL |, < tan(9) <T+1>

whered € [0, 7/2] is specified bycos(#) = minyegpan(w,),vespan(U,) 0 Wyl 0, This type of convergence

ufl2[[v[l2
is very specific. Ther orthonormal columns oW; do not necessary converge to a particular orthonormal
basis of the dominant subspace generatedify.., u,., but may eventually rotate in this dominant subspace
as i increases. Note that the orthonormalization step (I.12) be realized by other means that the QR

decomposition. For example, extending the: 1 case
A . o — (o T2 \—L/2
wit1 = Cw;/||Cw;|2 = Cw; (wi C WZ) ,

to arbitraryr, yields
Wi = CW,; (WIeew,) /%, (11.13)

where the square root inverse of the maWMx! C?Wi; is defined by the EVD of the matrix with its eigenvalues
replaced by their square root inverses. The speed of coemeegof the associated algorithm is exponential and
proportional to<A;‘—j1>i as well [37].

Finally, note that the power and the orthogonal iteratiorthods can be extended to obtain the minor
subspace or eigenvectors by replacing the madriy I,, — . C where0 < 1 < 1/\; such that the eigenvalues

1—pAy > ..., >1—pu)\ >00fI, — uC are strictly positive.

E. Characterization of the principal subspace of a covacmatrix from the minimization of a mean square

error

In the particular case where the matfix is the covariance of the zero-mean random variahleonsider

the scalar function/(W) whereW denotes an arbitrary x » matrix

JW) € E(|x - WWTx|]?). (11.14)
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The following two properties are proved (e.g., see [70] amdrEices X and X):

First, the stationary point8 of J(W) (i.e., the pointsW that cancel/(W)) are given byW = U, Q
where ther columns ofU, denotes here arbitrany distinct unit-2 norm eigenvectors among, ..., u,, of C
and whereQ is an arbitraryr x r orthogonal matrix. Furthermore at each stationary poii€V) equals the
sum of eigenvalues whose eigenvectors are not includdd,.in

Second, in the particular case whexg > \,;, all stationary points of/(W) are saddle points except
the pointsW whose associated matri, contains ther dominant eigenvectoray, ..., u,. of C. In this case
J(W) attains the global minimuny_?" _ ; \;. It is important to note that at this global minimuriy does
not necessarily contain thedominant eigenvectors, ..., u,, of C, but rather an arbitrary orthogonal basis of

the associated dominant subspace. This is not surprisicguise
J(W) = Tr(C) — 2Tr(WTCW) + Tt (WWTCWWT)

with Tr(WTCW) = Tr(CWWT) and thusJ(W) is expressed as a function 8 throughWWw? which is
invariant with respect to rotatioNvVQ of W. Finally, note that whem = 1 and \; > A,, the solution of the

minimization of J(w) (11.14) is given by the unit 2-norm dominant eigenvectou; .

I1l. OBSERVATION MODEL AND PROBLEM STATEMENT
A. Observation model

The general iterative subspace determination problemritbesc in the previous section, will be now
specialized to a class of matric€s computed from observation data. In typical applicationssobspace-
based signal processing, a sequénaiedata vectorsx(k) € R" is observed, satisfying the following very
common observation signal model

x(k) = s(k) + n(k), (I11.1)

wheres(k) is a vector containing the information signal lying onadimensional linear subspace Bf* with

r < n, while n(k) is a zero-mean additive random white noise (AWN) randomarecincorrelated frons(k).
Note thats(k) is often given bys(k) = A(k)r(k) where the full rankn x r matrix A (k) is deterministically
parameterized ane(k) is ar-dimensional zero-mean full random vector (i.e., viittir(k)r” (k)) non singular).
The signal pars(k) may also randomly select amomgdeterministic vectors. This random selection does not
necessarily result in a zero-mean signal vestar).

In these assumptions, the covariance ma®ixk) of s(k) is r-rank deficient and
C.(k) = E (x(k)x" (k) = Cs(k) + o2(k)I,, (111.2)

“Note thatk generally represents successive instants, but it can efsesent successive spatial coordinates (e.g., in [11jenhe
denotes the position of the secondary range cells in Radar.
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wheres? (k) denotes the AWN power. Taking into account tigat(k) is of rankr and applying the EVD (lI.1)
on C,(k) yields
Ak)+02(k)L. O U’ (k)

C.(k) = [Us(k), Un (k)] o 2 o1 urm | (I11.3)

n

where then x r andn x (n — r) matricesU,(k) and U, (k) are orthonormal bases for the denotdnal

or dominantand noise or minor subspacef C, (k) and A4(k) is ar x r diagonal matrix constituted by the
r non-zero eigenvalues df (k). We note that the column vectors &f;(k) are generally unique up to a
sign, in contrast to the column vectors ©f, (k) for which U, (k) is defined up to a right multiplication by

a(n —r) x (n —r) orthonormal matrixQ. However, the associated orthogonal projection matrdegt) o

U, (k)UL (k) and I, (k) & U, (k)UL (k) respectively denotedignal or dominant projection matriceand

noise or minor projection matricethat will be introduced in the next sections are both unique.

B. Statement of the problem

A very important problem in signal processing consists inttmously updating the estimaté;(k), U, (k),
I1,(k) or IL, (k) and sometimes witlh ; (k) andao2 (k), assuming that we have available consecutive observation
vectorsx(i), i = ...,k — 1, k,... when the signal or noise subspace is slowly time-varying pamed tox (k).

The dimension- of the signal subspace may be known a priori or estimated fitsenobservation vectors.
A straightforward way to come up with a method that solveséhproblems is to provide efficient adaptive
estimateC(k) of C,(k) and simply apply an EVD at each time stepCandidates for this estima@(k) are
generally given by sliding windowed sample data covariamegrices when the sequence®f.(k) undergoes
relatively slow changes. With agxponential windowthe estimated covariance matrix is defined as

k

C(k) =Y B x(i)x" (i), (111.4)

i=0
where0 < § < 1 is the forgetting factor Its use is intended to ensure that the data in the distantgras
downweighted in order to afford the tracking capability whee operate in a nonstationary environmeitk)

can be recursively updated according to the following safiem
C(k) = BC(k — 1) + x(k)xT (k). (111.5)
Note that
C(k) = (1 - B)C(k — 1) + B'x(k)x" (k) = C(k — 1) + 8 (x(k)xT (k) — C(k— 1)) (llL.6)

is also used. These estimat€gk) tend to smooth the variations of the signal parameters anaresmnly

suitable for slowly changing signal parameters. For sudsignal parameter changes, the use dfumcated
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10

window may offer faster tracking. In this case, the estimated d¢amae matrix is derived from a window of

length!
k

Cky= > B "x()x" (i), (11.7)

i=k—Il+1
where0 < 8 < 1. The casel = 1 corresponds to a rectangular window. This matrix can bersdaly updated

according to the following scheme:
C(k) = BC(k — 1) + x(k)xT (k) — B'x(k — DxT (k —1). (111.8)

Both versions requir€(n?) operations with the first having smaller computational ctaxigy and memory
needs. Note that foB = 0, (I11.8) gives the coarse estimatgk)x’ (k) of C,(k) as used in the least mean
square (LMS) algorithms for adaptive filtering (see e.g5])3

Applying an EVD onC(k) at each timet is of course the best possible way to estimate the eigemgacto
subspaces we are looking for. This approach is known astdiéD and has high complexity which & (n?).
This method usually serves as point of reference when dgalith different less computationally demanding
approaches described in the next sections. These congmahyi efficient algorithms will compute signal or
noise eigenvectors (or signal or noise projection matyiaéshe time instank + 1 from the associated estimate

at time k and the new arriving sample vecta(k).

IV. PRELIMINARY EXAMPLE: OJA'S NEURON

Let us introduce these adaptive procedures by a simple dgathe following Oja’s neuron originated by
Oja [49] and then applied by many others that estimates theneector associated with the unique largest

eigenvalue of a covariance matrix of the stationary vegid).
w(k +1) = w(k) + p{[I, — w(k)w” (k)]x(k)x" (k)w(k)}. (IV.1)

The first term on the right side is the previous estimatetaf;, which is kept as a memory of the iteration.
The whole term in the brackets is the new information. Thistés scaled by the step sizeand then added
to the previous estimater(k) to obtain the current estimate(k + 1). We note that this new information is
formed by two terms. The first one(k)x” (k)w(k) contains the first step of the power method (11.9) and the
second one is simply the previous estimaté:) adjusted by the scalaw” (k)x(k)x” (k)w(k) so that these
two terms are on the same scale. Finally, we note that if tleeipus estimatew (k) is already the desired
eigenvectortu,, the expectation of this new information is zero, and hemadg; + 1) will be hovering around
+u;. The step sizg: controls the balance between the past and the new informdtiroduced in the neural
networks literature [49] within the framework of a new sytiapnodification law, it is interesting to note that

this algorithm can be derived from different heuristic a#ions of numerical methods introduced in Section Il.
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First consider the variational characterization recaite®ubsection 1I-C. Becaus@,(w’ C,w) = 2C,w,
the constrained maximizatior?®) or (Il.7) can be solved using the following constrained digat-search

procedure
wi(k+1) = w(k)+ puCu(k)w(k)
wk+1) = w'(k+1)/[Iw'(k+ 1),
in which the step size is "sufficiency enough". Using the approximatiph < . yields
wWk+D/[W(k+Dle = L+ pColk))w(k)/(w" (k)T + nCu(k))*w(k))"/?

~ (L, + pCo(k)w(k) /(1 + 2uw" (k) Cy (k) w(k))'/?

~ (Lo + pCa(k))w(k)(1 — pw' (k)Cu(k)w(k))

Q

w(k) + p (I, — w(k)w’ (k)) Cy(k)w(k).

Then, using the instantaneous estimaté)x” (k) of C,(k), Oja’s neuron (IV.1) is derived.

Consider now the power method recalled in Subsection Il-Btidihg thatC, andI,, + ¢C, have the same
eigenvectors, the stew;, ; = C,w; of (11.9) can be replaced bw; , = (I, +xC,)w; and using the previous
approximations yields Oja’s neuron (IV.1) anew.

Finally, consider the characterization of the eigenveesociated with the unique largest eigenvalue of a

covariance matrix derived from the mean square effdix — ww? x||?) recalled in Subsection II-E. Because
Vo (E(x — wwlx|?) =2 (—2C; + C,ww! + WWTCJ;) w,
an unconstrained gradient-search procedure yields
w(k+1) = w(k) — u (~2Ca(k) + Colk)w(k)w” (k) + w(k)w” (k)Ca(k)) w(k).

Then, using the instantaneous estimaté)x” (k) of C,(k) and the approximatiow” (k)
w(k) = 1 justified by the convergence of the deterministic gradesdrch procedure téru; whenp — 0,
Oja’s neuron (IV.1) is derived again.

Furthermore, if we are interested in adaptively estimattiregassociated single eigenvalug the minimization
of the scalar function’(\) = (A—u? C,u;)? by a gradient-search procedure can be used. With the iasteous
estimatex(k)x” (k) of C,(k) and with the estimater (k) of u; given by (IV.1), the following stochastic gradient
algorithm is obtained.

Ak +1) = Ak) + p (w? (k)x(k)x" (k)w(k) — A(k)) . (IV.2)

We note that the previous two heuristic derivations couldekiended to the adaptive estimation of the
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eigenvector associated with the unique smallest eigeevafl@,, (k). Using the constrained minimization (11.3)
or (1.7) solved by a constrained gradient-search proaedurthe power method (11.9) where the step, | =
C,w; of (1.9) is replaced byw; , = (I, — uC,)w; (Where0 < p < 1/A1) yields (IV.1) after the same

derivation, but where the sign of the step sjzés reversed.
w(k+1) = w(k) — p (L, — w(k)w’ (k)x(k)x" (k)w(k)) . (IV.3)

The associated eigenvalue could be also derived from the minimization df\) = (A — ul C,u,)? and
consequently obtained by (IV.2) as well, whexék) is issued from (IV.3).

These heuristic approaches derived from iterative contipni@ techniques issued from numerical methods
recalled in Section I, need to be validated by convergemeckperformance analysis for stationary data).
These issues will be considered in Section VII. In particutawill be proved that the coupled stochastic
approximation algorithms (IV.1),(1V.2) in which the stejzes;. is decreasing, "converge" to the p&itu;, A1)),
in contrast to the stochastic approximation algorithm3)¥hat diverges. Then, due to the possible accumulation
of rounding errors, the algorithms that converge theaa#lfianust be tested through numerical experiments to
check their numerical stability in stationary environngeriinally extensive Monte Carlo simulations must be
carried out with various step sizes, initialization coradis, signal to noise ratios and parameters configurations

in nonstationary environments.

V. SUBSPACE TRACKING

In this section, we consider the adaptive estimation of dami (signal) and minor (noise) subspaces. To
derive such algorithms from the linear algebra materialied in Subsections 1I-C, 1I-D and II-E similarly as
for Oja’s neuron, we first note that the general orthogorehtive step (11.12)W,,; = Orthonorn{CW,}

allows for the following variant for adaptive implementati
W, 1 = Orthonorn{(I,, + uC)W,}

wherep > 0 is a "small" parameter known agep size becausd,, + 4C has the same eigenvectors @s

with associated eigenvalués + p););—1...». Noting thatl,, — nC has also the same eigenvectorsGasvith

associated eigenvalu€s— p1)\;)i=1, .. », arranged exactly in the opposite order(ag);—1,.., for p sufficiently
small @ < 1/A1), the general orthogonal iterative step (11.12) allows tiee following second variant of this

iterative procedure to "converge" to thedimensional minor subspace @f if A,,—, > Ay—r11.

W41 = Orthonorn{(I,, — nC)W;,}.
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When the matrixC is unknown and, instead we have sequentially the data sequéh), we can replac&

by an adaptive estimat€ (k) (see Section IlI-B). This leads to the adaptive orthogoteahtion algorithm
W(k + 1) = Orthonorm{ (I,, + 1 C(k))W (k)}, (V.2)

where the "+" sign generates estimates for the signal sebsfia\, > \.1) and the "-" sign for the noise
subspace (if\,—, > \,_,1+1). Depending on the choice of the estim&i¢k) and of the orthonormalization
(or approximate orthonormalization), we can obtain aléue subspace tracking algorithms.

We note that maximization or minimization in (11.7) of(W) def Tr(WTCW) subject to the constraint
WTW = I, can be solved by a constrained gradient-descent techrBgeauseVw.J = 2C(k)W, we obtain

the following Rayleigh quotient-based algorithm
W(k + 1) = Orthonorr{ W (k) + p,C(k)W (k)}, (V.2)

whose general expression is the same as general expregdipddrived from the orthogonal iteration approach.
We will denote this family of algorithms as the power-basesthmds. It is interesting to note that a simple sign
change enables one to switch from the dominant to minor sudesp Unfortunately, similarly to Oja’s neuron,
many minor subspace algorithms will be unstable or stabtenom robust (i.e., numerically unstable with

a tendency to accumulate round-off errors until their estén are meaningless), in contrast to the associated
majorant subspace algorithms. Consequently, the literattiminor subspace tracking techniques is very limited

as compared to the wide variety of methods that exists fotrémeking of majorant subspaces.

A. Subspace power-based methods

Clearly the simplest selection fa€(k) is the instantaneous estimaték)x” (k), which gives rise to the
Data Projection MethodDPM) first introduced in [69] where the orthonormalizatienperformed using the

Gram-Schmidt procedure.
W (k4 1) = GS Orth{W (k) = ux(k)x” ()W (k)}. (V.3)

In nonstationary situations, estimates (lll.5) or (lll.6) the covarianceC, (k) of x(k) at time k& have been
tested in [69]. For this algorithm to "converge", we needétest a step sizg such thatu < 1/A; (see e.g.,
[28]). To satisfy this requirement (in nonstationary sitoas included) and because most of the time we have

Tr(C.(k)) > A\ (k), the following two normalized step sizes have been propas¢69]:

and juy = with o2 (k + 1) = vo2(k) + (1 — ) |x (k)|

Kk = e
(k) o3 (k)

where . may be close to unity and where the choicevo (0,1) depends on the rapidity of the change of

the parameters of the observation signal model (lll.1).eNibiat a better numerical stability can be achieved
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[5] if ug is chosen, similar to the normalized LMS algorithm [35], /as where « is a "very

— 2
= xE)[P 4
small" positive constant. Obviously, this algorithm (VI8s very high computational complexity due to the
Gram-Schmidt orthonormalization step.

To reduce this computational complexity, many algorithrasehbeen proposed. Going back to the DPM

algorithm (V.3), we observe that we can write
W(k 4 1) = {W (k) + mx(k)x” (k)W (k) }G(k + 1), (V.4)

where the matrixG(k + 1) is responsable for performing exact or approximate orthmadization while
preserving the space generated by the columi&6fk + 1) dof W (k) + upx(k)xT (k)W (k). It is the different
choices ofG(k+1) that will pave the way to alternative less computationalyndinding algorithms. Depending
on whether to this orthonormalization is exact or approtenéwo families of algorithms have been proposed
in the literature.

1) The approximate symmetric orthonormalization familjne columns ofW’(k+ 1) can be approximately
orthonormalized in a symmetrical way. Sin8¥ (k) has orthonormal columns, for sufficiently smalj the
columns of W/ (k + 1) will be linearly independent, although not orthonormal efitW'” (k + 1)W'(k + 1) is
positive definite, andW (k + 1) will have orthonormal columns iG(k + 1) = {W'7(k + 1)W'(k 4 1)} /2
(unique if G(k + 1) is constrained to be symmetric). A stochastic algorithm otiech Subspace Network
Learning(SNL) and laterOja’s algorithmhave been derived in [52] to estimate dominant subspaceirsg

uy is sufficiency enoughG(k + 1) can be expanded in; as follows

G(k+1) = {(W(E) + mx(k)xT (kYW (k)" (W(k) + ux(k)x" (k)W (k) } /2
— (L + 2 W (k)x(k)xT (k)W (k) + O (i)} /2

= L — W7 (k)x(k)x" (k)W (k) + O(13).
Omitting second-order terms, the resulting algorithm sad
W(k +1) = W(k) + [T, — W(EYWT (k))x(k)xT (k)W (k). (V.5)

The convergence of this algorithm has been earlier studi¢ds] and then in [68], where it was shown that the
solution W (t) of its associated ODE (see Subsection VII-A) need not tentthéoeigenvectorgvy, ..., v, },
but only to a rotated basi¥V, of the subspace spanned by them. More precisely, it has beerdgin [16]
that under the assumption th& (0) is of full column rank such that its projection to the signabspace
°Note that this algorithm can be directly deduced from thénaaition of the cost functio’ (W) = Tr[WTx(k)x” (k)W] defined

on the set ofx x r orthogonal matrice3V (W”W = I,.) with the help of continuous-time matrix algorithms [21,.Gh2] (see also
(X.7) in Exercice X).
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of C, is linearly independent, there exists a rotated ba8is of this signal subspace such thgW (¢) —

W, |[Fro = O(e~ A=A+ A performance analysis has been given in [24], [25]. Thisigswill be used as
an example analysis of convergence and performance in &idrse/II-C2. Note that replacing(k)x” (k)

by 81, + x(k)x” (k) (with 8 > 0) in (V.5), leads to anodified Oja’s algorithn{15], which, not affecting its
capability of tracking a signal subspace with the sign "#dn ¢rack a noise subspace by changing the sign (if
B8 > A1). Of course, these maodified Oja’s algorithms enjoy the saomy@rgence properties as Oja’s algorithm
(V.5).

Many other modifications of Oja’s algorithm have appearedha literature, particularly to adapt it to
noise subspace tracking. To obtain such algorithms, it terésting to point out that, in general, it is not
possible to obtain noise subspace tracking algorithms foyplgi changing the sign of the step size of a signal
subspace tracking algorithm. For example, changing theigigV.5) or (VI1.18) leads to an unstable algorithm
(divergence) as will be explained in Subsection VII-C1 foe= 1. Among these modified Oja’s algorithms,

Chenet al. [16] have proposed the following unified algorithm

W(k+1) = W(k) £ u[x(k)x" (k)W (k)W (k)W (k)

~W (k)W (k)x(k)x" (k)W (k)], (V.6)

where the signs "+" and"-" are respectively associated wigimal and noise tracking algorithms. While the
associated ODE maintait® "' (t)W (¢) = I,. if W7 (0)W(0) = I, and enjoys [16] the same stability properties
as Qja’s algorithm, the stochastic approximation to athami(V.6) suffers from numerical instabilities (see e.qg.,
numerical simulations in [27]). Thus, its practical useuiees periodic column reorthonormalization. To avoid
these numerical instabilities, this algorithm has been ifremti [17] by adding the penalty terfW (k)[I,, —
W (k)YWT (k)] to the field of (V.6). As far as noise subspace tracking is eomed, Douglagt al. [27] have
proposed modifying the algorithm (V.6) by multiplying thesti term of its field byW” (k)W (k) whose

associated term in the ODE tendsliq viz

Wk+1) = W) — mlx(k)x" (k) WEWT (k)W ()W (k)W (k)

~W (k)W (k)x(k)x" (k)W (k)]. (V.7)

It is proved in [27] that the locally asymptotically stableipts W of the ODE associated with this algorithm
satisfy WI'W = I, and Span(W) = Span(U,,). But the solutionW (¢) of the associated ODE does not
converge to a particular bas®/,. of the noise subspace but rather, it is proved $wain(W (t)) tends to
Span(U,,) (in the sense that the projection matrix associated withstitespaceSpan(W (t)) tends toIl,,).
Numerical simulations presented in [27] show that this athm is numerically more stable than the minor

subspace version of algorithm (V.6).
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To eliminate the instability of the noise tracking algonithderived from Oja’s algorithm (V.5) where the
sign of the step size is changed, Abed Meranal. [2] have proposed forcing the estimaW (k) to be
orthonormal at each time stép(see Exercice X) that can be used for signal subspace tga¢kinreversing
the sign of the step size) as well. But this algorithm congergith the same speed of convergence as Oja’s
algorithm (V.5). To accelerate its convergence, two noiradl versions (denotebormalized Oja’s algorithm
(NOja) andNormalized Orthogonal Oja’s algorithn iNOQOJa)) of this algorithm have been proposed in [4].
They can perform both signal and noise tracking by switchiregsign of the step size for which an approximate
closed-form expression has been derived. A convergendgsamaf the NOja algorithm has been presented
in [7] using the ODE approach. Because the ODE associatdd tivé field of this stochastic approximation
algorithm is the same as those associated with the projeafiproximation-based algorithm (V.18), it enjoys
the same convergence properties.

2) The exact orthonormalization familyfhe orthonormalization (V.4) of the columns ¥’ (k + 1) can be
performed exactly at each iteration by the symmetric squaoeinverse ofW'" (k 4+ 1)W’(k + 1) due to the

fact that the latter is a rank one modification of the identitstrix:

W (k+ )W/ (k+1) = L + (25, £ g3 |x(0)[?) y(k)yT (k) < I, + 22" (V.8)
with y (k) % W7 (k)x(k) andz % \/2,% + 12 |x(k)||? y(k). Using the identity
_ 1 zz7
L+227) 2 =1, + <——1> = (V.9)
( ) (1 z)2)"/2 ]2
we obtain
Glk+1) = {WTk+1)W'(k+ 1)}V =1, + n.y(k)yT (k) (V.10)
. dﬁf 1 . 1 . . .
with 7, = <(1i(2m-iui||x(k)|\2)||y(k:)||2)”2 1) RGIER Substituting (V.10) into (V.4) leads to

W(k +1) = W(k) £ up(k)xT (k)W (k), (V.11)

where p(k) def =W (k)y(k) + (1 + melly (B)||?)x(k). All these steps lead to thEast Rayleigh quotient-

based Adaptive Noise Subspadgorithm (FRANS) introduced by Attallagt al. in [5]. As stated in [5], this
algorithm is stable and robust in the case of signal subspacking (associated with the sign "+") including
initialization with a nonorthonormal matri¥v (0). By contrast, in the case of noise subspace tracking (atedci
with the sign "-"), this algorithm is numerically unstabledause of round-off error accumulation. Even when
initialized with an orthonormal matrix, it requires periode-orthonormalization oW (k) in order to maintain
the orthonormality of the columns &V (k). To remedy this instability, another implementation osthligorithm

based on the numerically well behaved Householder tramsif@as been proposed [6]. This Householder FRANS
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algorithm (HFRANS) comes from (V.11) which can be rewriti@iter cumbersome manipulations as

W(k+1)=HKk)W(k) with H(k) =1, — 2u(k)u’ (k)

with u(k) def T (( ))H With no additional numerical complexity, this Househaldensform allows one to

stabilize the noise subspace version of the FRANS algofitifhe interested reader may refer to [74] that
analyzes the orthonormal error propagation (i.e., a rémuisf the distance to orthonormalityw” (k)W (k) —
I.||3,, from a non-orthogonal matri¥v (0)) in the FRANS and HFRANS algorithms.

Another solution to orthonormalize the columns(k + 1) has been proposed in [28], [29]. It consists
of two steps. The first one orthogonalizes these columnsgusimatrix G(k + 1) to give W”(k + 1) =
W'(k+1)G(k+1), and the second one normalizes the column®df(k+1). To find such a matrixG (k+1)
which is of course not unique, notice that@(k + 1) is an orthogonal matrix having as first column, the

vector ())” with the remaining — 1 columns completing an orthonormal basis, then using (®) product

Ty (k
W (k + 1)W”(k + 1) becomes the following diagonal matrix

WP k+DOW" (k+1) = G'(k+1) (L + sry(k)y” (k) G(k +1)

= L +dlyk)| eef.

where 5, & +2uy + p2||x(k)||* and ey & [0,...,0]”. It is fortunate that there exists such an orthonogonal

matrix G(k + 1) with the desired properties known as a Householder refl§8thrChap.5], and can be very

easily generated since it is of the form

2

la(k)
This gives theFast Data Projection MethodFDPM)

Gk+1) =1, — NOIE a(k)al (k) with a(k) =y(k) — ||y(k)|e:. (V.12)

W (k + 1) = Normalize{ (W (k) =+ pux(k)x” (k)W (k)) G(k + 1)}, (V.13)

where "NormalizefV”(k+1)}" stands for normalization of the columns &V”(k + 1), and G(k + 1) is
the Householder transform given by (V.12). Using the indelemce assumption [35, chap. 9.4] and the
approximationu, < 1, a simplistic theoretical analysis has been presented0hff8 both signal and noise
subspace tracking. It shows that the FDPM algorithm is lgcafable and the distance to orthonormality
E (|WT (k)W (k) — I.||?) tends to zero a®(e~°*) wherec > 0 does not depend gm. Furthermore, numerical
simulations presented in [28], [29], [30] wifly, = TR k)lP demonstrate that this algorithm is numerically stable

for both signal and noise subspace tracking, and if for sagasan, orthonormality is lost, or the algorithm is

SHowever, if one looks very carefully at the simulation graghpresenting the orthonormality error [74, Fig. 7], it i to realize
that the HFRANS algorithm exhibits a slight linear instétil
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initialized with a matrix that is not orthonormal, the algbm exhibits an extremely high convergence speed
to an orthonormal matrix. This FDPM algorithm is to the besbur knowledge, the only power-based minor
subspace tracking methods of complexidynr) that is truly numerically stable since it do not accumulate
rounding errors.

3) Power-based methods issued from exponential or slidimglaw: Of course, all the above algorithms
that do not use the rank one property of the instantaneoimsatstx(k)x” (k) of C,(k) can be extended to the
exponential (111.5) or sliding windowed (I11.8) estimat€¥ k), but with an important increase in complexity. To

keep theO(nr) complexity, the orthogonal iteration method (11.12) mustddapted to the following iterations
W/ (k+1) = C(k)W(k)
W(k+1) = Orthonorm{W’(k + 1)}
= W/(k+1)G(k+1),
where the matrixG(k + 1) is a square root inverse o'’ (k + 1)W'(k + 1) responsable for performing
orthonormalization ofW’(k + 1). It is the choice ofG(k + 1) that will pave the way to different adaptive
algorithms.

Based on the approximation
Clk—1)W(k) =C(k—1)W(k — 1), (V.14)

which is clearly valid if W (k) is slowly varying withk, an adaptation of the power method denoiatural
Power method 3INP3) has been proposed in [37] for the exponential windowstimate (111.5)C(k) =
BC(k — 1) +x(k)x” (k). Using (Il.5) and (V.14), we obtain

W (k+1) = BW' (k) + x(k)y" (),

def

with y(k) = W7 (k)x(k). It then follows that
W (k+ D)W (k+1) = BW (k)W (k) +2(k)y" (k) +y(k)z" (k)
Hx(®) Py (k)y" (k) (V.15)
with z(k) %< sW'T (k)x(k), which implies (see Exercice X) the following recursions
Gk+1) = %[In —rerel — mesel|G(k), (V.16)
W(k+1) = W(k)I, — reel — megel]
4 %x(k)yT(k)GT(k)[In ~ nere” — ryesel]. (V.17)

wherer;, » andeq, e; are defined in Exercice X.
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Note that the square root inverse mat@(k + 1) of W'? (k + 1)W’(k + 1) is asymmetric even ifz(0)
is symmetric. Expressions (V.16) and (V.17) provide an allgm which does not involve any matrix-matrix
multiplications and in fact requires only(nr) operations.

Based on the approximation th#¥ (k) andW (k+1) span the same-dimensional subspace, another power-
based algorithm referred to as tA@proximated Power IteratiofAPI) algorithm and its fast implementation
(FAPI) have been proposed in [8]. Compared to the NP3 alguorithis scheme has the advantage that it can
handle the exponential (111.5) or the sliding windowed .8)l estimates ofC, (k) in the same framework (and

with the same complexity of (nr) operations) by writing (I11.5) and (111.8) in the form

C(k) = BC(k — 1) + X' (k)Ix'" (k)

1 0
with J =1 andx’(k) = x(k) for the exponential window and = 1 andx’(k) = [x(k),x(k —1)]

0 —p
for the sliding window (see (111.8)). Among the power-basmihor subspace tracking methods issued from
exponential of sliding window, this FAPI algorithm has bemmsidered by many practitioners (e.g., [11]) as

outperforming the other algorithms having the same contijpmia complexity.

B. Projection approximation-based methods

Since (11.14) describes an unconstrained cost functiongaminimized, it is straightforward to apply the
gradient-descent technique for dominant subspace trgckising expression (X.4) of the gradient given in

Exercice X with the estimate(k)x” (k) of C,.(k) gives:

W(k+1) = W(k) — u [-2x(k)xT (k) + x(k)x” (k)W (k)WT (k)

+ W(kYWT (k)x(k)x" (k)] W (k). (V.18)

We note that this algorithm can be linked to Oja’s algorith#bj. First, the term between brackets is the
symmetrization of the term-x(k)x” (k) + W (k)W (k)x(k)xT (k) of Oja’s algorithm (V.5). Second, we see
that whenW7 (k)W (k) is approximated by, (which is justified from the stability property below), aligm
(V.18) gives Oja’s algorithm (V.5). We note that because fie&l of the stochastic approximation algorithm
(V.18) is the opposite of the derivative of the positive ftime (11.14), the orthonormal bases of the dominant
subspace are globally asymptotically stable for its asgediODE (see Subsection VII-A) in contrast to Oja’s
algorithm (V.5), for which they are only locally asymptdatily stable. A complete performance analysis of
the stochastic approximation algorithm (V.18) has beersgmted in [24] where closed-form expressions of
the asymptotic covariance of the estimated projection ima¥ (k)W7 (k) are given and commented on for
independent Gaussian daték) and constant step size

If now C,(k) is estimated by the exponentially weighted sample covaeamatrix C(k) =
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Sk BFix(i)xT (i) (111.4) instead ofx(k)x” (k), the scalar function/(W) becomes

k
J(W) =" B x(i) - WWTx(i)|1%, (V.19)
1=0

and all datax(i) available in the time interva{0, ..., k} are involved in estimating the dominant subspace at
time instantk+ 1 supposing this estimate known at time instanThe key issue of the projection approximation
subspace tracking algorithm (PAST) proposed by Yang in [80p approximateW” (k)x(i) in (V.19), the
unknown projection ofx(i) onto the columns oW (k) by the expressiom (i) = W7 (i)x(i) which can be

calculated for allo < i < k at the time instank. This results in the following modified cost function

k
J'(W) =>" 85 Ix(i) — Wy (i), (V.20)
=0

which is now quadratic in the elements¥f. This projection approximation, hence the name PAST, cbatite
error performance surface d{W). For stationary or slowly varyin@..(k), the difference betweew” (k)x (i)
andW7' (i)x(i) is small, in particular whenis close tok. However, this difference may be larger in the distant
past withi < k, but the contribution of the past data to the cost functior2@Yis decreasing for growing
k, due to the exponential windowing. It is therefore expedtest J'(W) will be a good approximation to
J(W) and the matrixW (k) minimizing J'(W) be a good estimate for the dominant subspace€ofk).

In case of sudden parameter changes of the model (lll.1)ndneerical experiments presented in [70] show
that the algorithms derived from this PAST approach stilharge. The main advantage of this scheme is
that the least square minimization of (V.20) whose solut®given by W (k + 1) = C,,,(k)C, ' (k) where
C.y(k) % S0 BR=ix(i)yT (i) and C, (k) % S8 BE=iy(i)y” (i) has been extensively studied in adaptive
filtering (see e.qg., [35, chap. 13] and [67, chap. 12]) wheneousRecursive Least Squasdgorithms (RLS)
based on the matrix inversion lemma have been progoskednote that because of the approximation/6W )

by J'(W), the columns ofW (k) are not exactly orthonormal. But this lack of orthonornyatibes not mean
that we need to perform a reorthonormalizationWf(k) after each update. For this algorithm, the necessity
of orthonormalization depends solely on the post procgssiathod which uses this signal subspace estimate
to extract the desired signal information (see e.g., SecHdl). It is shown in the numerical experiments
presented in [70] that the deviation ® (k) from orthonormality is very "small* and for a growing slidjin
window (B = 1), W(k) converges to a matrix with exactly orthonormal columns unsignal stationary.
Finally, note that a theoretical study of convergence ancervation of the asymptotic distribution of the

recursive subspace estimators have been presented injd2[78] respectively. Using the ODE associated

"For possible sudden signal parameter changes (see SobsBE#), the use of a sliding exponential window (I11.7) rggon of the
cost function may offer faster convergence. In this ca8&k) can be calculated recursively as well [70] by applying theegal form
of the matrix inversion lemmgA + BDC?)™' = A~' — A~'B(D' + CTA'B)~'C” A~! which requires inversion of a x 2
matrix.
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with this algorithm (see Section VII-A) which is here a pair aupled matrix differential equations, it is
proved that under signal stationarity and other weak candit the PAST algorithm converges to the desired
signal subspace with probability one.

To speed up the convergence of the PAST algorithm and to gierdhe orthonormality oW (k) at each
iteration, an orthonormal version of the PAST algorithm loledd OPAST has been proposed in [1]. This algorithm
consists of the PAST algorithm whe€W (k + 1) is related toW (k) by W (k + 1) = W (k) + p(k)q(k), plus
an orthonormalization step 8V (k) based on the same approach as those used in the FRANS aly(site
Subsection V-A2) which leads to the upda¥(k + 1) = W (k) + p'(k)q(k).

Note that the PAST algorithm cannot be used to estimate tise subspace by simply changing the sign
of the step size because the associated ODE is unstabletsBffoeliminate this instability were attempted in
[4] by forcing the orthonormality oW (k) at each time step. Although there was a definite improvement i

the stability characteristics, the resulting algorithrmeagns numerically unstable.

C. Additional methodologies

Various generalizations of criteria (11.7) and (11.14) lealveen proposed (e.g., in [40]), which generally yield
robust estimates of principal subspaces or eigenvectatsti totally different from the standard ones. Among
them, the followingNovel Information Criterion(NIC) [47] results in a fast algorithm to estimate the prpadi

subspace with a number of attractive properties
max{J(W)} with J(W) C T In(WTCW)] — Tr(WI W), (V.21)

given thatW lies in the domain{ W such thatW” CW > 0}, where the matrix logarithm is defined e.g.
in [34, chap. 11]. It is proved in [47] (see also Exercices X &) that the above criterion has a global
maximum that is attained when and only whénh = U, Q whereU, = [uy, ..., u,] andQ is an arbitraryr x r
orthogonal matrix and all the other stationary points addiapoints. Taking the gradient of (V.21) (which is
given explicitly by (X.6)), the following gradient ascengarithm has been proposed in [47] for updating the
estimateW (k):

W(k + 1) = W(k) + pi [C(E)W (k) (W™ (E)C(k)W (k))~' — W (k)] . (V.22)

Using the recursive estimaté(k) = Zf:o BF=ix(i)xT (i) (I11.4), and the projection approximation introduced
in [70] W7 (k)x(i) = W (i)x(i) for all 0 < i < k, the update (V.22) becomes

k k -1
W(k +1) = W(k) + puy !(Z Bk_iX(i)yT(i)> <Z Bk_i.Y(i)yT(i)> - W(k)] ; (V.23)
i=0 i=0
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with y (i) def W7 (i)x(i). Consequently, similarly to the PAST algorithms, stand@tdS techniques used in
adaptive filtering can be applied. According to the numéregeriments presented in [37], this algorithm
performs very similarly to the PAST algorithm having alse ttame complexity. Finally, we note that it has
been proved in [47] that the poinl& = U,Q are the only asymptotically stable points of the ODE (see
Subsection VII-A) associated with the gradient ascentrilym (V.22) and that the attraction set of these
points is the domaifW such thatW”CW > 0}. But to the best of our knowledge, no complete theoretical

performance analysis of algorithm (V.23) has been carrigtdso far.

VI. EIGENVECTORS TRACKING

Although, the adaptive estimation of the dominant or minabspace through the estimaW (k)W (k)
of the associated projector is of most importance for sutesfmsed algorithms, there are situations where
the associated eigenvalues are simple & ... > A\ > A Or Ay < ... < A\pp11 < Ap—p) and the
desired estimated orthonormal basis of this space must &rreigenbasis. This is the case for the statistical
technique of principal component analysis in data comjasnd coding, optimal feature extraction in pattern
recognition and for optimal fitting in the total least squaense or for Karhunen-Loéve transformation of
signals, to mention only a few examples. In these applioafi¢y: (k), ..., y-(k)} or {yn(k), ..., yn—rs+1(k)}
with y; (k) o w!(k)x(k) whereW = [w1(k), ..., w, (k)] or W = [w,,(k), ..., w,_,+1(k)] are the estimated
first principal or r last minor componentsf the datax(k). To derive such adaptive estimates, the stochastic
approximation algorithms that have been proposed, aredsétom adaptations of the iterative constrained
maximizations (I1.5) and minimizations (l.6) of Rayleigjuotients; the weighted subspace criterion (11.8); the

orthogonal iterations (11.11) and, finally the gradiensdent technique applied to the minimization of (11.14).

A. Rayleigh quotient-based methods

To adapt maximization (11.5) and minimization (I1.6) of Reigh quotients to adaptive implementations, a
method has been proposed in [60]. It is derived from a Givearpetrization of the constraiw’w =1,.,
and from a gradient-like procedure. The Givens rotation®@gch introduced by Regalia [60] is based on the
properties that any x 1 unit 2-norm vector and any orthogonal vector to this vector be respectively written
as the last column of an x n orthogonal matrix and as a linear combinaison of the first 1 columns of

this orthogonal matrix, i.e.,

Q,

0
w1 =Q yWo = Qq 1 g, W = Qg
1
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whereQ; is the following orthogonal matrix of ordet — i + 1:

I 4 0 0 0
0 —sin6;; cosb;; 0
Qi = Ui71 . Ui,j e Ui,nfi with Ui,j déf ZJ ZJ
0 COS ei,j sin ei,j 0
0 0 0 I,
andé; ; belongs to — Z, +Z]. The existence of such a parametrizafifor all orthonormal set§wy,...,w,}

is proved in [60]. It consists of(2n —r — 1) /2 real parameters. Furthermore, this parametrization iguenif

we add some constraints @k ;. A deflation procedure, inspired by the maximization (lleB)d minimization
(11.6) has been proposed [60]. First maximization or miraation (I1.3) is performed with the help of the
classical stochastic gradient algorithm, in which the peeters ared, q,...,0;,-1, whereas maximization
(1.5) or minimization (11.6) are realized thanks to stoslia gradient algorithms with respect to the parameters
i1, ..,0;n—s, in which the preceding parametets, (k),...,0;,—;(k) for i =1,...,i — 1 are injected from

the i — 1 previous algorithms. The deflation procedure is achieveddypled stochastic gradient algorithms

01(k+1) 01 (k) f1(01(k),x(k))
N . (VI.1)

or(k+ 1) ar(k) fr(al(k:)""aar(k)’x(k))

with 6, déf [91‘71, o ,Hi,nfi]T and fl-(Gl, .., 8, X) déf ng (WZTXXTWZ‘) = 2V97’ (WZT)X

x'w;, i =1,...,r. This rather intuitive computational process was confirfggimulation results [60]. Later
a formal analysis of the convergence and performance haal ppedormed in [23] where it has been proved
that the stationary points of the associated ODE are glplaalymptotically stable (see Subsection VII-A) and
that the stochastic algorithm (V1.1) converges almost Iguie these points for stationary datdk) when i

is decreasing withimy_, 1 = 0 and ), = co. We note that this algorithm yields exactly orthonormal
r dominant or minor estimated eigenvectors by a simple chafigggn in its step size, and requirésnr)
operations at each iteration but without accounting forttigonometric functions.

Alternatively, a stochastic gradient-like algorithm detbDirect Adaptive Subspace EstimatigPASE)
has been proposed in [61] with a direct parametrization ef dlgenvectors by means of their coefficients.
Maximization or minimization (I1.3) is performed with theelp of a modification of the classical stochastic
gradient algorithm to assure an approximate unit norm offite¢ estimated eigenvectow(k) (in fact a
rewriting of Oja’s neuron (IV.1)). Then, a modification ofetltlassical stochastic gradient algorithm using a

—sin 01',]' COs 01',]'

8 . . . - . .
Note that this parametrization extends immediately to thmmlex case using the kernel ;. ib - .
P y i 9 % €' cos 0;; e'®ii gin 0;;
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deflation procedure, inspired by the constrawit W = I,. gives the estimatedw; (k))i=2, .. »

wi(k+1) = wi(k) % [x(0)x" (k) — (W] (k)x(k)x (kw1 (k)] wi (k)

wi(k+1) = wy(k) £ ug [X(k)XT(k‘) — (WZT(k)X(k)XT(k)WZ(k))

i—1
L, — Y wjk)w] (k) | | wi(k) fori=2,...,r (VI.2)
j=1

This totally empirical procedure has been studied in [6Rhds been proved that the stationary points of the
associated ODE are all eigenvector bages; , ..., +u;, }. Using the eigenvalues of the derivative of the mean
field (see Subsection VII-A), it is shown that all these eigsator bases are unstable excéptu, } for r =1
associated with the sign "+" (where algorithm (V1.2) is Gjaeuron (IV.1)). But a close examination of these
eigenvalues that are all real-valued, shows that for ordyeigenbasi§tu,, ..., £u, } and{tu,, ..., tu,—,41}
associated with the sign "+" and "-" respectively, all thgesivalues of the derivative of the mean field are
strictly negative except for the eigenvalues associateél variations of the eigenvectofstu,, ..., +u,} and
{xu,,...,+u,_,4+1} in their directions. Consequently, it is claimed in [62] tifathe norm of each estimated
eigenvector is set to one at each iteration, the stabilitthefalgorithm is ensured. The simulations presented

in [61] confirm this intuition.

B. Eigenvector power-based methods

Note that similarly to the subspace criterion (I.7), thexmgzation or minimization of the weighted
subspace criterion (11.8Y (W) def Tr(QWTC (k)W) subject to the constraif®v’ W = I,. can be solved by
a constrained gradient-descent technique. Clearly, thplsst selection foC(k) is the instantaneous estimate
x(k)xT (k). Because in this cas&w.J = 2x(k)x’ (k)WE, we obtain the following stochastic approximation
algorithm that will be a starting point for a family of algtirims that have been derived to adaptively estimate

majorant or minor eigenvectors
W(k 4 1) = {W(k) + wmex(k)x? (k)W (k)Q}G(k + 1), (VI.3)

in which W (k) = [wy(k),...,w,(k)] and the matrix? is a diagonal matriDiag(ws, ...,w,) With w; > ... >

wr > 0. G(k + 1) is a matrix depending on
W (k + 1) € W(k) + pex(k)xT (k)W (k)Q2,

which orthonormalizes or approximately orthonormalizeés tolumns of W/(k + 1). Thus, W (k) has
orthonormal or approximately orthonormal columns for fallDepending on the form of matri&(k + 1),
variants of the basic stochastic algorithm are obtainedn@back to the general expression (V.4) of the

subspace power-based algorithm, we note that (VI.3) cantasderived from (V.4), where different step sizes
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Hgwi, -, pw, are introduced for each column &V (k).
Using the same approach as for deriving (V.5), i.e., wh@(é + 1) is the symmetric square root inverse of

W’T(k + 1)W'(k + 1), we obtain the following stochastic approximation alduomit

W(k+1) = W(k)+ p[x(k)xT (k)W (Ek)Q — %W(k)QWT(k)x(k)xT(k)W(k)

_ %W(k;)WT(k:)x(k)xT(k:)W(k)Q]. (V1.4)

Note that in contrast to the Oja’s algorithm (V.5), this aigom is different from the algorithm issued from
the optimization of the cost functiof(W) o Tr[QWTx(k)xT (k)W] defined on the set af x r orthogonal
matricesW with the help of continuous-time matrix algorithms (see..g[®l, Ch. 7.2], [19, Ch. 4] or (X.7)

in Exercice X)).
W (k+1) = W(k) £ i [x(k)x" (k)W (k)Q — W(k)QWT (k)x(k)x” (k)W (k)] . (VL.5)

We note that these two algorithms reduce to the Oja’s algorifv.5) for Q2 = I,. and to Oja’s neuron (IV.1) for
r = 1, which of course is unstable for tracking the minorant eigetors with the sign "-". But to the best of
our knowledge, no complete theoretical performance aisabfghese two algorithms has been carried out until
now. Techniques used for stabilizing Oja’s algorithm (M&) minor subspace tracking, has been transposed
to stabilize the weighted Oja’s algorithm for tracking thénorant eigenvectors. For example, in [V (k) is
forced to be orthonormal at each time steas in [2] (see Exercice X) with th®MICA-OQja algorithmand
the MCA-OOQjaH algorithmusing Householder transforms. Note, that by proving a sonrof the distance to
orthonormality W (k)W (k) — I,||%,, from a non-orthogonal matri¥¥ (0), it has been shown in [10], that
the latter algorithm is numerically stable in contrast te thrmer.

Instead of deriving a stochastic approximation algorithamf a specific orthonormalization mat(k + 1),

an analogy with Oja’s algorithm (V.5) has been used in [53fi¢vive the following algorithm
W(k + 1) = W(k) £ py, [x(k)x" (k)W (k) — W (k)QWT (k)x(k)x (k)W (k)] . (V1.6)

It has been proved in [54], that for tracking the dominantaigctors (i.e., with the sign "+"), the eigenvectors
{#uy,...,+u,} are the only locally asymptotically stable points of the OB&Sociated with (VI.6).

If now the matrixG(k + 1) performs the Gram-Schmidt orthonormalization on the caolsimaf W' (k + 1),
an algorithm, denote®&tochastic Gradient Ascef8GA) algorithm, is obtained if the successive columns of

matrix W (k + 1) are expanded, assumipg sufficiently small. By omitting theD(n:7) term in this expansion,
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we obtain [50] the following algorithm

1

i

wilk +1) = wilk) + aign, | L = wilk)w] (k) = (14 Sy, (k)w] (k)
=1 ‘
x(k)xT (k)yw;(k) fori=1,...,r. (VL.7)
where hereQ = Diag(aq, ag, ..., a,) with «; arbitrary strictly positive numbers.

The so calledseneralized Hebbian AlgorithfGHA) is derived from Oja’s algorithm (V.5) by replacing the
matrix W7 (k)x(k)x” (k)W (k) of Oja’s algorithm by its diagonal and superdiagonal only:

Wk +1) = W(k) + pi[x(k)x" (k)W (k) — W (k)upper(W" (k)x(k)x" (k)W (k)]

in which the operator “upper” sets all subdiagonal elemefta matrix to zero. When written columnwise,
this algorithm is similar to the SGA algorithm (VI1.7) wherg = 1, i = 1,..,r, with the difference that there

is no coefficient 2 in the sum:
wi(k+1) =w;(i) + px |:In - ij(k:)W]T(k‘)] x(k)xT (k)yw;(k) fori=1,...,r (V1.8)
j=1

Oja et al [53] proposed an algorithm denot&tleighted Subspace Algorith(d/SA), which is similar to the

Oja’s algorithm, except for the scalar parametgys. .., 5,

2

wi(k+1) = wi(k) + ug |:In - XT: ijj(k‘)wf(k:):| x(k)xT (k)yw;(k) fori=1,...,r, (VI1.9)
j=1

with 51 > ... > B, > 0. If 5; =1 for all 4, this algorithm reduces to Oja’s algorithm.

Following the deflation technique introduced in tlelaptive Principal Component ExtractiofAPEX)
algorithm [41], note finally that Oja’s neuron can be dirgcdapted to estimate theprincipal eigenvectors
by replacing the instantaneous estimatéi:)x” (k) of C.(k) by x(k)x” (k)[L, — Yi_] w;(k)w! (k)] to
successively estimate;(k), i = 2,...,r

i—1
wi(k+1) = w;(i)+ pg [In — Wz(k:)WZT(k:)] X(k)XT(k:) !In — ij(k:)wf(k‘)]
j=1
w;(k) fori=1,...,r.

Minor component analysis was also considered in neuralor&smo solve the problem of optimal fitting in
the total least square sense. &al.[78] introduced thé@ptimal Fitting Analyze(OFA) algorithm by modifying

the SGA algorithm. For the estimate, (k) of the eigenvector associated with the smallest eigenyahie
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algorithm is derived from the Oja’s Neuron (IV.1) by replagix(k)x” (k) by I,, — x(k)x (k), viz
wi(k +1) = wp (k) + pll, — Wn(k)wg(k)][ln - X(k)XT(k)]Wn(k)a
and fori =n,...,n —r + 1, his algorithm reads
wilk +1) = wi(k) + e ([L — w(k)w" (0)][L, — x(k)x" (k)]
8> wt,iwfix(k)xT(k)> w;(k). (VI.10)
i=k+1
Oja [52] showed that, under the conditions that the eigemmlare distinct, and thak, ,,; < 1

and 5 > % — 1, the only asymptotically stable points of the associatedEO&)e the eigenvectors

{xvn,...,£vh_r11}. Note that the magnitude of the eigenvalues must be coatrall practice by normalizing
x(k) so that the expression between brackets in (VI1.10) becorme®mgeneous.

The derivation of these algorithms seems empirical. In, ety have been derived from slight modifications
of the ODE (VII.8) associated with the Oja’s neuron in orderkeep adequate conditions of stability (see
e.g., [562]). It was established by Oja [51], Sanger [66] and & al [54] for the SGA, GHA and WSA
algorithms respectively, that the only asymptoticallyb&apoints of their associated ODE are the eigenvectors
{xv1,...,+v,.}. We note that the first vectok (= 1) estimated by the SGA and GHA algorithms, and the
vector ¢ = k = 1) estimated by the SNL and WSA algorithms gives @enstrained Hebbian learning rule
of the basic PCA neuron (IV.1) introduced by Oja [49].

A performance analysis of different eigenvector poweredaalgorithms has been presented in [22]. In
particular, the asymptotic distribution of the eigenveastimates and of the associated projection matrices
given by these stochastic algorithms with constant stee gifor stationary data has been derived, where
closed-form expressions of the covariance of these digioibs has been given and analyzed for independent
Gaussian distributed data(k). Closed-form expressions of the mean square error of thesmators has
been deduced and analyzed. In particular, they allow us ¢gifspthe influence of the different parameters
(avg,...,ap), (B1,...,0r) and g of these algorithms on their performance and to take int@aactradeoffs
between the misadjustment and the speed of convergencexahmpée of such derivation and analysis is given
for the Oja’s Neuron in Subsection VII-C1.

1) Eigenvector power-based methods issued from expoheavitidows: Using the exponential windowed
estimates (111.5) ofC,(k), and following the concept of power method (11.9) and thesp#tize deflation technique
introduced in [41], the following algorithm has been progdsn [37]

wik+1) = Cik)wi(k) (VI.11)

wi(k 4+ 1)/|lwi(k 4 1)|2, (V1.12)
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whereC;(k) = BC;(k— 1) +x(k)xT (k)[L, — >-'_} w;(k)w? (k)] for i = 1, .., 7. Applying the approximation

wi(k) ~ C;(k — 1)w;(k) in (VI.11) to reduce the complexity, (VI.11) becomes

)

wi(k + 1) = pwj(k) +x(k)[g: (k) — y7 (k)ci(k)] (VI.13)

with g; (k) % x7 (k)wi(k), yi(k) < [wi(k), ..., wi1 (k)] Tx(k) ande; (k) % [w1(k), ..

L wi_1(k)]Tw;(k). Equations (VI1.13) and (VI.11) should be run successivelyif=1,...,r at each iteration
k.
Note that an up to a common factor estimate of the eigenvalugs+ 1) of C,(k) can be updated as

follows. From (VI.11), one can write

Ai(k +1) ¥ Wl (k)Cy(k)wy (k) = w! (k)w!(k + 1). (VI.14)

(2

Using (VI.13) and applying the approximations(k) ~ w! (k)w’(k) andc;(k) ~ 0, one can replace (VI.14)
by
Xi(k +1) = Bxi(k) + |gi(F) P,

that can be used to track the ranland the signal eigenvectors, as in [71].

C. Projection approximation-based methods

A variant of the PAST algorithm, named PASTd and presentg¢ddh allows one to estimate thedominant
eigenvectors. This algorithm is based on a deflation teciknidpat consists in estimating sequentially the
eigenvectors. First the most dominant estimated eigeorect(k) is updated by applying the PAST algorithm
with » = 1. Then the projection of the current datdk) onto this estimated eigenvector is removed from
x(k) itself. Because now the second dominant eigenvector bextimemost dominant one in the updated data
vector € [(x(k) — vivix(k))(x(k) — vivi x(k))T] = C,(k) — Aiviv]), it can be extracted in the same way
as before. Applying this procedure repeatedly, all thdominant eigenvectors and the associated eigenvalues
are estimated sequentially. These estimated eigenvalagsmused to estimate the rankf it is not known
a priori [71]. It is interesting to note that for = 1, the PAST and the PASTd algorithms, that are identical,
simplify as

wik+1) = w(k) + L, — wlk)w” ()]x(k)x" (k)w(k), (V1.15)

wherep;, = % with o2(k+1) = Bo2(k) +y*(k) andy(k) ©F W (k)x(k). A comparison with Oja’s neuron

(IV.1) shows that both algorithms are identical except fug step size. While Oja’s neuron uses a fixed step
size u which needs careful tuning, (VI.15) implies a time varyirsglf-tuning step size:;. The numerical
experiments presented in [70] show that this deflation piome causes a stronger loss of orthonormality

betweenw;(k) and a slight increase of the error in the successive estimajé:). By invoking the ODE
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approach (see Section VII-A), it has been proved in [72] tatignary signals and other weak conditions, the
PASTd algorithm converges to the desiredominant eigenvectors with probability one.

In contrast to the PAST algorithm, the PASTd algorithm carubed to estimate the minor eigenvectors by
changing the sign of the step size with an orthonormalinatibthe estimated eigenvectors at each step. It has
been proved [64] that fof = 1, the only locally asymptotically stable points of the asatsxd ODE are the
desired eigenvectorstv,,, ..., £v,_,+1}. To reduce the complexity of the Gram-Schmidt orthonornagion

step used in [64], [9] proposed a modification of this part.

D. Additional methodologies

Among the other approaches to adaptively estimate the wgeors of a covariance matrix, thdaximum
Likelihood Adaptive Subspace EstimatidnALASE) [18] provides a number of desirable features. Ibased
on the adaptive maximization of the log-likelihood of the BEYfarameters associated with the covariance matrix

C, for Gaussian distributed zero-mean datg). Up to an additive constant, this log-likelihood is given by

L(W,A) = —In(detC,)—xT(k)C, 'x(k)
= —zn:ln()\i)—xT(k)WA_lex(k), (VI.16)
=1

whereC, = WAWT represents the EVD df, with W an orthogonah x n matrix andA = Diag(\y, ..., Ay ).
This is a quite natural criterion for statistical estimatipurposes, even if the minimum variance property
of the likelihood functional is actually an asymptotic pesty. To deduce an adaptive algorithm, a gradient
ascent procedure has been proposed in [18] in which a newxdatais used at each time iteratioh of
the maximization of (VI.16). Using the differential df(W, A) defined on the manifold of x n orthogonal
matrices (see [21, pp. 62-63] or Exercice X (X.7)), we obthi& following gradient ofL(W, A)

VwL = WA y(R)y" (k) —y(k)y" (F)A7'],
VaL = —A~'+ A 2Diag(y(k)y (k)),
wherey (k) dof W7Tx(k). Then, the stochastic gradient updateWf yields
W (k + =W (k) +0x W (k) [A™ (k)y (k)y " (k) —y (k)y" (k)A™" (k)] (VI.17)
A(k + 1)=A(k)+pu),[A~? (k)Diag(y (k)y” (k) — A~ (k)] (VI.18)

where the step sizeg;, and p) are possibly different. We note that, starting from an amtironal matrix
W(0), the sequence of estimat® (k) given by (VI1.17) is orthonormal up to the second-order tenmuj,
only. To ensure in practice the convergence of this algaritits has been shown in [18] that it is necessary to

orthonormalize quite ofteW (k) to compensate for the orthonormality drift @(y2). Using continuous-time
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system theory and differential geometry [21], a modificatad (VI.17) has been proposed in [18]. It is clear

that Vw L is tangent to the curve defined by
W(t) = W(0)exp [t (A y(k)y” (k) — y(k)y" (k)A™)]

for t = 0, where the matrix exponential is defined e.g., in [34, chdp. BEurthermore, we note that this curve
lies in the manifold of orthogonal matrices W (0) is orthogonal becausep(A) is orthogonal if and only
if A is skew-symmetri¢A” = —A) and matrixA~'y(k)y” (k) — y(k)y” (k)A~! is clearly skew-symmetric.
Moving on the curvéW (¢) from point¢ = 0 in the direction of increasing values 8w L amounts to letting

t increase. Thus, a discretized version of the optimizatioh(@V, A) as a continuous function aV is given

by the following update scheme
Wk +1) = W(k)exp [ (A (R)y(k)y" (k) —y(k)y" (k) A~ (K))] , (V1.19)

and the coupled update equations (VI.18) and (VI.19) forea MALASE algorithm. As mentioned above
the update factoexp [u; (A1 (k)y(k)y” (k) — y(k)y” (k)A~'(k))] is an orthogonal matrix. This ensures
that the orthonormality property is preserved by MALASE althm, provided that the algorithm is ini-
tialized with an orthogonal matri¥ (0). However, it has been shown by numerical experiments pteden
in [18], that it is not necessary to ha& (0) orthogonal to ensure the convergence, since MALASE
algorithm steersW (k) towards the manifold of orthogonal matrices. The MALASE aaithm seems to
involve high computational cost, due to the matrix expornthat applies in (V1.19). However, since
exp [pue (A1 (k)y(k)y” (k) — y(k)y" (k)A~'(k))] is the exponential of a sum of two rank one matrices,
the calculation of this matrix requires onty(n?) operations [18]. Originally, this algorithm that updatés t
EVD of the covariance matriXC, (k) can be modified by a simple preprocessing to estimate theipah

or minor r signal eigenvectors only, when the remaining- » eigenvectors are associated with a common
eigenvalues?(k) (see Subsection Ill-A). This algorithm, denoted MALAGE requiresO(nr) operations by
iteration. Finally, note that a theoretical analysis ofv@mgence has been presented in [18]. It is proved that in
stationary environments, the stationary stable pointshefalgorithm (VI1.18),(VI1.19) correspond to the EVD
of C,. Furthermore, the covariance of the asymptotic distridsutdf the estimated parameters is given for
Gaussian independently distributed dat#) using general results of Gaussian approximation (see Stibise
VII-B).

E. Particular case of second-order stationary data

Finally, note that forx(k) = [z(k),z(k — 1),...,z(k — n + 1)]7 comprising of time delayed versions of
scalar valued second-order stationary dath), the covariance matriC, (k) = E[x(k)x” (k)] is Toeplitz and

consequently centro-symmetric. This property occurs ipdrtant applications: temporal covariance matrices
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obtained from a uniform sampling of a second-order statpsaynals, and spatial covariance matrices issued
from uncorrelated and band-limited sources observed onn&raceeymmetric sensor array (for example on
uniform linear arrays). This centro-symmetric structui€g allows us to use for real-valued data, the property
[14] that its EVD can be obtained from two orthonormal eigesds of half-size real symmetric matrices. For

example ifn is even,C, can be partitioned as follows

c, cf
C, JC.J

C, =

whereJ is ann/2 x n/2 matrix with ones on its anti-diagonal and zeroes elsewh&ren, then unit 2-norm

w
eigenvectorsv; of C, are given byn/2 symmetric andn/2 skew symmetric vectors; = ’

S

61‘.]111‘
wheree; = =+1, respectively issued from the unit 2-norm eigenvectoysof C; + ¢,JCs = SE[(X/(k) +

e Ix7 (k) (%' (k) + e.Ix” (k))T] with x(k) = [x'T (k),x”T (k)]7. This property has been exploited [23], [26] to
reduce the computational cost of the previously introdueigénvectors adaptive algorithms. Furthermore, the
conditioning of these two independent EVD is improved wiglspect to the EVD ofC, since the difference
between two consecutive eigenvalues increases in geri@raipared to the estimators that do not take the
centro-symmetric structure into account, the performangght to be improved. This has been proved in [26],
using closed-form expressions of the asymptotic bias andriance of eigenvectors power-based estimators
with constant step size derived in [22] for independent Gaussian distributed ddta). Finally, note that the
deviation from orthonormality is reduced and the convecgespeed is improved, yielding a better tradeoff

between convergence speed and misadjustment.

VIl. CONVERGENCE AND PERFORMANCE ANALYSIS ISSUES

Several tools may be used to assess the "convergence" amktftmance of the previously described

algorithms. First of all, note that despite the simplicitytoe LMS algorithm (see e.qg., [35])
w(k +1) = w(k) + px(k)ly (k) — x" (k)w(k)],

its convergence and associated analysis has been the tsabjaany contributions in the past three decades
(see e.g., [67] and references therein). However, in-déq@bretical studies is still a matter of utmost interest.
Consequently, due to their complexity with respect to theS.klgorithm, results about the convergence and
performance analysis of subspaces or eigenvectors tiaekihbe much weaker.

To study the convergence of the algorithms introduced inpileeious two sections from a theoretical point

of view, the datax(k) will be supposed stationary and the step sizewill be considered as decreasing. In

®Note that for Hermitian centro-symmetric covariance neasi such property does not extend. But any eigenvectaatisfies the
relation[v;], = ez¢i[v~ﬂn—k, that can be used to reduce the computational cost by a factor
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these conditions, according to the addressed problem, somgions arise. Does the sequeNWék) W (k)
converge almost surely to the sigidl or the noise projectd,, and does the sequen®é’ (k)W (k) converge
almost surely tdl, for the subspace tracking problem or does the sequ®¥i¢k) converge to the signal or
the noise eigenvectoristuy, ..., +u,] or [fu,_,41, ..., £u,] for the eigenvectors tracking problems? These
gquestions are very challenging, but using the stabilityhef 4ssociated ODE, a partial response will be given
in Subsection VII-A.

Now, from a practical point of view, the step size sequengés reduced to a "small" constaptto track
signal or noise subspaces (or signal or noise eigenveatitfs)possible nonstationary datg k). Under these
conditions, the previous sequences do not converge almoslysany longer even for stationary datak).
Nevertheless, if for stationary data, these algorithms/eaye almost surely with a decreasing step size, their
estimated (k) (W (k)WT (k), WT' (k)W (k) or W (k) according to the problem) will oscillate around their limit
0. (I, or IL,, L, [+uy,...,+u,] or [fu,—y41, ..., £u,], according to the problem) with a constant "small"
step size. In these later conditions, the performance ohldparithms will be assessed by the covariance matrix
of the errors(0(k) — 8.) using some results of Gaussian approximation recalled bs&ation VII-B.

Unfortunately, the study of the stability of the associa®dE and the derivation of the covariance of the
errors are not always possible due to their complex formthdse cases, the "convergence" and the performance
of the algorithms for stationary data will be assessed by dirder analysis using coarse approximations. In
practice, this analysis will be only possible for indepemtd#atax (k) and assuming the step sig€'sufficiently
small" to keep terms that are at most of the ordep.ah the different used expansions. An example of such
analysis has been used in [29] and [74] to derive an apprdgiragpression of the mean of the deviation
from orthonormalityE[W7 (k)W (k) — I,] for the estimatéW (k) given by the FRANS algorithm (described
in Subsection V-A2) that allows to explain the differencebiehavior of this algorithm when estimating the

noise and signal subspaces.

A. A short review of the ODE method

The so-called ODE [42], [13] is a powerful tool to study theymptotic behavior of the stochastic

approximation algorithms of the general fdfin
O(k + 1) = (k) + pi.f (0(k), x(k)) + pih(8(k), x(k)), (ViL.1)

with x(k) = g(&(k)), where€ (k) is a Markov chain that does not depend@ry (6, x) andh(0,x) are "regular
enough" functions, and whefe, )< iS @ positive sequence of constants, converging to zerosatisfying

the assumptior) °, u,, = oo. Then, the convergence properties of the discrete timéhastic algorithm (VII.1)

%The most common form of stochastic approximation algorithoorresponds tdu(.)

= 0. This residual perturbation term
wih(0(k),x(k)) will be used to write the trajectories governed by the esttharojectorP (k) =

W(EYWT (k).
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is intimately connected to the stability properties of thetedministic ODE associated with (VII.1), which is
defined as the first-order ordinary differential equation

do(t)

L0 (Vi1.2)

where the functionf(0) is defined by
i def

f(0) = E[f(6,x(k))], (VI1.3)
where the expectation is taken only with respect to the a#tg and 6 is assumed deterministic. We first
recall in the following some definitions and results of sigbtheory of ODE (i.e., the asymptotic behavior of
trajectories of the ODE) and then, we will specify its cortimtto the convergence of the stochastic algorithm
(VII.1). The stationary pointsof this ODE are the value8, of @ for which the driving termf(8) vanishes;
hence the term stationary ponts. This giyé8.) = 0, so that the motion of the trajectory ceases. A stationary
point 8, of the ODE is said to be

« stableif for an arbitrary neighborhood .., the trajectoryd(t) stays in this neighborhood for an initial
condition#(0) in another neighborhood d,;

« locally asymptotically stablé there exists a neighborhood éf. such that for all initial condition®(0)
in this neighborhood, the ODE (VII.2) forceXt) — 0. ast — oc;

« globally asymptotically stablé for all possible values of initial condition8(0), the ODE (VII.2) forces
0(t) — 0, ast — oc;

« unstableif for all neighborhoods 0#.., there exists some initial valu#0) in this neighborhood for which

the ODE (VII.2) do not forced(t) to converge td, ast — co.

Assuming that the set of stationary points can be derived, standard methods are used to test for stability.
They are summarized in the following. The first one consistsinding a Lyapunov functiorn’.(8) for the
differential equation (VI11.2), i.e., a positive valued fttion that is decreasing along all trajectories. In thise¢cas
it is proved (see e.g., [12]) that the set of the stationarmnipd, are asymptotically stable. This stability is
local if this decrease occurs from an initial conditi@(0) located in a neighborhood of the stationary points
and global if the initial condition can be arbitrary. @, is a (locally or globally) stable stationary point, then
such a Lyapunov function necessarily exists [12]. But foneyal nonlinear functiong(8), no general recipe
exists for finding such a function. Instead, one must try meawydidate Lyapunov functions in the hopes of
uncovering one which works.

However, for specific functiong (@) which constitute negative gradient vectors of a positivaacfunction
J(0):

f(0) = —VgJ with J >0,
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then, all the trajectories of the ODE (VII.2) converge to $iet of the stationary points of the ODE (see Exercice
X). Consequently, the set of the stationary points is glgbadymptotically stable for this ODE.

The second method consists in a local linearization of thee@WII.2) about each stationary poik, in
which case a stationary point is locally asymptoticallybtaif and only if the locally linearized equation

is asymptotically stable. Consequently the final conclusamnounts to an eigenvalue check of the matrix

%‘0:0*. More precisely (see Exercice X), 9*7 € R™ is a stationary point of the ODE (VII.2), and
v, ..., Uy are the eigenvalues of the x m matrix %%m\e:o , then (see Exercice X or [12] for a formal proof)

« if all eigenvalues, ..., v, have strictly negative real part8, is a locally asymptotically stable point;
« if there existsy; amonguy, ..., v, such thatk(v;) > 0, 6, is an unstable point;
« if for all eigenvalues/, ..., v, R(v;) < 0 and for at least one eigenvalug amongvy, ..., vy, R(v;,) =0,

we cannot conclude.

Considering now the connection between the stability pittgseof the associated deterministic ODE (VI11.2)
and the convergence properties of the discrete time stoclagorithm (VII.1), several results are available.
First, the sequenc@(k) generated by the algorithm (VIl.1) can only converge almmgely [42][13] to a
(locally or globally) asymptotically stable stationaryipioof the associated ODE (VIl.2). But deducing some
convergence results about the stochastic algorithm (Vfdm the stability of the associated ODE is not
trivial because a stochastic algorithm have much more cexngsymptotic behavior than a given solution of
its associated deterministic ODE. However under addititezhnical assumptions, it is proved [31] that if the
ODE has a finite number of globally (up to a Lebesgue measuresat of initial conditions) asymptotically
stable stationary point®,,);—: .4 and if each trajectory of the ODE converges towards one cfeth@oints,
then the sequend® k) generated by the algorithm (VII.1) converges almost sui@lgne of these points. The
conditions of the result are satisfied in particular if theamdield f(8) can be written ag(8) = —V.J where
VJ is a positive valued function admitting a finite number ofdbminima. In this later case, this result has
been extended for an infinite number of isolated minima if.[32

In adaptive processing, we do not wish a decreasing stegsqgeence, since we would then lose the tracking
capability of the algorithms. To be able to track the possin stationarity of the data(k), the sequence of
step size is reduced to a "small* constant parametdn this case, the stochastic algorithm (VII.1) does not
converge almost surely even for stationary data and theaigoresults concerning the asymptotic behavior
of (VII.1) are less powerful. However, when the set of allbd&apoints(6.,);—1,.. 4 of the associated ODE
(VI1.2) is globally asymptotically stable (up to a zero meeesset of initial conditions), the weak convergence
approach developed by Kushner [43] suggests that for a ¢airffly small” i, (k) will oscillate around one
of the limit pointsé,, of the decreasing step size stochastic algorithm. In paaticone should note that, when
there exist more than one possible limits## 1), the algorithm may oscillate around one of thém, and then

move into a neighborhood of another equilibrium pait. However, the probability of such events decreases
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to zero asu — 0, so that their implication is marginal in most cases.

B. A short review of a general Gaussian approximation result

For constant step size algorithms and stationary data, Weuse the following result proved in [13, th.2,
p.108] under a certain number of hypotheses. Consider th&taot step size stochastic approximation algorithm
(VII.1). Suppose tha®(k) converges almost surely to the unique globally asymptibyiciable point6. in
the corresponding decreasing step size algorithm. Theh,(#) denotes the value @& (k) associated with the
algorithm of step size:, we have when, — 0 andk — oo (where£> denotes the convergence in distribution

and N (m, C,), the Gaussian distribution of mean and covariance,,)

# (0,,(k) — 8,) 5 N (0,C) | (VIL4)

where Cy is the unigue solution of the continuous-time Lyapunov ¢igna

DCy + C¢D! + G = O, (VIL.5)

whereD andG are, respectively, the derivative of the mean figl@) and the following sum of covariances
of the field f(8,x(k)) of the algorithm (VII.1):

aet df(6) ~aer Ofi(6)
D s (01 %) e
GE Y Cov{ (0., x(k), F(0.,x(0)} = Y E{[f(0.,x(k))][f(8.,x(0))]"}. (VIL7)
k=—00 k=—o00

Note that all the eigenvalues of the derivatideof the mean field have strictly negative real parts sifgas

an asymptotically stable point of (VII.2) and that for inéeplent data(k), G is simply the covariance of the
field. Unless we have sufficient information about the dataictvis often not the case, in practice we consider
the simplifying hypothesis of independent identically Gsian distributed data(k).

It should be mentioned that the rigorous proof of this reéult.4) needs a very strong hypothesis on the
algorithm (VI1.1), namely tha®(k) converges almost surely to the unique globally asymptityistable point
0. in the corresponding decreasing step size algorithm. Hewelre practical use of (VII.4) in more general
situations is usually justified by using formally a generéfludion approximation result [13, th.1, p.104].

In practice,u is "small" and fixed, but it is assumed that the asymptotitridistion of . ~/2 (6,,(k) — 6..)
when k tends tooo can still be approximated by a zero mean Gaussian diswibudf covarianceCy, and
consequently that for "large enougRk; the distribution of the residual errqf,(k) — 6.) is a zero mean
Gaussian distribution of covariangaCy where Cy is solution of the Lyapunov equation (VII.5). Note that
the approximatior[(0,,(k) — 6.)(0,.(k) — 6.)T] ~ uCy enables us to derive an expression of the asymptotic

bias E[6,(k)] — 8, from a perturbation analysis of the expectation of both side (VIl.1) when the field
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f(0(k),x(k)) is linear inx(k)x” (k). An example of such a derivation is given in Subsection V1l-(26] and
Exercice X.

Finally, let us recall that there is no relation between tlsynaptotic performance of the stochastic
approximation algorithm (VII.1) and itsonvergence rateAs it is well known, the convergence rate depends
on the transient behavior of the algorithm, for which no gaheesult seems to be available. For this reason,
different authors (e.g., [22],[26]) have resorted to s@atioihs to compare the convergence speed of different
algorithms whose associated step sizesre chosen to provide the same value of the mean square error
El|(6,,(k) — 6.)]}2 ~ uTr(Cy).

C. Examples of convergence and performance analysis

Using the previously described methods, two examples ofergence and performance analysis will be
given. Oja’s neuron algorithm as the simplest algorithnl aflow us to present a comprehensive study of an
eigenvector tracking algorithm. Then the Oja’s algorithnll be studied as an example of a subspace tracking
algorithm.

1) Convergence and performance analysis of the Oja’s neu@onsider Oja’s neuron algorithms (IV.1) and

(IV.3) introduced in Section IV. The stationary points o&thassociated ODE

dv;—it) = C,w(t) — w(t)[w(t) Cow(t)] [resp.— Cow(t) + w(t)[w(t)T Cow(t)]] (VI1.8)

are the roots ofC,w = w[w’C,w]| and thus are clearly given by-uy)k=1,... TO study the stability of
these stationarity points, consider the derivafivg of the mean fieldC,w — w[w’ C,w] [resp.,—C,w +

wlw’ C,w]] at these points. Using a standard first order perturbati@npbtain

Dy (+u;) = C,— (wlC,w)I, — 2WWTCx|w:iuk

resp, —C, + (W C,w)I,, + 2waCm|W:iuk].

Because the eigenvaluesbf, (+uy) are =2\, (A — Ag)izk [resp.,2A,, —(Xi — Ax)izx], these eigenvalues are

all real negative fok = 1 only, for the stochastic approximation algorithms (IV.ib) contrast to the stochastic
approximation algorithms (IV.3) for whicB, (+uy,) has at least one nonnegative eigenvalue. Consequently only
+u, is locally asymptotically stable for the ODE associatechwlv.1) and all the eigenvectoristuy,)r—1,. »

are unstable for the ODE associated with (IV.3) and thus @iMyl) (Oja’s neuron for dominant eigenvector)
can be retained.

Note that the coupled stochastic approximation algoritliivid)(IV.2) can be globally written as (VII.1) as
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well. The associated ODE, given by

d [ w(t) C,w —ww!C,w
- — VII.9
dt ( At) ) ( wlCyw — A ) Vi9)

has the pair§t+uy, \;)i=1,.., as stationary points. The derivati¥® of the mean field at theses points is given

D — Dw(:l:uk) 0
2ufC, -1

whose eigenvalues are2);, (\; — A;)izr and —1. Consequently the paif+u;, A;) is the only locally

by

asymptotically stable point for the associated ODE (VIES)well.

More precisely, it is proved in [49] that #&(0)"u; > 0 [resp.,< 0], the solutionw(¢) of the ODE (VI1.2)
tends exponentially ta; [resp.,—u;] ast — oo. The pair(+uy, A1) is thus globally asymptotically stable for
the associated ODE.

Furthermore, using the stochastic approximation theodiarparticular [43, th.2.3.1], it is proved in [50]
that Oja’s neuron (IV.1) with decreasing step sjzg converges almost surely tpu; or —u; ask tends to
Q.

We have now the conditions to apply the Gaussian approximaésults of Subsection VII-B. To solve the

Lyapunov equation, the derivatid® of the mean field at the paittu, A1) is given by

D — Cx — )\1171 — 2)\111111? 0 .
2)\1u1T —1

In the case of independent Gaussian distributed g&&ta, it has been proved ([22] [26]) that the covariance

G (VIL.7) of the field is given by
Gw O
G— pr—
( o7 2x2 )

with Gw =11, A A;uul. Solving the Lyapunov equation (VII.5), the following asgtatic covarianceCg

is obtained ([22][26])
Cw O
Co= ol N2

with Cw = Y7, grx25ywiu/ - Consequently the estimatés/(k), A(k)) of (£ui, A1) given by (IV.1) and
(IV.2) respectively, are asymptotically independent arai§sian distributed with

n

E(|[w(k) = (Fu)[*) ~ D 5 PALA;

i=2 !

We note that the behavior of the adaptive estimategk), A\(k)) of (+uy, A1) are similar to the behavior of
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their batch estimates. More preciselwif k) and (k) denote now the dominant eigenvector and the associated

eigenvalue of the sample estimaf§k) = %Zlex(i)XT(i) of C,, a standard result [3, th.13.5.1, p.541)])

gives
VE (8(k) —6,) 5 N (0,Co), (VI1.10)
Cw O
with Cg = N , whereCy = Y1, | Aﬁﬁiv)zuiuf. The estimatesv (k) and\(k) are asymptotically
07 2?2 n

uncorrelated and the estimation of the eigenvalués well conditioned in contrast to those of the eigenvector
u; whose conditioning may be very bad wh&pand A\, are very close.

Expressions of the asymptotic biéisn;_,, E[@(k)] — 0, can be derived from (VII.4). A word of caution
is nonetheless necessary because the convergenege'6t(0,(k) — 6.) to a limiting Gaussian distribution
with covariance matrixCgy does not guarantee the convergence of its moments to thoskeolimiting
Gaussian distribution. In batch estimation, both the firgt the second moments of the limiting distribution of
VE (0(k) — 6,) are equal to the corresponding asymptotic moments for imniggnt Gaussian distributed data

x(k). In the following, we assume the convergence of the secoderanoments allowing us to write

E[(6,,(k) — 0:)] (8,(k) —6.)"] = uCo + o(p).

Let8,(k) = 0.+ 00, with 6, = o ) . Provided the data(k) are independent (which implies thet(k)
A

and x(k)x” (k) are independent) and, (k) is stationary, taking the expectation of both sides of (\ahd
(IV.2) givestt

E[C,(u; 4 6wy) — (11 + 6wp)(ur + 6wy) " Co(uy 4+ 6wy)] = 0
E[(u1 + 6wi) " Co(ur + 6wy) — (A1 +6A)] = 0.
Using a second-order expansion, we get after some algetma@idpulations
C,— ML, —2\uju!l 0 ] [ E(owy) }

2)\111’{ —1

o [ — (20 Cy + T(C,Co )L )uy } o

Tr(C,Cw)

Solving this equation irE(dwy) andE(d)\;) using the expression dfy,, gives the following expressions of

Mwe note that this derivation would not be possible for nolypomial adaptationg (6(k), x(k)).

June 6, 2016 DRAFT



39

the asymptotic bias

Blwi(k)] - u = —4 (Z ﬁ) w+o(n) and EA(R)] -\ = ofn).

i=2 ‘
We note that these asymptotic biases are similar to thosengot in batch estimation derived from a Taylor

series expansion [76, p.68] with expression (VII.10)Q@y.

—

Blw(b)] —w = — (Z ﬁ) wto(r) and EAK)] - A =op).
i=2 ¢

Finally, we see that in adaptive and batch estimation, thearsgof these biases are an order of magnitude
smaller that the variances @(u) or O(#).

This methodology has been applied to compare the thedretsyanptotic performance of several adaptive
algorithms for minor and principal component analysis i8][326]. For example, the asymptotic mean square
error E(|W (k) — W, ||%,,) of the estimateW (k) given by the WSA algorithm (V1.9) is shown in Figure 1,
where the step sizg is chosen to provide the same value fofr(Cg). We clearly see in this figure that the

value 35/31 = 0.6 optimizes the asymptotic mean square error/speed of cgenee tradeoff.

10" ¢ T T T T T T

WSA algorithm

2 | | | |

| | |
0 500 1000 1500 2000 2500 3000 3500 4000
Iteration Number

10

Figure 1 Learning curves of the mean square effgff W (k) — W.||%,,) averaging 100 independent runs for the WSA
algorithm, for different values of parametgs/5; = 0.96 (1), 0.9 (2), 0.1 (3), 0.2 (4), 0.4 (5) and0.6 (6) compared with
pTr(Cpg) (0) in the casen = 4, r = 2, C,, = Diag(1.75,1.5,0.5,0.25), where the entries 0W (0) are chosen randomly
uniformly in [0,1].

2) Convergence and performance analysis of Oja’s algoritl@onsider now Oja’s algorithm (V.5) described
in Subsection V-A. A difficulty arises in the study of the belwa of W (k) because the set of orthonormal bases
of the r-dominant subspace formscantinuumof attractors: the column vectors (k) do not in general tend

to the eigenvectora,, ..., u,, and we have no proof of convergenceWf(k) to a particular orthonormal basis
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of their span. Thus, considering the asymptotic distrdutdf W (k) is meaningless. To solve this problem, in
the same way as Williams [77] did when he studied the stghifitthe estimated projection matriR (k) def
W (k)W (k) in the dynamics induced by Oja’s learning equatﬁb‘gfi) = [I, - W(t)W()T|CW (1), viz

%f) = (In = P(#))CP(t) + P(1)C(L, — P(t)), (VII.11)

we consider the trajectory of the matdx(k) def W (k)WT' (k) whose dynamics are governed by the stochastic
equation
P(k+1) = P(k) + puf (P(k), x(k)xT (k) + pFh(P (k), x(k)x (k)) (VI1.12)

with f(P, C) def (I, - P)CP +PC(I, — P) andh(P,C) def (I, — P)CPC(I, — P). A remarkable feature

of (VI.12) is that the fieldf and the complementary teri depend only orP(k) andnot on W (k). This
fortunate circumstance makes it possible to study the &wolwf P (k) without determining the evolution of
the underlying matriXW (k). The characteristics d? (k) are indeed the most interesting since they completely
characterize the estimated subspace. Since (VII.11) hasgaiel global asymptotically stable poilt, = II;
[68], we can conjecture from the stochastic approximati@oty [13], [43] that (VII.12) converges almost surely
to P... And consequently the estimaW (k) given by (V.5) converges almost surely to the signal subsac
the meaning recalled in Subsection II-D.

To evaluate the asymptotic distributions of the subspaoggtion matrix estimator given by (VI.12), we
must adapt the results of Subsection VII-B because the paeai? (%) is here am xn rank+ symmetric matrix.
Furthermore, we note that some eigenvalues of the derevatithe mean fieldf(P) = E[f (P, x(k)x (k))]
are positive real. To overcome this difficulty, let us now sidler the following parametrization @ (k) in a
neighborhood ofP, introduced in [24], [25]. If{0;;(P)|1 < i < j < n} are the coordinates & — P, in the

orthonormal basigS; ;)i1<i<;j<» defined by

wul 1=
S. . —
bJ u;ul +u;uf )

= i<

with the inner product under consideration(i&, B) & Tr(ATB), then,

P=P,+ Z eijPSi,j
1<i,j<n
and6;;(P) = Tr{S;;(P — P,)} for 1 < ¢ < j < n. The relevance of this basis is shown by the following

relation proved in [24], [25]

P=P.+ Y  0;(P)S;+O(|P —P.o), (VI1.13)
(4.9)EP:
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where P def {(#,j) | 1 £i < j <nandi < r}. There are5(2n — r + 1) pairs in P; and this is exactly
the dimension of the manifold of the x n rank+ symmetric matrices. This point, together with relation
(VI1.13), shows that the matrix s€iS;; | (i,j) € Ps} is in fact an orthonormal basis of the tangent plane to
this manifold at pointP,. In other words, am x n rank+ symmetric matrixP lying less thanc away from

P. (i.e., ||[P — P.|| < ¢) has negligible (of ordet?) components in the direction & forr <i<j<n.

It follows that, in a neighborhood dP,, the n x n ranks+ symmetric matrices are uniquely determined by
the 5(2n — r + 1) x 1 vector §(P) defined by:6(P) o STvec(P — P,), whereS denotes the following
n2x L(2n —r+1) matrix: S € [, vee(Sy),.. ], (i,5) € P

If P(6) denotes the unique (fdi@|| sufficiently smallyn x n rank+ symmetric matrix such thas”vec(P(6) —

P.) = 0, the following one-to-one mapping is exhibited for suffidig small |0 (k)||:
vec(P(8(k))) = vec(P,) + SO(k) + O(||0(k)|?) < 8(k) = STvec(P(k) — P.) (VIl.14)

We are now in a position to solve the Lyapunov equation in tbe parametef. The stochastic equation
governing the evolution of (k) is obtained by applying the transformati®{k) — 0(k) = ST vec(P(k) — P,)
to the original equation (VI1.12), thereby giving

O(k +1) = 0(k) + pp(0(k), x(k)) + piw (0 (k), x(k)) (VIL.15)

where (60, x) & STvec(f(P(6),xx7)) and ¥(0,x) % STvec(h(P(8),xxT)). Solving now the Lyapunov

equation associated with (VII.15) after deriving the dafive of the mean field)(8) and the covariance
of the field ¢(0(k),x(k)) for independent Gaussian distributed dafg), yields the covarianc€y of the
asymptotic distribution 0@ (k). Finally using mapping (VI11.14), the covarian€ = SCyS? of the asymptotic
distribution of P(k) is deduced [25]
A\
Cp = Z (Zi_j)\])(uZ Puj+uyou)(ueu +u;® uZ-)T. (VIl.16)
1<i<r<j<n

To improve the learning speed and misadjustment tradeofjafs algorithm (V.5), it has been proposed in
[25] to use the recursive estimate (I11.6) fal, (k) = E[x(k)x” (k)]. Thus the modified Oja’s algorithm, called

the smoothed Oja’s algorithm, reads:

Ck+1) = Ck)+ am[x(k)xT (k) — C(k)], (VIL17)

W(k+1) = W(k)+ I, — W(E)WT (k)]C(k)W (k), (VI1.18)

where « is introduced in order to normalize both algorithms becaifighe learning rate of (VII.17) has
no dimension, the learning rate of (VI1.18) must have the efision of the inverse of the power af k).

Furthermorea can take into account a better tradeoff between the mismkuds and the learning speed.
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Note that the performance derivations may be extended sosthioothed Oja’s algorithm by considering that
the coupled stochastic approximation algorithms (VII(¥M18) can be globally written as (VIl.1) as well.
Reusing now the parametrizatid#i;;)i<i<;j<», becauseC(k) is symmetric as well, and following the same
approach, we obtain now [25]
Cp= Z M(ui(@uj +u; @ w;)(u; @ uy —|—uj®uz~)T. (VI.19)
1<i<r<j<n (Ai = 4j)

with a;; o a/(a+ X —XAj) <1

This methodology has been applied to compare the thedraeSganptotic performance of several minor and
principal subspace adaptive algorithms in [24], [25]. Faaraple, the asymptotic mean square efQP (k) —
P.||%,,) of the estimatéP (k) given by the Oja’s algorithm (V.5) and the smoothed Oja’oéthm (VI1.17) are
shown in Figure 2, where the step sizeof the Oja’s algorithm and the couplg, «) of the smoothed Oja’s
algorithm are chosen to provide the same value/fdr(Cp). We clearly see in this figure that the smoothed

Oja’s algorithm witha = 0.3 provides faster convergence than the Oja’s algorithm.

10" T T T T

mse

10°

0 50 100 150 200 250 300 350 400 450 500
Iteration Number

Figure 2 Learning curves of the mean square efifiP (k) — P.||3,,) averaging 100 independent runs for the Oja’s
algorithm (1) and the smoothed Oja’s algorithm with= 1 (2) anda = 0.3 (3) compared withuTr(Cp) (0) in the same

configuration C,, W(0)) that Figure 1.

Regarding the issue of asymptotic bias, note that theredslanmethodological problem to apply the method-
ology of the end of Subsection VII-C1. The trouble stems fitwa fact that the matri® (k) = W (k)W (k)
does not belong to a linear vector space because it is coresdrégo have fixed rank < n. The set of such

matrices is not invariant under addition; it is actually aostin submanifold ofR™*™. This is not a problem in
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the first-order asymptotic analysis because this approactuats to approximating this manifold by its tangent
plane at a point of interest. This tangent plane is lineae@ud In order to refine the analysis by developing
a higher order theory, it becomes necessary to take intouattbe curvature of the manifold. This is tricky
business. As an example of these difficulties, one could dumder simple assumptions) that there exist no
projection-valued estimators of a projection matrix thet anbiased at ordep(u); this can be geometrically
pictured by representing the estimates as points on a came@difold (here: the manifold of projection matrices).

Using a more involved expression of the covariance of thd {éll.7), the previously described analysis can
be extended to correlated datgk). Expressions (VII.16) and (VI1.19) extend provided thad; is replaced
by X\i\; + Ai; where); ; is defined in [25]. Note that wher(k) = (zx, 25—, s Th—ne1) ] with 2, being an
ARMA stationary process, the covariance of the field (Vllaf)d thus); ; can be expressed in closed form
with the help of a finite sum [23].

The domain of learning ratg for which the previously described asymptotic approachdkdvand the
performance criteria for which no analytical results cobtderived from our first-order analysis, such as the
speed of convergence and the deviation from orthonormafity ) dof W™ (k)W (k) — 1|, can be derived
from numerical experiments only. In order to compare Ojad the smoothed Oja’s algorithms, the associated
parameterg: and («, 1) must be constrained to give the same valug.@f(Cp). In these conditions, it has
been shown in [25] by numerical simulations that the smabt®@’s algorithm provides faster convergence
and a smaller deviation from orthonormali)#(1z) than Oja’s algorithm. More precisely, it has been shown
that d?(u) oc p? [resp., o u?] for Oja’s [resp., the smoothed Oja’s] algorithm. This résagrees with
the presentation of Oja’s algorithm given in Subsection VRAwhich the termO(n2) was omitted from the
orthonormalization of the columns &V (k).

Finally, using the theorem of continuity (e.g., [58, Tha&)2 note that the behavior of any differentiable
function of P(k) can be obtained. For example, in DOA tracking from the MUSIGodthm!? (see e.g.,
Subsection VIII-A), the MUSIC estimate®;(k));—1,... » of the DOAs at timek can be determined as the
deepest minima of the localization functiaf (9)[I,, — P(k)]a(d). Using the mappind (k) — 8(k) where
heref (k) def (01(k), ...,0,.(k))T, the Gaussian asymptotic distribution of the estinéitle) can be derived [24]
and compared to the batch estimate. For example for a siogles, it has been proved [24] that

n02 0’721 0’721
1

2Naturally in this application, the data are complex-valuledt using the conjugate transpose operator instead céptese, and a

wH o uuH
complex parametrization based on the orthonormal b@is; )< j<» WhereH, ; = w;ul’ for i = j, % for i < j and
g uf _ _ .
—=i—~=t for i > j instead of the orthonormal basi8;,;)1<i<;<n, expressions (VI1.16) and (VI1.19) are still valid.
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whereo? is the source power ang, is a purely geometrical factor. Compared to the batch MUSitivate

11 0121 0'7% 1

the variances are similar providecho? is replaced by%. This suggests that the step sizeof the adaptive

algorithm must be normalized byo?.

VIIl. | LLUSTRATIVE EXAMPLES

Fast estimation and tracking of the principal (or minor) spdce or components of a sequence of random
vectors is a major tool for parameter and signal estimatiomany signal processing communications and
RADAR applications (see e.g., [11] and the references ther&/e can cite, for example, the Direction of
Arrival (DOA) tracking and the blind channel estimation liding CDMA and OFDM communications as
illustrations.

Going back to the common observation model (lll.1) introgtiin Subsection 111-A
x(k) = A(k)r(k) + n(k), (VIILY)

where A(k) is ann x r full column rank matrix withr < n, the different applications are issued from
specific deterministic parametrizatioAg ¢(k)) of A(k) whereg(k) € R? is a slowly time-varying parameter

compared tor(k). When this parametrizatiogh(k) — A(¢(k)) is nonlinear,¢(k) is assumed identifiable

from the signal subspacgan[A (k)] or the noise subspaceaill[A” (k)] which is its orthogonal complement,
i.e.,

span [A(¢(k))] = span [A(¢'(k))] = ¢'(k) = (k).

and when this parametrizatiat(k) — A(¢(k)) is linear, this identifiability is of course up to a multipditve

constant only.

A. Direction of arrival tracking

In the standard narrow-band array data modelg) is partitioned intor column vectors asA(¢) def
[a(e,),...,a(¢,)], where(¢,)i=1,..» denotes different parameters associated withtrsources (azimuth,
elevation, polarization,...). In this case, the paramation is nonlinear. The simplest case corresponds to one

sinéi\T), For

d(n—1)
X

parameter per source & r) (.g., for a uniform linear arragi(¢;) = (1,275 sine: ¢
convenience and without loss of generality, we considerdhse in the following. A simplistic idea to track the
r DOAs would be to use an adaptive estimﬁ%(k) of the noise orthogonal projection mati,, (k) given

by W (k)W (k) or I, — W (k)WT (k) whereW (k) is, respectively, given by a minor or a dominant subspace
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adaptive algorithm introduced in Section'¥and then to derive the estimated DOAs as thinima of the

cost function

a ($)I1, (k)a(¢)
by a Newton-Raphson procedure

di(k+1) = ¢i(k)
_ Rfa"(G(k) T (k + Dal ($(k))]
Rl (63 (k)L (k + 1) (1(K)) + a™ (6 (k) TLy (k + D)™ (1 (k)

1=1,..,7

)

dﬁf dai 1/ dﬁf dzai
= % andai = W

the DOAs of two or more sources are very close and partigularkcenarios involving targets with crossing

wherea . While this approach works for distant different DOAs, iehks down when

trajectories. So the difficulty in DOA tracking is the asstitin of the DOA estimated at different time points
with the correct sources. To solve this difficulty, variougasithms for DOA tracking have been proposed in
the literature (see e.g., [59] and the references ther&m)maintain this correct association, a solution is to

introduce the dynamic model governing the motion of theedéht sources

ok+ 1) | gkr) =01 T S(k) |+ | neailk) |-
o (k+1) 0 0 1 o7 (k) n3.i(k)

whereT denotes the sampling interval ar(wdj,i(k))j:17273 are random process noise terms that account for
random perturbations about the constant acceleratioactajy. This enables us to predict the state (position,
velocity, and acceleration) of each source in any interfalime using the estimated state in the previous
interval. An efficient and computationally simple heurstirocedure has been proposed in [65]. It consists of
four steps by iteratiork. First, a predictiorﬁ)i(k + 1/k) of the state from the estimaig,(k/k) is obtained.
Second, an update of the estimated noise projection mﬁ[tgj((k) given by a subspace tracking algorithm
introduced in Section V is derived from the new snapsh@t). Third, for each sourceg an estimatez@-(k—k 1)
given by a Newton-Raphson step initialized by the predi@&RA $Z~(k+ 1/k) given by a Kalman filter of the

first step whose measurement equation is given by

oi(k)
¢i(k) = [1,0,0] | ¢(k) | +nai(k)
o7 (k)

130f course, adapted to complex-valued data.
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where the observatioqgi(k:) is the DOA estimated by the Newton-Raphson step at iterdtierl. Finally, the
DOA ngSZ-(k + 1/k) predicted by the Kalman filter is also used to smooth the D@@k + 1) estimated by the
Newton-Raphson step, to give the new estin%ltéc +1/k + 1) of the state whose its first component is used

for tracking ther DOAs.

B. Blind channel estimation and equalization

In communication applications, the matched filtering faal by symbol rate sampling or oversampling
yields ann-vector datax(k) which satisfies the model (VIIl.1), where(k) contains different transmitted
symbolsb;. Depending on the context, (Single Input Multi Output (SIMéannel, or Code Division Multiple
Access (CDMA), Orthogonal Frequency Division MultiplegifOFDM), Multi Carrier CDMA (MC CDMA)
with or without intersymbol interference, different paratnizations ofA (k) arise which are generally linear in
the unknown parametef(k). The latter represents different coefficients of the impuksponse of the channel
that are assumed slowly time-varying compared to the symdiel In these applications, two problems arise.
First, the updating of the estimated parametg(k), i.e., the adaptive identification of the channel can beulsef
to an optimal equalization based on an identified channebi@& for particular models (VIIl.1), a direct linear
equalizationm” (k)x(k) can be used from the adaptive estimation of the weiglktk). To illustrate subspace
or component-based methods, two simple examples are givdreifollowing.

For the two channel SIMO model, we assume that the two chararel of ordern and that we stack the
m + 1 most recent samples of each channel to form the observeck@ata= [x; (k),x2(k)]”. In this case we

obtain the model (VIII.1) whereA (k) is the following2(m + 1) x (2m + 1) Sylvester filtering matrix

do(k) - (k)
A(k) = :

bo(k) o D(R)

andr(k) = (bg, .., bi—am) T, With ¢;(k) = (hi1(k), hi2(k))T, i = 0,...,m whereh; ; represents théth term

of the impulse response of theth channel. These two channels do not share common zeraigrgaeing their
identifiability. In this specific two-channel case, the sdlethleast square [79] and subspace [48] estimates
of the impulse responsé(k) = [¢3 (k), ..., ¢L (k)]" defined up to a constant scale factor, coincide [80] and

are given by¢(k) = Tv(k) with v(k) is the eigenvector associated with the unique smalleshediee of

0 1
C.(k) = E (x(k)x"(k)) whereT is the antisymmetric orthogonal matrlx,; ® . Consequently
-1 0

an adaptive estimation of the slowly time-varying impulesponsep(k) can be derived from the adaptive
estimation of the eigenvectar(k). Note that in this example, the rankof the signal subspace is given by
r = 2m + 1 whose orderm of the channels that usually possess "small" leading antihngaerms is ill

defined. For such channels it has been shown [45] that bliadradi approximation algorithms should attempt
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to model only the significant part of the channel composetief'large” impulse response terms because efforts
toward modeling "small" leading and/or trailing terms ldadeffective overmodeling, which is generically ill-
conditioned and, thus, should be avoided. A detection phaeeto detect the order of this significant part has
been given in [44].

Consider now an asynchronous direct sequence CDMA systenrusérs without intersymbol interference.

In this case, model (VIII.1) applies, where(k) is given by
A(k) = [a1(k)s1, ..., ar(k)sy]

where a;(k) ands; are respectively the amplitude and the signature sequehtieea-th user andr(k) =
(bk,1,~~~abl<;,r)T where by, ; is the symbolk of the i-th user. We assume that only the signature sequence of
User 1, the user of interest, is known. Two linear multiusetedtorsm’ (k)x(k), namely, the decorrelation
detector (i.e. that completely eliminates the multipleesscinterference caused by the other users) and the linear
MMSE detector for estimating the symbb)l ;, has been proposed in [75] in terms of the signal eigenvalues

and eigenvectors. The scaled version of the respectivehtgaig(k) of these detectors are given by

m(k) = Uy(k) (Ak) —o2(k)L) " UT(k)sy

m(k) = Ug(k)A Y (k)UL (k)s1,

S

where Uy (k) = [vi(k),...,v.(k)], A(k) = Diag(\1(k),..., \-(k)) and o2(k) = \.41(k) issued from the
adaptive EVD ofC, (k) = E (x(k)x” (k)) including the detection of the numberof user that can change by

a rank tracking procedure (e.qg., [71]).

IX. CONCLUDING REMARKS

Although adaptive subspace and component-based algarithene introduced in signal processing three
decades ago, a rigorous convergence analysis has been ered for the celebrated Oja’s algorithm,
whose Oja’s neuron is a particular case, in stationary enmient. In general all these techniques are
derived heuristically from standard iterative computadibtechniques issued from numerical methods of linear
algebra. So a theoretical convergence and performancgsiailf these algorithms is necessary, but seem
very challenging. Furthermore, such analysis is not sefficbecause these algorithms may present numerical
instabilities due to rounding errors. Consequently, a aeim@nsive comparison of the different algorithms that
have appeared in the literature from the performance (cgewmee speed, mean square error, distance to the
orthonormality, tracking capabilities), computationahtplexity and numerical stability points of view, that are
out the scope of this chapter, would be be very useful fortji@uers.

The interest of the signal processing community in adagtidespace and component-based schemes remains

strong as it is evident from the numerous articles and reppublished in this area each year. But we
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note that these contributions mainly consist in the apptoaof standard adaptive subspace and component-
based algorithms in new applications and in refinements dfkmewn subspace/component-based algorithms,
principally to reduce their computational complexity anchtimerically stabilize the minor subspace/component-
based algorithms, whose literature is much more limited tthee principal subspace and component-based

algorithms.

X. EXERCISES

Exercice 1
Let Ay be a simple eigenvalue of a real symmetri n matrix Cy, and letuy be a unit 2-norm associated
eigenvector, so thaCuy = \gug. Then a real-valued functior(.) and a vector functiom(.) are defined for

all C in some neighborhood (e.g., among the real symmetric nealriof Cy such that
ACo) = Ao, u(Cp) =uy and Cu = Au under the constraint|u|s = 1.

Using simple perturbations algebra manipulations, prine the functions\(.) andu(.) are differentiable on

some neighborhood df, and that the differentials &€, are given by
SA=ul (0C)uy and du= —(C — \I,)#(6C)uy, (X.2)

where+# stands for the Moore Penrose inverse. Prove that if the @inslul|> = 1 is replaced byulu = 1,
the differentialdu given by (X.2) remains valid.

Now consider the same problem whetg is a Hermitian matrix. To fix the perturbed eigenvectgrthe
condition ||u? = 1 is not sufficient. So suppose now tha{'u = 1. Note that in this cas& no longer has
unit 2-norm. Using the same approach as for the real symmmedise, prove that the functiong.) andu(.)

are differentiable on some neighborhood@f and that the differentials &€y are now given by
SA=ul!(0C)uy and du=—(C — \L,)¥ (I, — ugul)(6C)uy. (X.3)

In practice, different constraints are used to fix For example, the SVD function of MATLAB forces all
eigenvectors to be unit 2-norm with a real first element. 8pétthis case the new expression of the differential
du given by (X.3). Finally, show that the differentialr given by (X.2) would be obtained with the condition
ul!5u = 0, which is no longer derived from the constrajpt||s = 1.
Exercice 2

Consider am x n real symmetric or complex Hermitian matrX, whose ther smallest eigenvalues are
equal too? with \,_, > \,_,41. Let I, the projection matrix onto the invariant subspace assedtiaith o2.
Then a matrix-valued functiolil(.) is defined as the projection matrix onto the invariant subspessociated

with the » smallest eigenvalues &F for all C in some neighborhood of, such thatlI(C,) = II,. Using
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simple perturbations algebra manipulations, prove thatftimctionsII(.) is two times differentiable on some

neighborhood ofC, and that the differentials &, are given by

S = — (no(ac)s# + s#(ac)no)
+ SH(C)(5C)SE — Ty (6C)ST2(SC)IT, + ST (5C)ST (5C)IT,

+ T (5C)S¥ (5C)SH — SF*(6C)(6C)TT — Ty (5C)TLH(5C)SF 2,

whereS, % ¢, — 021,,.
Exercice 3
Consider a Hermitian matriXC whose real and imaginary parts are denoted(jyyand C; respectively.

Prove that each eigenvalue eigenvector gairu) of C is associated with the eigenvalue eigenvector pairs

—u; : | G =G
) and (A, ) of the real symmetric matri whereu, andu; denote the
u; u, CZ Cr

real and imaginary parts af.

ur

(A7

Exercice 4 Consider what happens when the orthogonal iteration methdd) is applied withr = n and

under the assumption that all the eigenvalue€ddre simple. The QR algorithm arises by considering how to

compute the matrixr; def WTCW; directly from this predecessd;_;. Prove that the following iterations

Ty, = QOTCQO where Qg is an arbitrary orthonormal matrix
fori=1,2,... T,.1 = QR; QR factorization
T, = RiQ

produce a sequendd’;, QoQ;...Q;) that converges t¢Diag(A1, ..., Ay ), [£uy, ..., £uy,]).
Exercice 5 Specify what happens to the convergence and the converggpeed, if the stepW,; =
orthonorr{ CW,_;} of the orthogonal iteration algorithm (I11.11) is replaceg the following {W; =
orthonorn{(I,, + puC)W,;_1}. Same questions, for the ste®; = orthonormalization ofC~'W,_;}, then
{W, = orthonormalization ofI,, — uC)W,_1}. Specify the conditions that must satisfy the eigenvalakés
C andy for these latter two steps. Examine the specific casel.
Exercice 6

Using the EVD ofC, prove that the solution$v of the maximizations and minimizations (I.7) are given by
W = [uy,...,u,]Q andW = [u,_,41, ..., u,|]Q respectively, wher€) is an arbitraryr x r orthogonal matrix.
Exercice 7

Consider the scalar function (I.14)W) % E(|x - WWTx|2) of W = [wy, ..., w,] with C & E(xxT).
Let Vw = [V, ..., V,] where(V}),—1 ., iS the gradient operator with respectwq,. Prove that

VwJ =2(-2C+CWW’" + WW'C)W. (X.4)
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Then, prove that the stationary points 6fW) are given byW = U, Q where ther columns ofU, denote
arbitraryr distinct unit-2 norm eigenvectors among, ..., u,, of C and whereQ is an arbitraryr x r orthogonal
matrix. Finally, prove that at each stationary poifitW) equals the sum of eigenvalues whose eigenvectors
are not involved inU,.

Consider now the complex valued case whé@V) % E(|jx — WW#x|2) with C ¥ E(xx) and use
the complex gradient operator (see e.g., [35]) define®hy = %[VR +1iV ] whereV and V; denote the
gradient operators with respect to the real and imaginarisp8how thatVw.J has the same form as the
real gradient (X.4) except for a factor 1/2 and changing thedpose operator by the conjugate transpose one.
By noticing thatVw.J = O is equivalent toVzJ = V;J = O, extend the previous results to the complex
valued case.
Exercice 8

With the notations of Exercice X, suppose now that> A, and consider first the real valued case. Show
that the (7, j)th block VZV]TJ of the block Hessian matri¥I of J(W) with respect to thexr-dimensional

vector[wT, ..., wl]T is given by

1
5ViVjJ = 0;(-2C+CWW! + WW'C)

+ (WJTCWi)In + (WJTWZ-)C + Cw,w! +w;w; C.

)

After evaluating the EVD of the block Hessian mat#k at the stationary point8 = U,.Q, prove thatH is
nonnegative ifU, = [uy, ..., u,]. Interpret in this case the zero eigenvaluedbfProve that whefU, contains
an eigenvector different fromy, ..., u,, some eigenvalues @l are strictly negative. Deduce that all stationary
points of J(W) are saddle points except the poié whose associated matr&, contains ther dominant
eigenvectoraay, ..., u,, of C which are global minima of the cost function (11.14).

Extend the previous results by considering the- x 2nr real Hessian matri = VVJ with V def
Vi1 Vim ViV
Exercice 9

With the notations of the NP3 algorithm described in Subieac¥-A3, write (V.15) in the form

—1/2
Gk+1) = % G 2(k) (1, + ab” + ba” + aaa’)GT/?(k) /

with a & 5G(k)y(k), b & 5G(k)z(k) anda ' |1x(k)|[2. Then, using the EVD/eel + mmeqel of the

symmetric rank two matriab” + ba” + aaa”, prove equalities (V.16) and (V.17) where™ 1 — 1/vvi + 1,
i=1,2.
Exercice 10

Consider the following stochastic approximation algaritderived from Oja’s algorithm (V.5) where the sign
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of the step size can be reversed and where the estiWgte) is forced to be orthonormal at each time step

W (k+1) = W(k) £ ug[L, — W(E)WT (k)]x(k)x" (k)W (k)

Wk+1) = W(k+DW7T (k+1)W'(k+ 1) (X.5)

where [W'T(k + 1)W’(k + 1)]"%/2 denotes the symmetric inverse square roofet’ (k + 1)W'(k + 1).
To compute the later, use the updating equationWf(k + 1) and keeping in mind thatW (k) is
orthonormal, prove thaW'” (k + 1)W'(k + 1) = I, + zz” with z aef pllx(k) — W(k)y(k)|ly(k) where
y(k) ¥ WT (k)x(k). Using identity (V.9), prove thatW’” (k + 1)W'(k + 1)]"/2 = I, + 7,y (k)y” (k) with

e S (1 ly(B)2) (/1 + p2llx(k) — W (k)y (k)| [ly (k)[[2)1/2) = 1). Finally, using the update equation

of W(k + 1), prove that algorithm (X.5) leads tW(k + 1) = W(k) + uep(k)y’ (k) with p(k) def
/1 W (R)y (k) + (L + /Ly (R)|[2) (x(k) — W(k)y (k).

Alternatively, prove that algorithm (X.5) leads W (k + 1) = H(k)W (k) whereH(k) is the Householder
transform given byH (k) = I,, — 2u(k)u’ (k) whereu(k) def p(k)/|p(k)].
Exercice 11

Consider the scalar function (V.2I) W) & Tr[In(W? CW)]—Tr(WTW). Using the notations of Exercice
X, prove that

Vwd =2(CW(W'CW) ' - W). (X.6)

Then, prove that the stationary points 6fW) are given byW = U, Q where ther columns ofU, denotes
arbitraryr distinct unit-2 norm eigenvectors among, ..., u,, of C and whereQ is an arbitraryr x r orthogonal
matrix. Finally, prove that at each stationary poifitW) = > In(\s,) — r, where ther eigenvalues\,,
are associated with the eigenvectors involvedJin
Exercice 12

With the notations of Exercice X and using the matrix diffagial method [46, Chap. 6], prove that the

Hessian matrixH of J(W) with respect to thexr-dimensional vectofw? , ..., w7 is given by

H = I, (W/CW) g [CWWI cw) 'w'(C|

DN |

- K, JCWWIcwW) e [(WIcw)'wTC]+ (WICcW) !t e C,

whereK,.,, is the nr x rn commutation matrix [46, Chap. 2]. After evaluating this Eieas matrixH at the
stationnary pointsW = U, Q of J(W) (V.21), subtituting the EVD ofC and deriving the EVD ofH, prove
that when\, > \,;1, H is nonnegative ifU, = [uy,...,u,]. Interpret in this case the zero eigenvalues of
H. Prove that wherlJ,. contains an eigenvector different from, ..., u,, some eigenvalues df are strictly
positive. Deduce that all stationary points 6fW) are saddle points except the poi whose associated

matrix U, contains the- dominant eigenvectoray, ..., u,. of C which are global maxima of the cost function
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(V.21).
Exercice 13

Suppose the columnsvy (k), ..., w, (k)] of then x r matrix W (k) are orthonormal and 1&&¥’(k+ 1) be the
matrix W (k) + upx(k)x” (k)W (k). If the matrix S(k + 1) performs a Gram-Schmidt orthonormalization on
the columns ofW'(k+ 1), write this in explicit form for the columns of matriW (k+1) = W'(k+1)S(k+1)

as a power series expansionip and prove that

wilk+1) = wi(k) + | Tn — wi(k)wy (k) =2 wi(k)w] (k)
x(k)xT (k)yw;(k) + O(u3) for i=1,...,r

Following the same approach with noW’(k + 1) = W(k) + x(k)x’ (k)W (k)T'(k) where I'(k) =
urDiag(1, aq, ..., a;), prove that
i—1 o
wilk+1) = wik) + o | L —wik)w] (k) = Y _(1+L)w;(k)w] (k)

a
j=1 !

x(k)xT (k)yw;(k) + O(u2) for i=1,...,r.

Exercice 14

Specify the stationary points of the ODE associated wittordtlgm (V1.10). Using the eigenvalues of the
derivative of the mean field of this algorithm, prove that\jf_,,; < 1 and andg > % — 1, the only
asymptotically stable points of the associated ODE are ifpeneectorstv,,_,11,..., tvy,.
Exercice 15

Prove that the set of the x r orthogonal matriceSV (denoted the Stiefel manifol8t,,,) is given by
the set of matrices of the forre®W where W is an arbitraryn x r fixed orthogonal matrix and\ is a
skew-symmetric matrix4A” = —A).

Prove the following relation
J(W +6W) = J(W) + Tr[0AT (H,WH,WT — WH, WTH,)] + 0(6W),

whereJ (W) = Tr[WH; W' H,] (whereH; andH, are arbitraryr x » andn x n symmetric matrices) defined
on the set ofr x r orthogonal matrices. Then, give the differential of the cost function/(W) and deduce

the gradient of/(W) on this set ofn x r orthogonal matrices
VwJ = [HWH, W - WH W H,|W. (X.7)

Exercice 16

Prove that iff (8) = —VJ, whereJ(0) is a positive scalar function(6(¢)) tends to a constant agends
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to oo, and consequently all the trajectories of the ODE (VIl.2harge to the set of the stationary points of
the ODE.
Exercice 17

Let 8. be a stationary point of the ODE (VI1.2). Consider a Taylories expansion of (8) about the point

0=9.
; df(9)

f(8)=f(6.)+ Ww:e*(e —0,)+0[(6-6,)6-86,).

By admitting that the behavior of the trajectalyt) of the ODE (VI1.2) in the neighborhood @, is identical

to those of the associated linearized O@% —D(0(t) — 0,) (with D & %‘0:0*) about the poin®.,

relate the stability of the stationary poiflf to the behavior of the eigenvalues of the maifiix
Exercice 18
Consider the general stochastic approximation algoritith) in which the field f(8(k), x(k)x” (k)) and

the residual perturbation term(@(k), x(k)x” (k)) depend on the data(k) throughx(k)x” (k) and are linear

in x(k)x” (k). The datax(k) are independent. The estimated parameter is here deﬂp@ébjdﬁf 0.+90;. We

suppose that the Gaussian approximation result (VIl.4)iep@and that the convergence of the second-order
moments allows us to writ&[(6,(k) — 0.)] (0,.(k) — 0.)"] = uCg + o(u). Taking the expectation of both
sides of (VII.1), providedu, = ;» and 8, (k) stationary, gives that

of po?f

0 = E(f(0, +56,.C,) — pof
(76400 Ca) = 560 4. 2 962 jo—o.

E(66y) + vec(Cg) + o(p).

Deduce a general expression of the asymptotic biag_,, E[@(k)] — 6.
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