
HAL Id: hal-01320647
https://hal.science/hal-01320647v2

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subspace tracking for signal processing
Jean-Pierre Delmas

To cite this version:
Jean-Pierre Delmas. Subspace tracking for signal processing. Adaptive signal processing : next gener-
ation solutions, Wiley-IEEE Press, pp.211 - 270, 2010, 978-0-470-19517-8. �hal-01320647v2�

https://hal.science/hal-01320647v2
https://hal.archives-ouvertes.fr


1

Subspace tracking for signal processing
Jean Pierre Delmas

I. INTRODUCTION

Research in subspace and component-based techniques were originated in Statistics in the middle of the last

century through the problem of linear feature extraction solved by the Karhunen-Loève Transform (KLT). Then,

it application to signal processing was initiated three decades ago, and has met considerable progress. Thorough

studies have shown that the estimation and detection tasks in many signal processing and communications

applications such as data compression, data filtering, parameter estimation, pattern recognition, and neural

analysis can be significantly improved by using the subspaceand component-based methodology. Over the

past few years new potential applications have emerged, andsubspace and component methods have been

adopted in several diverse new fields such as smart antennas,sensor arrays, multiuser detection, time delay

estimation, image segmentation, speech enhancement, learning systems, magnetic resonance spectroscopy, and

radar systems, to mention only a few examples. The interest in subspace and component-based methods stems

from the fact that they consist in splitting the observations into a set of desired and a set of disturbing

components. They not only provide new insight into many suchproblems, but they also offer a good tradeoff

between achieved performance and computational complexity. In most cases they can be considered to be

low-cost alternatives to computationally intensive maximum-likelihood approaches.

In general, subspace and component-based methods are obtained by using batch methods, such as the

eigenvalue decomposition (EVD) of the sample covariance matrix or the singular value decomposition (SVD)

of the data matrix. However, these two approaches are not suitable for adaptive applications for tracking

nonstationary signal parameters, where the required repetitive estimation of the subspace or the eigenvectors

can be a real computational burden because their iterative implementation needsO(n3) operations at each

update, wheren is the dimension of the vector-valued data sequence. Beforeproceeding with a brief literature

review of the main contributions of adaptive estimation of subspace or eigenvectors, let us first classify these

algorithms with respect to their computational complexity. If r denotes the rank of the principal or dominant)

or minor subspace we would like to estimate, since usuallyr ≪ n, it is classic to refer to the following

classification. Algorithms requiringO(n2r) or O(n2) operations by update are classified as high complexity;
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algorithms withO(nr2) operations as medium complexity and finally, algorithms with O(nr) operations as

low complexity. This last category constitutes the most important one from a real time implementation point of

view, and schemes belonging to this class are also known in the literature as fast subspace tracking algorithms.

It should be mentioned that methods belonging to the high complexity class usually present faster convergence

rates compared to the other two classes. From the paper by Owsley [55], that first introduced an adaptive

procedure for the estimation of the signal subspace withO(n2r) operations, the literature referring to the

problem of subspace or eigenvectors tracking from a signal processing point of view is extremely rich. The

survey paper [20] constitutes an excellent review of results up to 1990, treating the first two classes, since

the last class was not available at the time. The most popularalgorithm of the medium class was proposed

by Karasalo in [39]. In [20], it is stated that this dominant subspace algorithm offers the best performance to

cost ratio and thus serves as a point of reference for subsequent algorithms by many authors. The merger of

signal processing and neural networks in the early 1990s [38] brought much attention to a method originated

by Oja [49] and applied by many others. The Oja method requires onlyO(nr) operations at each update. It

is clearly the continuous interest in the subject and significant recent developments that gave rise to this third

class. It is out of the scope of this chapter to give a comprehensive survey of all the contributions, but rather to

focus on some of them. The interested reader may refer to [28,pp. 30-43] for an exhaustive literature review

and to [8] for tables containing exact computational complexities and ranking with respect to convergence of

recent subspace tracking algorithms. In the present work, we mainly emphasize on the low complexity class for

both dominant and minor subspace, and dominant and minor eigenvector tracking, while we briefly address the

most important schemes of the other two classes. For these algorithms, we will focus on their derivation from

different iterative procedures coming from linear algebraand on their theoretical convergence and performance

in stationary environments. Many important issues such as the finite precisions effects on their behavior (e.g.,

possible numerical instabilities due to roundoff error accumulation), the different adaptive step size strategies

and the tracking capabilities of these algorithms in nonstationary environments will be left aside. The interested

reader may refer to the simulation Sections of the differentpapers that deal with these issues.

The derivation and analysis of algorithms for subspace tracking require a minimum background from linear

algebra and matrix analysis. This is the reason why in Section 2, standard linear algebra materials necessary

to this chapter are recalled. This is followed in Section 3 bythe general studied observation model to fix

the main notations and by the statement of the adaptive and tracking of principal or minor subspaces (or

eigenvectors) problems. Then, Oja’s neuron is introduced in Section 4 as a preliminary example to show that

the subspace or component adaptive algorithms are derived empirically from different adaptations of standard

iterative computational techniques issued from numericalmethods. In Sections 5 and 6 different adaptive

algorithms for principal (or minor) subspace and componentanalysis are introduced respectively. As for Oja’s

neuron, the majority of these algorithms can be viewed as some heuristic variations of the power method. These
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heuristic approaches need to be validated by convergence and performance analysis. Several tools such as the

stability of the ordinary differential equation (ODE) associated with a stochastic approximation algorithm and

the Gaussian approximation to address these points in stationary environment are given in Section 7. Some

illustrative applications of principal and minor subspacetracking in signal processing are given in Section 8.

Section 9 contains some concluding remarks. Finally, some exercices are proposed in Section 10, essentially

to prove some properties and relations introduced in the other sections.

II. L INEAR ALGEBRA REVIEW

In this section several useful notions coming from linear algebra as the EVD, the QR decomposition and

the variational characterization of eigenvalues/eigenvectors of real symmetric matrices, and matrix analysis as

a class of standard subspace iterative computational techniques are recalled. Finally a characterization of the

principal subspace of a covariance matrix derived from the minimization of a mean square error will complete

this section.

A. Eigenvalue value decomposition

Let C be ann × n real symmetric [resp. complex Hermitian] matrix, which is also non-negative definite

becauseC will represent throughout this chapter a covariance matrix. Then, there exists (see e.g., [36, Sec.2.5])

an orthonormal [resp. unitary] matrixU = [u1, ...,un] and a real diagonal matrix∆ = Diag(λ1, ..., λn) such

thatC can be decomposed1 as follows

C = U∆UT =

n∑

i=1

λiuiu
T
i , [resp.,U∆UH =

n∑

i=1

λiuiu
H
i ]. (II.1)

The diagonal elements of∆ are calledeigenvaluesand arranged in decreasing order, satisfyλ1 ≥ ... ≥ λn > 0,

while the orthogonal columns(ui)i=1,...,n of U are the corresponding unit 2-normeigenvectorsof C.

For the sake of simplicity, only real-valued data will be considered from the next subsection and throughout

this chapter. The extension to complex-valued data is oftenstraightforward by changing the transposition

operator to the conjugate transposition one. But we note twodifficulties. First, for simple2 eigenvalues, the

associated eigenvectors are unique up to a multiplicative sign in the real case, but only to a unit modulus constant

in the complex case, and consequently a constraint ought to be added to fix them to avoid any discrepancies

between the statistics observed in numerical simulations and the theoretical formulas. The interested reader by

the consequences of this nonuniqueness on the derivation ofthe asymptotic variance of estimated eigenvectors

from sample covariance matrices can refer to [33], (see alsoExercices X). Second, in the complex case, the

1Note that for non-negative real symmetric or complex Hermitian matrices, this EVD is identical to the SVD where the associated
left and right singular vectors are identical.

2This is in contrast to multiple eigenvalues for which only the subspaces generated by the eigenvectors associated with these multiple
eigenvalues are unique.

June 6, 2016 DRAFT



4

second-order properties of multidimensional zero-mean random variablesx are not characterized by the complex

Hermitian covariance matrixE(xxH) only, but also by the complex symmetric complementary covariance [57]

matrix E(xxT ).

The computational complexity of the most efficient existingiterative algorithms that perform EVD of real

symmetric matrices is cubic by iteration with respect to thematrix dimension (more details can be sought in

[34, chap. 8]).

B. QR factorization

The QR factorization of ann× r real-valued matrixW, with n ≥ r is defined as (see e.g., [36, Sec. 2.6])

W = QR = Q1R1, (II.2)

whereQ is ann×n orthonormal matrix,R ann×r upper triangular matrix,Q1 denotes the firstr columns of

Q andR1 ther×r matrix constituted with the firstr rows ofR. If W is of full column rank, the columns ofQ1

form an orthonormal basis for the range ofW. Furthermore, in this case the "skinny" factorizationQ1R1 of W

is unique ifR1 is constrained to have positive diagonal entries. The computation of the QR decomposition can

be performed in several ways. Existing methods are based on Householder, block Householder, Givens or fast

Givens transformations. Alternatively, the Gram-Schmidtorthonormalization process or a more numerically

stable variant called modified Gram-Schmidt can be used. Theinterested reader can seek details for the

aforementioned QR implementations in [34, pp. 224-233]), where the complexity is of the order ofO(nr2)

operations.

C. Variational characterization of eigenvalues/eigenvectors of real symmetric matrices

The eigenvalues of a generaln×n matrixC are only characterized as the roots of the associated characteristic

equation. But for real symmetric matrices, they can be characterized as the solutions of a series of optimization

problems. In particular, the largestλ1 and the smallestλn eigenvalues ofC are solutions of the following

constrained maximum and minimum problem (see e.g., [36, Sec.4.2]).

λ1 = max
‖w‖2=1, w∈Rn

wTCw and λn = min
‖w‖2=1, w∈Rn

wTCw. (II.3)

Furthermore, the maximum and minimum are attained by the unit 2-norm eigenvectorsu1 andun associated

with λ1 andλn respectively, which are unique up to a sign for simple eigenvaluesλ1 andλn. For non-zero

vectorsw ∈ Rn, the expressionw
TCw
wTw

is known as theRayleigh’s quotientand the constrained maximization

and minimization (II.3) can be replaced by the following unconstrained maximization and minimization

λ1 = max
w 6=0, w∈Rn

wTCw

wTw
and λn = min

w 6=0, w∈Rn

wTCw

wTw
. (II.4)
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For simple eigenvaluesλ1, λ2, ..., λr or λn, λn−1, ..., λn−r+1, (II.3) extends by the following iterative

constrained maximizations and minimizations (see e.g., [36, Sec.4.2])

λk = max
‖w‖2=1, w⊥u1,u2,..,uk−1, w∈Rn

wTCw, k = 2, .., r (II.5)

= min
‖w‖2=1, w⊥un,un−1,..,uk+1, w∈Rn

wTCw, k = n− 1, .., n − r + 1, (II.6)

and the constrained maximum and minimum are attained by the unit 2-norm eigenvectorsuk associated with

λk which are unique up to a sign.

Note that whenλr > λr+1 or λn−r > λn−r+1, the following global constrained maximizations or

minimizations (denotedsubspace criterion)

max
WTW=Ir

Tr(WTCW) = max
WTW=Ir

r∑

k=1

wT
kCwk

or
min

WTW=Ir
Tr(WTCW) = min

WTW=Ir

r∑

k=1

wT
kCwk, (II.7)

whereW = [w1, ...,wr] is an arbitraryn × r matrix, have for solutions (see e.g., [69] and Exercice X)

W = [u1, ...,ur]Q or W = [un−r+1, ...,un]Q respectively, whereQ is an arbitraryr × r orthogonal matrix.

Thus, subspace criterion (II.7) determines the subspace spanned by{u1, ...,ur} or {un−r+1, ...,un}, but does

not specify the basis of this subspace at all.

Finally, when now,λ1 > λ2 > ... > λr > λr+1 or λn−r > λn−r+1 > ... > λn−1 > λn,3 if (ωk)k=1,..,r

denotesr arbitrary positive and different real numbers such thatω1 > ω2 > ... > ωr > 0, the following

modification of subspace criterion (II.7) denotedweighted subspace criterion

max
WTW=Ir

Tr(ΩWTCW) = max
WTW=Ir

r∑

k=1

ωkw
T
kCwk

or
min

WTW=Ir
Tr(ΩWTCW) = min

WTW=Ir

r∑

k=1

ωkw
T
kCwk, (II.8)

with Ω = Diag(ω1, .., ωr), has [53] the unique solution{±u1, ...,±ur} or {±un−r+1, ...,

±un}, respectively.

D. Standard subspace iterative computational techniques

The first subspace problem consists in computing the eigenvector associated with the largest eigenvalue. The

power methodpresented in the sequel is the simplest iterative techniques for this task. Under the condition

that λ1 is the unique dominant eigenvalue associated withu1 of the real symmetric matrixC, and starting

from arbitrary unit 2-normw0 not orthogonal tou1, the following iterations produce a sequence(αi,wi) that

3Or simplyλ1 > λ2 > ... > ...λn whenr = n, if we are interested by all the eigenvectors.
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converges to the largest eigenvalueλ1 and its corresponding eigenvector unit 2-norm±u1.

w0 arbitrary such thatw0
Tu1 6= 0

for i = 0, 1, ... w′
i+1 = Cwi

wi+1 = w′
i+1/‖w′

i+1‖2

αi+1 = wT
i+1Cwi+1. (II.9)

The proof can be found in [34, p. 406], where the definition andthe speed of this convergence are specified in

the following. Defineθi ∈ [0, π/2] by cos(θi)
def
= |wT

i u1| satisfyingcos(θ0) 6= 0, then

| sin(θi)| ≤ tan(θ0)

∣∣∣∣
λ2
λ1

∣∣∣∣
i

and |αi − λ1| ≤ |λ1 − λn| tan2(θ0)
∣∣∣∣
λ2
λ1

∣∣∣∣
2i

. (II.10)

Consequently the convergence rate of the power method is exponential and proportional to the ratio
∣∣∣λ2

λ1

∣∣∣
i

for

the eigenvector and to
∣∣∣λ2

λ1

∣∣∣
2i

for the associated eigenvalue. Ifw0 is selected randomly, the probability that this

vector is orthogonal tou1 is equal to zero. Furthermore, ifw0 is deliberately chosen orthogonal tou1, the

effect of finite precision in arithmetic computations will introduce errors that will finally provoke loss of this

orthogonality and therefore convergence to±u1.

Suppose now thatC is non-negative. A straightforward generalization of the power method allows for the

computation of ther eigenvectors associated with ther largest eigenvalues ofC when its firstr+1 eigenvalues

are distinct, or of the subspace corresponding to ther largest eigenvalues ofC whenλr > λr+1 only. This

method can be found in the literature under the name oforthogonal iteration, e.g., in [34],subspace iteration,

e.g., in [56] orsimultaneous iteration method, e.g., in [63]. First, consider the case where ther + 1 largest

eigenvalues ofC are distinct. WithUr
def
= [u1, ...,ur] and ∆r = Diag(λ1, ..., λr), the following iterations

produce a sequence(Λi,Wi) that converges to(∆r, [±u1, ...,±ur ]).

W0 arbitraryn× r matrix such thatWT
0 Ur not singular

for i = 0, 1, ... W′
i+1 = CWi

W′
i+1 = Wi+1Ri+1 "skinny" QR factorization

Λi+1 = Diag
(
WT

i+1CWi+1

)
. (II.11)

The proof can be found in [34, p. 411]. The definition and the speed of this convergence are similar to those

of the power method, it is exponential and proportional to
(
λr+1

λr

)i
for the eigenvectors and to

(
λr+1

λr

)2i
for

the eigenvalues. Note that ifr = 1, then this is just the power method. Moreover for arbitraryr, the sequence

formed by the first column ofWi is precisely the sequence of vectors produced by the power method with the

first column ofW0 as starting vector.
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Consider now the case whereλr > λr+1. Then the following iteration method

W0 arbitraryn× r matrix such thatWT
0 Ur not singular

for i = 0, 1, ... Wi+1 = Orthonorm{CWi}, (II.12)

where the orthonormalization (Orthonorm) procedure is notnecessarily given by the QR factorization, generates

a sequenceWi that “converges” to the dominant subspace generated by{u1, ...,ur} only. This means precisely

that the sequenceWiW
T
i (which here is a projection matrix becauseWT

i Wi = Ir) converges to the projection

matrix Πr
def
= UrU

T
r . In the particular case where the QR factorization is used inthe orthonormalization step,

the speed of this convergence is exponential and proportional to
(
λr+1

λr

)i
, i.e., more precisely [34, p. 411]

‖WiW
T
i −Πr‖2 ≤ tan(θ)

(
λr+1

λr

)i

whereθ ∈ [0, π/2] is specified bycos(θ) = minu∈Span(W0),v∈Span(Ur)
|uTv|

‖u‖2‖v‖2
> 0. This type of convergence

is very specific. Ther orthonormal columns ofWi do not necessary converge to a particular orthonormal

basis of the dominant subspace generated byu1, ...,ur, but may eventually rotate in this dominant subspace

as i increases. Note that the orthonormalization step (II.12) can be realized by other means that the QR

decomposition. For example, extending ther = 1 case

wi+1 = Cwi/‖Cwi‖2 = Cwi

(
wT

i C
2wi

)−1/2
,

to arbitraryr, yields

Wi+1 = CWi

(
WT

i C
2Wi

)−1/2
, (II.13)

where the square root inverse of the matrixWT
i C

2Wi is defined by the EVD of the matrix with its eigenvalues

replaced by their square root inverses. The speed of convergence of the associated algorithm is exponential and

proportional to
(
λr+1

λr

)i
as well [37].

Finally, note that the power and the orthogonal iteration methods can be extended to obtain the minor

subspace or eigenvectors by replacing the matrixC by In−µC where0 < µ < 1/λ1 such that the eigenvalues

1− µλn > ...,≥ 1− µλ1 > 0 of In − µC are strictly positive.

E. Characterization of the principal subspace of a covariance matrix from the minimization of a mean square

error

In the particular case where the matrixC is the covariance of the zero-mean random variablex, consider

the scalar functionJ(W) whereW denotes an arbitraryn× r matrix

J(W)
def
= E(‖x −WWTx‖2). (II.14)
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The following two properties are proved (e.g., see [70] and Exercices X and X):

First, the stationary pointsW of J(W) (i.e., the pointsW that cancelJ(W)) are given byW = UrQ

where ther columns ofUr denotes here arbitraryr distinct unit-2 norm eigenvectors amongu1, ...,un of C

and whereQ is an arbitraryr × r orthogonal matrix. Furthermore at each stationary point,J(W) equals the

sum of eigenvalues whose eigenvectors are not included inUr.

Second, in the particular case whereλr > λr+1, all stationary points ofJ(W) are saddle points except

the pointsW whose associated matrixUr contains ther dominant eigenvectorsu1, ...,ur of C. In this case

J(W) attains the global minimum
∑n

i=r+1 λi. It is important to note that at this global minimum,W does

not necessarily contain ther dominant eigenvectorsu1, ...,ur of C, but rather an arbitrary orthogonal basis of

the associated dominant subspace. This is not surprising because

J(W) = Tr(C)− 2Tr(WTCW) + Tr(WWTCWWT )

with Tr(WTCW) = Tr(CWWT ) and thusJ(W) is expressed as a function ofW throughWWT which is

invariant with respect to rotationWQ of W. Finally, note that whenr = 1 andλ1 > λ2, the solution of the

minimization ofJ(w) (II.14) is given by the unit 2-norm dominant eigenvector±u1.

III. O BSERVATION MODEL AND PROBLEM STATEMENT

A. Observation model

The general iterative subspace determination problem described in the previous section, will be now

specialized to a class of matricesC computed from observation data. In typical applications ofsubspace-

based signal processing, a sequence4 of data vectorsx(k) ∈ Rn is observed, satisfying the following very

common observation signal model

x(k) = s(k) + n(k), (III.1)

wheres(k) is a vector containing the information signal lying on anr-dimensional linear subspace ofRn with

r < n, while n(k) is a zero-mean additive random white noise (AWN) random vector, uncorrelated froms(k).

Note thats(k) is often given bys(k) = A(k)r(k) where the full rankn× r matrix A(k) is deterministically

parameterized andr(k) is ar-dimensional zero-mean full random vector (i.e., withE
(
r(k)rT (k)

)
non singular).

The signal parts(k) may also randomly select amongr deterministic vectors. This random selection does not

necessarily result in a zero-mean signal vectors(k).

In these assumptions, the covariance matrixCs(k) of s(k) is r-rank deficient and

Cx(k)
def
= E

(
x(k)xT (k)

)
= Cs(k) + σ2n(k)In, (III.2)

4Note thatk generally represents successive instants, but it can also represent successive spatial coordinates (e.g., in [11] where k

denotes the position of the secondary range cells in Radar.
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whereσ2n(k) denotes the AWN power. Taking into account thatCs(k) is of rankr and applying the EVD (II.1)

on Cx(k) yields

Cx(k) = [Us(k),Un(k)]


 ∆s(k) + σ2n(k)Ir O

O σ2n(k)In−r




 UT

s (k)

UT
n (k)


 , (III.3)

where then × r and n × (n − r) matricesUs(k) andUn(k) are orthonormal bases for the denotedsignal

or dominantandnoise or minor subspaceof Cx(k) and∆s(k) is a r × r diagonal matrix constituted by the

r non-zero eigenvalues ofCs(k). We note that the column vectors ofUs(k) are generally unique up to a

sign, in contrast to the column vectors ofUn(k) for which Un(k) is defined up to a right multiplication by

a (n− r)× (n − r) orthonormal matrixQ. However, the associated orthogonal projection matricesΠs(k)
def
=

Us(k)U
T
s (k) and Πn(k)

def
= Un(k)U

T
n (k) respectively denotedsignal or dominant projection matricesand

noise or minor projection matricesthat will be introduced in the next sections are both unique.

B. Statement of the problem

A very important problem in signal processing consists in continuously updating the estimateUs(k), Un(k),

Πs(k) orΠn(k) and sometimes with∆s(k) andσ2n(k), assuming that we have available consecutive observation

vectorsx(i), i = ..., k − 1, k, ... when the signal or noise subspace is slowly time-varying compared tox(k).

The dimensionr of the signal subspace may be known a priori or estimated fromthe observation vectors.

A straightforward way to come up with a method that solves these problems is to provide efficient adaptive

estimatesC(k) of Cx(k) and simply apply an EVD at each time stepk. Candidates for this estimateC(k) are

generally given by sliding windowed sample data covariancematrices when the sequence ofCx(k) undergoes

relatively slow changes. With anexponential window, the estimated covariance matrix is defined as

C(k) =

k∑

i=0

βk−ix(i)xT (i), (III.4)

where0 < β < 1 is the forgetting factor. Its use is intended to ensure that the data in the distant past are

downweighted in order to afford the tracking capability when we operate in a nonstationary environment.C(k)

can be recursively updated according to the following scheme:

C(k) = βC(k − 1) + x(k)xT (k). (III.5)

Note that

C(k) = (1− β′)C(k − 1) + β′x(k)xT (k) = C(k − 1) + β′
(
x(k)xT (k)−C(k − 1)

)
(III.6)

is also used. These estimatesC(k) tend to smooth the variations of the signal parameters and soare only

suitable for slowly changing signal parameters. For suddensignal parameter changes, the use of atruncated
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window may offer faster tracking. In this case, the estimated covariance matrix is derived from a window of

length l

C(k) =

k∑

i=k−l+1

βk−ix(i)xT (i), (III.7)

where0 < β ≤ 1. The caseβ = 1 corresponds to a rectangular window. This matrix can be recursively updated

according to the following scheme:

C(k) = βC(k − 1) + x(k)xT (k)− βlx(k − l)xT (k − l). (III.8)

Both versions requireO(n2) operations with the first having smaller computational complexity and memory

needs. Note that forβ = 0, (III.8) gives the coarse estimatex(k)xT (k) of Cx(k) as used in the least mean

square (LMS) algorithms for adaptive filtering (see e.g., [35]).

Applying an EVD onC(k) at each timek is of course the best possible way to estimate the eigenvectors or

subspaces we are looking for. This approach is known as direct EVD and has high complexity which isO(n3).

This method usually serves as point of reference when dealing with different less computationally demanding

approaches described in the next sections. These computationally efficient algorithms will compute signal or

noise eigenvectors (or signal or noise projection matrices) at the time instantk+1 from the associated estimate

at timek and the new arriving sample vectorx(k).

IV. PRELIMINARY EXAMPLE : OJA’ S NEURON

Let us introduce these adaptive procedures by a simple example: the following Oja’s neuron originated by

Oja [49] and then applied by many others that estimates the eigenvector associated with the unique largest

eigenvalue of a covariance matrix of the stationary vectorx(k).

w(k + 1) = w(k) + µ{[In −w(k)wT (k)]x(k)xT (k)w(k)}. (IV.1)

The first term on the right side is the previous estimate of±u1, which is kept as a memory of the iteration.

The whole term in the brackets is the new information. This term is scaled by the step sizeµ and then added

to the previous estimatew(k) to obtain the current estimatew(k + 1). We note that this new information is

formed by two terms. The first onex(k)xT (k)w(k) contains the first step of the power method (II.9) and the

second one is simply the previous estimatew(k) adjusted by the scalarwT (k)x(k)xT (k)w(k) so that these

two terms are on the same scale. Finally, we note that if the previous estimatew(k) is already the desired

eigenvector±u1, the expectation of this new information is zero, and hence,w(k+1) will be hovering around

±u1. The step sizeµ controls the balance between the past and the new information. Introduced in the neural

networks literature [49] within the framework of a new synaptic modification law, it is interesting to note that

this algorithm can be derived from different heuristic variations of numerical methods introduced in Section II.
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First consider the variational characterization recalledin Subsection II-C. Because∇w(w
TCxw) = 2Cxw,

the constrained maximization (??) or (II.7) can be solved using the following constrained gradient-search

procedure

w′(k + 1) = w(k) + µCx(k)w(k)

w(k + 1) = w′(k + 1)/‖w′(k + 1)‖2,

in which the step sizeµ is "sufficiency enough". Using the approximationµ2 ≪ µ yields

w′(k + 1)/‖w′(k + 1)‖2 = (In + µCx(k))w(k)/(wT (k)(In + µCx(k))
2w(k))1/2

≈ (In + µCx(k))w(k)/(1 + 2µwT (k)Cx(k)w(k))1/2

≈ (In + µCx(k))w(k)(1 − µwT (k)Cx(k)w(k))

≈ w(k) + µ
(
In −w(k)wT (k)

)
Cx(k)w(k).

Then, using the instantaneous estimatex(k)xT (k) of Cx(k), Oja’s neuron (IV.1) is derived.

Consider now the power method recalled in Subsection II-D. Noticing thatCx andIn+µCx have the same

eigenvectors, the stepw′
i+1 = Cxwi of (II.9) can be replaced byw′

i+1 = (In+µCx)wi and using the previous

approximations yields Oja’s neuron (IV.1) anew.

Finally, consider the characterization of the eigenvectorassociated with the unique largest eigenvalue of a

covariance matrix derived from the mean square errorE(‖x−wwTx‖2) recalled in Subsection II-E. Because

∇w(E(‖x−wwTx‖2) = 2
(
−2Cx +CxwwT +wwTCx

)
w,

an unconstrained gradient-search procedure yields

w(k + 1) = w(k)− µ
(
−2Cx(k) +Cx(k)w(k)wT (k) +w(k)wT (k)Cx(k)

)
w(k).

Then, using the instantaneous estimatex(k)xT (k) of Cx(k) and the approximationwT (k)

w(k) = 1 justified by the convergence of the deterministic gradient-search procedure to±u1 whenµ → 0,

Oja’s neuron (IV.1) is derived again.

Furthermore, if we are interested in adaptively estimatingthe associated single eigenvalueλ1, the minimization

of the scalar functionJ(λ) = (λ−uT
1Cxu1)

2 by a gradient-search procedure can be used. With the instantaneous

estimatex(k)xT (k) of Cx(k) and with the estimatew(k) of u1 given by (IV.1), the following stochastic gradient

algorithm is obtained.

λ(k + 1) = λ(k) + µ
(
wT (k)x(k)xT (k)w(k) − λ(k)

)
. (IV.2)

We note that the previous two heuristic derivations could beextended to the adaptive estimation of the
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eigenvector associated with the unique smallest eigenvalue ofCx(k). Using the constrained minimization (II.3)

or (II.7) solved by a constrained gradient-search procedure or the power method (II.9) where the stepw′
i+1 =

Cxwi of (II.9) is replaced byw′
i+1 = (In − µCx)wi (where 0 < µ < 1/λ1) yields (IV.1) after the same

derivation, but where the sign of the step sizeµ is reversed.

w(k + 1) = w(k)− µ
(
[In −w(k)wT (k)]x(k)xT (k)w(k)

)
. (IV.3)

The associated eigenvalueλn could be also derived from the minimization ofJ(λ) = (λ − uT
nCxun)

2 and

consequently obtained by (IV.2) as well, wherew(k) is issued from (IV.3).

These heuristic approaches derived from iterative computational techniques issued from numerical methods

recalled in Section II, need to be validated by convergence and performance analysis for stationary datax(k).

These issues will be considered in Section VII. In particular it will be proved that the coupled stochastic

approximation algorithms (IV.1),(IV.2) in which the step sizeµ is decreasing, "converge" to the pair(±u1, λ1)),

in contrast to the stochastic approximation algorithm (IV.3) that diverges. Then, due to the possible accumulation

of rounding errors, the algorithms that converge theoretically must be tested through numerical experiments to

check their numerical stability in stationary environments. Finally extensive Monte Carlo simulations must be

carried out with various step sizes, initialization conditions, signal to noise ratios and parameters configurations

in nonstationary environments.

V. SUBSPACE TRACKING

In this section, we consider the adaptive estimation of dominant (signal) and minor (noise) subspaces. To

derive such algorithms from the linear algebra material recalled in Subsections II-C, II-D and II-E similarly as

for Oja’s neuron, we first note that the general orthogonal iterative step (II.12):Wi+1 = Orthonorm{CWi}
allows for the following variant for adaptive implementation

Wi+1 = Orthonorm{(In + µC)Wi}

whereµ > 0 is a "small" parameter known asstep size, becauseIn + µC has the same eigenvectors asC

with associated eigenvalues(1 + µλi)i=1,...,n. Noting thatIn − µC has also the same eigenvectors asC with

associated eigenvalues(1−µλi)i=1,...,n, arranged exactly in the opposite order as(λi)i=1,...,n for µ sufficiently

small (µ < 1/λ1), the general orthogonal iterative step (II.12) allows forthe following second variant of this

iterative procedure to "converge" to ther-dimensional minor subspace ofC if λn−r > λn−r+1.

Wi+1 = Orthonorm{(In − µC)Wi}.
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When the matrixC is unknown and, instead we have sequentially the data sequencex(k), we can replaceC

by an adaptive estimateC(k) (see Section III-B). This leads to the adaptive orthogonal iteration algorithm

W(k + 1) = Orthonorm{(In ± µkC(k))W(k)}, (V.1)

where the "+" sign generates estimates for the signal subspace (if λr > λr+1) and the "-" sign for the noise

subspace (ifλn−r > λn−r+1). Depending on the choice of the estimateC(k) and of the orthonormalization

(or approximate orthonormalization), we can obtain alternative subspace tracking algorithms.

We note that maximization or minimization in (II.7) ofJ(W)
def
= Tr(WTCW) subject to the constraint

WTW = Ir can be solved by a constrained gradient-descent technique.Because∇WJ = 2C(k)W, we obtain

the following Rayleigh quotient-based algorithm

W(k + 1) = Orthonorm{W(k) ± µkC(k)W(k)}, (V.2)

whose general expression is the same as general expression (V.1) derived from the orthogonal iteration approach.

We will denote this family of algorithms as the power-based methods. It is interesting to note that a simple sign

change enables one to switch from the dominant to minor subspaces. Unfortunately, similarly to Oja’s neuron,

many minor subspace algorithms will be unstable or stable but non robust (i.e., numerically unstable with

a tendency to accumulate round-off errors until their estimates are meaningless), in contrast to the associated

majorant subspace algorithms. Consequently, the literature of minor subspace tracking techniques is very limited

as compared to the wide variety of methods that exists for thetracking of majorant subspaces.

A. Subspace power-based methods

Clearly the simplest selection forC(k) is the instantaneous estimatex(k)xT (k), which gives rise to the

Data Projection Method(DPM) first introduced in [69] where the orthonormalizationis performed using the

Gram-Schmidt procedure.

W(k + 1) = GS Orth.{W(k) ± µkx(k)x
T (k)W(k)}. (V.3)

In nonstationary situations, estimates (III.5) or (III.6)of the covarianceCx(k) of x(k) at time k have been

tested in [69]. For this algorithm to "converge", we need to select a step sizeµ such thatµ≪ 1/λ1 (see e.g.,

[28]). To satisfy this requirement (in nonstationary situations included) and because most of the time we have

Tr(Cx(k)) ≫ λ1(k), the following two normalized step sizes have been proposedin [69]:

µk =
µ

‖x(k)‖2 and µk =
µ

σ2x(k)
with σ2x(k + 1) = νσ2x(k) + (1− ν)‖x(k)‖2,

whereµ may be close to unity and where the choice ofν ∈ (0, 1) depends on the rapidity of the change of

the parameters of the observation signal model (III.1). Note that a better numerical stability can be achieved
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[5] if µk is chosen, similar to the normalized LMS algorithm [35], asµk = µ
‖x(k)‖2+α whereα is a "very

small" positive constant. Obviously, this algorithm (V.3)has very high computational complexity due to the

Gram-Schmidt orthonormalization step.

To reduce this computational complexity, many algorithms have been proposed. Going back to the DPM

algorithm (V.3), we observe that we can write

W(k + 1) = {W(k) ± µkx(k)x
T (k)W(k)}G(k + 1), (V.4)

where the matrixG(k + 1) is responsable for performing exact or approximate orthonormalization while

preserving the space generated by the columns ofW′(k+1)
def
= W(k)±µkx(k)xT (k)W(k). It is the different

choices ofG(k+1) that will pave the way to alternative less computationally demanding algorithms. Depending

on whether to this orthonormalization is exact or approximate, two families of algorithms have been proposed

in the literature.

1) The approximate symmetric orthonormalization family:The columns ofW′(k+1) can be approximately

orthonormalized in a symmetrical way. SinceW(k) has orthonormal columns, for sufficiently smallµk the

columns ofW′(k+1) will be linearly independent, although not orthonormal. ThenW′T (k+1)W′(k+1) is

positive definite, andW(k + 1) will have orthonormal columns ifG(k + 1) = {W′T (k + 1)W′(k + 1)}−1/2

(unique if G(k + 1) is constrained to be symmetric). A stochastic algorithm denoted Subspace Network

Learning(SNL) and laterOja’s algorithmhave been derived in [52] to estimate dominant subspace. Assuming

µk is sufficiency enough,G(k + 1) can be expanded inµk as follows

G(k + 1) = {
(
W(k) + µkx(k)x

T (k)W(k)
)T (

W(k) + µkx(k)x
T (k)W(k)

)
}−1/2

= {Ir + 2µkW
T (k)x(k)xT (k)W(k) +O(µ2k)}−1/2

= Ir − µkW
T (k)x(k)xT (k)W(k) +O(µ2k).

Omitting second-order terms, the resulting algorithm reads5

W(k + 1) = W(k) + µk[In −W(k)WT (k)]x(k)xT (k)W(k). (V.5)

The convergence of this algorithm has been earlier studied in [77] and then in [68], where it was shown that the

solutionW(t) of its associated ODE (see Subsection VII-A) need not tend tothe eigenvectors{v1, . . . ,vr},

but only to a rotated basisW∗ of the subspace spanned by them. More precisely, it has been proved in [16]

that under the assumption thatW(0) is of full column rank such that its projection to the signal subspace

5Note that this algorithm can be directly deduced from the optimization of the cost functionJ(W) = Tr[WT
x(k)xT (k)W] defined

on the set ofn× r orthogonal matricesW (WT
W = Ir) with the help of continuous-time matrix algorithms [21, Ch. 7.2] (see also

(X.7) in Exercice X).
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of Cx is linearly independent, there exists a rotated basisW∗ of this signal subspace such that‖W(t) −
W∗‖Fro = O(e−(λr−λr+1)t). A performance analysis has been given in [24], [25]. This issue will be used as

an example analysis of convergence and performance in Subsection VII-C2. Note that replacingx(k)xT (k)

by βIn ± x(k)xT (k) (with β > 0) in (V.5), leads to amodified Oja’s algorithm[15], which, not affecting its

capability of tracking a signal subspace with the sign "+", can track a noise subspace by changing the sign (if

β > λ1). Of course, these modified Oja’s algorithms enjoy the same convergence properties as Oja’s algorithm

(V.5).

Many other modifications of Oja’s algorithm have appeared inthe literature, particularly to adapt it to

noise subspace tracking. To obtain such algorithms, it is interesting to point out that, in general, it is not

possible to obtain noise subspace tracking algorithms by simply changing the sign of the step size of a signal

subspace tracking algorithm. For example, changing the sign in (V.5) or (VII.18) leads to an unstable algorithm

(divergence) as will be explained in Subsection VII-C1 forr = 1. Among these modified Oja’s algorithms,

Chenet al. [16] have proposed the following unified algorithm

W(k + 1) = W(k) ± µk[x(k)x
T (k)W(k)WT (k)W(k)

−W(k)WT (k)x(k)xT (k)W(k)], (V.6)

where the signs "+" and"-" are respectively associated withsignal and noise tracking algorithms. While the

associated ODE maintainsWT (t)W(t) = Ir if WT (0)W(0) = Ir and enjoys [16] the same stability properties

as Oja’s algorithm, the stochastic approximation to algorithm (V.6) suffers from numerical instabilities (see e.g.,

numerical simulations in [27]). Thus, its practical use requires periodic column reorthonormalization. To avoid

these numerical instabilities, this algorithm has been modified [17] by adding the penalty termW(k)[In −
W(k)WT (k)] to the field of (V.6). As far as noise subspace tracking is concerned, Douglaset al. [27] have

proposed modifying the algorithm (V.6) by multiplying the first term of its field byWT (k)W(k) whose

associated term in the ODE tends toIr, viz

W(k + 1) = W(k) − µk[x(k)x
T (k)W(k)WT (k)W(k)WT (k)W(k)

−W(k)WT (k)x(k)xT (k)W(k)]. (V.7)

It is proved in [27] that the locally asymptotically stable pointsW of the ODE associated with this algorithm

satisfy WTW = Ir and Span(W) = Span(Un). But the solutionW(t) of the associated ODE does not

converge to a particular basisW∗ of the noise subspace but rather, it is proved thatSpan(W(t)) tends to

Span(Un) (in the sense that the projection matrix associated with thesubspaceSpan(W(t)) tends toΠn).

Numerical simulations presented in [27] show that this algorithm is numerically more stable than the minor

subspace version of algorithm (V.6).
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To eliminate the instability of the noise tracking algorithm derived from Oja’s algorithm (V.5) where the

sign of the step size is changed, Abed Meraimet al. [2] have proposed forcing the estimateW(k) to be

orthonormal at each time stepk (see Exercice X) that can be used for signal subspace tracking (by reversing

the sign of the step size) as well. But this algorithm converges with the same speed of convergence as Oja’s

algorithm (V.5). To accelerate its convergence, two normalized versions (denotedNormalized Oja’s algorithm

(NOja) andNormalized Orthogonal Oja’s algorithm(NOOJa)) of this algorithm have been proposed in [4].

They can perform both signal and noise tracking by switchingthe sign of the step size for which an approximate

closed-form expression has been derived. A convergence analysis of the NOja algorithm has been presented

in [7] using the ODE approach. Because the ODE associated with the field of this stochastic approximation

algorithm is the same as those associated with the projection approximation-based algorithm (V.18), it enjoys

the same convergence properties.

2) The exact orthonormalization family:The orthonormalization (V.4) of the columns ofW′(k+1) can be

performed exactly at each iteration by the symmetric squareroot inverse ofW′T (k + 1)W′(k + 1) due to the

fact that the latter is a rank one modification of the identitymatrix:

W′T (k + 1)W′(k + 1) = Ir ±
(
2µk ± µ2k‖x(k)‖2

)
y(k)yT (k)

def
= Ir ± zzT (V.8)

with y(k)
def
= WT (k)x(k) andz

def
=
√

2µk ± µ2k‖x(k)‖2 y(k). Using the identity

(
Ir ± zzT

)−1/2
= Ir +

(
1

(1± ‖z‖2)1/2 − 1

)
zzT

‖z‖2 , (V.9)

we obtain

G(k + 1) = {W′T (k + 1)W′(k + 1)}−1/2 = Ir + τky(k)y
T (k) (V.10)

with τk
def
=
(

1
(1±(2µk±µ2

k‖x(k)‖2)‖y(k)‖2)1/2
− 1
)

1
‖y(k)‖2 . Substituting (V.10) into (V.4) leads to

W(k + 1) = W(k)± µkp(k)x
T (k)W(k), (V.11)

wherep(k)
def
= ± τk

µk
W(k)y(k) + (1 + τk‖y(k)‖2)x(k). All these steps lead to theFast Rayleigh quotient-

based Adaptive Noise Subspacealgorithm (FRANS) introduced by Attallahet al. in [5]. As stated in [5], this

algorithm is stable and robust in the case of signal subspacetracking (associated with the sign "+") including

initialization with a nonorthonormal matrixW(0). By contrast, in the case of noise subspace tracking (associated

with the sign "-"), this algorithm is numerically unstable because of round-off error accumulation. Even when

initialized with an orthonormal matrix, it requires periodic re-orthonormalization ofW(k) in order to maintain

the orthonormality of the columns ofW(k). To remedy this instability, another implementation of this algorithm

based on the numerically well behaved Householder transform has been proposed [6]. This Householder FRANS
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algorithm (HFRANS) comes from (V.11) which can be rewrittenafter cumbersome manipulations as

W(k + 1) = H(k)W(k) with H(k) = In − 2u(k)uT (k)

with u(k)
def
= p(k)

‖p(k)‖2
. With no additional numerical complexity, this Householder transform allows one to

stabilize the noise subspace version of the FRANS algorithm6. The interested reader may refer to [74] that

analyzes the orthonormal error propagation (i.e., a recursion of the distance to orthonormality‖WT (k)W(k)−
Ir‖2Fro from a non-orthogonal matrixW(0)) in the FRANS and HFRANS algorithms.

Another solution to orthonormalize the columns ofW′(k + 1) has been proposed in [28], [29]. It consists

of two steps. The first one orthogonalizes these columns using a matrix G(k + 1) to give W′′(k + 1) =

W′(k+1)G(k+1), and the second one normalizes the columns ofW′′(k+1). To find such a matrixG(k+1)

which is of course not unique, notice that ifG(k + 1) is an orthogonal matrix having as first column, the

vector y(k)
‖y(k)‖2

with the remainingr−1 columns completing an orthonormal basis, then using (V.8),the product

W′′T (k + 1)W′′(k + 1) becomes the following diagonal matrix

W′′T (k + 1)W′′(k + 1) = GT (k + 1)
(
Ir + δky(k)y

T (k)
)
G(k + 1)

= Ir + δk‖y(k)‖2e1eT1 .

whereδk
def
= ±2µk + µ2k‖x(k)‖2 and e1

def
= [0, ..., 0]T . It is fortunate that there exists such an orthonogonal

matrix G(k + 1) with the desired properties known as a Householder reflector[34, Chap.5], and can be very

easily generated since it is of the form

G(k + 1) = Ir −
2

‖a(k)‖2 a(k)a
T (k) with a(k) = y(k) − ‖y(k)‖e1. (V.12)

This gives theFast Data Projection Method(FDPM)

W(k + 1) = Normalize{
(
W(k)± µkx(k)x

T (k)W(k)
)
G(k + 1)}, (V.13)

where "Normalize{W”(k+1)}" stands for normalization of the columns ofW′′(k + 1), and G(k + 1) is

the Householder transform given by (V.12). Using the independence assumption [35, chap. 9.4] and the

approximationµk ≪ 1, a simplistic theoretical analysis has been presented in [30] for both signal and noise

subspace tracking. It shows that the FDPM algorithm is locally stable and the distance to orthonormality

E
(
‖WT (k)W(k) − Ir‖2

)
tends to zero asO(e−ck) wherec > 0 does not depend onµ. Furthermore, numerical

simulations presented in [28], [29], [30] withµk = µ
‖x(k)‖2 demonstrate that this algorithm is numerically stable

for both signal and noise subspace tracking, and if for some reason, orthonormality is lost, or the algorithm is

6However, if one looks very carefully at the simulation graphs representing the orthonormality error [74, Fig. 7], it is easy to realize
that the HFRANS algorithm exhibits a slight linear instability.
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initialized with a matrix that is not orthonormal, the algorithm exhibits an extremely high convergence speed

to an orthonormal matrix. This FDPM algorithm is to the best to our knowledge, the only power-based minor

subspace tracking methods of complexityO(nr) that is truly numerically stable since it do not accumulate

rounding errors.

3) Power-based methods issued from exponential or sliding window: Of course, all the above algorithms

that do not use the rank one property of the instantaneous estimatex(k)xT (k) of Cx(k) can be extended to the

exponential (III.5) or sliding windowed (III.8) estimatesC(k), but with an important increase in complexity. To

keep theO(nr) complexity, the orthogonal iteration method (II.12) must be adapted to the following iterations

W′(k + 1) = C(k)W(k)

W(k + 1) = Orthonorm{W′(k + 1)}

= W′(k + 1)G(k + 1),

where the matrixG(k + 1) is a square root inverse ofW′T (k + 1)W′(k + 1) responsable for performing

orthonormalization ofW′(k + 1). It is the choice ofG(k + 1) that will pave the way to different adaptive

algorithms.

Based on the approximation

C(k − 1)W(k) = C(k − 1)W(k − 1), (V.14)

which is clearly valid ifW(k) is slowly varying withk, an adaptation of the power method denotedNatural

Power method 3(NP3) has been proposed in [37] for the exponential windowedestimate (III.5)C(k) =

βC(k − 1) + x(k)xT (k). Using (III.5) and (V.14), we obtain

W′(k + 1) = βW′(k) + x(k)yT (k),

with y(k)
def
= WT (k)x(k). It then follows that

W′T (k + 1)W′(k + 1) = β2W′T (k)W′(k) + z(k)yT (k) + y(k)zT (k)

+‖x(k)‖2y(k)yT (k) (V.15)

with z(k)
def
= βW′T (k)x(k), which implies (see Exercice X) the following recursions

G(k + 1) =
1

β
[In − τ1e1e

T
1 − τ2e2e

T
2 ]G(k), (V.16)

W(k + 1) = W(k)[In − τ1e1e
T
1 − τ2e2e

T
2 ]

+
1

β
x(k)yT (k)GT (k)[In − τ1e1e

T
1 − τ2e2e

T
2 ], (V.17)

whereτ1, τ2 ande1, e2 are defined in Exercice X.
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Note that the square root inverse matrixG(k + 1) of W′T (k + 1)W′(k + 1) is asymmetric even ifG(0)

is symmetric. Expressions (V.16) and (V.17) provide an algorithm which does not involve any matrix-matrix

multiplications and in fact requires onlyO(nr) operations.

Based on the approximation thatW(k) andW(k+1) span the samer-dimensional subspace, another power-

based algorithm referred to as theApproximated Power Iteration(API) algorithm and its fast implementation

(FAPI) have been proposed in [8]. Compared to the NP3 algorithm, this scheme has the advantage that it can

handle the exponential (III.5) or the sliding windowed (III.8) estimates ofCx(k) in the same framework (and

with the same complexity ofO(nr) operations) by writing (III.5) and (III.8) in the form

C(k) = βC(k − 1) + x′(k)Jx′T (k)

with J = 1 andx′(k) = x(k) for the exponential window andJ =


 1 0

0 −βl


 andx′(k) = [x(k),x(k − l)]

for the sliding window (see (III.8)). Among the power-basedminor subspace tracking methods issued from

exponential of sliding window, this FAPI algorithm has beenconsidered by many practitioners (e.g., [11]) as

outperforming the other algorithms having the same computational complexity.

B. Projection approximation-based methods

Since (II.14) describes an unconstrained cost function to be minimized, it is straightforward to apply the

gradient-descent technique for dominant subspace tracking. Using expression (X.4) of the gradient given in

Exercice X with the estimatex(k)xT (k) of Cx(k) gives:

W(k + 1) = W(k) − µk
[
−2x(k)xT (k) + x(k)xT (k)W(k)WT (k)

+ W(k)WT (k)x(k)xT (k)
]
W(k). (V.18)

We note that this algorithm can be linked to Oja’s algorithm (V.5). First, the term between brackets is the

symmetrization of the term−x(k)xT (k) +W(k)WT (k)x(k)xT (k) of Oja’s algorithm (V.5). Second, we see

that whenWT (k)W(k) is approximated byIr (which is justified from the stability property below), algorithm

(V.18) gives Oja’s algorithm (V.5). We note that because thefield of the stochastic approximation algorithm

(V.18) is the opposite of the derivative of the positive function (II.14), the orthonormal bases of the dominant

subspace are globally asymptotically stable for its associated ODE (see Subsection VII-A) in contrast to Oja’s

algorithm (V.5), for which they are only locally asymptotically stable. A complete performance analysis of

the stochastic approximation algorithm (V.18) has been presented in [24] where closed-form expressions of

the asymptotic covariance of the estimated projection matrix W(k)WT (k) are given and commented on for

independent Gaussian datax(k) and constant step sizeµ.

If now Cx(k) is estimated by the exponentially weighted sample covariance matrix C(k) =
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∑k
i=0 β

k−ix(i)xT (i) (III.4) instead ofx(k)xT (k), the scalar functionJ(W) becomes

J(W) =

k∑

i=0

βk−i‖x(i) −WWTx(i)‖2, (V.19)

and all datax(i) available in the time interval{0, ..., k} are involved in estimating the dominant subspace at

time instantk+1 supposing this estimate known at time instantk. The key issue of the projection approximation

subspace tracking algorithm (PAST) proposed by Yang in [70]is to approximateWT (k)x(i) in (V.19), the

unknown projection ofx(i) onto the columns ofW(k) by the expressiony(i) = WT (i)x(i) which can be

calculated for all0 ≤ i ≤ k at the time instantk. This results in the following modified cost function

J ′(W) =

k∑

i=0

βk−i‖x(i) −Wy(i)‖2, (V.20)

which is now quadratic in the elements ofW. This projection approximation, hence the name PAST, changes the

error performance surface ofJ(W). For stationary or slowly varyingCx(k), the difference betweenWT (k)x(i)

andWT (i)x(i) is small, in particular wheni is close tok. However, this difference may be larger in the distant

past with i ≪ k, but the contribution of the past data to the cost function (V.20) is decreasing for growing

k, due to the exponential windowing. It is therefore expectedthat J ′(W) will be a good approximation to

J(W) and the matrixW(k) minimizing J ′(W) be a good estimate for the dominant subspace ofCx(k).

In case of sudden parameter changes of the model (III.1), thenumerical experiments presented in [70] show

that the algorithms derived from this PAST approach still converge. The main advantage of this scheme is

that the least square minimization of (V.20) whose solutionis given byW(k + 1) = Cx,y(k)C
−1
y (k) where

Cx,y(k)
def
=
∑k

i=0 β
k−ix(i)yT (i) andCy(k)

def
=
∑k

i=0 β
k−iy(i)yT (i) has been extensively studied in adaptive

filtering (see e.g., [35, chap. 13] and [67, chap. 12]) where variousRecursive Least Squarealgorithms (RLS)

based on the matrix inversion lemma have been proposed7 We note that because of the approximation ofJ(W)

by J ′(W), the columns ofW(k) are not exactly orthonormal. But this lack of orthonormality does not mean

that we need to perform a reorthonormalization ofW(k) after each update. For this algorithm, the necessity

of orthonormalization depends solely on the post processing method which uses this signal subspace estimate

to extract the desired signal information (see e.g., Section VIII). It is shown in the numerical experiments

presented in [70] that the deviation ofW(k) from orthonormality is very "small" and for a growing sliding

window (β = 1), W(k) converges to a matrix with exactly orthonormal columns under signal stationary.

Finally, note that a theoretical study of convergence and a derivation of the asymptotic distribution of the

recursive subspace estimators have been presented in [72] and [73] respectively. Using the ODE associated

7For possible sudden signal parameter changes (see Subsection III-A), the use of a sliding exponential window (III.7) version of the
cost function may offer faster convergence. In this case,W(k) can be calculated recursively as well [70] by applying the general form
of the matrix inversion lemma(A+BDC

T )−1 = A
−1

−A
−1

B(D−1 +C
T
A

−1
B)−1

C
T
A

−1 which requires inversion of a2× 2
matrix.
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with this algorithm (see Section VII-A) which is here a pair of coupled matrix differential equations, it is

proved that under signal stationarity and other weak conditions, the PAST algorithm converges to the desired

signal subspace with probability one.

To speed up the convergence of the PAST algorithm and to guarantee the orthonormality ofW(k) at each

iteration, an orthonormal version of the PAST algorithm dubbed OPAST has been proposed in [1]. This algorithm

consists of the PAST algorithm whereW(k + 1) is related toW(k) by W(k + 1) = W(k) + p(k)q(k), plus

an orthonormalization step ofW(k) based on the same approach as those used in the FRANS algorithm (see

Subsection V-A2) which leads to the updateW(k + 1) = W(k) + p′(k)q(k).

Note that the PAST algorithm cannot be used to estimate the noise subspace by simply changing the sign

of the step size because the associated ODE is unstable. Efforts to eliminate this instability were attempted in

[4] by forcing the orthonormality ofW(k) at each time step. Although there was a definite improvement in

the stability characteristics, the resulting algorithm remains numerically unstable.

C. Additional methodologies

Various generalizations of criteria (II.7) and (II.14) have been proposed (e.g., in [40]), which generally yield

robust estimates of principal subspaces or eigenvectors that are totally different from the standard ones. Among

them, the followingNovel Information Criterion(NIC) [47] results in a fast algorithm to estimate the principal

subspace with a number of attractive properties

max
W

{J(W)} with J(W)
def
= Tr[ln(WTCW)]− Tr(WTW), (V.21)

given thatW lies in the domain{W such thatWTCW > 0}, where the matrix logarithm is defined e.g.

in [34, chap. 11]. It is proved in [47] (see also Exercices X and X) that the above criterion has a global

maximum that is attained when and only whenW = UrQ whereUr = [u1, ...,ur ] andQ is an arbitraryr× r
orthogonal matrix and all the other stationary points are saddle points. Taking the gradient of (V.21) (which is

given explicitly by (X.6)), the following gradient ascent algorithm has been proposed in [47] for updating the

estimateW(k):

W(k + 1) = W(k) + µk
[
C(k)W(k)(WT (k)C(k)W(k))−1 −W(k)

]
. (V.22)

Using the recursive estimateC(k) =
∑k

i=0 β
k−ix(i)xT (i) (III.4), and the projection approximation introduced

in [70] WT (k)x(i) = WT (i)x(i) for all 0 ≤ i ≤ k, the update (V.22) becomes

W(k + 1) = W(k) + µk



(

k∑

i=0

βk−ix(i)yT (i)

)(
k∑

i=0

βk−iy(i)yT (i)

)−1

−W(k)


 , (V.23)
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with y(i)
def
= WT (i)x(i). Consequently, similarly to the PAST algorithms, standardRLS techniques used in

adaptive filtering can be applied. According to the numerical experiments presented in [37], this algorithm

performs very similarly to the PAST algorithm having also the same complexity. Finally, we note that it has

been proved in [47] that the pointsW = UrQ are the only asymptotically stable points of the ODE (see

Subsection VII-A) associated with the gradient ascent algorithm (V.22) and that the attraction set of these

points is the domain{W such thatWTCW > 0}. But to the best of our knowledge, no complete theoretical

performance analysis of algorithm (V.23) has been carried out so far.

VI. E IGENVECTORS TRACKING

Although, the adaptive estimation of the dominant or minor subspace through the estimateW(k)WT (k)

of the associated projector is of most importance for subspace-based algorithms, there are situations where

the associated eigenvalues are simple (λ1 > ... > λr > λr+1 or λn < ... < λn−r+1 < λn−r) and the

desired estimated orthonormal basis of this space must forman eigenbasis. This is the case for the statistical

technique of principal component analysis in data compression and coding, optimal feature extraction in pattern

recognition and for optimal fitting in the total least squaresense or for Karhunen-Loève transformation of

signals, to mention only a few examples. In these applications, {y1(k), ..., yr(k)} or {yn(k), ..., yn−r+1(k)}
with yi(k)

def
= wT

i (k)x(k) whereW = [w1(k), ...,wr(k)] or W = [wn(k), ...,wn−r+1(k)] are the estimatedr

first principal or r last minor componentsof the datax(k). To derive such adaptive estimates, the stochastic

approximation algorithms that have been proposed, are issued from adaptations of the iterative constrained

maximizations (II.5) and minimizations (II.6) of Rayleighquotients; the weighted subspace criterion (II.8); the

orthogonal iterations (II.11) and, finally the gradient-descent technique applied to the minimization of (II.14).

A. Rayleigh quotient-based methods

To adapt maximization (II.5) and minimization (II.6) of Rayleigh quotients to adaptive implementations, a

method has been proposed in [60]. It is derived from a Givens parametrization of the constraintWTW = Ir,

and from a gradient-like procedure. The Givens rotations approach introduced by Regalia [60] is based on the

properties that anyn×1 unit 2-norm vector and any orthogonal vector to this vector can be respectively written

as the last column of ann × n orthogonal matrix and as a linear combinaison of the firstn − 1 columns of

this orthogonal matrix, i.e.,

w1 = Q1


 0

1


 ,w2 = Q1




Q2


 0

1




0


 , . . . ,wr = Q1




Q2




Qr


 0

1




0




0



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whereQi is the following orthogonal matrix of ordern− i+ 1:

Qi = Ui,1 . . .Ui,j . . .Ui,n−i with Ui,j
def
=




Ij−1 0 0 0

0 − sin θi,j cos θi,j 0

0 cos θi,j sin θi,j 0

0 0 0 In−i−j




andθi,j belongs to]− π
2 ,+

π
2 ]. The existence of such a parametrization8 for all orthonormal sets{w1, . . . ,wr}

is proved in [60]. It consists ofr(2n− r− 1)/2 real parameters. Furthermore, this parametrization is unique if

we add some constraints onθi,j. A deflation procedure, inspired by the maximization (II.5)and minimization

(II.6) has been proposed [60]. First maximization or minimization (II.3) is performed with the help of the

classical stochastic gradient algorithm, in which the parameters areθ1,1, . . . , θ1,n−1, whereas maximization

(II.5) or minimization (II.6) are realized thanks to stochastic gradient algorithms with respect to the parameters

θi,1, . . . , θi,n−i, in which the preceding parametersθl,1(k), . . . , θl,n−l(k) for l = 1, . . . , i − 1 are injected from

the i− 1 previous algorithms. The deflation procedure is achieved bycoupled stochastic gradient algorithms



θ1(k + 1)

·
θr(k + 1)


 =




θ1(k)

·
θr(k)


± µk




f1(θ1(k),x(k))

·
fr(θ1(k), . . . ,θr(k),x(k))


 (VI.1)

with θi
def
= [θi,1, . . . , θi,n−i]

T andfi(θ1, . . . ,θi,x)
def
= ∇θi

(wT
i xx

Twi) = 2∇θi
(wT

i )x

xTwi, i = 1, . . . , r. This rather intuitive computational process was confirmedby simulation results [60]. Later

a formal analysis of the convergence and performance had been performed in [23] where it has been proved

that the stationary points of the associated ODE are globally asymptotically stable (see Subsection VII-A) and

that the stochastic algorithm (VI.1) converges almost surely to these points for stationary datax(k) whenµk

is decreasing withlimk→∞ µk = 0 and
∑

k µk = ∞. We note that this algorithm yields exactly orthonormal

r dominant or minor estimated eigenvectors by a simple changeof sign in its step size, and requiresO(nr)

operations at each iteration but without accounting for thetrigonometric functions.

Alternatively, a stochastic gradient-like algorithm denoted Direct Adaptive Subspace Estimation(DASE)

has been proposed in [61] with a direct parametrization of the eigenvectors by means of their coefficients.

Maximization or minimization (II.3) is performed with the help of a modification of the classical stochastic

gradient algorithm to assure an approximate unit norm of thefirst estimated eigenvectorw1(k) (in fact a

rewriting of Oja’s neuron (IV.1)). Then, a modification of the classical stochastic gradient algorithm using a

8Note that this parametrization extends immediately to the complex case using the kernel

[

− sin θi,j cos θi,j
eiφi,j cos θi,j eiφi,j sin θi,j

]

.

June 6, 2016 DRAFT



24

deflation procedure, inspired by the constraintWTW = Ir gives the estimates(wi(k))i=2,...,r

w1(k + 1) = w1(k)± µk
[
x(k)xT (k)− (wT

1 (k)x(k)x
T (k)w1(k))In

]
w1(k)

wi(k + 1) = wi(k)± µk
[
x(k)xT (k)−

(
wT

i (k)x(k)x
T (k)wi(k)

)

In −

i−1∑

j=1

wj(k)w
T
j (k)




wi(k) for i = 2, . . . , r. (VI.2)

This totally empirical procedure has been studied in [62]. It has been proved that the stationary points of the

associated ODE are all eigenvector bases{±ui1 , ...,±uir}. Using the eigenvalues of the derivative of the mean

field (see Subsection VII-A), it is shown that all these eigenvector bases are unstable except{±u1} for r = 1

associated with the sign "+" (where algorithm (VI.2) is Oja’s neuron (IV.1)). But a close examination of these

eigenvalues that are all real-valued, shows that for only the eigenbasis{±u1, ...,±ur} and{±un, ...,±un−r+1}
associated with the sign "+" and "-" respectively, all the eigenvalues of the derivative of the mean field are

strictly negative except for the eigenvalues associated with variations of the eigenvectors{±u1, ...,±ur} and

{±un, ...,±un−r+1} in their directions. Consequently, it is claimed in [62] that if the norm of each estimated

eigenvector is set to one at each iteration, the stability ofthe algorithm is ensured. The simulations presented

in [61] confirm this intuition.

B. Eigenvector power-based methods

Note that similarly to the subspace criterion (II.7), the maximization or minimization of the weighted

subspace criterion (II.8)J(W)
def
= Tr(ΩWTC(k)W) subject to the constraintWTW = Ir can be solved by

a constrained gradient-descent technique. Clearly, the simplest selection forC(k) is the instantaneous estimate

x(k)xT (k). Because in this case,∇WJ = 2x(k)xT (k)WΩ, we obtain the following stochastic approximation

algorithm that will be a starting point for a family of algorithms that have been derived to adaptively estimate

majorant or minor eigenvectors

W(k + 1) = {W(k) ± µkx(k)x
T (k)W(k)Ω}G(k + 1), (VI.3)

in which W(k) = [w1(k), . . . ,wr(k)] and the matrixΩ is a diagonal matrixDiag(ω1, ..., ωr) with ω1 > ... >

ωr > 0. G(k + 1) is a matrix depending on

W′(k + 1)
def
= W(k) ± µkx(k)x

T (k)W(k)Ω,

which orthonormalizes or approximately orthonormalizes the columns ofW′(k + 1). Thus, W(k) has

orthonormal or approximately orthonormal columns for allk. Depending on the form of matrixG(k + 1),

variants of the basic stochastic algorithm are obtained. Going back to the general expression (V.4) of the

subspace power-based algorithm, we note that (VI.3) can also be derived from (V.4), where different step sizes
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µkω1, ..., µkωr are introduced for each column ofW(k).

Using the same approach as for deriving (V.5), i.e., whereG(k+1) is the symmetric square root inverse of

W′T (k + 1)W′(k + 1), we obtain the following stochastic approximation algorithm

W(k + 1) = W(k) ± µk[x(k)x
T (k)W(k)Ω − 1

2
W(k)ΩWT (k)x(k)xT (k)W(k)

− 1

2
W(k)WT (k)x(k)xT (k)W(k)Ω]. (VI.4)

Note that in contrast to the Oja’s algorithm (V.5), this algorithm is different from the algorithm issued from

the optimization of the cost functionJ(W)
def
= Tr[ΩWTx(k)xT (k)W] defined on the set ofn× r orthogonal

matricesW with the help of continuous-time matrix algorithms (see e.g., [21, Ch. 7.2], [19, Ch. 4] or (X.7)

in Exercice X)).

W(k + 1) = W(k) ± µk
[
x(k)xT (k)W(k)Ω −W(k)ΩWT (k)x(k)xT (k)W(k)

]
. (VI.5)

We note that these two algorithms reduce to the Oja’s algorithm (V.5) forΩ = Ir and to Oja’s neuron (IV.1) for

r = 1, which of course is unstable for tracking the minorant eigenvectors with the sign "-". But to the best of

our knowledge, no complete theoretical performance analysis of these two algorithms has been carried out until

now. Techniques used for stabilizing Oja’s algorithm (V.5)for minor subspace tracking, has been transposed

to stabilize the weighted Oja’s algorithm for tracking the minorant eigenvectors. For example, in [9],W(k) is

forced to be orthonormal at each time stepk as in [2] (see Exercice X) with theMCA-OOja algorithmand

the MCA-OOjaH algorithmusing Householder transforms. Note, that by proving a recursion of the distance to

orthonormality‖WT (k)W(k) − Ir‖2Fro from a non-orthogonal matrixW(0), it has been shown in [10], that

the latter algorithm is numerically stable in contrast to the former.

Instead of deriving a stochastic approximation algorithm from a specific orthonormalization matrixG(k+1),

an analogy with Oja’s algorithm (V.5) has been used in [53] toderive the following algorithm

W(k + 1) = W(k) ± µk
[
x(k)xT (k)W(k) −W(k)ΩWT (k)x(k)xT (k)W(k)Ω−1

]
. (VI.6)

It has been proved in [54], that for tracking the dominant eigenvectors (i.e., with the sign "+"), the eigenvectors

{±u1, ...,±ur} are the only locally asymptotically stable points of the ODEassociated with (VI.6).

If now the matrixG(k + 1) performs the Gram-Schmidt orthonormalization on the columns ofW′(k + 1),

an algorithm, denotedStochastic Gradient Ascent(SGA) algorithm, is obtained if the successive columns of

matrix W(k+1) are expanded, assumingµk sufficiently small. By omitting theO(µ2k) term in this expansion,
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we obtain [50] the following algorithm

wi(k + 1) = wi(k) + αiµk


In −wi(k)w

T
i (k)−

i−1∑

j=1

(1 +
αj

αi
)wj(k)w

T
j (k)




x(k)xT (k)wi(k) for i = 1, . . . , r. (VI.7)

where hereΩ = Diag(α1, α2, . . . , αr) with αi arbitrary strictly positive numbers.

The so calledGeneralized Hebbian Algorithm(GHA) is derived from Oja’s algorithm (V.5) by replacing the

matrix WT (k)x(k)xT (k)W(k) of Oja’s algorithm by its diagonal and superdiagonal only:

W(k + 1) = W(k) + µk[x(k)x
T (k)W(k) −W(k)upper(WT (k)x(k)xT (k)W(k)]

in which the operator “upper” sets all subdiagonal elementsof a matrix to zero. When written columnwise,

this algorithm is similar to the SGA algorithm (VI.7) whereαi = 1, i = 1, .., r, with the difference that there

is no coefficient 2 in the sum:

wi(k + 1) = wi(i) + µk


In −

i∑

j=1

wj(k)w
T
j (k)


x(k)xT (k)wi(k) for i = 1, . . . , r. (VI.8)

Oja et al [53] proposed an algorithm denotedWeighted Subspace Algorithm(WSA), which is similar to the

Oja’s algorithm, except for the scalar parametersβ1, . . . , βr:

wi(k + 1) = wi(k) + µk


In −

r∑

j=1

βj
βi

wj(k)w
T
j (k)


x(k)xT (k)wi(k) for i = 1, . . . , r, (VI.9)

with β1 > . . . > βr > 0. If βi = 1 for all i, this algorithm reduces to Oja’s algorithm.

Following the deflation technique introduced in theAdaptive Principal Component Extraction(APEX)

algorithm [41], note finally that Oja’s neuron can be directly adapted to estimate ther principal eigenvectors

by replacing the instantaneous estimatex(k)xT (k) of Cx(k) by x(k)xT (k)[In − ∑i−1
j=1wj(k)w

T
j (k)] to

successively estimatewi(k), i = 2, ..., r

wi(k + 1) = wi(i) + µk
[
In −wi(k)w

T
i (k)

]
x(k)xT (k)


In −

i−1∑

j=1

wj(k)w
T
j (k)




wi(k) for i = 1, . . . , r.

Minor component analysis was also considered in neural networks to solve the problem of optimal fitting in

the total least square sense. Xuet al. [78] introduced theOptimal Fitting Analyzer(OFA) algorithm by modifying

the SGA algorithm. For the estimatewn(k) of the eigenvector associated with the smallest eigenvalue, this
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algorithm is derived from the Oja’s Neuron (IV.1) by replacing x(k)xT (k) by In − x(k)xT (k), viz

wn(k + 1) = wn(k) + µ[In −wn(k)w
T
n (k)][In − x(k)xT (k)]wn(k),

and for i = n, . . . , n− r + 1, his algorithm reads

wi(k + 1) = wi(k) + µk
(
[In −w(k)wT (k)][In − x(k)xT (k)]

−β
n∑

i=k+1

wt,iw
T
t,ix(k)x

T (k)

)
wi(k). (VI.10)

Oja [52] showed that, under the conditions that the eigenvalues are distinct, and thatλn−r+1 < 1

and β > λn−r+1

λn
− 1, the only asymptotically stable points of the associated ODE are the eigenvectors

{±vn, . . . ,±vn−r+1}. Note that the magnitude of the eigenvalues must be controlled in practice by normalizing

x(k) so that the expression between brackets in (VI.10) becomes homogeneous.

The derivation of these algorithms seems empirical. In fact, they have been derived from slight modifications

of the ODE (VII.8) associated with the Oja’s neuron in order to keep adequate conditions of stability (see

e.g., [52]). It was established by Oja [51], Sanger [66] and Oja et al [54] for the SGA, GHA and WSA

algorithms respectively, that the only asymptotically stable points of their associated ODE are the eigenvectors

{±v1, . . . ,±vr}. We note that the first vector (k = 1) estimated by the SGA and GHA algorithms, and the

vector (r = k = 1) estimated by the SNL and WSA algorithms gives theConstrained Hebbian learning rule

of the basic PCA neuron (IV.1) introduced by Oja [49].

A performance analysis of different eigenvector power-based algorithms has been presented in [22]. In

particular, the asymptotic distribution of the eigenvector estimates and of the associated projection matrices

given by these stochastic algorithms with constant step size µ for stationary data has been derived, where

closed-form expressions of the covariance of these distributions has been given and analyzed for independent

Gaussian distributed datax(k). Closed-form expressions of the mean square error of these estimators has

been deduced and analyzed. In particular, they allow us to specify the influence of the different parameters

(α2, . . . , αr), (β1, . . . , βr) andβ of these algorithms on their performance and to take into account tradeoffs

between the misadjustment and the speed of convergence. An example of such derivation and analysis is given

for the Oja’s Neuron in Subsection VII-C1.

1) Eigenvector power-based methods issued from exponential windows: Using the exponential windowed

estimates (III.5) ofCx(k), and following the concept of power method (II.9) and the subspace deflation technique

introduced in [41], the following algorithm has been proposed in [37]

w′
i(k + 1) = Ci(k)wi(k) (VI.11)

wi(k + 1) = w′
i(k + 1)/‖w′

i(k + 1)‖2, (VI.12)
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whereCi(k) = βCi(k−1)+x(k)xT (k)[In−
∑i−1

j=1wj(k)w
T
j (k)] for i = 1, ..., r. Applying the approximation

w′
i(k) ≈ Ci(k − 1)wi(k) in (VI.11) to reduce the complexity, (VI.11) becomes

w′
i(k + 1) = βw′

i(k) + x(k)[gi(k)− yT
i (k)ci(k)] (VI.13)

with gi(k)
def
= xT (k)wi(k), yi(k)

def
= [w1(k), ...,wi−1(k)]

Tx(k) andci(k)
def
= [w1(k), ..

.,wi−1(k)]
Twi(k). Equations (VI.13) and (VI.11) should be run successively for i = 1, ..., r at each iteration

k.

Note that an up to a common factor estimate of the eigenvaluesλi(k + 1) of Cx(k) can be updated as

follows. From (VI.11), one can write

λi(k + 1)
def
= wT

i (k)Ci(k)wi(k) = wT
i (k)w

′
i(k + 1). (VI.14)

Using (VI.13) and applying the approximationsλi(k) ≈ wT
i (k)w

′
i(k) andci(k) ≈ 0, one can replace (VI.14)

by

λi(k + 1) = βλi(k) + |gi(k)|2,

that can be used to track the rankr and the signal eigenvectors, as in [71].

C. Projection approximation-based methods

A variant of the PAST algorithm, named PASTd and presented in[70], allows one to estimate ther dominant

eigenvectors. This algorithm is based on a deflation technique that consists in estimating sequentially the

eigenvectors. First the most dominant estimated eigenvector w1(k) is updated by applying the PAST algorithm

with r = 1. Then the projection of the current datax(k) onto this estimated eigenvector is removed from

x(k) itself. Because now the second dominant eigenvector becomes the most dominant one in the updated data

vector (E
[
(x(k) − v1v

T
1 x(k))(x(k) − v1v

T
1 x(k))

T
]
= Cx(k)−λ1v1v

T
1 ), it can be extracted in the same way

as before. Applying this procedure repeatedly, all ther dominant eigenvectors and the associated eigenvalues

are estimated sequentially. These estimated eigenvalues may be used to estimate the rankr if it is not known

a priori [71]. It is interesting to note that forr = 1, the PAST and the PASTd algorithms, that are identical,

simplify as

w(k + 1) = w(k) + µk[In −w(k)wT (k)]x(k)xT (k)w(k), (VI.15)

whereµk = 1
σ2
y(k)

with σ2y(k+1) = βσ2y(k)+y
2(k) andy(k)

def
= wT (k)x(k). A comparison with Oja’s neuron

(IV.1) shows that both algorithms are identical except for the step size. While Oja’s neuron uses a fixed step

size µ which needs careful tuning, (VI.15) implies a time varying,self-tuning step sizeµk. The numerical

experiments presented in [70] show that this deflation procedure causes a stronger loss of orthonormality

betweenwi(k) and a slight increase of the error in the successive estimates wi(k). By invoking the ODE
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approach (see Section VII-A), it has been proved in [72] for stationary signals and other weak conditions, the

PASTd algorithm converges to the desiredr dominant eigenvectors with probability one.

In contrast to the PAST algorithm, the PASTd algorithm can beused to estimate the minor eigenvectors by

changing the sign of the step size with an orthonormalization of the estimated eigenvectors at each step. It has

been proved [64] that forβ = 1, the only locally asymptotically stable points of the associated ODE are the

desired eigenvectors{±vn, . . . ,±vn−r+1}. To reduce the complexity of the Gram-Schmidt orthonormalization

step used in [64], [9] proposed a modification of this part.

D. Additional methodologies

Among the other approaches to adaptively estimate the eigenvectors of a covariance matrix, theMaximum

Likelihood Adaptive Subspace Estimation(MALASE) [18] provides a number of desirable features. It isbased

on the adaptive maximization of the log-likelihood of the EVD parameters associated with the covariance matrix

Cx for Gaussian distributed zero-mean datax(k). Up to an additive constant, this log-likelihood is given by

L(W,Λ) = − ln(detCx)− xT (k)C−1
x x(k)

= −
n∑

i=1

ln(λi)− xT (k)WΛ−1WTx(k), (VI.16)

whereCx = WΛWT represents the EVD ofCx with W an orthogonaln×n matrix andΛ = Diag(λ1, ..., λn).

This is a quite natural criterion for statistical estimation purposes, even if the minimum variance property

of the likelihood functional is actually an asymptotic property. To deduce an adaptive algorithm, a gradient

ascent procedure has been proposed in [18] in which a new datax(k) is used at each time iterationk of

the maximization of (VI.16). Using the differential ofL(W,Λ) defined on the manifold ofn × n orthogonal

matrices (see [21, pp. 62-63] or Exercice X (X.7)), we obtainthe following gradient ofL(W,Λ)

∇WL = W
[
Λ−1y(k)yT (k)− y(k)yT (k)Λ−1

]
,

∇ΛL = −Λ−1 +Λ−2Diag(y(k)yT (k)),

wherey(k)
def
= WTx(k). Then, the stochastic gradient update ofW yields

W(k + 1)=W(k)+µkW(k)
[
Λ−1(k)y(k)yT (k)−y(k)yT (k)Λ−1(k)

]
(VI.17)

Λ(k + 1)=Λ(k)+µ′k
[
Λ−2(k)Diag(y(k)yT (k))−Λ−1(k)

]
, (VI.18)

where the step sizesµk and µ′k are possibly different. We note that, starting from an orthonormal matrix

W(0), the sequence of estimatesW(k) given by (VI.17) is orthonormal up to the second-order term in µk

only. To ensure in practice the convergence of this algorithm, is has been shown in [18] that it is necessary to

orthonormalize quite oftenW(k) to compensate for the orthonormality drift inO(µ2k). Using continuous-time
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system theory and differential geometry [21], a modification of (VI.17) has been proposed in [18]. It is clear

that∇WL is tangent to the curve defined by

W(t) = W(0) exp
[
t
(
Λ−1y(k)yT (k)− y(k)yT (k)Λ−1

)]

for t = 0, where the matrix exponential is defined e.g., in [34, chap. 11]. Furthermore, we note that this curve

lies in the manifold of orthogonal matrices ifW(0) is orthogonal becauseexp(A) is orthogonal if and only

if A is skew-symmetric(AT = −A) and matrixΛ−1y(k)yT (k)− y(k)yT (k)Λ−1 is clearly skew-symmetric.

Moving on the curveW(t) from point t = 0 in the direction of increasing values of∇WL amounts to letting

t increase. Thus, a discretized version of the optimization of L(W,Λ) as a continuous function ofW is given

by the following update scheme

W(k + 1) = W(k) exp
[
µk
(
Λ−1(k)y(k)yT (k)− y(k)yT (k)Λ−1(k)

)]
, (VI.19)

and the coupled update equations (VI.18) and (VI.19) form the MALASE algorithm. As mentioned above

the update factorexp
[
µk
(
Λ−1(k)y(k)yT (k)− y(k)yT (k)Λ−1(k)

)]
is an orthogonal matrix. This ensures

that the orthonormality property is preserved by MALASE algorithm, provided that the algorithm is ini-

tialized with an orthogonal matrixW(0). However, it has been shown by numerical experiments presented

in [18], that it is not necessary to haveW(0) orthogonal to ensure the convergence, since MALASE

algorithm steersW(k) towards the manifold of orthogonal matrices. The MALASE algorithm seems to

involve high computational cost, due to the matrix exponential that applies in (VI.19). However, since

exp
[
µk
(
Λ−1(k)y(k)yT (k)− y(k)yT (k)Λ−1(k)

)]
is the exponential of a sum of two rank one matrices,

the calculation of this matrix requires onlyO(n2) operations [18]. Originally, this algorithm that updates the

EVD of the covariance matrixCx(k) can be modified by a simple preprocessing to estimate the principal

or minor r signal eigenvectors only, when the remainingn − r eigenvectors are associated with a common

eigenvalueσ2(k) (see Subsection III-A). This algorithm, denoted MALASE(r) requiresO(nr) operations by

iteration. Finally, note that a theoretical analysis of convergence has been presented in [18]. It is proved that in

stationary environments, the stationary stable points of the algorithm (VI.18),(VI.19) correspond to the EVD

of Cx. Furthermore, the covariance of the asymptotic distribution of the estimated parameters is given for

Gaussian independently distributed datax(k) using general results of Gaussian approximation (see Subsection

VII-B).

E. Particular case of second-order stationary data

Finally, note that forx(k) = [x(k), x(k − 1), ..., x(k − n + 1)]T comprising of time delayed versions of

scalar valued second-order stationary datax(k), the covariance matrixCx(k) = E[x(k)xT (k)] is Toeplitz and

consequently centro-symmetric. This property occurs in important applications: temporal covariance matrices
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obtained from a uniform sampling of a second-order stationary signals, and spatial covariance matrices issued

from uncorrelated and band-limited sources observed on a centro-symmetric sensor array (for example on

uniform linear arrays). This centro-symmetric structure of Cx allows us to use for real-valued data, the property9

[14] that its EVD can be obtained from two orthonormal eigenbases of half-size real symmetric matrices. For

example ifn is even,Cx can be partitioned as follows

Cx =


 C1 CT

2

C2 JC1J


 ,

whereJ is ann/2× n/2 matrix with ones on its anti-diagonal and zeroes elsewhere.Then, then unit 2-norm

eigenvectorsvi of Cx are given byn/2 symmetric andn/2 skew symmetric vectorsvi = 1√
2


 ui

ǫiJui




where ǫi = ±1, respectively issued from the unit 2-norm eigenvectorsui of C1 + ǫiJC2 = 1
2E[(x

′(k) +

ǫiJx”(k))(x
′(k) + ǫiJx”(k))

T ] with x(k) = [x′T (k),x”T (k)]T . This property has been exploited [23], [26] to

reduce the computational cost of the previously introducedeigenvectors adaptive algorithms. Furthermore, the

conditioning of these two independent EVD is improved with respect to the EVD ofCx since the difference

between two consecutive eigenvalues increases in general.Compared to the estimators that do not take the

centro-symmetric structure into account, the performanceought to be improved. This has been proved in [26],

using closed-form expressions of the asymptotic bias and covariance of eigenvectors power-based estimators

with constant step sizeµ derived in [22] for independent Gaussian distributed datax(k). Finally, note that the

deviation from orthonormality is reduced and the convergence speed is improved, yielding a better tradeoff

between convergence speed and misadjustment.

VII. C ONVERGENCE AND PERFORMANCE ANALYSIS ISSUES

Several tools may be used to assess the "convergence" and theperformance of the previously described

algorithms. First of all, note that despite the simplicity of the LMS algorithm (see e.g., [35])

w(k + 1) = w(k) + µx(k)[y(k) − xT (k)w(k)],

its convergence and associated analysis has been the subject of many contributions in the past three decades

(see e.g., [67] and references therein). However, in-depththeoretical studies is still a matter of utmost interest.

Consequently, due to their complexity with respect to the LMS algorithm, results about the convergence and

performance analysis of subspaces or eigenvectors tracking will be much weaker.

To study the convergence of the algorithms introduced in theprevious two sections from a theoretical point

of view, the datax(k) will be supposed stationary and the step sizeµk will be considered as decreasing. In

9Note that for Hermitian centro-symmetric covariance matrices, such property does not extend. But any eigenvectorvi satisfies the
relation [vi]k = eiφi [v∗

i ]n−k, that can be used to reduce the computational cost by a factor2.
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these conditions, according to the addressed problem, somequestions arise. Does the sequenceW(k)WT (k)

converge almost surely to the signalΠs or the noise projectorΠn and does the sequenceWT (k)W(k) converge

almost surely toIr for the subspace tracking problem or does the sequenceW(k) converge to the signal or

the noise eigenvectors[±u1, ...,±ur] or [±un−r+1, ...,±un] for the eigenvectors tracking problems? These

questions are very challenging, but using the stability of the associated ODE, a partial response will be given

in Subsection VII-A.

Now, from a practical point of view, the step size sequenceµk is reduced to a "small" constantµ to track

signal or noise subspaces (or signal or noise eigenvectors)with possible nonstationary datax(k). Under these

conditions, the previous sequences do not converge almost surely any longer even for stationary datax(k).

Nevertheless, if for stationary data, these algorithms converge almost surely with a decreasing step size, their

estimateθ(k) (W(k)WT (k), WT (k)W(k) or W(k) according to the problem) will oscillate around their limit

θ∗ (Πs or Πn, Ir, [±u1, ...,±ur] or [±un−r+1, ...,±un], according to the problem) with a constant "small"

step size. In these later conditions, the performance of thealgorithms will be assessed by the covariance matrix

of the errors(θ(k)− θ∗) using some results of Gaussian approximation recalled in Subsection VII-B.

Unfortunately, the study of the stability of the associatedODE and the derivation of the covariance of the

errors are not always possible due to their complex forms. Inthese cases, the "convergence" and the performance

of the algorithms for stationary data will be assessed by first order analysis using coarse approximations. In

practice, this analysis will be only possible for independent datax(k) and assuming the step sizeµ "sufficiently

small" to keep terms that are at most of the order ofµ in the different used expansions. An example of such

analysis has been used in [29] and [74] to derive an approximate expression of the mean of the deviation

from orthonormalityE[WT (k)W(k) − Ir] for the estimateW(k) given by the FRANS algorithm (described

in Subsection V-A2) that allows to explain the difference inbehavior of this algorithm when estimating the

noise and signal subspaces.

A. A short review of the ODE method

The so-called ODE [42], [13] is a powerful tool to study the asymptotic behavior of the stochastic

approximation algorithms of the general form10

θ(k + 1) = θ(k) + µkf(θ(k),x(k)) + µ2kh(θ(k),x(k)), (VII.1)

with x(k) = g(ξ(k)), whereξ(k) is a Markov chain that does not depend onθ, f(θ,x) andh(θ,x) are "regular

enough" functions, and where(µk)k∈N is a positive sequence of constants, converging to zero, andsatisfying

the assumption
∑

k µk = ∞. Then, the convergence properties of the discrete time stochastic algorithm (VII.1)

10The most common form of stochastic approximation algorithms corresponds toh(.) = 0. This residual perturbation term
µ2
kh(θ(k),x(k)) will be used to write the trajectories governed by the estimated projectorP(k) = W(k)WT (k).
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is intimately connected to the stability properties of the deterministic ODE associated with (VII.1), which is

defined as the first-order ordinary differential equation

dθ(t)

dt
= f̄(θ(t)), (VII.2)

where the functionf̄(θ) is defined by

f̄(θ)
def
= E[f(θ,x(k))], (VII.3)

where the expectation is taken only with respect to the datax(k) and θ is assumed deterministic. We first

recall in the following some definitions and results of stability theory of ODE (i.e., the asymptotic behavior of

trajectories of the ODE) and then, we will specify its connection to the convergence of the stochastic algorithm

(VII.1). The stationary pointsof this ODE are the valuesθ∗ of θ for which the driving termf̄(θ) vanishes;

hence the term stationary ponts. This givesf̄(θ∗) = 0, so that the motion of the trajectory ceases. A stationary

point θ∗ of the ODE is said to be

• stable if for an arbitrary neighborhood ofθ∗, the trajectoryθ(t) stays in this neighborhood for an initial

conditionθ(0) in another neighborhood ofθ∗;

• locally asymptotically stableif there exists a neighborhood ofθ∗ such that for all initial conditionsθ(0)

in this neighborhood, the ODE (VII.2) forcesθ(t) → θ∗ as t→ ∞;

• globally asymptotically stableif for all possible values of initial conditionsθ(0), the ODE (VII.2) forces

θ(t) → θ∗ as t→ ∞;

• unstableif for all neighborhoods ofθ∗, there exists some initial valueθ(0) in this neighborhood for which

the ODE (VII.2) do not forceθ(t) to converge toθ∗ as t→ ∞.

Assuming that the set of stationary points can be derived, two standard methods are used to test for stability.

They are summarized in the following. The first one consists in finding a Lyapunov functionL(θ) for the

differential equation (VII.2), i.e., a positive valued function that is decreasing along all trajectories. In this case,

it is proved (see e.g., [12]) that the set of the stationary points θ∗ are asymptotically stable. This stability is

local if this decrease occurs from an initial conditionθ(0) located in a neighborhood of the stationary points

and global if the initial condition can be arbitrary. Ifθ∗ is a (locally or globally) stable stationary point, then

such a Lyapunov function necessarily exists [12]. But for general nonlinear functions̄f(θ), no general recipe

exists for finding such a function. Instead, one must try manycandidate Lyapunov functions in the hopes of

uncovering one which works.

However, for specific functions̄f(θ) which constitute negative gradient vectors of a positive scalar function

J(θ):

f̄(θ) = −∇θJ with J > 0,
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then, all the trajectories of the ODE (VII.2) converge to theset of the stationary points of the ODE (see Exercice

X). Consequently, the set of the stationary points is globally asymptotically stable for this ODE.

The second method consists in a local linearization of the ODE (VII.2) about each stationary pointθ∗ in

which case a stationary point is locally asymptotically stable if and only if the locally linearized equation

is asymptotically stable. Consequently the final conclusion amounts to an eigenvalue check of the matrix
df̄(θ)
dθ |θ=θ∗

. More precisely (see Exercice X), ifθ∗ ∈ Rm is a stationary point of the ODE (VII.2), and

ν1, ..., νm are the eigenvalues of them×m matrix df̄(θ)
dθ |θ=θ∗

, then (see Exercice X or [12] for a formal proof)

• if all eigenvaluesν1, ..., νm have strictly negative real parts,θ∗ is a locally asymptotically stable point;

• if there existsνi amongν1, ..., νm such thatℜ(νi) > 0, θ∗ is an unstable point;

• if for all eigenvaluesν1, ..., νm, ℜ(νi) ≤ 0 and for at least one eigenvalueνi0 amongν1, ..., νm, ℜ(νi0) = 0,

we cannot conclude.

Considering now the connection between the stability properties of the associated deterministic ODE (VII.2)

and the convergence properties of the discrete time stochastic algorithm (VII.1), several results are available.

First, the sequenceθ(k) generated by the algorithm (VII.1) can only converge almostsurely [42][13] to a

(locally or globally) asymptotically stable stationary point of the associated ODE (VII.2). But deducing some

convergence results about the stochastic algorithm (VII.1) from the stability of the associated ODE is not

trivial because a stochastic algorithm have much more complex asymptotic behavior than a given solution of

its associated deterministic ODE. However under additional technical assumptions, it is proved [31] that if the

ODE has a finite number of globally (up to a Lebesgue measure zero set of initial conditions) asymptotically

stable stationary points(θ∗i
)i=1,...,d and if each trajectory of the ODE converges towards one of theses points,

then the sequenceθ(k) generated by the algorithm (VII.1) converges almost surelyto one of these points. The

conditions of the result are satisfied in particular if the mean field f̄(θ) can be written as̄f(θ) = −∇θJ where

∇θJ is a positive valued function admitting a finite number of local minima. In this later case, this result has

been extended for an infinite number of isolated minima in [32].

In adaptive processing, we do not wish a decreasing step sizesequence, since we would then lose the tracking

capability of the algorithms. To be able to track the possible non stationarity of the datax(k), the sequence of

step size is reduced to a "small" constant parameterµ. In this case, the stochastic algorithm (VII.1) does not

converge almost surely even for stationary data and the rigorous results concerning the asymptotic behavior

of (VII.1) are less powerful. However, when the set of all stable points(θ∗i
)i=1,...,d of the associated ODE

(VII.2) is globally asymptotically stable (up to a zero measure set of initial conditions), the weak convergence

approach developed by Kushner [43] suggests that for a "sufficiently small"µ, θ(k) will oscillate around one

of the limit pointsθ∗i
of the decreasing step size stochastic algorithm. In particular, one should note that, when

there exist more than one possible limits (d 6= 1), the algorithm may oscillate around one of themθ∗i
, and then

move into a neighborhood of another equilibrium pointθ∗j
. However, the probability of such events decreases
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to zero asµ→ 0, so that their implication is marginal in most cases.

B. A short review of a general Gaussian approximation result

For constant step size algorithms and stationary data, we will use the following result proved in [13, th.2,

p.108] under a certain number of hypotheses. Consider the constant step size stochastic approximation algorithm

(VII.1). Suppose thatθ(k) converges almost surely to the unique globally asymptotically stable pointθ∗ in

the corresponding decreasing step size algorithm. Then, ifθµ(k) denotes the value ofθ(k) associated with the

algorithm of step sizeµ, we have whenµ→ 0 andk → ∞ (where
L→ denotes the convergence in distribution

andN (m,Cx), the Gaussian distribution of meanm and covarianceCx)

1√
µ

(θµ(k)− θ∗)
L→ N (0,Cθ) , (VII.4)

whereCθ is the unique solution of the continuous-time Lyapunov equation:

DCθ +CθD
T +G = O, (VII.5)

whereD andG are, respectively, the derivative of the mean fieldf̄(θ) and the following sum of covariances

of the fieldf(θ,x(k)) of the algorithm (VII.1):

D
def
=

df̄(θ)

dθ |θ=θ∗

(
[D]i,j

def
=

∂f̄i(θ)

∂θj

)
(VII.6)

G
def
=

∞∑

k=−∞
Cov{f(θ∗, ,x(k)), f(θ∗,x(0))} =

∞∑

k=−∞
E{[f(θ∗,x(k))][f(θ∗,x(0))]T }. (VII.7)

Note that all the eigenvalues of the derivativeD of the mean field have strictly negative real parts sinceθ∗ is

an asymptotically stable point of (VII.2) and that for independent datax(k), G is simply the covariance of the

field. Unless we have sufficient information about the data, which is often not the case, in practice we consider

the simplifying hypothesis of independent identically Gaussian distributed datax(k).

It should be mentioned that the rigorous proof of this result(VII.4) needs a very strong hypothesis on the

algorithm (VII.1), namely thatθ(k) converges almost surely to the unique globally asymptotically stable point

θ∗ in the corresponding decreasing step size algorithm. However, the practical use of (VII.4) in more general

situations is usually justified by using formally a general diffusion approximation result [13, th.1, p.104].

In practice,µ is "small" and fixed, but it is assumed that the asymptotic distribution of µ−1/2 (θµ(k)− θ∗)

when k tends to∞ can still be approximated by a zero mean Gaussian distribution of covarianceCθ, and

consequently that for "large enough"k, the distribution of the residual error(θµ(k) − θ∗) is a zero mean

Gaussian distribution of covarianceµCθ whereCθ is solution of the Lyapunov equation (VII.5). Note that

the approximationE[(θµ(k)− θ∗)(θµ(k)− θ∗)T ] ≈ µCθ enables us to derive an expression of the asymptotic

bias E[θµ(k)] − θ∗ from a perturbation analysis of the expectation of both sides of (VII.1) when the field
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f(θ(k),x(k)) is linear inx(k)xT (k). An example of such a derivation is given in Subsection VII-C1, [26] and

Exercice X.

Finally, let us recall that there is no relation between the asymptotic performance of the stochastic

approximation algorithm (VII.1) and itsconvergence rate. As it is well known, the convergence rate depends

on the transient behavior of the algorithm, for which no general result seems to be available. For this reason,

different authors (e.g., [22],[26]) have resorted to simulations to compare the convergence speed of different

algorithms whose associated step sizesµ are chosen to provide the same value of the mean square error

E‖(θµ(k)− θ∗)‖2 ≈ µTr(Cθ).

C. Examples of convergence and performance analysis

Using the previously described methods, two examples of convergence and performance analysis will be

given. Oja’s neuron algorithm as the simplest algorithm will allow us to present a comprehensive study of an

eigenvector tracking algorithm. Then the Oja’s algorithm will be studied as an example of a subspace tracking

algorithm.

1) Convergence and performance analysis of the Oja’s neuron: Consider Oja’s neuron algorithms (IV.1) and

(IV.3) introduced in Section IV. The stationary points of their associated ODE

dw(t)

dt
= Cxw(t)−w(t)[w(t)TCxw(t)]

[
resp.,−Cxw(t) +w(t)[w(t)TCxw(t)]

]
(VII.8)

are the roots ofCxw = w[wTCxw] and thus are clearly given by(±uk)k=1,...,n. To study the stability of

these stationarity points, consider the derivativeDw of the mean fieldCxw −w[wTCxw] [resp.,−Cxw +

w[wTCxw]] at these points. Using a standard first order perturbation,we obtain

Dw(±uk) = Cx − (wTCxw)In − 2wwTCx|w=±uk

[resp.,−Cx + (wTCxw)In + 2wwTCx|w=±uk
].

Because the eigenvalues ofDw(±uk) are−2λk, (λi−λk)i 6=k [resp.,2λk, −(λi−λk)i 6=k], these eigenvalues are

all real negative fork = 1 only, for the stochastic approximation algorithms (IV.1),in contrast to the stochastic

approximation algorithms (IV.3) for whichDw(±uk) has at least one nonnegative eigenvalue. Consequently only

±u1 is locally asymptotically stable for the ODE associated with (IV.1) and all the eigenvectors(±uk)k=1,..,n

are unstable for the ODE associated with (IV.3) and thus only(IV.1) (Oja’s neuron for dominant eigenvector)

can be retained.

Note that the coupled stochastic approximation algorithms(IV.1)(IV.2) can be globally written as (VII.1) as
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well. The associated ODE, given by

d

dt


 w(t)

λ(t)


 =


 Cxw −wwTCxw

wTCxw − λ


 (VII.9)

has the pairs(±uk, λk)k=1,...n as stationary points. The derivativeD of the mean field at theses points is given

by

D =


 Dw(±uk) 0

2uT
kCx −1




whose eigenvalues are−2λk, (λi − λk)i 6=k and −1. Consequently the pair(±u1, λ1) is the only locally

asymptotically stable point for the associated ODE (VII.9)as well.

More precisely, it is proved in [49] that ifw(0)Tu1 > 0 [resp.,< 0], the solutionw(t) of the ODE (VII.2)

tends exponentially tou1 [resp.,−u1] as t→ ∞. The pair(±u1, λ1) is thus globally asymptotically stable for

the associated ODE.

Furthermore, using the stochastic approximation theory and in particular [43, th.2.3.1], it is proved in [50]

that Oja’s neuron (IV.1) with decreasing step sizeµk, converges almost surely to+u1 or −u1 ask tends to

∞.

We have now the conditions to apply the Gaussian approximation results of Subsection VII-B. To solve the

Lyapunov equation, the derivativeD of the mean field at the pair(±u1, λ1) is given by

D =


 Cx − λ1In − 2λ1u1u

T
1 0

2λ1u
T
1 −1


 .

In the case of independent Gaussian distributed datax(k), it has been proved ([22] [26]) that the covariance

G (VII.7) of the field is given by

G =


 Gw 0

0T 2λ21




with Gw =
∑n

i=2 λ1λiuiu
T
i . Solving the Lyapunov equation (VII.5), the following asymptotic covarianceCθ

is obtained ([22][26])

Cθ =


 Cw 0

0T λ21




with Cw =
∑n

i=2
λ1λi

2(λ1−λi)
uiu

T
i . Consequently the estimates(w(k), λ(k)) of (±u1, λ1) given by (IV.1) and

(IV.2) respectively, are asymptotically independent and Gaussian distributed with

E(‖w(k) − (±u1)‖2) ∼
n∑

i=2

µλ1λi
2(λ1 − λi)

and E(λ(k) − λ1)
2 ∼ µλ21.

We note that the behavior of the adaptive estimates(w(k), λ(k)) of (±u1, λ1) are similar to the behavior of
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their batch estimates. More precisely ifw(k) andλ(k) denote now the dominant eigenvector and the associated

eigenvalue of the sample estimateC(k) = 1
k

∑k
i=1 x(i)x

T (i) of Cx, a standard result [3, th.13.5.1, p.541])

gives
√
k (θ(k)− θ∗)

L→ N (0,Cθ) , (VII.10)

with Cθ =


 Cw 0

0T 2λ21


 whereCw =

∑n
i=2

λ1λi

(λ1−λi)2
uiu

T
i . The estimatesw(k) andλ(k) are asymptotically

uncorrelated and the estimation of the eigenvalueλ1 is well conditioned in contrast to those of the eigenvector

u1 whose conditioning may be very bad whenλ1 andλ2 are very close.

Expressions of the asymptotic biaslimk→∞E[θ(k)] − θ∗ can be derived from (VII.4). A word of caution

is nonetheless necessary because the convergence ofµ−1/2 (θµ(k)− θ∗) to a limiting Gaussian distribution

with covariance matrixCθ does not guarantee the convergence of its moments to those ofthe limiting

Gaussian distribution. In batch estimation, both the first and the second moments of the limiting distribution of
√
k (θ(k) − θ∗) are equal to the corresponding asymptotic moments for independent Gaussian distributed data

x(k). In the following, we assume the convergence of the second-order moments allowing us to write

E[(θµ(k)− θ∗)] (θµ(k)− θ∗)
T ] = µCθ + o(µ).

Let θµ(k) = θ∗ + δθk with θ∗ =


 u1

λ1


. Provided the datax(k) are independent (which implies thatw(k)

and x(k)xT (k) are independent) andθµ(k) is stationary, taking the expectation of both sides of (IV.1) and

(IV.2) gives11

E[Cx(u1 + δwk)− (u1 + δwk)(u1 + δwk)
TCx(u1 + δwk)] = 0

E[(u1 + δwk)
TCx(u1 + δwk)− (λ1 + δλk)] = 0.

Using a second-order expansion, we get after some algebraicmanipulations

 Cx − λ1In − 2λ1u1u

T
1 0

2λ1u
T
1 −1




 E(δwk)

E(δλk)




+µ


 −(2λ1Cw +Tr(CxCw)In)u1

Tr(CxCw)


 = o(µ).

Solving this equation inE(δwk) andE(δλk) using the expression ofCw, gives the following expressions of

11We note that this derivation would not be possible for non-polynomial adaptationsf(θ(k),x(k)).
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the asymptotic bias

E[w(k)]− u1 = −µ
(

n∑

i=2

λ2i
4(λ1 − λi)

)
u1 + o(µ) and E[λ(k)] − λ1 = o(µ).

We note that these asymptotic biases are similar to those obtained in batch estimation derived from a Taylor

series expansion [76, p.68] with expression (VII.10) ofCθ.

E[w(k)]− u1 = −1

k

(
n∑

i=2

λ1λi
2(λ1 − λi)2

)
u1 + o(

1

k
) and E[λ(k)]− λ1 = o(

1

k
).

Finally, we see that in adaptive and batch estimation, the square of these biases are an order of magnitude

smaller that the variances inO(µ) or O( 1k ).

This methodology has been applied to compare the theoretical asymptotic performance of several adaptive

algorithms for minor and principal component analysis in [22], [26]. For example, the asymptotic mean square

error E(‖W(k) −W∗‖2Fro) of the estimateW(k) given by the WSA algorithm (VI.9) is shown in Figure 1,

where the step sizeµ is chosen to provide the same value forµTr(Cθ). We clearly see in this figure that the

valueβ2/β1 = 0.6 optimizes the asymptotic mean square error/speed of convergence tradeoff.
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Figure 1 Learning curves of the mean square errorE(‖W(k)−W∗‖2Fro) averaging 100 independent runs for the WSA

algorithm, for different values of parameterβ2/β1 = 0.96 (1), 0.9 (2), 0.1 (3), 0.2 (4), 0.4 (5) and0.6 (6) compared with

µTr(Cθ) (0) in the casen = 4, r = 2, Cx = Diag(1.75, 1.5, 0.5, 0.25), where the entries ofW(0) are chosen randomly

uniformly in [0,1].

2) Convergence and performance analysis of Oja’s algorithm: Consider now Oja’s algorithm (V.5) described

in Subsection V-A. A difficulty arises in the study of the behavior of W(k) because the set of orthonormal bases

of ther-dominant subspace forms acontinuumof attractors: the column vectors ofW(k) do not in general tend

to the eigenvectorsu1, . . . ,ur, and we have no proof of convergence ofW(k) to a particular orthonormal basis
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of their span. Thus, considering the asymptotic distribution of W(k) is meaningless. To solve this problem, in

the same way as Williams [77] did when he studied the stability of the estimated projection matrixP(k)
def
=

W(k)WT (k) in the dynamics induced by Oja’s learning equationdW(t)
dt = [In −W(t)W(t)T ]CW(t), viz

dP(t)

dt
= (In −P(t))CP(t) +P(t)C(In −P(t)), (VII.11)

we consider the trajectory of the matrixP(k)
def
= W(k)WT (k) whose dynamics are governed by the stochastic

equation

P(k + 1) = P(k) + µkf(P(k),x(k)xT (k)) + µ2kh(P(k),x(k)xT (k)) (VII.12)

with f(P,C)
def
= (In −P)CP+PC(In −P) andh(P,C)

def
= (In −P)CPC(In −P). A remarkable feature

of (VII.12) is that the fieldf and the complementary termh depend only onP(k) and not on W(k). This

fortunate circumstance makes it possible to study the evolution of P(k) without determining the evolution of

the underlying matrixW(k). The characteristics ofP(k) are indeed the most interesting since they completely

characterize the estimated subspace. Since (VII.11) has a unique global asymptotically stable pointP∗ = Πs

[68], we can conjecture from the stochastic approximation theory [13], [43] that (VII.12) converges almost surely

to P∗. And consequently the estimateW(k) given by (V.5) converges almost surely to the signal subspace in

the meaning recalled in Subsection II-D.

To evaluate the asymptotic distributions of the subspace projection matrix estimator given by (VII.12), we

must adapt the results of Subsection VII-B because the parameterP(k) is here ann×n rank-r symmetric matrix.

Furthermore, we note that some eigenvalues of the derivative of the mean fieldf̄(P) = E[f(P,x(k)xT (k))]

are positive real. To overcome this difficulty, let us now consider the following parametrization ofP(k) in a

neighborhood ofP∗ introduced in [24], [25]. If{θij(P)|1 ≤ i ≤ j ≤ n} are the coordinates ofP−P∗ in the

orthonormal basis(Si,j)1≤i≤j≤n defined by

Si,j =





uiu
T
i i = j

uiu
T
j +uju

T
i√

2
i < j

,

with the inner product under consideration is(A,B)
def
= Tr(ATB), then,

P = P∗ +
∑

1≤i,j≤n

θijPSi,j

and θij(P) = Tr{Sij(P − P∗)} for 1 ≤ i ≤ j ≤ n. The relevance of this basis is shown by the following

relation proved in [24], [25]

P = P∗ +
∑

(i,j)∈Ps

θij(P)Sij +O(‖P−P∗‖2Fro), (VII.13)
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wherePs
def
= {(i, j) | 1 ≤ i ≤ j ≤ n and i ≤ r}. There arer

2(2n − r + 1) pairs in Ps and this is exactly

the dimension of the manifold of then × n rank-r symmetric matrices. This point, together with relation

(VII.13), shows that the matrix set{Sij | (i, j) ∈ Ps} is in fact an orthonormal basis of the tangent plane to

this manifold at pointP∗. In other words, ann × n rank-r symmetric matrixP lying less thanǫ away from

P∗ (i.e., ‖P − P∗‖ < ǫ) has negligible (of orderǫ2) components in the direction ofSij for r < i ≤ j ≤ n.

It follows that, in a neighborhood ofP∗, the n × n rank-r symmetric matrices are uniquely determined by

the r
2(2n − r + 1) × 1 vector θ(P) defined by:θ(P)

def
= STvec(P − P∗), whereS denotes the following

n2 × r
2(2n − r + 1) matrix: S def

= [. . . , vec(Sij), . . .], (i, j) ∈ Ps.

If P(θ) denotes the unique (for‖θ‖ sufficiently small)n×n rank-r symmetric matrix such thatSTvec(P(θ)−
P∗) = θ, the following one-to-one mapping is exhibited for sufficiently small ‖θ(k)‖:

vec(P(θ(k))) = vec(P∗) + Sθ(k) +O(‖θ(k)‖2) ↔ θ(k) = STvec(P(k) −P∗) (VII.14)

We are now in a position to solve the Lyapunov equation in the new parameterθ. The stochastic equation

governing the evolution ofθ(k) is obtained by applying the transformationP(k) → θ(k) = STvec(P(k)−P∗)

to the original equation (VII.12), thereby giving

θ(k + 1) = θ(k) + µkφ(θ(k),x(k)) + µ2kψ(θ(k),x(k)) (VII.15)

whereφ(θ,x)
def
= STvec(f(P(θ),xxT )) andψ(θ,x)

def
= STvec(h(P(θ),xxT )). Solving now the Lyapunov

equation associated with (VII.15) after deriving the derivative of the mean field̄φ(θ) and the covariance

of the field φ(θ(k),x(k)) for independent Gaussian distributed datax(k), yields the covarianceCθ of the

asymptotic distribution ofθ(k). Finally using mapping (VII.14), the covarianceCP = SCθST of the asymptotic

distribution ofP(k) is deduced [25]

CP =
∑

1≤i≤r<j≤n

λiλj
2(λi − λj)

(ui ⊗ uj + uj ⊗ ui)(ui ⊗ uj + uj ⊗ ui)
T . (VII.16)

To improve the learning speed and misadjustment tradeoff ofOja’s algorithm (V.5), it has been proposed in

[25] to use the recursive estimate (III.6) forCx(k) = E[x(k)xT (k)]. Thus the modified Oja’s algorithm, called

the smoothed Oja’s algorithm, reads:

C(k + 1) = C(k) + αµk[x(k)x
T (k)−C(k)], (VII.17)

W(k + 1) = W(k) + µk[In −W(k)WT (k)]C(k)W(k), (VII.18)

where α is introduced in order to normalize both algorithms becauseif the learning rate of (VII.17) has

no dimension, the learning rate of (VII.18) must have the dimension of the inverse of the power ofx(k).

Furthermoreα can take into account a better tradeoff between the misadjustments and the learning speed.
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Note that the performance derivations may be extended to this smoothed Oja’s algorithm by considering that

the coupled stochastic approximation algorithms (VII.17)(VII.18) can be globally written as (VII.1) as well.

Reusing now the parametrization(θij)1≤i≤j≤n becauseC(k) is symmetric as well, and following the same

approach, we obtain now [25]

CP =
∑

1≤i≤r<j≤n

αijλiλj
2(λi − λj)

(ui ⊗ uj + uj ⊗ ui)(ui ⊗ uj + uj ⊗ ui)
T . (VII.19)

with αij
def
= α/(α + λi − λj) < 1.

This methodology has been applied to compare the theoretical asymptotic performance of several minor and

principal subspace adaptive algorithms in [24], [25]. For example, the asymptotic mean square errorE(‖P(k)−
P∗‖2Fro) of the estimateP(k) given by the Oja’s algorithm (V.5) and the smoothed Oja’s algorithm (VII.17) are

shown in Figure 2, where the step sizeµ of the Oja’s algorithm and the couple(µ, α) of the smoothed Oja’s

algorithm are chosen to provide the same value forµTr(CP ). We clearly see in this figure that the smoothed

Oja’s algorithm withα = 0.3 provides faster convergence than the Oja’s algorithm.
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Figure 2 Learning curves of the mean square errorE(‖P(k) −P∗‖2Fro) averaging 100 independent runs for the Oja’s

algorithm (1) and the smoothed Oja’s algorithm withα = 1 (2) andα = 0.3 (3) compared withµTr(CP ) (0) in the same

configuration (Cx, W(0)) that Figure 1.

Regarding the issue of asymptotic bias, note that there is a real methodological problem to apply the method-

ology of the end of Subsection VII-C1. The trouble stems fromthe fact that the matrixP(k) = W(k)WT (k)

does not belong to a linear vector space because it is constrained to have fixed rankr < n. The set of such

matrices is not invariant under addition; it is actually a smooth submanifold ofRn×n. This is not a problem in
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the first-order asymptotic analysis because this approach amounts to approximating this manifold by its tangent

plane at a point of interest. This tangent plane is linear indeed. In order to refine the analysis by developing

a higher order theory, it becomes necessary to take into account the curvature of the manifold. This is tricky

business. As an example of these difficulties, one could show(under simple assumptions) that there exist no

projection-valued estimators of a projection matrix that are unbiased at orderO(µ); this can be geometrically

pictured by representing the estimates as points on a curvedmanifold (here: the manifold of projection matrices).

Using a more involved expression of the covariance of the field (VII.7), the previously described analysis can

be extended to correlated datax(k). Expressions (VII.16) and (VII.19) extend provided thatλiλj is replaced

by λiλj + λi,j whereλi,j is defined in [25]. Note that whenx(k) = (xk, xk−1, ..., xk−n+1)
T with xk being an

ARMA stationary process, the covariance of the field (VII.7)and thusλi,j can be expressed in closed form

with the help of a finite sum [23].

The domain of learning rateµ for which the previously described asymptotic approach is valid and the

performance criteria for which no analytical results couldbe derived from our first-order analysis, such as the

speed of convergence and the deviation from orthonormalityd2(µ)
def
= ‖WT (k)W(k) − Ir‖2Fro can be derived

from numerical experiments only. In order to compare Oja’s and the smoothed Oja’s algorithms, the associated

parametersµ and (α, µ) must be constrained to give the same value ofµTr(CP ). In these conditions, it has

been shown in [25] by numerical simulations that the smoothed Oja’s algorithm provides faster convergence

and a smaller deviation from orthonormalityd2(µ) than Oja’s algorithm. More precisely, it has been shown

that d2(µ) ∝ µ2 [resp., ∝ µ4] for Oja’s [resp., the smoothed Oja’s] algorithm. This result agrees with

the presentation of Oja’s algorithm given in Subsection V-Ain which the termO(µ2k) was omitted from the

orthonormalization of the columns ofW(k).

Finally, using the theorem of continuity (e.g., [58, Th.6.2a]), note that the behavior of any differentiable

function of P(k) can be obtained. For example, in DOA tracking from the MUSIC algorithm12 (see e.g.,

Subsection VIII-A), the MUSIC estimates(θi(k))i=1,...,r of the DOAs at timek can be determined as ther

deepest minima of the localization functionaH(θ)[In −P(k)]a(θ). Using the mappingP(k) 7−→ θ(k) where

hereθ(k)
def
= (θ1(k), ..., θr(k))

T , the Gaussian asymptotic distribution of the estimateθ(k) can be derived [24]

and compared to the batch estimate. For example for a single source, it has been proved [24] that

Var(θ1(k)) = µ
nσ21
2α1

(
1 +

σ2n
nσ21

)
σ2n
σ21

+ o(µ).

12Naturally in this application, the data are complex-valued, but using the conjugate transpose operator instead of transpose, and a

complex parametrization based on the orthonormal basis(Hi,j)1≤i,j≤n whereHi,j = uiu
H
i for i = j,

uiu
H
j +uju

H
i√

2
for i < j and

uiu
H
j −uju

H
i

i
√

2
for i > j instead of the orthonormal basis(Si,j)1≤i≤j≤n, expressions (VII.16) and (VII.19) are still valid.
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whereσ21 is the source power andα1 is a purely geometrical factor. Compared to the batch MUSIC estimate

Var(θ1(k)) =
1

k

1

α1

(
1 +

σ2n
nσ21

)
σ2n
σ21

+ o(
1

k
),

the variances are similar providedµnσ21 is replaced by2k . This suggests that the step sizeµ of the adaptive

algorithm must be normalized bynσ21.

VIII. I LLUSTRATIVE EXAMPLES

Fast estimation and tracking of the principal (or minor) subspace or components of a sequence of random

vectors is a major tool for parameter and signal estimation in many signal processing communications and

RADAR applications (see e.g., [11] and the references therein). We can cite, for example, the Direction of

Arrival (DOA) tracking and the blind channel estimation including CDMA and OFDM communications as

illustrations.

Going back to the common observation model (III.1) introduced in Subsection III-A

x(k) = A(k)r(k) + n(k), (VIII.1)

where A(k) is an n × r full column rank matrix withr < n, the different applications are issued from

specific deterministic parametrizationsA(φ(k)) of A(k) whereφ(k) ∈ Rq is a slowly time-varying parameter

compared tor(k). When this parametrizationφ(k) 7−→ A(φ(k)) is nonlinear,φ(k) is assumed identifiable

from the signal subspacespan[A(k)] or the noise subspacenull[AT (k)] which is its orthogonal complement,

i.e.,

span [A(φ(k))] = span
[
A(φ′(k))

]
⇒ φ′(k) = φ(k),

and when this parametrizationφ(k) 7−→ A(φ(k)) is linear, this identifiability is of course up to a multiplicative

constant only.

A. Direction of arrival tracking

In the standard narrow-band array data model,A(φ) is partitioned intor column vectors asA(φ)
def
=

[a(φ1), . . . ,a(φr)], where (φi)i=1,...,r denotes different parameters associated with ther sources (azimuth,

elevation, polarization,...). In this case, the parametrization is nonlinear. The simplest case corresponds to one

parameter per source (q = r) (e.g., for a uniform linear arraya(φi) = (1, ei2π
d

λ
sinφi , ..., ei2π

d(n−1)

λ
sinφi)T ). For

convenience and without loss of generality, we consider this case in the following. A simplistic idea to track the

r DOAs would be to use an adaptive estimateΠ̂n(k) of the noise orthogonal projection matrixΠn(k) given

by W(k)WT (k) or In−W(k)WT (k) whereW(k) is, respectively, given by a minor or a dominant subspace
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adaptive algorithm introduced in Section V,13 and then to derive the estimated DOAs as ther minima of the

cost function

aH(φ)Π̂n(k)a(φ)

by a Newton-Raphson procedure

φi(k + 1) = φi(k)

− ℜ[a′iH(φ(k))Π̂n(k + 1)aHi (φ(k))]

ℜ[a′′H(φi(k))Π̂n(k + 1)aH(φi(k)) + a′H(φi(k))Π̂n(k + 1)a′H(φi(k)]
,

i = 1, ..., r,

wherea′i
def
= dai

dφ anda′′i
def
= d2ai

dφ2 . While this approach works for distant different DOAs, it breaks down when

the DOAs of two or more sources are very close and particularly in scenarios involving targets with crossing

trajectories. So the difficulty in DOA tracking is the association of the DOA estimated at different time points

with the correct sources. To solve this difficulty, various algorithms for DOA tracking have been proposed in

the literature (see e.g., [59] and the references therein).To maintain this correct association, a solution is to

introduce the dynamic model governing the motion of the different sources

φi(k + 1)
def
=




φi(k + 1)

φ′i(k + 1)

φ′′i (k + 1)


 =




1 T T 2/2

0 1 T

0 0 1







φi(k)

φ′i(k)

φ′′i (k)


+




n1,i(k)

n2,i(k)

n3,i(k)


 ,

whereT denotes the sampling interval and(nj,i(k))j=1,2,3 are random process noise terms that account for

random perturbations about the constant acceleration trajectory. This enables us to predict the state (position,

velocity, and acceleration) of each source in any interval of time using the estimated state in the previous

interval. An efficient and computationally simple heuristic procedure has been proposed in [65]. It consists of

four steps by iterationk. First, a prediction̂φi(k + 1/k) of the state from the estimatêφi(k/k) is obtained.

Second, an update of the estimated noise projection matrixΠ̂n(k) given by a subspace tracking algorithm

introduced in Section V is derived from the new snapshotx(k). Third, for each sourcei, an estimatêφi(k+1)

given by a Newton-Raphson step initialized by the predictedDOA φ̂i(k+1/k) given by a Kalman filter of the

first step whose measurement equation is given by

φ̂i(k) = [1, 0, 0]




φi(k)

φ′i(k)

φ′′i (k)


+ n4,i(k)

13Of course, adapted to complex-valued data.
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where the observation̂φi(k) is the DOA estimated by the Newton-Raphson step at iterationk− 1. Finally, the

DOA φ̂i(k + 1/k) predicted by the Kalman filter is also used to smooth the DOAφ̂i(k + 1) estimated by the

Newton-Raphson step, to give the new estimateφ̂i(k+1/k+1) of the state whose its first component is used

for tracking ther DOAs.

B. Blind channel estimation and equalization

In communication applications, the matched filtering followed by symbol rate sampling or oversampling

yields ann-vector datax(k) which satisfies the model (VIII.1), wherer(k) contains different transmitted

symbolsbk. Depending on the context, (Single Input Multi Output (SIMO) channel, or Code Division Multiple

Access (CDMA), Orthogonal Frequency Division Multiplexing (OFDM), Multi Carrier CDMA (MC CDMA)

with or without intersymbol interference, different parametrizations ofA(k) arise which are generally linear in

the unknown parameterφ(k). The latter represents different coefficients of the impulse response of the channel

that are assumed slowly time-varying compared to the symbolrate. In these applications, two problems arise.

First, the updating of the estimated parametersφ(k), i.e., the adaptive identification of the channel can be useful

to an optimal equalization based on an identified channel. Second, for particular models (VIII.1), a direct linear

equalizationmT (k)x(k) can be used from the adaptive estimation of the weightm(k). To illustrate subspace

or component-based methods, two simple examples are given in the following.

For the two channel SIMO model, we assume that the two channels are of orderm and that we stack the

m+1 most recent samples of each channel to form the observed datax(k) = [x1(k),x2(k)]
T . In this case we

obtain the model (VIII.1) whereA(k) is the following2(m+ 1)× (2m+ 1) Sylvester filtering matrix

A(k) =




φ0(k) · · · · · · φm(k)

. .. . . .

φ0(k) · · · · · · φm(k)


 ,

andr(k) = (bk, ..., bk−2m)T , with φi(k) = (hi,1(k), hi,2(k))
T , i = 0, ...,m wherehi,j represents theith term

of the impulse response of thej-th channel. These two channels do not share common zeros, guaranteeing their

identifiability. In this specific two-channel case, the so called least square [79] and subspace [48] estimates

of the impulse responseφ(k) = [φT
0 (k), ...,φ

T
m(k)]T defined up to a constant scale factor, coincide [80] and

are given byφ(k) = Tv(k) with v(k) is the eigenvector associated with the unique smallest eigenvalue of

Cx(k) = E
(
x(k)xT (k)

)
whereT is the antisymmetric orthogonal matrixIm+1 ⊗


 0 1

−1 0


. Consequently

an adaptive estimation of the slowly time-varying impulse responseφ(k) can be derived from the adaptive

estimation of the eigenvectorv(k). Note that in this example, the rankr of the signal subspace is given by

r = 2m + 1 whose orderm of the channels that usually possess "small" leading and trailing terms is ill

defined. For such channels it has been shown [45] that blind channel approximation algorithms should attempt
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to model only the significant part of the channel composed of the "large" impulse response terms because efforts

toward modeling "small" leading and/or trailing terms leadto effective overmodeling, which is generically ill-

conditioned and, thus, should be avoided. A detection procedure to detect the order of this significant part has

been given in [44].

Consider now an asynchronous direct sequence CDMA system ofr users without intersymbol interference.

In this case, model (VIII.1) applies, whereA(k) is given by

A(k) = [a1(k)s1, ..., ar(k)sr]

where ai(k) and si are respectively the amplitude and the signature sequence of the i-th user andr(k) =

(bk,1, ..., bk,r)
T where bk,i is the symbolk of the i-th user. We assume that only the signature sequence of

User 1, the user of interest, is known. Two linear multiuser detectorsmT (k)x(k), namely, the decorrelation

detector (i.e. that completely eliminates the multiple access interference caused by the other users) and the linear

MMSE detector for estimating the symbolbk,1, has been proposed in [75] in terms of the signal eigenvalues

and eigenvectors. The scaled version of the respective weightsm(k) of these detectors are given by

m(k) = Us(k)
(
∆(k) − σ2n(k)Ir

)−1
UT

s (k)s1

m(k) = Us(k)∆
−1(k)UT

s (k)s1,

where Us(k) = [v1(k), ...,vr(k)], ∆(k) = Diag(λ1(k), ..., λr(k)) and σ2n(k) = λr+1(k) issued from the

adaptive EVD ofCx(k) = E
(
x(k)xT (k)

)
including the detection of the numberr of user that can change by

a rank tracking procedure (e.g., [71]).

IX. CONCLUDING REMARKS

Although adaptive subspace and component-based algorithms were introduced in signal processing three

decades ago, a rigorous convergence analysis has been only derived for the celebrated Oja’s algorithm,

whose Oja’s neuron is a particular case, in stationary environment. In general all these techniques are

derived heuristically from standard iterative computational techniques issued from numerical methods of linear

algebra. So a theoretical convergence and performance analysis of these algorithms is necessary, but seem

very challenging. Furthermore, such analysis is not sufficient because these algorithms may present numerical

instabilities due to rounding errors. Consequently, a comprehensive comparison of the different algorithms that

have appeared in the literature from the performance (convergence speed, mean square error, distance to the

orthonormality, tracking capabilities), computational complexity and numerical stability points of view, that are

out the scope of this chapter, would be be very useful for practitioners.

The interest of the signal processing community in adaptivesubspace and component-based schemes remains

strong as it is evident from the numerous articles and reports published in this area each year. But we
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note that these contributions mainly consist in the application of standard adaptive subspace and component-

based algorithms in new applications and in refinements of well known subspace/component-based algorithms,

principally to reduce their computational complexity and to numerically stabilize the minor subspace/component-

based algorithms, whose literature is much more limited than the principal subspace and component-based

algorithms.

X. EXERCISES

Exercice 1

Let λ0 be a simple eigenvalue of a real symmetricn× n matrix C0, and letu0 be a unit 2-norm associated

eigenvector, so thatCu0 = λ0u0. Then a real-valued functionλ(.) and a vector functionu(.) are defined for

all C in some neighborhood (e.g., among the real symmetric matrices) ofC0 such that

λ(C0) = λ0, u(C0) = u0 and Cu = λu under the constraint‖u‖2 = 1.

Using simple perturbations algebra manipulations, prove that the functionsλ(.) andu(.) are differentiable on

some neighborhood ofC0 and that the differentials atC0 are given by

δλ = uT
0 (δC)u0 and δu = −(C− λ0In)

#(δC)u0, (X.2)

where# stands for the Moore Penrose inverse. Prove that if the constraint ‖u‖2 = 1 is replaced byuT
0 u = 1,

the differentialδu given by (X.2) remains valid.

Now consider the same problem whereC0 is a Hermitian matrix. To fix the perturbed eigenvectoru, the

condition ‖u‖2 = 1 is not sufficient. So suppose now thatuH
0 u = 1. Note that in this caseu no longer has

unit 2-norm. Using the same approach as for the real symmetric case, prove that the functionsλ(.) andu(.)

are differentiable on some neighborhood ofC0 and that the differentials atC0 are now given by

δλ = uH
0 (δC)u0 and δu = −(C− λ0In)

#(In − u0u
H
0 )(δC)u0. (X.3)

In practice, different constraints are used to fixu. For example, the SVD function of MATLAB forces all

eigenvectors to be unit 2-norm with a real first element. Specify in this case the new expression of the differential

δu given by (X.3). Finally, show that the differentialδu given by (X.2) would be obtained with the condition

uH
0 δu = 0, which is no longer derived from the constraint‖u‖2 = 1.

Exercice 2

Consider ann × n real symmetric or complex Hermitian matrixC0 whose ther smallest eigenvalues are

equal toσ2 with λn−r > λn−r+1. Let Π0 the projection matrix onto the invariant subspace associated withσ2.

Then a matrix-valued functionΠ(.) is defined as the projection matrix onto the invariant subspace associated

with the r smallest eigenvalues ofC for all C in some neighborhood ofC0 such thatΠ(C0) = Π0. Using
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simple perturbations algebra manipulations, prove that the functionsΠ(.) is two times differentiable on some

neighborhood ofC0 and that the differentials atC0 are given by

δΠ = −
(
Π0(δC)S#

0 + S
#
0 (δC)Π0

)

+ S
#
0 (δC)Π0(δC)S#

0 −Π0(δC)S#2
0 (δC)Π0 + S

#
0 (δC)S#

0 (δC)Π0

+ Π0(δC)S#
0 (δC)S#

0 − S
#2
0 (δC)Π0(δC)Π0 −Π0(δC)Π0(δC)S#2

0 ,

whereS0
def
= C0 − σ2In.

Exercice 3

Consider a Hermitian matrixC whose real and imaginary parts are denoted byCr and Ci respectively.

Prove that each eigenvalue eigenvector pair(λ,u) of C is associated with the eigenvalue eigenvector pairs

(λ,


 ur

ui


) and (λ,


 −ui

ur


) of the real symmetric matrix


 Cr −Ci

Ci Cr


 whereur andui denote the

real and imaginary parts ofu.

Exercice 4 Consider what happens when the orthogonal iteration method(II.11) is applied withr = n and

under the assumption that all the eigenvalues ofC are simple. The QR algorithm arises by considering how to

compute the matrixTi
def
= WT

i CWi directly from this predecessorTi−1. Prove that the following iterations

T0 = QT
0 CQ0 whereQ0 is an arbitrary orthonormal matrix

for i = 1, 2, ... Ti−1 = QiRi QR factorization

Ti = RiQi,

produce a sequence(Ti,Q0Qi...Qi) that converges to(Diag(λ1, ..., λn), [±u1, ...,±un]).

Exercice 5 Specify what happens to the convergence and the convergencespeed, if the stepWi =

orthonorm{CWi−1} of the orthogonal iteration algorithm (II.11) is replaced by the following {Wi =

orthonorm{(In + µC)Wi−1}. Same questions, for the step {Wi = orthonormalization ofC−1Wi−1}, then

{Wi = orthonormalization of(In − µC)Wi−1}. Specify the conditions that must satisfy the eigenvaluesof

C andµ for these latter two steps. Examine the specific caser = 1.

Exercice 6

Using the EVD ofC, prove that the solutionsW of the maximizations and minimizations (II.7) are given by

W = [u1, ...,ur]Q andW = [un−r+1, ...,un]Q respectively, whereQ is an arbitraryr× r orthogonal matrix.

Exercice 7

Consider the scalar function (II.14)J(W)
def
= E(‖x−WWTx‖2) of W = [w1, ...,wr] with C

def
= E(xxT ).

Let ∇W = [∇1, ...,∇r] where(∇k)k=1,..,r is the gradient operator with respect towk. Prove that

∇WJ = 2
(
−2C+CWWT +WWTC

)
W. (X.4)
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Then, prove that the stationary points ofJ(W) are given byW = UrQ where ther columns ofUr denote

arbitraryr distinct unit-2 norm eigenvectors amongu1, ...,un of C and whereQ is an arbitraryr×r orthogonal

matrix. Finally, prove that at each stationary point,J(W) equals the sum of eigenvalues whose eigenvectors

are not involved inUr.

Consider now the complex valued case whereJ(W)
def
= E(‖x −WWHx‖2) with C

def
= E(xxH) and use

the complex gradient operator (see e.g., [35]) defined by∇W = 1
2 [∇R + i∇I ] where∇R and∇I denote the

gradient operators with respect to the real and imaginary parts. Show that∇WJ has the same form as the

real gradient (X.4) except for a factor 1/2 and changing the transpose operator by the conjugate transpose one.

By noticing that∇WJ = O is equivalent to∇RJ = ∇IJ = O, extend the previous results to the complex

valued case.

Exercice 8

With the notations of Exercice X, suppose now thatλr > λr+1 and consider first the real valued case. Show

that the(i, j)th block ∇i∇
T
j J of the block Hessian matrixH of J(W) with respect to thenr-dimensional

vector [wT
1 , ...,w

T
r ]

T is given by

1

2
∇i∇

T
j J = δij

(
−2C+CWWT +WWTC

)

+ (wT
j Cwi)In + (wT

j wi)C+Cwjw
T
i +wjw

T
i C.

After evaluating the EVD of the block Hessian matrixH at the stationary pointsW = UrQ, prove thatH is

nonnegative ifUr = [u1, ...,ur ]. Interpret in this case the zero eigenvalues ofH. Prove that whenUr contains

an eigenvector different fromu1, ...,ur, some eigenvalues ofH are strictly negative. Deduce that all stationary

points ofJ(W) are saddle points except the pointsW whose associated matrixUr contains ther dominant

eigenvectorsu1, ...,ur of C which are global minima of the cost function (II.14).

Extend the previous results by considering the2nr × 2nr real Hessian matrixH = ∇∇J with ∇
def
=

[∇T
R,1, ...,∇

T
R,r,∇

T
I,1, ...,∇

T
I,r]

T .

Exercice 9

With the notations of the NP3 algorithm described in Subsection V-A3, write (V.15) in the form

G(k + 1) =
1

β

[
G−1/2(k)(In + abT + baT + αaaT )G−T/2(k)

]−1/2

with a
def
= 1

βG(k)y(k), b
def
= 1

βG(k)z(k) andα
def
= ‖x(k)‖2. Then, using the EVDν1e1eT1 + ν2e2e

T
2 of the

symmetric rank two matrixabT +baT +αaaT , prove equalities (V.16) and (V.17) whereτi
def
= 1−1/

√
νi + 1,

i = 1, 2.

Exercice 10

Consider the following stochastic approximation algorithm derived from Oja’s algorithm (V.5) where the sign
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of the step size can be reversed and where the estimateW(k) is forced to be orthonormal at each time step

W′(k + 1) = W(k) ± µk[In −W(k)WT (k)]x(k)xT (k)W(k)

W(k + 1) = W′(k + 1)[W′T (k + 1)W′(k + 1)]−1/2, (X.5)

where [W′T (k + 1)W′(k + 1)]−1/2 denotes the symmetric inverse square root ofW′T (k + 1)W′(k + 1).

To compute the later, use the updating equation ofW′(k + 1) and keeping in mind thatW(k) is

orthonormal, prove thatW′T (k + 1)W′(k + 1) = Ir ± zzT with z
def
= µ‖x(k) − W(k)y(k)‖y(k) where

y(k)
def
= WT (k)x(k). Using identity (V.9), prove that[W′T (k + 1)W′(k + 1)]−1/2 = Ir ± τky(k)y

T (k) with

τk
def
= (1/‖y(k)‖2)

(
(1/(1 + µ2‖x(k) −W(k)y(k)‖2‖y(k)‖2)1/2)− 1

)
. Finally, using the update equation

of W(k + 1), prove that algorithm (X.5) leads toW(k + 1) = W(k) ± µkp(k)y
T (k) with p(k)

def
=

±τk/µkW(k)y(k) + (1 + τk‖y(k)‖2) (x(k)−W(k)y(k)).

Alternatively, prove that algorithm (X.5) leads toW(k + 1) = H(k)W(k) whereH(k) is the Householder

transform given byH(k) = In − 2u(k)uT (k) whereu(k)
def
= p(k)/‖p(k)‖.

Exercice 11

Consider the scalar function (V.21)J(W)
def
= Tr[ln(WTCW)]−Tr(WTW). Using the notations of Exercice

X, prove that

∇WJ = 2
(
CW(WTCW)−1 −W

)
. (X.6)

Then, prove that the stationary points ofJ(W) are given byW = UrQ where ther columns ofUr denotes

arbitraryr distinct unit-2 norm eigenvectors amongu1, ...,un of C and whereQ is an arbitraryr×r orthogonal

matrix. Finally, prove that at each stationary point,J(W) =
∑r

i=1 ln (λsi) − r, where ther eigenvaluesλsi

are associated with the eigenvectors involved inUr.

Exercice 12

With the notations of Exercice X and using the matrix differential method [46, Chap. 6], prove that the

Hessian matrixH of J(W) with respect to thenr-dimensional vector[wT
1 , ...,w

T
r ]

T is given by

1

2
H = −Inr − (WTCW)−1 ⊗ [CW(WTCW)−1WTC]

− Krn[CW(WTCW)−1]⊗ [(WTCW)−1WTC] + (WTCW)−1 ⊗C,

whereKrn is thenr × rn commutation matrix [46, Chap. 2]. After evaluating this Hessian matrixH at the

stationnary pointsW = UrQ of J(W) (V.21), subtituting the EVD ofC and deriving the EVD ofH, prove

that whenλr > λr+1, H is nonnegative ifUr = [u1, ...,ur ]. Interpret in this case the zero eigenvalues of

H. Prove that whenUr contains an eigenvector different fromu1, ...,ur , some eigenvalues ofH are strictly

positive. Deduce that all stationary points ofJ(W) are saddle points except the pointsW whose associated

matrix Ur contains ther dominant eigenvectorsu1, ...,ur of C which are global maxima of the cost function
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(V.21).

Exercice 13

Suppose the columns[w1(k), ...,wr(k)] of then× r matrixW(k) are orthonormal and letW′(k+1) be the

matrix W(k) ± µkx(k)x
T (k)W(k). If the matrixS(k + 1) performs a Gram-Schmidt orthonormalization on

the columns ofW′(k+1), write this in explicit form for the columns of matrixW(k+1) = W′(k+1)S(k+1)

as a power series expansion inµk and prove that

wi(k + 1) = wi(k) + µk


In −wi(k)w

T
i (k)− 2

i−1∑

j=1

wj(k)w
T
j (k)




x(k)xT (k)wi(k) +O(µ2k) for i = 1, . . . , r.

Following the same approach with nowW′(k + 1) = W(k) ± x(k)xT (k)W(k)Γ(k) where Γ(k) =

µkDiag(1, α2, . . . , αr), prove that

wi(k + 1) = wi(k) + αiµk


In −wi(k)w

T
i (k)−

i−1∑

j=1

(1 +
αj

αi
)wj(k)w

T
j (k)




x(k)xT (k)wi(k) +O(µ2k) for i = 1, . . . , r.

Exercice 14

Specify the stationary points of the ODE associated with algorithm (VI.10). Using the eigenvalues of the

derivative of the mean field of this algorithm, prove that ifλn−r+1 < 1 and andβ > λn−r+1

λn
− 1, the only

asymptotically stable points of the associated ODE are the eigenvectors±vn−r+1, . . . ,±vn.

Exercice 15

Prove that the set of then × r orthogonal matricesW (denoted the Stiefel manifoldStn,r) is given by

the set of matrices of the formeAW whereW is an arbitraryn × r fixed orthogonal matrix andA is a

skew-symmetric matrix (AT = −A).

Prove the following relation

J(W + δW) = J(W) + Tr[δAT (H2WH1W
T −WH1W

TH2)] + o(δW),

whereJ(W) = Tr[WH1W
TH2] (whereH1 andH2 are arbitraryr×r andn×n symmetric matrices) defined

on the set ofn× r orthogonal matrices. Then, give the differentialdJ of the cost functionJ(W) and deduce

the gradient ofJ(W) on this set ofn× r orthogonal matrices

∇WJ = [H2WH1W
T −WH1W

TH2]W. (X.7)

Exercice 16

Prove that iff̄(θ) = −∇θJ , whereJ(θ) is a positive scalar function,J(θ(t)) tends to a constant ast tends
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to ∞, and consequently all the trajectories of the ODE (VII.2) converge to the set of the stationary points of

the ODE.

Exercice 17

Let θ∗ be a stationary point of the ODE (VII.2). Consider a Taylor series expansion of̄f(θ) about the point

θ = θ∗

f̄(θ) = f̄(θ∗) +
df̄(θ)

dθ |θ=θ∗

(θ − θ∗) +O[(θ − θ∗)](θ − θ∗).

By admitting that the behavior of the trajectoryθ(t) of the ODE (VII.2) in the neighborhood ofθ∗ is identical

to those of the associated linearized ODEdθ(t)dt = D (θ(t)− θ∗) (with D
def
= df̄(θ)

dθ |θ=θ∗

) about the pointθ∗,

relate the stability of the stationary pointθ∗ to the behavior of the eigenvalues of the matrixD.

Exercice 18

Consider the general stochastic approximation algorithm (VII.1) in which the fieldf(θ(k),x(k)xT (k)) and

the residual perturbation termh(θ(k),x(k)xT (k)) depend on the datax(k) throughx(k)xT (k) and are linear

in x(k)xT (k). The datax(k) are independent. The estimated parameter is here denotedθµ(k)
def
= θ∗+δθk. We

suppose that the Gaussian approximation result (VII.4) applies and that the convergence of the second-order

moments allows us to writeE[(θµ(k)− θ∗)] (θµ(k) − θ∗)
T ] = µCθ + o(µ). Taking the expectation of both

sides of (VII.1), providedµk = µ andθµ(k) stationary, gives that

0 = E(f(θ∗ + δθk,Cx) =
∂f

∂θ |θ=θ∗

E(δθk) +
µ

2

∂2f

∂θ2 |θ=θ∗

vec(Cθ) + o(µ).

Deduce a general expression of the asymptotic biaslimk→∞E[θ(k)]− θ∗.
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