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ASYMPTOTIC BEHAVIOR OF A CHEMOSTAT MODEL WITH

CONSTANT RECYCLE SLUDGE CONCENTRATION

M. AMINE HAMRA, KARIM YADI

Abstract. In this work, we study a several species aerobic chemostat model
with constant recycle sludge concentration in continuous culture. We reduce
the number of parameters by considering a dimensionless model. First, the
existence of a global positive uniform attractor for the model with di�erent
removal rates is proved using the theory of dissipative dynamical systems.
Hence, we investigate the asymptotic behavior of the model under small per-
turbations using methods of singular perturbation theory and we prove that,
in the case of two species in competition, the unique equilibrium which is pos-
itive is globally asymptotically stable. Finally, we establish the link between
the open problem of the chemostat with di�erent removal rates and monotone
functional responses, and our model when two species compete on the same
nutrient. We give some numerical simulations to illustrate the results.

1. Introduction

The Chemostat with sludge recycle process (or an activated sludge process) is a
biological treatment used for reducing dissolved organic matter from waste-water,
and consists of two units, an aeration basin and a clari�er. First, in�uent is intro-
duced into the aerated tank, in which pollutants are degraded by microorganisms.
After a required period of aeration and agitation in the aeration tank, biomass �ows
to the secondary clari�er, where it is separated into thickened biomass and treated
waste-water by gravity sedimentation. A portion of this settled biomass, described
as activated sludge is recycled back rapidly into the aeration tank to maintain the
desired concentration of organisms in the reactor, see Fig.1.1. Q is the in�uent �ow
rate, (volume/time); r as subscript, denotes recycle ratio; S0,S respectively denote
concentration of substrate in in�uent and aeration basin; x0

i ,xi,x
r
i respectively de-

note concentration of the i -th species of microorganism in in�uent, aeration basin
and sludge recirculation stream (mass/volume).

Many mathematical models used to describe the behavior of the activated sludge
process are available in the literature. In this paper we choose a simpli�ed model
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proposed by [1] and presented later in detailed works by [9, 10, 5]. Another interest-
ing study of the activated sludge processes can be found in [15]. Our purpose being
a mathematical study and a discussion on an open problem, we did not consider the
more recent and complicated activated sludge models as de�ned for example in [4].
The model considered in this study expresses the bio-degradation of one pollutant
(substrate) by n-species of microorganisms in a mixed continuous culture.
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Figure 1.1. Mass balance of the Chemostat with sludge recycle

The chemostat with sludge recycle model for n-species of microorganisms in con-
tinuous culture is described by the following system of di�erential equations :

(1.1)


.

S= D (S0 + r S)−D (1 + r)S −
n∑

i=1

1
Yi
fi(S)xi,

.
xi = D (x0i + r xri )−D (1 + r)xi + (fi(S)− ki)xi, i = 1, n

where D = Q/V is the dilution rate, V being the volume of the aeration basin; Yi
the growth yield coe�cient (mass of the organism produced per unit mass of the
substrate consumed); ki the speci�c decay-rate constants or removal rates; fi/Yi is
the uptake or consumption function, proportional to the growth function fi . As
usual, fi : R+ → R+ is such that :
- fi is continuously di�erentiable and monotone increasing,
- fi(0) = 0.
The usual monotonic growth function is the Monod (Holling type II) consumption
function [7]

µ(S) =
µmax S

kS + S
,

where µmax is the maximum speci�c growth-rate constant, and kS is the Michaelis-
Menten constant.
The system of equations 1.1 can be written in the following form

.

(
S

S0
) = D (1− S

S0
)−

n∑
i=1

1

Yi
fi(

S

S0
S0)

xi
S0

.

(
xi
S0

) =
D (x0

i + r xri )

S0
+ [fi(

S

S0
S0)− (D (1 + r) + ki)]

xi
S0

Let us introduce, for convenience, the following dimensionless quantities :
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hi =
D (x0

i + r xri )

S0
, ki ← ki + (1 + r)D, S ← S/S0, xi ← xi/S0,

and replace fi(S0S) by fi(S) (in this change we use the dimensionless S). This
change of variables and parameters allows us to rewrite (1.1) as:

(1.2)


.

S= D (1− S)−
n∑
i=1

1
Yi
fi(S)xi

.
xi = hi + (fi(S)− ki)xi i = 1, n

This article is organized as follows : �rst, in Section 2, it is proved that the
model (1.2) has a unique equilibrium point which is positive and that the solutions
are positively bounded (dissipativity). In Section 3, we show that in the case of
a single type of microorganisms the equilibrium is globally asymptotically stable
and then we establish in the higher dimensional case a uniform persistence result.
We conjecture that this persistence is realized around the equilibrium. Section 4
is devoted to our model written as a slow and fast system in order to make use of
reduction technics within the singular perturbation theory. It is proved that, for
n = 2, the unique equilibrium point is globally asymptotically stable (note that for
n = 3 we indicate how to obtain the local attractivity). The relationship between
stability and singular perturbation theory can be derived from the geometrical point
of view (Fenichel's theory [2]) or the 'topological' one [14]. Finally, it is remarkable
that when we set in the model (1.1) the input biomass x0

i = 0 and the recycle ratio
r = 0 the parameter hi vanishes. Hence, the obtained dimensionless model (1.2)
with hi = 0 is nothing else than the chemostat model with di�erent removal rates
and general monotone growth functions [12, Chapter 2, Sec. 4 ]. It is well known
that the asymptotic behavior of such a model is still an open problem, for which it
is conjectured that the species with the smallest break-even concentration wins the
competition and the others go extinct. It is the Competitive Exclusion Principle.
Note that the problem have been solved for the case of Monod growth function
and di�erent removal rates [6]. In Section 5, the link between the two problems
is examined, at least for n = 2, and it is explained that the two conjectures are
equivalent. For the singularly perturbed system modelizing the chemostat model
with di�erent removal rates and general monotone growth functions and derived
from the singularly perturbed model studied in Section 4, we could prove that the
Competitive Exclusion Principle holds.

2. The equilibrium point and the dissipativity

De�nition 1. A dynamical system
.
y= f(y) de�ned in a domain Ω is said to be

dissipative if trajectories are asymptotically uniformly bounded in positive time, in
other words, if there exists a positive real number R such that all solutions y(t)
with y(t) ∈ Ω for all t > 0 satisfy lim sup

t→∞
‖ y(t) ‖< R.

De�ne the family of the so-called break-even concentrations

{λi : ki = fi(λi)}i=1,n

elements of which are ordered as follows λ1 < λ2 6 ... 6 λn.

Proposition 2. The system (1.2) admits a unique positive �xed point.
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Proof. The equilibrium points are solutions of

(2.1)

D (1− S)−
n∑
i=1

1
Yi
fi(S)xi = 0

hi + (fi(S)− ki)xi = 0, i = 1, n

In view of positivity of the equilibria, one should have, from the second equation
of (2.1),

xi =
hi

ki − fi(S)
> 0 i = 1, n ⇐⇒ fi(S) < ki i = 1, n

⇐⇒ fi(S) < fi(λi) i = 1, n

⇐⇒ S < λi i = 1, n (fi is injective for all i = 1, n)

⇐⇒ S < λ1.

Denote by (S∗, x∗1, .., x
∗
n) such an equilibrium if it exists. Summing the equations

of the system (2.1) at this point, we get

(2.2) D (1− S∗) +

n∑
i=1

hi
Yi
−

n∑
i=1

ki
Yi
x∗i = 0.

From (2.2), we have

D (1− S∗) +

n∑
i=1

hi
Yi
−

n∑
i=1

hi ki/Yi
ki − fi(S∗)

= 0.

Let g(S) := D (1 − S) +
n∑
i=1

hi

Yi
−

n∑
i=1

hi ki/Yi

ki−fi(S) . It is clear that g
′
(S) 6 0, g(0) = D

and lim
S

<−→λ1

g(S) = −∞, then there exists a unique S∗ ∈ (0, λ1) such that g(S∗) = 0.

Hence, the system (1.2) admits a unique equilibrium point with positive coordinates,
designated hereafter by (S∗, x∗1, .., x

∗
n). �

Proposition 3. The domain Ω = {(S, x1, ..., xn) ∈ Rn+1; S > 0, xi > 0 for i =
1, n} is positively invariant with respect to the system (1.2). Moreover, the system
(1.2) is dissipative.

Proof. Let (S, x1, .., xn) a point of the boundary of Ω. First, if S = 0 then, accord-

ing to (1.2),
.

S= D > 0 and if xi = 0 for some i,
.
xi = hi > 0. Hence the open set

Ω is positively invariant for the considered system. Now, let

D̃ = min{D, k1, k2, ..., kn}, z =

n∑
i=1

xi
Yi

+ S, D̂ = (D +

n∑
i=1

hi
Yi

)/D̃.

From the system (1.2), we have
n∑
i=1

.
xi
Yi

+
.

S = D (1− S) +

n∑
i=1

(
hi
Yi
− ki
Yi
xi)

6 D +

n∑
i=1

hi
Yi
− D̃ (

n∑
i=1

xi
Yi

+ S).

Hence, z(t) 6 D̂+z(0) exp(−D̃ t) for all t ≥ 0, which implies that lim supt→∞ z(t) 6

D̂. Then, given any ε > 0 we can choose a certain T > 0, such that z(t) =
n∑
i=1

xi(t)
Yi

+
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S(t) 6 D̂+ ε, t > T . Since each term of the sum is positive the boundedness of the
solutions now follows immediately. In other words, the system is dissipative. �

3. Uniform persistence results

Let us �rst show that in the case of a single type of microorganisms the unique
equilibrium is globally asymptotically stable (Theorem 4 below). In this case the
system (1.1) is given by:

(3.1)

{ .

S= D (1− S)− 1
Y f(S)x

.
x= h+ (f(S)− kd)x

Note that, (S∗, x∗) = (S∗, h
kd−f(S∗) ) is the unique positive �xed point of (3.1).

Theorem 4. The unique positive �xed point of the system (3.1) is globally asymp-
totically stable.

Proof. The linearization of (3.1) around (S∗, x∗) yields the Jacobian matrix:

J(S∗,x∗) =

(
−D − 1

Y f
′(S∗)x∗ − 1

Y f(S∗)
f ′(S∗)x∗ −h/x∗

)
Hence, trace(J(S∗,x∗)) = −(D + 1

Y f
′(S∗)x∗ + h/x∗) < 0, and det(J(S∗,x∗)) > 0.

Then, the equilibrium point (S∗, x∗) is locally asymptotically stable for the system
(3.1) .
Since x(t) > 0 for all t > 0, there exists η : R+ −→ R such that x(t) = exp(η(t)).
We get a system which is topologically equivalent to (3.1){ .

S= D (1− S)− 1
Y f(S) exp(η(t)) =: g1(S, η)

.
η= h exp(−η(t)) + f(S)− kd =: g2(S, η)

Then
∂g1

∂S
(S, η) +

∂g2

∂η
(S, η) = −D − 1

Y
f
′
(S) exp(η(t))− h exp(−η(t)) < 0.

Since the topological equivalence preserves the periodicity of trajectories, the Bendix-
son's criterion implies that there are no periodic orbits. Applying the Poincaré-
Bendixson's Theorem, the ω−limit set of trajectories of (3.1) must be the unique

equilibrium (S∗, h
kd−f(S∗) ) de�ned by D (1− S∗)− h

Y −
h kd/Y
kd−f(S∗) = 0. �

Now, in the presence of many species, we propose to show that the system (1.2)
is uniformly persistent and we recall hereafter this notion.

De�nition 5. The system{
ẏi = gi(y1, y2, .., yn)

yi(0) = y0
i > 0 i = 1, n ,

is said to be uniformly persistent if ∃κ > 0 (κ is independent of initial conditions)
such that for all solutions we have lim inft→∞ yi(t) > κ.

De�nition 6. A bounded closed set A ⊂ Ω is called a global attractor for a
dynamical system

.
y= f(y) de�ned in Ω, if A is positively invariant and attracts all

trajectories starting in bounded sets. In other words, for any bounded set B ⊂ Ω,
lim
t→∞

sup
a∈A

inf
y0∈B

‖ y(t, y0)− a ‖= 0.
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Theorem 7. The system (1.2) is uniformly persistent in the domain Ω and pos-
sesses a compact global attractor in Ω.

Proof. From (1.2) we have

.
xi = hi + (fi(S)− ki)xi
> hi − kixi ,

therefore

∀t > 0, xi(t) > (xi(0)− hi
ki

) exp(−ki t) +
hi
ki
,

which yields

lim inf
t→∞

xi(t) >
hi
ki
> 0.

From the previous proposition we have xi(t) 6 Yi(D̂+ εz) for all t > T , and by the

Mean Value Theorem, there exists a point θi in (0, D̂+εz) such that fi(S) 6 f ′i(θi)S
for all i = 1, n, then from (1.2), we have,

.

S = D (1− S)−
n∑
i=1

1

Yi
fi(S)xi

> D (1− S)− S(D̂ + εz)

n∑
i=1

f ′i(θi)

= D − [D + (D̂ + εz)

n∑
i=1

f ′i(θi)]S.

Then it follows by comparison that

lim inf
t→∞

S(t) >
D

D + (D̂ + εz)
n∑
i=1

f ′i(θi)
> 0.

Hence, the system is uniformly persistent. Since it also dissipative, there exists a
global attractor in Ω. �

Note that uniform persistence together with dissipativity is called permanence.
Numerous numerical simulations (see Figs. 3.1,3.2 ) encourage us to state that :

Conjecture 8. The unique positive �xed point (S∗, x∗1, x
∗
2, .., x

∗
n) of (1.2) is globally

asymptotically stable in Rn+1
+ .
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x1(t)

x2(t)

x3(t)

S(t)

t

S(t)

x3(t)

x2(t)

x1(t)

t

Figure 3.1. Asymptotic behavior of system (1.2) in case of

three types of microorganisms. Here, f1(S) =
µ1
max S

k1
S
+S

, f2(S) =

µ2
max S

k2
S
+S

, f3(S) =
µ3
max S

k3
S
+S

, k1
S

= 50, k2
S

= 45, k3
S

= 40, µ1
max =

2, µ2
max = 3, µ3

max = 4, Y1 = 0.5, Y2 = 0.4 = Y3, k1 = 0.1, k2 =
0.2, k3 = 0.5, D = 0.2, h1 = 0.15, h2 = 0.2, h3 = 0.5.

x1(t)

x3(t)

x2(t)

S(t)

t

Figure 3.2. Asymptotic behavior of system (1.2) in case of three
types of microorganisms with f1(S) = 1

10 ln(1 + S
2 ), f2(S) =

1
10 ln(1 + S

3 ), f3(S) = 1
10 ln(1 + S

4 ), Y1 = 0.5, Y2 = 0.4 = Y3, k1 =
0.1, k2 = 0.2, k3 = 0.5, D = 0.2, h1 = 0.15, h2 = 0.2, h3 = 0.5.

The example simulated in Fig.3.2 is just a mathematical illustration of the con-
jecture, and the growth functions has no biological meaning, but emphasize the
fact that they are monotone increasing. We are not able until now to con�rm this
result, an we propose to examine a special case in the following section.
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4. The singularly perturbed case

Classical methods of reduction are based on the conservation principle, which
plays an important role to reduce higher dimensional system to a simple limiting
system using separation theorems [12]. But our system (1.2) does not have the
conservation property, which causes the di�culty. Stability of the system (1.2) can
be achieved in some speci�c cases which are biologically plausible. In this subsection
we want to reduce the stability analysis of the system (1.2) with the use of singular
perturbation methods. Indeed, biologically it is reasonable to take Yi = εȲi and
D̄ = εD with 0 < ε � 1 because in higher dilution rates, the yield values are
considered small [13, P.72]. In a culture of three species of microorganisms this
leads to a system given by

(4.1)

ε
.

S= D̄ (1− S)−
3∑
i=1

1
Ȳi
fi(S)xi =: G(S, x1, x2, x3),

.
xi = hi + (fi(S)− ki)xi, i = 1, 3.

By Proposition 2, this system possesses a unique positive �xed point

X∗ε = (S∗(ε), x∗1(ε), x∗2(ε), x∗3(ε))

which, actually, does not depend on ε in this case. Taking ε = 0 in the above
system, the resulting equation is

(4.2)

0 = D̄ (1− S)−
3∑
i=1

1
Ȳi
fi(S)xi = G(S, x1, x2, x3),

.
xi = hi + (fi(S)− ki)xi, i = 1, 3.

The partial derivative GS is −D̄ −
3∑
i=1

1
Ȳi
f ′i(S)xi< 0 for all (S, x1, x2, x3) ∈ R4

+.

So the Implicit Function Theorem asserts the existence of a C1 function S =
ψ(x1, x2, x3) de�ned in R3

+, such that

(4.3) G(ψ, x1, x2, x3) = 0.

The Fenichel's First Theorem [8, 2] ensures the existence of a slow invariant at-
tractive manifoldMε = {(S, x1, x2, x3) ∈ R4

+, S = ψε(x1, x2, x3)} for the perturbed
system that is O(ε) close to the critical manifoldM0 = {(S, x1, x2, x3) ∈ R4

+, S =
ψ(x1, x2, x3)}. On Mε the slow dynamics decouples from the fast dynamics and
then we can restrict the study to the regular perturbed problem

(4.4)
.
xi = hi + (fi(ψε)− ki)xi, i = 1, 3.

Setting ε = 0 in (4.4), we obtain a three-dimensional competitive system

(4.5)
.
xi = hi + (fi(ψ)− ki)xi, i = 1, 3.

We know that this system admits a positive �xed point (x∗1, x
∗
2, x
∗
3) such that S∗ =

ψ(x∗1, x
∗
2, x
∗
3).

Now, if we di�erentiate the equation (4.3) implicitly with respect to x1, x2, and x3,
we obtain

ψxj =
∂ψ

∂xj
= −

1
Ȳj
fj(S)

D̄ +
3∑
i=1

1
Ȳi
f ′i(S)xi

6 0, j = 1, 2, 3.
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The Jacobian matrix of (4.5) at the equilibrium (x∗1, x
∗
2, x
∗
3) is given by

J(x∗1 ,x
∗
2 ,x
∗
3) = −

a11 + α1 a12 a13

a21 a22 + α2 a23

a31 a32 a33 + α3

 ,

where

aij = −f ′i(S∗)x∗iψxj (x∗1, x
∗
2, x
∗
3) > 0 and αi =

hi
x∗i
.

First, notice that aijamn = ainamj (in particular, aijaji = aiiajj). The character-
istic polynomial of the above Jacobian is

p(λ) = λ3 + b1λ
2 + b2λ+ b3 ,

where,

b1 = a11 + a22 + a33 + α1 + α2 + α3,

b2 = α1(α2 + α3 + a22 + a33) + α2(α3 + a11 + a33) + α3(a11 + a22),

b3 = α1α2(α3 + a33) + α3(α1a22 + α2a11).

By the Routh-Hurwitz Criterion [3], the roots of p(λ) have negative real parts if
and only if all Hurwitz determinants are positive. Here, b1 and b3 are positive, and

∣∣∣∣b1 1
b3 b2

∣∣∣∣ =(α3a22 + α2a33 + α1α3)(b1 − α1) + α3a11(b1 − α2)

+ b1(α1(α2 + a22 + a33) + α2(α3 + a11)) > 0.

Then, the equilibrium point (x∗1, x
∗
2, x
∗
3) is locally asymptotically stable for the

system (4.5), and so is the corresponding equilibrium point X∗ε = (S∗, x∗1, x
∗
2, x
∗
3)

for the whole system (4.1) according to Fenichel's theory.
The same conclusion can be drawn for the case of a system with two species of

microorganisms

(4.6)

ε
.

S= D̄ (1− S)−
2∑
i=1

1
Ȳi
fi(S)xi,

.
xi = hi + (fi(S)− ki)xi, i = 1, 2.

Moreover, the Bendixson's criterion applied to the two dimensional reduced system
excludes periodic solutions, and the local asymptotic stability of (x∗1, x

∗
2) is global

by the Poincaré-Bendixson Theorem. We summarize these results in the following
theorem.

Theorem 9. For ε su�ciently small, the 4-dimensional singularly perturbed model
(4.1) has a unique positive equilibrium point which is locally asymptotically sta-
ble and the 3-dimensional singularly perturbed model (4.6) is uniformly persistent
around a globally asymptotically equilibrium point.

We give some numerical simulations which illustrate the robustness of the sta-
bility when ε→ 1.
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Solutions in the case = 1

Solutions in the case = 0.1

Solutions in the case = 0.05

The positive equilibrium

x1

x2

S

ε = 1

ε = 0.1

ε = 0.05

S

x1

x2

Figure 4.1. Two viewpoints of the phase portraits of system (4.6)

for the increasing values of ε, where f1(S) =
µ1
max S

k1
S
+S

, f2(S) =

µ2
max S

k2
S
+S

, k1
S

= 50, k2
S

= 45, µ1
max = 0.3, µ2

max = 0.4 Ȳ1 = 0.5, Ȳ2 =

0.4, k1 = 0.1, k2 = 0.2, D̄ = 0.15, h1 = 0.15, h2 = 0.2. The same
interior equilibrium is globally stable. The second �gure underlines
the disappearance of the boundary layer (fast motion) when ε in-
creases. In the case ε = 0.05 the solutions converge exponentially
fast toward the slow manifold then continues on it slowly.
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5. The relationship with an open problem of competitive exclusion

In this section we study the case n = 2. For the sake of simplicity, we suppose
hi = h. Hence we consider the model

(5.1)


.

S= D (1− S)−
2∑
i=1

1
Yi
fi(S)xi,

.
xi = h+ (fi(S)− ki)xi, i = 1, 2.

If we set h = 0 we obtain the simple chemostat model

(5.2)


.

S= D (1− S)−
2∑
i=1

1
Yi
fi(S)xi,

.
xi = (fi(S)− ki)xi, i = 1, 2

Biologically, this approach could be made independent of the recycle problem by
considering the following reasoning : one starts from the model (5.2) for which
it is conjectured that the �rst species wins the competition, and than tries to
obtain coexistence with a constant input of some species, namely those who were
eliminated. In this case, the hi's could be di�erent. That is exactly what Robledo
et al. [11] recently presented by proposing a new chemostat model of competition of
n−species, with constant input of some species and identical removal rates. They
made use of reduction and polytopic Lyapunov functions.

Let us come back to our problem. First, we would like to understand how
equilibria of the model (5.1) transform in the equilibria of (5.2). Regardless the
biological meaning, we allow the xi−components to be negative. The equilibria of
(5.1) and (5.2) are :

Equilibria of (5.1) Characteristics of the equilibria

p1 = (S∗1 ,
h

k1−f1(S
∗
1 )
, h
k2−f2(S

∗
1 )
) positive S∗1 < λ1 < λ2, S

∗
1 < 1

p2 = (S∗2 ,
h

k1−f1(S
∗
2 )
, h
k2−f2(S

∗
2 )
) not positive λ1 < S∗2 < λ2

p3 = (S∗3 ,
h

k1−f1(S
∗
3 )
, h
k2−f2(S

∗
3 )
) not positive λ1 < λ2 < S∗3 , S

∗
3 > 1

Equilibria of (5.2)

q1 = (λ1,
DY1
k1

(1− λ1), 0)

q2 = (λ2, 0,
DY2
k2

(1− λ2))

q3 = (1, 0, 0)

where S∗is de�ned by (we omit the subscribes)

(5.3) D (1− S∗)− h
2∑
i=1

fi(S
∗)/Yi

ki − fi(S∗)
= 0.

The Implicit Function Theorem implies that the equation (5.3) is locally a graph
S∗ = S∗(h). Let us show how the limits lim

h→0
pi(h),i = 1, 2, 3 are related to the

equilibria of (5.1).

From (5.3) we have

(5.4) h(S∗) = D (S∗ − 1)/(g1(S∗)− g2(S∗)),

where g1(S) = f1(S)/Y1

f1(S)−k1 and g2(S) = − f2(S)/Y2

f2(S)−k2 .



ASYMPTOTIC BEHAVIOR OF A CHEMOSTAT MODEL 12

We plot the graphs of g1(S) and g2(S) on the same axes for the case of Monod
type consumption functions. One can easily check that the graphs of the general
functions g1(S) and g2(S) have globally the same aspect, see Fig.5.1. The inter-
sections occur at R ∈ (λ1, λ2) and the sign of g1(S∗) − g2(S∗) is positive when
S∗ ∈ (λ1, R) ∪ (λ2,∞) and negative in (0, λ1, ) ∪ (R, λ2).

By implicit di�erentiation of (5.3) with respect to S∗, the slope is given by

h′(S∗) =
1

g1(S∗)− g2(S∗)

(
D + h(S∗)

2∑
i=1

kif
′
i(S
∗)/Yi

(fi(S∗)− ki)2

)
.

S = 2
S = 1

g1(S)

g2(S)

R

S

0

Figure 5.1. Sign of g1(S)− g2(S)

Domains for which h > 0 and sign of h′, when h > 0, can be summarized in the
following table :

λ1 < λ2 < 1 λ1 < 1 < λ2 1 < λ1 < λ2

S∗1 < λ1 < λ2

S∗1 < 1

S∗1 < λ1

h(S∗1 ) %
S∗1 < λ1

h(S∗1 ) %
S∗1 < λ1

h(S∗1 ) %

λ1 < S∗2 < λ2
R < S∗2 < λ2

h(S∗2 ) %

min(R, 1) < S∗2 < max(R, 1)

h(S∗2 ) % ifR > 1

h(S∗2 ) 1 ifR < 1

R < S∗2 < λ2

h(S∗2 ) %

λ1 < λ2 < S∗3
S∗3 > 1

S∗3 > 1

h(S∗3 ) 1
S∗3 > λ2

h(S∗3 ) 1
S∗3 > λ2

h(S∗3 ) 1
Table 1. The over-lined inequalities represent the intervals in
which h > 0. The sign 1 (resp. %) denotes increasing (resp. de-
creasing) functions. The �rst row of the table indicates the posi-
tion of λ1, λ2 with respect to 1, and the �rst column indicates the
position of the �rst components of p1, p2 and p3.

The lecture of the columns of Table 1 permits to sketch the graphs of h(S∗) in
the three considered cases. Fig.5.4 could have no biological meaning and is given
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for completeness of the study. For our purpose, both Figs.5.2 and 5.3 explains how
equilibria of (5.1) tend to those of (5.2) when h goes to zero positively. For example,
when λ1 < λ2 < 1, the positive equilibrium p1 of (5.1) goes to the equilibrium q1

corresponding, in the classical chemostat (5.2), to the species with the smallest
break-even concentration. The none positive equilibria p2 and p3 tend respectively
to q2, for which the �rst species goes extinct, and to the washout equilibrium q3.
The conclusion is the same when λ1 < 1 < λ2 but p2 converges to the washout
equilibrium and p3 converges to q2. The di�erent limits are summarized in Table
2.

λ1 S
0

h(S)

R

λ2 1

Figure 5.2. The graph of h(S∗) in the case λ1 < λ2 < 1

R

R < 1

0
1 2 S

1

h(S)

λ1 λ21

h(S)

R > 1

R

S

Figure 5.3. The graph of h(S∗) in the case λ1 < 1 < λ2

h(S)

R

21
1

S

0

Figure 5.4. The graph of h(S∗) in the case 1 < λ1 < λ2

Then,
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λ1 < λ2 < 1 λ1 < 1 < λ2 1 < λ1 < λ2

p1(h) →
h→0

q1 q1 q3

p2(h) →
h→0

q2 q3 q1

p3(h) →
h→0

q3 q2 q2

Table 2. The limits of p1, p2, and p3

We now can state the following result :

Theorem 10. Suppose that λ1 < λ2 and λ1 < 1, and consider the positive solutions
of the equations (5.1) and (5.2). If p1 is GAS for the model (5.1) then q1 is GAS
for the model (5.2).

Proof. We explained before how p1→q1 when h→ 0+. On the other hand, Figs.5.2
and 5.3 could be considered as bifurcation diagrams for which h = 0, is clearly not
a bifurcation value. Actually, such a value is negative and corresponds to the local
minimum of h(S). Hence, the limit preserves stability properties. The conclusion
comes from the well known fact that the equilibria q2 and q3 are unstable in the
positive direction so no positive trajectory can converge to one of them. �

This theorem is equivalent to the open problem mentioned above, at least for
n = 2. Moreover, we can assert, according to Theorem 9 the following competitive
exclusion result :

Theorem 11. Suppose that, for i = 1, 2, the growth functions fi : R+ → R+ are
continuously di�erentiable and monotone increasing, with fi(0) = 0. Consider the
singularly perturbed model

(5.5)

ε
.

S= D (1− S)−
2∑
i=1

1
Yi
fi(S)xi

.
xi = (fi(S)− ki)xi i = 1, 2

and suppose that λ1 < λ2 and λ1 < 1. Then for ε small enough, every positive
solution (S(t), x1(t), x2(t)) converges to q1 = (λ1,

DY1

k1
(1− λ1), 0).
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