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Abstract
We calculated the frequency dependent macroscopic dielectric
function and second-harmonic generation of cubic ZnS, ZnSe
and ZnTe within time-dependent density-polarisation func-
tional theory. The macroscopic dielectric function is calculated
in a linear response framework, second-harmonic generation in
a real-time framework. The macroscopic exchange-correlation
electric field that enters in the time-dependent Kohn-Sham
equations and accounts for long range correlation is approxi-
mated as a simple polarisation functional αP where P is the
macroscopic polarisation. Expressions for α are taken from
the recent literature. The performance of the resulting approx-
imations for the exchange-correlation electric field is analysed
by comparing the theoretical spectra with experimental results
and results obtained at the level of the independent particle and
the random-phase approximation. For the dielectric function
we also compare with state-of-the art calculations at the level
of the Bethe-Salpeter equation.

1 Introduction
At present, one of the most successful approaches to treat
optical excitations in finite gap crystals is the GW+Bethe–
Salpeter equation (GW+BSE) on top of density-functional the-
ory (DFT).1 In this approach the Kohn-Sham (KS) eigenso-
lutions {φn,εn} are perturbatively corrected within the GW ap-
proximation and used as a basis to expand the BSE which reads
schematically:

L = L0 +L0ΞL. (1)

The latter is a Dyson equation for the electron-hole correlation
function L. The first term, L0 is the independent two-particles
Green’s function given by the product of two single-particle
Green’s function. Ξ is the Bethe-Salpeter kernel and contains
the long-range correlation in the form of screened electron-
hole attraction which is the key ingredient to describe opti-
cal excitations in finite-gap crystals.2 Without this term ex-

citation wavefunctions are described by KS-particle products
φv(r)φc(r′) (v stands for valence, c for conduction): if the hole
is at φv(r)δ (r− rh), the electron φc(r′) is delocalised over the
whole crystal. This is in stark contrast with what is observed
in finite gap crystals where the optically excited electron is lo-
calised around the hole. For example, the Frenkel exciton in
bulk LiF—a large gap insulator—is delocalised within 2-3 unit
cells.3 Frenkel excitons, and excitons in general, are well cap-
tured within the GW+BSE. Unfortunately, Ξ is computationally
expensive so that calculations become quickly awkward with
the system size. It is thus desirable to look for alternatives, as
for example time-dependent-DFT (TD-DFT).

Within the linear response, TD-DFT is formulated as a
Dyson equation for the density-response function4 χρρ

χ
ρρ = χ

ρρ

0 +χ
ρρ

0 fHxcχ
ρρ , (2)

with analogous ingredients to Eq. (1), the independent particles
density-response function χ0 and the kernel fHxc, a functional
of the electron density which should introduce correlation. In
practice standard approximations5 for the exchange-correlation
part of the kernel fxc are missing the long-range correlation
essential for describing excitonic effects6. In practice optical
spectra of finite gap crystals within standard TDDFT are very
similar to those obtained within the Random-Phase approxima-
tion (Eq. (2) with fxc = 0, that is only the mean-field part of the
kernel is included).

The development of fxc kernels able to treat optical excita-
tions in finite gap crystals is ongoing and progresses have been
made in recent years. The works of Marini et al7, and of Sottile
et al.8 proposed a successful approximation by “rewriting” the
GW+BSE [Eq. (1)] within the TD-DFT framework. This ap-
proximation shares with the GW+BSE not only the accuracy,
but also the computational cost, and it is therefore referred as
a proof of principle rather than routinely employed in “real-
world” applications. From the BS kernel were derived simpli-
fied approximations9–11 with the same long-range behaviour,
which is essential to describe excitonic effects. These approx-
imations work quite well for semiconductors, but tend to over-
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2 THEORY

estimate the absorption at bound exciton resonances in large
gap insulators. In addition they employed empirical parame-
ters. The (revised) bootstrap kernel12,13 and the jellium with
gap model kernel14 have the correct long-range behaviour as
well with the advantage of being first-principles approaches. A
common denominator of the these approximations for the ker-
nel is that there is no corresponding exchange-correlation po-
tential from which they can be derived. In fact, kernels with the
correct long-range behaviour can be derived from the macro-
scopic exchange-correlation electric field15–17, which is a func-
tional of the macroscopic polarisation and electronic density
rather than of the electronic density alone. Starting from TD-
current-density functional theory (TD-CDFT), Berger17 de-
rived a parameter-free kernel, functional of the polarisation,
with the correct long-range behaviour which reproduces well
the optical spectra of semiconductors, insulators and metals.

In this work we calculate the frequency dependent macro-
scopic dielectric function and the second harmonic generation
(SHG) spectra of bulk ZnX (X=S,Se,Te) within a TD-density
polarisation functional theory (TD-DPFT) in which both the
electronic density and macroscopic polarisation are basic vari-
ables (Sec. 2). Calculations are carried out both within a lin-
ear response and a real-time framework (Sec. 3). The discus-
sion and analysis of the results (Sec. 4) focus on the perfor-
mance of the polarisation functionals—derived from the above-
discussed kernels with the correct long-range behaviour. The
performance is compared with results at the independent par-
ticle and random-phase approximation (RPA) level and mea-
sured against the experimental spectra18–22 and for the dielec-
tric function against state-of-the-art calculations at the Bethe-
Salpeter equation level. Because of the technology relevance
of bulk zinc chalcogenides, abundant literature is available on
first-principles calculations of both linear and nonlinear opti-
cal properties23–30 of those systems. Those calculations are all
performed at the independent particle level and with few ex-
ceptions30 neglecting the spin-orbit coupling. In addition of
analysing the performance of the polarisation functional ap-
proximations then, the calculations here presented elucidate
the role of crystal-field effects and electron-hole interaction in
these systems. The latter has been argued to be key in explain-
ing the large difference observed between the measured SH in-
tensity and model results.18

2 Theory

We consider a periodic crystal with a finite gap with volume Ω

in a (time-dependent) macroscopic electric field E . The exter-
nal energy reads

Eext[n,P] =
∫

Ω

n(r)vext(r)dr−ΩE ·P, (3)

where vext is the microscopic external potential, n(r) the elec-
tronic density and P the macroscopic polarisation. When E = 0
the evolution of the system is fully described by the density
which following the Runge–Gross theorem has a one-to-one
correspondence with the microscopic external potential.

When E 6= 0, the density alone is not sufficient any-
more,31–34 and the correct framework to describe the evolu-
tion of the system is TD-CDFT.35,36 Alternatively, for finite-
gap crystals one can choose the density and the macroscopic
polarisation37 as key variables (for the static case see Martin
and Ortiz34):

(n,P)↔ (vext,E ).

In fact from the polarisation p(r, t) one can determine the cur-
rent j(r, t) at each t

j(r, t) =
∂p(r, t)

∂ t
. (4)

Then, p and j are equivalent in the sense that they can both be
employed as basic variable. Furthermore the density and the
microscopic, longitudinal components of p can be used equiv-
alently by virtue of the continuity equation:

∇ ·p(r; t) =−n(r; t). (5)

As in the E = 0 case we can define a Kohn-Sham system whose
density (in all the following we assume spin-unpolarised sys-
tems, but equations can be straightforwardly generalised to the
spin polarised and noncollinear case)

ns(r, t) = 2
occ

∑ |φnk(r; t)|2 (6)

and macroscopic polarisation (in the α cartesian direction) de-
fined as a Berry phase

Ps
α =− 2ie

(2π)3

occ

∑
n

∫
dk〈ukn|∂kα

ukn〉. (7)

should reproduce both the density and macroscopic polarisation
of the physical system, i.e. n = ns and P = Ps. The periodic
part unk of the Bloch states φnk(r, t) = exp(ikr)unk(r; t) is the
solution of the time-dependent Kohn-Sham equations

i∂tunk =
(

Hs,0
k +∆vHxc(r, t)−ΩE s(t) ·∂k

)
unk. (8)

In Eq. (8), Hs,0
k is the ground-state zero-field KS Hamiltonian,

∆vHxc is the change in the microscopic effective potential due
to the changes in the microscopic Hartree vH [n] and exchange-
correlation potential vxc[n,P]. E s is the macroscopic effective
electric field that is the sum of the macroscopic external elec-
tric field, the induced field and the exchange-correlation electric
field

E s[n,P] = E ext +E ind[P]+E xc[n,P]. (9)
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3 IMPLEMENTATION AND COMPUTATIONAL DETAILS

vxc[n,P] and E xc[n,P] guarantee that the density and macro-
scopic polarisation of Kohn-Sham and physical systems are
equal. In practice both need to be approximated.

In what follow we derive approximations for E xc[n,P]
from long-range corrected approximations for the exchange-
correlation kernel proposed in the literature. Within linear
response TD-DFT the kernel f xc(r,r′; t − t ′) describes how
the exchange-correlation potential changes following a per-
turbation of the density. In analogy, we can define a ker-
nel tensor F̄xc(r,r′; t − t ′) that describes how the exchange-
correlation macroscopic field changes following a perturbation
of the macroscopic polarisation and the density. In reciprocal
space (see also Maitra and coworkers35)

E xc(t) =
∫

dt ′
[
F̄XC

00 (t− t ′)P(t ′)

− i ∑
G′ 6=0

F̄XC
0G′(t− t ′)

n′G(t
′)

G′2
G′
]
. (10)

The relation between F̄XC and f XC is found from the relation
between the corresponding response functions (density and po-
larisation):

f XC
GG′(q; t− t ′) =

F̄XC
GG′(q; t− t ′) · ḡ
|q+G||q+G′|

, (11)

where ḡ is the metric tensor. When comparing Eq. (11) with the
general expression for the long-range corrected approximation
for the kernel (α > 0)

f LRC
XC (q→ 0; t− t ′) = lim

q→0
− α

|q|2
δ (t− t ′), (12)

one obtains (for cubic systems where ḡ = Ī, the identity tensor)

F̄XC
0G (q = 0, t− t ′) =−α(G; t)Īδ (t− t ′), (13)

and therefore

E xc(t) =−α(0; t)P(t)+ i ∑
G6=0

α(G; t)
nG(t)

G2 G. (14)

In this work we consider the following approximations for
α:

1. An empirical expression derived by Botti and coworkers10

from the fit of the optimal α for the absorption spectrum
of several semiconductors versus the macroscopic static
dielectric function εM(0):

α
EMP = Aε

−1
M (0)+B (15)

with A = 4.615 and B = 0.213 and εM(0) evaluated at the
quasiparticle level.

2. An energy dependent expression derived from a single
Lorentz oscillator model with plasmon frequency ωp and
resonance frequency ωg corresponding to the average ab-
sorption gap of the material:11

α
ED(ω) = C

(
α0 +βω

2) (16)

α0 =
ωg

εM(0)ω2
p
, β =

α0

ω2
g

(17)

with C = 104.5 found empirically again by fitting optimal
α values for several materials.

3. The static part of the polarisation functional derived from
a simple model for a bound exciton by Berger17

α
BER =

1
χRPAεRPA

M (0)
(18)

with εRPA
M (0) calculated at the RPA level. This expression

for α is the same (but for the choice of the approximation
of εM(0)) as the one in the revised bootstrap kernel13 that
is thus not (explicitly) included in the present analysis.

4. The expression derived by Trevisanutto and coworkers14

from the jellium with gap model (JGM),

α
JGM(r; t) = 4πB̃

[
1− exp

(
−

E2
gap

4πnB̃

)]
. (19)

with B̃ = (B+Egap)/(1+Egap), where B = B[n] is a func-
tional of the density found by fitting the local field factor
of the homogeneous electron gas from Quantum Monte-
carlo data.38 The band gap, Egap, is the indirect gap of the
material.

Note that the expressions in Eqs. (15)–(18) approximate only
α(0; t) in Eq. (14), and the microscopic contribution from
α(G; t) is assumed to be negligible. Instead, in the JGM
approximation [Eq.(19)], the cell average of α JGM(r; t) gives
α(0; t) and the Fourier transform α(G 6= 0; t) in Eq. (14). Fur-
thermore α JGM depends on time through the density, contrary
to Eq. (15),(18) which are time-independent. The energy de-
pendent expression [Eq. (16)] can be in principle Fourier trans-
formed into a time-dependent expression, though the particular
expression for the transformation is not straightforward.

3 Implementation and computational
details

The macroscopic dielectric functions have been calculated
within the linear response framework using Yambo.39 The first
order susceptibility χ within the DPFT is calculated as17,40

χ =
χ0

1−αχ0 (20)
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4 RESULTS

In Eq. (20), χ0 is the first order susceptibility and is obtained
from the microscopic density response function [Eq. (2)] within
the random-phase-approximation (RPA), that is by neglecting
the exchange-correlation part in the fHxc. For α we use the
approximations described in the previous Section. In the JGM
approximation we only consider the G = 0 term.

The SHG spectra have been calculated within the real-time
DPFT approach in Eqs. (6)–(9) which has been implemented
in a development version of Yambo.39,41 The TD-KS states are
expanded in the basis of the ground-state zero-field KS eigen-
functions φ 0

nk(r, t) = exp(ikr)u0
nk(r). In such basis the equa-

tions of motion [Eq. (8)] read,

iċmnk =
(
εlkδml +∆vHxc

mlk−ξmlk
)

clnk, (21)

where cmnk = 〈u0
mk|unk〉, εlk are the eigenenergies of the

ground-state, zero-field crystal Hamiltonian Hs,0
k , ∆vHxc

mlk =
〈u0

mk|∆vHxc|u0
lk〉 and ξmlk is the field coupling operator. Fol-

lowing the works of Souza et al.42 and of Nunes and Gonze43

we approximate the (Gauge covariant) k-derivative in Eq. (8)
with a finite difference five-point midpoint formula. Note that
the long-range correlation effect enters in the field coupling op-
erator. For α we considered αBER, αED and α JGM (consider-
ing the G = 0 and the G 6= 0 terms). The equations of mo-
tion [Eq. (21)] have been integrated using Crank-Nicholson
method.44 The second harmonic spectra have been obtained
from P(t) [Eq. (7)] by Fourier inversion.41

We performed ground state DFT calculation with the
Perdew Burke Ernzerhof45 approximation for the exchange-
correlation energy functional using the planewave pseudopo-
tential PWscf46 code. Troullier-Martins normconserving pseu-
dopotentials47 have been generated with the ld1 atomic code in
the Quantum Espresso suite48 from the pslibrary pseudopoten-
tial input library.49 We generated scalar relativistic pseudopo-
tential and full-relativistic pseudopotentials for Zn, Se and Te
in ZnSe and ZnTe. Within the linear response framework for
ZnSe and ZnTe we performed spin-noncollinear calculations
with spin-orbit interaction. For the self-consistent calculation
of the density we employed a 10×10×10 Monkhorst-Pack50

mesh in reciprocal space and a planewave cutoff of 80 Ry at
the experimental lattice constant (5.41Å, 5.67Åand 6.09Å re-
spectively for ZnS, ZnSe and ZnTe)20–22. The KS eigensolu-
tions needed in Eq. (21) are obtained from a non-self consistent
calculations on a 18× 18× 18 Monkhorst-Pack50 mesh. We
include bands 2 to bands 13 and bands 3 to bands 26 for spin-
unpolarised and spin-noncollinear calculations respectively. In
the solution of the Bethe-Salpeter equation [Eq. 1] we used a
double-grid approach with a 8×8×8 mesh in reciprocal space
as coarse grid plus a shifted 24×24×24 auxiliary mesh.51 For
the screened exchange part of the Bethe-Salpeter kernel in the
calculation of the static RPA response we employed 40 bands
in the summation over bands and a cut-off of 3 Ha (ZnS), 3.3

Ha (ZnSe) and 3.6 Ha (ZnTe) for the summation over recipro-
cal lattice vectors. Calculations at this level of theory do not
include spin-orbit coupling.

As the screened exchange kernel in the Bethe-Salpeter equa-
tion and E xc in DFPT account for the excitonic effects, but
not for the underestimated absorption edge position, the KS
eigenenergies in Eq. (21) are corrected so to reproduce the ex-
perimental bandgap at Γ of 3.80 eV, 2.80 eV and 2.38 eV for
ZnS, ZnSe and ZnTe20–22: a rigid shift of 1.80 eV, 1.65 eV
(1.51 eV) and 1.62 eV (1.30 eV) is applied respectively (in
parentheses scissor operator for spin unpolarised calculations).
Finally for all the systems we introduce a Lorentzian broaden-
ing of 0.2 eV to simulate dephasing effects.

4 Results

4.1 Macroscopic dielectric function
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Figure 1 Optical absorption (imaginary part of the macroscopic dielectric
function ε2) in bulk ZnS. Top panel: experimental spectrum 19(circles)
compared with the independent particle (grey dashed-dotted line) and random
phase approximation (grey continuous line) and Bethe-Salpeter equation
(black dashed line). Bottom panel: experimental spectrum (circles) compared
with the approximations for the polarisation functional described in Sec. 2,
αEMPP (red dashed line), αBERP (magenta dashed line), αEDP (green dashed
line) and α JGMP (blue dashed line). For reference the random phase
approximation is also shown (grey continuous line).

The top panel of Fig. 1 shows the experimental optical ab-
sorption spectrum of ZnS19 —the imaginary part of the macro-
scopic dielectric function ε2— measured at room temperature.
The absorption edge (E0) is at 3.7 eV followed by three peaks
at 5.7 eV (E1), 7.0 eV (E2) and 9.1 eV (E ′1) and a shoulder
(E2 + δ ) at 7.95 eV. In the same panel we plotted the spectra
calculated within the independent particle approximation [only
first term in Eqs. (2)], the RPA [with fxc = 0 in Eq. (2)] and
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4 RESULTS 4.1 Macroscopic dielectric function

Approximation ZnS ZnSe ZnTe
αBER 0.75 0.53 0.34
α JGM 1.34 0.87 0.75
αED 0.26 0.24 0.20
αEMP 0.78 0.64 0.49

Table 1 Calculated values of α for the approximations described in Sec. 2,
Eqs. (15)–(19)

the Bethe-Salpeter Equation. In both cases the KS energies
were corrected with a scissor operator of 1.8 eV to match the
experimental bandgap. All the experimental features are recog-
nisable in the independent particle spectrum, but with large er-
rors in their position, shape and intensity: the absorption edge
is far less pronounced than in the experiment, E1 appears as a
shoulder and it is blue shifted by 0.3 eV, the E2 and E ′1 peaks
are overestimated and blue-shifted by 0.3 eV as well. With re-
spect to the independent particle approximation, the RPA cor-
responds to adding crystal local-field effects. The latter do not
affect either the absorption edge and E1, but correct the overes-
timation of the E2 and E ′1, though they do not change their po-
sition. Even if not plotted, addition of microscopic exchange-
correlation effects (either in the form of a kernel within the
linear response framework, or of a time-dependent potential
within the real-time framework) does not result in significant
changes with respect to the RPA spectra.1

The introduction of electron-hole attraction accounts for
most of the observed differences between the independent par-
ticle/RPA spectra and the experimental curve: the spectrum ob-
tained by solving the Bethe-Salpeter equation reproduces well
both peaks position and intensities. Specifically, at the absorp-
tion edge (E0) where the intensity of the independent parti-
cle/RPA spectra is underestimated the Bethe-Salpeter shows an
exciton corresponding to a transition from the top valence to
the bottom conduction band at the Γ point of the Brillouin zone
and localised on the sulphur atom. Similarly the E1 peak that in
both independent particle/RPA calculations appears as a shoul-
der is clearly pronounced and has an intensity similar to the E2
peak in agreement with what observed experimentally. Lastly,
the blue shift of the energy of the E1, E2 and E ′1 peaks is also
corrected by the introduction of the electron-hole attraction.52

The bottom panel of Fig. 1 compares the experimental op-
tical absorption spectrum with theoretical spectra obtained by
TD-DPFT with the approximations for the polarisation func-
tional described in Sec. 2. Table 1 lists the values for α obtained
in the different approximations. With respect to the spectrum
obtained in the RPA by increasing α the absorption edge (E0)
becomes more pronounced, the E1 peak becomes more intense
and is redshifted and the E ′1 is reduced and redshifted. The
intensity of E2 is slightly increased up to a certain value of
α , and then it decreases. In all cases the peak is redshifted

with respect to the RPA result. Even if providing general im-
provements over the RPA none of the approximations provides
a fully satisfactory agreement with experiment especially when
compared with results at the Bethe-Salpeter level of theory. In
particular the E0 exciton is too weak and the E1, E2 peaks are
still blue shifted by about 0.3 eV and 0.5 eV. The best descrip-
tion of the experimental features is given by the approximation
proposed by Berger, E xc ≈ αBERP, and the empirical approx-
imation proposed by Botti and coworkers, E xc ≈ αEMPP. The
energy dependent approximation, E xc ≈ αEDP, is “too weak”
for low photon energies, while the JGM approximation overes-
timates by almost a factor 2 the intensity E1 peak and under-
estimates instead the intensity of the E2 and E ′1 peaks, though
providing a better agreement for the peaks position.

The real part of the experimental macroscopic function of
ZnS is shown in Fig. 2. Signatures of the features discussed
in the absorption spectrum are visible at 3.7 eV, 5.7 eV, 7.0 eV
and 9.1 eV. At the independent particle level the low part of the
spectrum (static limit) is well reproduced. This is likely due
to an almost exact cancellation between crystal local field ef-
fects, that reduces the value of the static dielectric function (see
RPA results) and excitonic effects that enhances the value of the
the static dielectric function (see polarisation functional results
in the bottom panel). Other features in the experimental spec-
trum are not well captured by both the independent particle and
the RPA (top panel). Similarly to what observed for the imag-
inary part, the introduction of electron-hole attraction within
the Bethe-Salpeter equation framework substantially improves
the agreement with the experiment. In general adding the po-
larisation functionals lead as well to a better overall agreement
with respect to the RPA results (with the exception of the JGM
approximation), but again results are not as good as those ob-
tained by the Bethe-Salpeter equation.

The optical absorption spectra of cubic ZnSe and ZnTe
(Figs. 3 and 4) show analogous features as those discussed for
ZnS. An important difference though is the visible spin-orbit
splitting of the E1 peak of about 0.29 eV for ZnSe and 0.58 eV
in ZnTe.21,22 Substituting S with heavier elements of group 16
of the periodic table has as consequence of increasing the di-
electric screening (experimental average value at room temper-
ature are 5.1 for ZnS20 5.9 for ZnSe21 and 6.9 for ZnTe22)
and thus lower the band gap. For ZnSe the absorption edge
(E0) is at 2.8 eV, E1 at about 4.8 eV (E1 + ∆SO at 5.1 eV),
E2 at 6.5 eV and E ′1 at 8.2 eV. For ZnTe the absorption edge
(E0) is at 2.3 eV, E1 at about 3.8 eV (E1 +∆SO at 4.3 eV), E2
at 5.2 eV. The independent particle and RPA show the same
shortcomings which were discussed for ZnS. Again the spectra
calculated with the Bethe-Salpeter equation are in good agree-
ment with the experiment improving both the peaks position
and intensity when compared to the independent particle/RPA
calculations. As well adding the polarisation functionals to the
RPA improves in general the agreement though to a lesser ex-
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4.1 Macroscopic dielectric function 4 RESULTS

tend than at the Bethe-Salpeter equation level. The best agree-
ment with experiment is obtained using the empirical αEMP in
Eq. (15) followed by the αBER [Eq.(18)] and by αED [Eq.(16)].
Regarding the spin-orbit splitting all these approximations, and
the RPA give similar good results (0.3 eV for ZnSe and about
0.5 eV for ZnTe). For ZnSe, the three above mentioned polar-
isation functional correct also the ratio of the E1 and E1 +∆SO

intensities with respect to the RPA. Regarding the JGM approx-
imation, α JGM is too large and over-corrects the RPA results.

Figures 5 and 6 plot the real part of the macroscopic di-
electric function of ZnSe and ZnTe respectively. Results follow
similar trends as for ZnS. The independent particle approxi-
mation reasonably reproduces the low energy part of the spec-
tra because of cancellation of excitonic and local fields effects.
The agreement though worsens substantially at higher energies.
Consistently with what observed above, the spectra obtained by
Bethe-Salpeter equation show a good overall agreement with
the experiment. The polarisation functionals with α modelled
as a function of the static dielectric function (αED,αBER and
αEMP) improved the agreement with the experiment if compared
with the RPA especially in the case of ZnSe, but again agree-
ment is worse if compared with the Bathe-Salpeter equation.

As noted in the introduction, calculations of the dielectric
function at the independent particle level for these materials
have been reported already in the literature.23,24,26–30 When
compared with these results we found that our calculations
at the same level of approximation are in good agreement on
peaks position and intensity once the onset of the spectra are
shifted so to coincide.53 Regarding spin-orbit effects we do
not observe the overall reduction of absorption reported by
Karazhanov and coworkers:30 even for ZnTe—for which we
observe the strongest spin-orbit interaction—the main differ-
ence between spectra with and without spin-orbit interaction is
the splitting of the E1 peak discussed above.

In what follows we analyse the performance of the polari-
sation functional approximations along the S, Se, Te series by
looking at two signatures of excitonic effects: the E1/E2 peak
intensity ratio and the redshift of the peaks position with re-
spect to the independent particle/RPA. Results for the E1/E2
peak intensity ratio in the absorption are summarised for the
different level of theory in Fig. 7. Whereas the experimental
value ranges between 0.9–1.0, the independent particle approx-
imation gives values between 0.4–0.5, with the ratio increasing
with the chacolgenide atomic number. The underestimation is
due to the underestimation of the E1 (that appears as a shoulder)
and overestimation of the E2. An analogous underestimation of
the E1/E2 ratio is observed in the literature for other zincblende
semiconductors such as silicon or GaAs.54,55 The error at the
independent particle level depends on the different character
of the excitations that originate the peak. As shown for ZnTe
(Fig. 8) the excited electron is much more localised around the
hole for the E1 exciton than for the E2 exciton (a similar trend

is observed for the other systems). Note that while E1 orig-
inates mainly from excitations at the high-symmetry point L,
E2 involves many one particle excitations. In fact in empirical
models for the macroscopic dielectric function, the former is
modelled as transitions at a two-dimensional minimum plus a
bound exciton while the latter is modelled by a damped oscil-
lator.19,56,57

As at the independent particle level the excited electron dis-
tribution does not depend on the hole position the error of ne-
glecting electron-hole attraction is larger for E1. Crystal local
field effects, which are included in the RPA, affect differently
the two excitations as well. They are stronger for the E2 exci-
tation (due to larger density inhomogeneities) and as a conse-
quence the intensity of the corresponding peak is renormalised
leading to a better E1/E2 ratio with respect to the independent
particle approximation, though the error is still very large.

Addition of electron-hole attraction both at the Bethe-
Salpeter level and through the polarisation functional dramati-
cally improve the E1/E2 ratio. In particular with respect to the
RPA, the polarisation functional increases the intensity of the
E1 peak, keep the intensity of E2 unchanged (that is correct al-
ready at the RPA level). This can be understood by noticing
that within the Kohn-Sham macroscopic electric field can be
written as

E S(ω) = (1−αχ(ω))E tot(ω) (22)

where E tot = E ind +E ext in Eq. 9, and we used that P = χE tot

assuming a small E ext so that we can consider only the first per-
turbation order. The first order susceptibility χ(ω) is a complex
quantity. Its imaginary part is positive for ω > 0 (as it corre-
sponds to the optical absorption), so that the sign is determined
by its real part. The latter indeed is negative for energies cor-
responding to E0 and E1 (for which the polarisation functional
increases the intensity) and zero or positive for energies corre-
sponding to E2 and E ′1 (for which the polarisation functional
keeps or reduces the intensity).

Besides underestimating the E1/E2 ratio, at the RPA (and in-
dependent particle) level the position of the E1 and E2 peaks is
blue shifted. As shown in Fig. 9 both Bethe-Salpeter and TD-
DPFT correctly redshift the peaks though to a different extent.
In both cases the redshift is larger for ZnS, for which the elec-
tronic screening is smaller. The correction then decreases by
increasing the chalcogen anion atomic number (thus the elec-
tronic screening). The E2 peak is more redshifted than the E1
peak. Within the Bethe-Salpeter—whose results better agree
with the experiment—corrections are larger than within TD-
DPFT. Furthermore while for the latter the corrections for E1
and E2 show a similar trend, at the Bethe-Salpeter level the
redshift of E2 decreases more slowly with the chalcogen anion
atomic number than the redshift of the E1.

In the analysis above we have consider only the αEMPP ap-
proximation which provide the best agreement and whose re-
sults are very similar to the αCURP approximation. The JGM
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4 RESULTS 4.2 Second Harmonic Generation

approximation (which is appealing as it involves the electron
density rather than the static dielectric function) gives for all
the studied systems poor results as the α are too large and the
corrections overestimated. In fact we obtained much better re-
sults (not shown) by calculating the JGM spectra with the un-
shifted Kohn-Sham eigenvalues and then shift the spectra. For
other systems, as those reported in the original publication,14

we obtained good results. One explanation for those poor re-
sults can be the presence of d bands for which the jellium, even
with a gap, may not be such a good model.

The general picture that emerges from the calculation of the
macroscopic dielectric function is that the polarisation func-
tionals with α modelled as a function of the dielectric constant
are successful in reproducing excitonic effects in the systems
here considered. Though they are not very accurate in predict-
ing the position of the peaks they capture rather well the ratio
of the intensities of the E1 and E2 peaks. Further modelling
of approximations for the polarisation functionals should allow
for more flexibility, likely by improving the energy dependent
model or by including dependence of the local density.

4.2 Second Harmonic Generation
The second order susceptibility tensor χ

(2)
i jk (ωn +ωm;ωn;ωm),

where i jk refers to the cartesian directions of the fields, de-
scribes how the nonlinear polarisation field Pi(ωn + ωm) in
a direction i oscillating at a frequency ωn + ωm is propor-
tional to the product of the applied electric field components
E j(ωm)E k(ωn) in directions j and k oscillating at frequencies
ωn and ωm.60 In zincblende structures such as the bulk cubic
zinc chalcogenides here studied, the only non-zero independent
component of the second order susceptibility is χ

(2)
xyz for which

we have calculated the module |χ(2)|xyz at ωn = ωm (SHG).
The experimental SH intensity spectra |χ(2)|xyz in the 1.0-2.5

eV range18 for cubic ZnS, ZnSe and ZnTe are plotted in the left,
middle and right panels of Fig. 10. The spectrum of ZnS shows
a sharp peak at about 1.85 eV corresponding to a two-photon
resonance at E0. None of the considered approximations satis-
factorily reproduce the experimental spectra in this range. The
TD-DFT, the αEDP and the α JGMP agree with the experiment
for low energies. However at higher energies the intensity is
strongly underestimated with respect to the experiment. The
αBERP functional provides a better agreement, though its inten-
sity is still significantly smaller than experiment. We have also
verified that using a broadening of 0.1 eV instead of 0.2 eV en-
hances the intensity of the peak, but does not change the shape
of the curve. All the considered theoretical methods predict the
E0 two-photon resonance at about 1.9 eV. As discussed previ-
ously the difference in the E0 position is mainly due to temper-
ature effects. For ZnSe the experimental SH spectrum shows
a peak at 1.35 eV (two-photon resonance at E0) and at 2.4 eV
(two-photon resonance at E1). Similarly to ZnS, the TDDFT

correctly predicts the SH intensity at low energies, but strongly
underestimates the SH intensity for higher energies. The αEDP
result is very close to TD-DFT as the α is relatively small. Re-
sults obtained for αBERP and α JGMP are quite similar: they both
worsen the agreement of TD-DFT at low energy and slightly
improve the agreement at higher energies. The two-photon res-
onance at E1 is found at about 2.6 eV in all the methods and
E0 is a weak shoulder at about 1.45 eV visible in the curves
calculates with a 0.1 broadening. For ZnTe the experimen-
tal SH spectrum shows a small peak at 1.14 eV (two-photon
resonance at E0), and two larger peaks at about 1.8 eV (two-
photon resonance at E1) and at 2.0 eV (two-photon resonance
at E1 +∆SO). As for ZnS and ZnSe αEDP and αBERP slightly
improve the general agreement with experiment with respect to
TD-DFT though it worsen the agreement at low energy. In this
case the spectrum obtained with α JGMP has a much larger in-
tensity than all the other approximations and overestimate the
experimental SH intensity. In JGM the two-photon resonance
at E1 is a peak at 1.85 eV, significantly redshifted with respect
to the other approximations that have a shoulder at about 2.1 eV.
Note that as we use scalar relativistic pseudopotentials for those
calculations we cannot reproduce the spin-orbit splitting of the
E1 resonance. Results at the TD-DFT level agree closely with
the calculations for the SHG imaginary part from Reshak and
Auluck23 and show reasonable agreement with other theoreti-
cal results at the independent particle level for SH intensity in
the literature.25,26

The general performance is not very good with all ap-
proximations substantially underestimating the intensity of the
experimental spectra (except for the JGM approximation in
ZnTe). The underestimation of the theoretical curves is quite
large even considering the error of ±20% in the absolute value
of the SHG due to uncertainties in the measurement.18 Note
that the two-photon resonances at E0 (ZnS and ZnSe) and E1
(ZnSe and ZnTe) are enhanced in SHG because of the E−5 be-
haviour (rather than E−3 in the dielectric function).26 Regard-
ing in particular the E0 it was argued that due to their rela-
tively strong binding energy, excitonic effects are still impor-
tant at room temperature and they are responsible of the differ-
ences observed with spectra calculated from independent parti-
cle models.18

No clear trend can be observed on how the PF approxima-
tions are performing with the exception of the energy depen-
dent approximation which behaves similarly to TD-DFT with
the size of the correction increasing from S to Se to Te. Differ-
ently from what we see for the macroscopic dielectric function
there is no clear relation for the size of the correction due the
polarisation functional either with the value of α and with the
results for the macroscopic dielectric function. For example the
JGM has a much larger α and it visibly over-corrects the RPA
for the macroscopic dielectric function in contrast to results for
the SHG of ZnS and ZnSe. We argue that the absence of a clear
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pattern in the functional performance is mainly due to nonlinear
effects as αP = αP(1)+αP(2)+ . . . , thus contributing both at
the laser frequency and at twice the laser frequency. In addition
the SH intensity results from summing the real and imaginary
part and the errors in the two parts may either cancel or sum up.

5 Conclusions

In this work we have calculated the frequency dependent
macroscopic dielectric function and SHG of cubic ZnX, with
X = S, Se and Te, within TD-DPFT. The latter framework,
which has been described in Sec. 2, implies the approximation
of both the microscopic exchange-correlation potential and the
macroscopic exchange-correlation electric field as a functional
of both the electronic density and the macroscopic polarisa-
tion P. In this work we have chosen to neglect microscopic
exchange-correlation effects, that are known to be unimpor-
tant for the macroscopic dielectric function of finite gap pe-
riodic crystals, and approximate the exchange-correlation elec-
tric field as αP. For α we have used expressions that have been
proposed in the recent literature and listed in Sec. 2. Results
were compared with the available experimental data, and with
theoretical results at the independent particle and RPA level and
when feasible with results obtained from the solution of the
Bethe-Salpeter equation.

For the macroscopic dielectric function (Sec. 4.1) we have
found that, with respect to results obtained within the RPA, the
polarisation functionals with α approximated as a function of
the static macroscopic dielectric function improve the agree-
ment with the experimental results though differences are still
visible especially in the peaks position. The agreement with the
experimental curves is not as good as that obtained within the
Bethe-Salpeter equation framework, on the other hand the lat-
ter approach is computationally much more expensive. In fact
for the polarisation functionals considered here the additional
computational cost with respect to a RPA or standard TD-DFT
calculation is negligible while they allow in principle to capture
long-range correlation. It is then certainly of interest to further
develop approximations for the polarisation functionals and the
interest is not restricted to Solid State systems. For example
in long (though finite) molecular chains it has been shown that
the exact exchange-correlation potential counteracts the applied
electric field.61 The effect is captured, at least partially, by or-
bital dependent approximations62–64 or within current-density
functional theory65 that can be however awkward to imple-
ment. Functionals containing polarisation (that for finite sys-
tems are functionals of the electric density alone) may be em-
ployed instead to mimic the counteracting component of the
exchange-correlation potential in a simpler and more efficient
way.

For the SHG we did not obtain a clear picture of the perfor-

mance of the polarisation functionals. They tend to increase the
SH intensity that is strongly underestimated within TD-DFT.
However in general the intensity is still significantly underes-
timated and in addition the agreement at low photon energies
(static limit) is worsened with respect to TD-DFT.
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[18] H. P. Wagner, M. Kühnelt, W. Langbein, and J. M. Hvam,
Phys. Rev. B, 1998, 58, 10494–10501.

[19] T. Tsuchiya, S. Ozaki, and S. Adachi, Journal of Physics:
Condensed Matter, 2003, 15(22), 3717.

[20] in Handbook on Physical Properties of Semiconductors;
Springer US, 2004; pp. 123–160.

[21] in Handbook on Physical Properties of Semiconductors;
Springer US, 2004; pp. 211–253.

[22] in Handbook on Physical Properties of Semiconductors;
Springer US, 2004; pp. 161–210.

[23] A. H. Reshak and S. Auluck, Physica B: Condensed Mat-
ter, 2007, 388(12), 34 – 42.

[24] M.-Z. Huang and W. Y. Ching, Phys. Rev. B, 1993, 47,
9449–9463.

[25] M.-Z. Huang and W. Y. Ching, Phys. Rev. B, 1993, 47,
9464–9478.

[26] E. Ghahramani, D. J. Moss, and J. E. Sipe, Phys. Rev. B,
1991, 43, 9700–9710.

[27] Z. Nourbakhsh, Journal of Alloys and Compounds, 2010,
505(2), 698–711.

[28] R. Khenata, A. Bouhemadou, M. Sahnoun, A. H. Reshak,
H. Baltache, and M. Rabah, Computational Materials Sci-
ence, 2006, 38(1), 29–38.

[29] J. L. P. Hughes and J. E. Sipe, Phys. Rev. B, 1998, 58,
7761–7767.

[30] S. Z. Karazhanov, P. Ravindran, A. Kjekshus, H. Fjellvåg,
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Figure 2 Real part of the macroscopic dielectric function ε1 of bulk ZnS. Top
panel: experimental spectrum 20(circles) compared with the independent
particle (grey dashed-dotted line), random phase approximation (grey
continuous line) and Bethe-Salpeter equation (black dashed line). Bottom
panel: experimental spectrum (circles) compared with the approximations for
the polarisation functional described in Sec. 2, αEMPP (red dashed line),
αBERP (magenta dashed line), αEDP (green dashed line) and α JGMP (blue
dashed line). For reference the random phase approximation is also shown
(grey continuous line).

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

ε 2

0 2 4 6 8 10 12 14

Energy (eV)

0

2

4

6

8

10

12

14

16

ε 2

Figure 3 Optical absorption (imaginary part of the macroscopic dielectric
function ε2) in bulk ZnSe. Top panel: experimental spectrum at room
temperature 21(circles) and at 20K 21(squares) are compared with the
independent particle (grey dashed-dotted line), random phase approximation
(grey continuous line) and Bethe-Salpeter equation (black dashed line).
Bottom panel: experimental spectra (circles and ) are compared with the
approximations for the polarisation functional described in Sec. 2,
E xc ≈ αEMPP (red dashed line), E xc ≈ αBERP (magenta dashed line),
E xc ≈ αEDP (green dashed line) and E xc ≈ α JGMP (blue dashed line). For
reference the random phase approximation is also shown (grey continuous
line).
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Figure 4 Optical absorption (imaginary part of the macroscopic dielectric
function ε2) in bulk ZnTe. Top panel: experimental spectrum 22(circles)
compared with the independent particle (grey dashed-dotted line ), random
phase approximation (grey continuous line) and Bethe-Salpeter equation
(black dashed line). Bottom panel: experimental spectrum (circles) compared
with the approximations for the polarisation functional described in Sec. 2,
E xc ≈ αEMPP (red dashed line), E xc ≈ αBERP (magenta dashed line),
E xc ≈ αEDP (green dashed line) and E xc ≈ α JGMP (blue dashed line). For
reference the random phase approximation is also shown (grey continuous
line).
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Figure 5 Real part of the macroscopic dielectric function ε1 of bulk ZnSe.
Top panel: experimental spectrum 20(circles) compared with the independent
particle (grey dashed-dotted line) and random phase approximation (grey
continuous line) and Bethe-Salpeter equation (black dashed line). Bottom
panel: experimental spectrum (circles) compared with the approximations for
the polarisation functional described in Sec. 2, αEMPP (red dashed line),
αBERP (magenta dashed line), αEDP (green dashed line) and α JGMP (blue
dashed line). For reference the random phase approximation is also shown
(grey continuous line).
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Figure 6 Real part of the macroscopic dielectric function ε1 of bulk ZnTe.
Top panel: experimental spectrum 22(circles) compared with the independent
particle (grey dashed-dotted line) and random phase approximation (grey
continuous line) and Bethe-Salpeter equation (black dashed line). Bottom
panel: experimental spectrum (circles) compared with the approximations for
the polarisation functional described in Sec. 2, E xc ≈ αEMPP (red dashed line),
E xc ≈ αBERP (magenta dashed line), E xc ≈ αEDP (green dashed line) and
E xc ≈ α JGMP (blue dashed line). For reference the random phase
approximation is also shown (grey continuous line).
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reported for comparison (black stars). Lines between points are a guide for the
eye.

a)

b)

Figure 8 Slice of the excitonic wavefunction in ZnTe for a) the strongest
exciton that contributes to the E1 peak and b) the strongest exciton that
contributes to the E2 peak. View along one of the lattice vectors of 7×7×7
unit cells of cubic ZnTe (Zn atoms are in grey, Te atoms in olive green). The
hole position is represented by a dummy atom (black) and coincides with the
position of the Te in one of the unit cells. The 100 lattice plane passing
through the hole position slices the excited electron wavefunction (dark blue
correspond to no excited electronic density). Plots have been rendered using
VESTA. 58
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Figure 9 Redshift with respect the RPA results of the E1 and E2 peaks
position in ε2 as a function of the chalcogen anion atomic number Z (and of
the static macroscopic dielectric constant εM(0) within the Bethe-Salpeter
equation framework) for the Bethe-Salpeter equation (orange squares, E2, and
green right triangles, E1) and the polarisation functional with αEMP (red left
triangles, E2, and blue circles, E1). Lines between points are a guide for the
eye.
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Figure 10 SHG of bulk cubic ZnS (left), ZnSe (middle) and ZnTe (right).
The experimental spectrum 18,59 (circles + error bar of 20% on absolute
intensity) are compared with the time-dependent density functional theory
results obtained with the PBE functional (grey continuous line) and with the
approximations for the polarisation functional described in Sec. 2,
E xc ≈ αBERP (magenta dashed line), E xc ≈ αEDP (green dashed line) and
E xc ≈ α JGMP (blue dashed line). For comparison the E xc ≈ αBERP (magenta
dotted line) and E xc ≈ α JGMP (blue dotted line) have been calculated with a
Lorentzian broadening of 0.1 eV respectively for ZnS and ZnSe.
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