
HAL Id: hal-01320532
https://hal.science/hal-01320532v1

Submitted on 24 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dielectrics in a time-dependent electric field: a real-time
approach based on density-polarization functional theory

M Grüning, D Sangalli, Claudio Attaccalite

To cite this version:
M Grüning, D Sangalli, Claudio Attaccalite. Dielectrics in a time-dependent electric field: a real-time
approach based on density-polarization functional theory. Physical Review B, 2016, 94 (3), pp.035149.
�10.1103/PhysRevB.94.035149�. �hal-01320532�

https://hal.science/hal-01320532v1
https://hal.archives-ouvertes.fr


Dielectrics in a time-dependent electric field: a real-time approach based on
density-polarization functional theory
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In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics
cannot be described by the time-dependent density only. We present a real-time formalism that has
the density and the macroscopic polarization P as key quantities. We show that a simple local func-
tion of P already captures long-range correlation in linear and nonlinear optical response functions.
Specifically, after detailing the numerical implementation, we examine the optical absorption, the
second- and third-harmonic generation of bulk Si, GaAs, AlAs and CdTe at different level of ap-
proximation. We highlight links with ultranonlocal exchange-correlation functional approximations
proposed within linear response time-dependent density functional theory framework.

PACS numbers: 78.20.Bh Theory, models, and numerical simulation

I. INTRODUCTION

Time-dependent density-functional theory1 (TD-DFT)
is a standard tool in the computation of the optical re-
sponse of molecules and in general of finite systems. In
contrast TD-DFT is rarely employed for the study of
the optical response of extended systems such as periodic
crystals. The main reason is that within the common ap-
proximations TD-DFT fails to describe excitonic effects
which typically dominate the optical spectra of insulators
and semiconductors.2

Though commonly attributed to the approximation
for the exchange–correlation (xc) density functional, the
problem of TD-DFT for periodic crystals is more fun-
damental. Calculations of optical response of periodic
crystal use periodic boundary conditions. TD-DFT is
based on the Runge-Gross theorem1 that establishes the
one-to-one correspondence between the time-dependent
densities and scalar external potentials. However, for
periodic systems in a time-dependent homogeneous elec-
tric field only the one-to-one correspondence between the
time-dependent currents and potentials (scalar and vec-
tor) can be established and time-dependent current den-
sity functional theory (TD-CDFT) is then the correct
theoretical framework.3,4 In particular it is the optical
limit, i.e. the case in which the transferred momentum
q→ 0, which cannot be described starting from the den-
sity only. One could still work with functionals that de-
pends on the density-only, but there is a price to pay.
All the equations have to be worked out with a finite but
very small momentum and the q → 0 limit can be per-
formed only at the end of the calculation. Furthermore in
order to describe excitonic effect the xc functionals have
to be ultranonlocal and to diverge as q → 0.5 Such an
approach is used within the linear response framework
but it is not feasible within a real-time framework since
for practical reasons calculations have to be performed

directly at q = 0. Thus one needs to go beyond the
density-only treatment. As a clear indication of this, the
macroscopic polarization and the response functions can-
not be calculated within a density-only scheme at q = 0.6

Problems are not limited to the time–dependent case.
Even in the static limit, e.g. for dielectrics in a static
homogeneous electric field, Gonze and coworkers proved
that “the potential is not a unique functional of the den-
sity, but depends also on the macroscopic polarization”.7

In this case then the theory has to be generalized to con-
sider functionals of both the density and the polarization
in what is called density–polarization functional theory
(DPFT). The latter can be obtained from TD-CDFT in
the static limit.

Here we propose a real-time approach based on DPFT
for calculating the optical response properties of di-
electrics, thus considering functionals of both the time-
dependent density and the macroscopic bulk polariza-
tion. Real-time approaches allows in principle to calcu-
late the optical response at all order so to access nonlinear
properties,8 including nonperturbative extreme nonlin-
ear phenomena9 and to simulate real-time spectroscopy
experiments.10 It is highly desirable then to have compu-
tational inexpensive first principles real-time approaches,
such as TD-DFT, that include excitonic effects. In par-
ticular here we consider an effective electric field which is
a functional of the macroscopic polarization. We employ
simple local functionals of the polarization3,11 either fit-
ted to reproduce the linear optical spectra12 or derived
from the jellium with gap model kernel.13

In the following, we review DPFT and we extend it
to the case of time-dependent electric fields. We discuss
briefly the approximations for the effective electric field
and we present how the relevant response functions are
calculated from the macroscopic polarization. Then, we
show that for the optical absorption, the second- and
third-harmonic generation of semiconductors the simple
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local functionals of the polarization account for excitonic
effects similarly to the ultranonlocal kernel within the
density-only response framework. In the conclusion we
discuss the proposed approach as an alternative to exist-
ing schemes based on TD-DFT and TD-CDFT.

II. DENSITY POLARIZATION FUNCTIONAL
THEORY

The coupling of an external electromagnetic field with
a dielectric is described via the electromagnetic potentials
and thus is gauge dependent. In the present manuscript
we use the length gauge which is obtained from the mul-
tipolar gauge within the electric-dipole approximation
(EDA).14. This implies that we assume a spatially uni-
form electric field. Such macroscopic electric field enters
via a scalar potential, ϕ(r) = −Eext·r, whose correspond-
ing energy has generally the form

Eϕ = −ΩEext ·P (1)

where Ω is the volume and P is the bulk macroscopic
polarization that is then the key quantity to describe the
coupling of dielectrics with external fields (in the veloc-
ity gauge the coupling would have been instead via the
macroscopic current).

For finite systems (i.e. in which the electronic den-
sity n goes to zero when r → ∞), Eq. 1 is equivalent to∫
n(r)ϕ(r)dr and P =

∫
n(r)rdr. However these expres-

sions are ill-defined when periodic boundary conditions
are imposed.15 The Modern Theory of Polarization16 pro-
vides a correct definition for the macroscopic bulk polar-
ization in terms of the many-body geometric phase. For
a system of independent particles in a periodic poten-
tial the polarization P along the Cartesian direction α is
given by17

Pα = − ief

(2π)3

occ∑
n

∫
dk〈ukn|∂kαukn〉, (2)

where f the spin occupation, and |ukn〉 the periodic part
of the Bloch function |φkn〉.

Equation (2) seems to suggest that, though P can-
not be expressed as an explicit functional of the electron
density n, it is still an implicit functional of n through
the Bloch functions obtained from the solution of the KS
equation. As we discuss in the following subsection how-
ever, for a dielectric in a macroscopic electric field the
macroscopic polarization needs to be considered as an
independent variable. Accordingly the macroscopic part
of the external electric field Eext cannot be included via
the potential vext, since the associated energy functional
would be ill-defined. In such approach the KS equations
and the associated Bloch functions depend on both the
density and the macroscopic polarization of the system.

A. Static case

An infinite periodic crystal (IPC) in a macroscopic
electric field Eext does not have a ground-state. There-
fore the Hohenberg-Kohn theorem cannot be applied and
DFT cannot be used. In particular the density does not
suffice to describe the system as the one-to-one map-
ping between density and external potential does not
hold: one can devise an external macroscopic electric
field that applied to a system of electrons in an IPC does
not change its density n. The works of Gonze Ghosez
and Godby,7 Resta18, Vanderbilt19 and of Martin and
Ortiz20 established that in addition to the density, the
macroscopic (bulk) polarization P is needed to charac-
terize IPC in a macroscopic electric field. With some
cautions the proof of the Hohenberg-Kohn theorem can
be extended20 to demonstrate the existence of the invert-
ible mapping

(n(r),P)↔ (v̄ext(r),Eext)

where v̄ext is the periodic microscopic part of the external
potential. Then the total energy of an IPC is a functional
of both the electron density n and the macroscopic po-
larization P :

E[n,P ] = F̄ [n,P ] +

∫
Ω

n(r)v̄ext(r) dr− ΩEext ·P , (3)

where F̄ , the internal energy, is a universal functional of
both n and P (see Ref. 20 for details). and is defined in
the usual way as the sum of the expectation the kinetic
and electron-electron interaction operators

F̄ [n,P ] = 〈Ψ|T̂ + V̂ee|Ψ〉. (4)

The difference with the internal energy within stan-
dard DFT is that the N -particle wavefunction Ψ is not
an eigenstate of the original Hamiltonian (which does
not have a ground state), but of an auxiliary Hamil-
tonian which commutes with the translation operator
(see Ref. 20 for details). Notice that DPFT is not the
only way to treat IPC in a electric field within a den-
sity functional framework: as an alternative Umari and
Pasquarello proposed E-DFT, a density functional theory
depending on the electric field.21

The Kohn-Sham equations can be extended as well to
treat IPC in a macroscopic electric field.20 In particular
the Kohn-Sham crystal Hamiltonian takes the form:

Hs
k = −1

2
(∇+ ik)

2
+ v̄s(r)− ΩEs · ∇k (5)

which is a functional of both the density and the polariza-
tion. In Eq. (5) the Kohn-Sham microscopic (periodic)
potential v̄s is defined as

v̄s(r) = v̄ext(r) + v̄H(r) + v̄xc(r) (6)

v̄ext(r), v̄H are respectively the microscopic external and
Hartree potential. The total classical potential is defined
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as v̄tot(r) = v̄ext(r) + v̄H(r). v̄xc is the functional deriva-
tive of the xc energy with respect to the density. v̄ext(r)
here describes the field generated by the ions, i.e. the
electron–ion interaction in the Coulomb gauge and ne-
glecting retardation effects. The last term of the RHS of
Eq. (5)—that originates from the last term in the RHS
of Eq. (3)—constitutes the key difference with respect to
the zero-field KS equations. ∇k is the polarization opera-
tor derived by functional-differentiating P [Eq. (2)] with
respect to the KS eigenstates. Es is the KS macroscopic
field

Es = Eext + EH + Exc, (7)

that contains the corresponding macroscopic components
of v̄s. Note that these macroscopic components cannot
be included via the potential which would be ill-defined
when imposing periodic boundary conditions. The Exc

is defined as the partial derivative of the xc energy with
respect to the polarization density field. The sum of the
macroscopic external and Hartree fields defines the total
classical field:

Etot = Eext + EH. (8)

At zero-field, that is when no macroscopic external
electric field Eext is applied, the macroscopic component
of the ionic potential and of the Hartree component ex-
actly cancel as a consequence of the charge neutrality of
the system and the macroscopic xc component vanishes.
In this situation standard density-only functional theory
can be used.

As v̄s and Es are functionals of the density and the po-
larization, the Kohn-Sham equations for the KS orbitals
{φnk} have to be solved self-consistently with the density
(spin unpolarized case)

n(r) = 2

occ∑
|φnk(r)|2 (9)

and the polarization expressed in terms of a Berry phase
[Eq. (2)].

B. Time-dependent case

The Runge-Gross theorem1 is the basis of TD-DFT.
It establishes the one-to-one mapping between the time-
dependent scalar potential and the time-dependent den-
sity. For the case in which a time-dependent vector po-
tential is present Ghosh and Dhara4 showed that the
mapping can be established between the current-density
and the vector potential. More recently Maitra and co-
workers3 showed that TD-CDFT is the correct frame-
work for IPC in homogeneous electric fields.

The time-dependent change in the polarization density
field p is related to the time-dependent current-density j
by

p(r; t) =

∫ t

−∞
dt′j(r; t′) (10)

In a dielectric we can then use either p(r, t) or j(r, t) as
main variable to describe an IPC in a time-dependent
finite homogeneous electric field. Furthermore we can
consider separately the microscopic and the macroscopic
components of p(r, t): P(t) and p̄(r, t). The latter
quantity is fully determined by the density through the
continuity equation. Then we can extend to the time-
dependent case the one-to-one mapping

(n(r, t),P(t))↔ (v̄ext(r, t),Eext(t)).

The time-dependent Kohn-Sham crystal Hamiltonian has
the same form of the equilibrium KS Hamiltonian:

Hs
k(t) = −1

2
(∇+ ik)

2
+ v̄s(r, t)− ΩEs(t) · ∇k. (11)

We rewrite the external field and potential as the con-
tribution at equilibrium, Eext,0 and v̄ext,0(r) plus the
time-dependent perturbation:

Eext(t) = Eext,0 + ∆Eext(t), (12)

v̄ext(r, t) = v̄ext,0(r) + ∆vext(r, t). (13)

Then,

v̄s(r, t) = vs,0(r) + ∆v̄s(r, t) (14)

Es(t) = Es,0 + ∆Es(t), (15)

where the 0 superscript denotes that the functional is
evaluated in presence of the equilibrium fields, thus at
equilibrium density and polarization. We then restrict
ourselves to consider the case with no external macro-
scopic electric field at equilibrium, i.e. Eext,0 = 0, and
to a macroscopic-only time dependent perturbation, i.e.
∆v̄ext(r, t) = 0. Therefore

∆v̄s(r, t) = ∆v̄H + ∆v̄xc (16)

∆Es(t) = Es(t) (17)

Finally, the TD-KS equations for the periodic part unk
of the Bloch function can be expressed as

i∂tunk =
(
Hs,0

k + ∆v̄s(r, t)− ΩEs(t) · ∇k

)
unk, (18)

and have to be solved consistently with the time-
dependent density and polarization. The latter has the
same form of the static polarization [Eq. (18)] with
the difference that |vkn〉 are the time-dependent valence
bands.22

In the time dependent case and within the EDA, it
can be shown straightforwardly that the Hamiltonian in
Eq. (11) can be derived from the KS Hamiltonian of TD-
CDFT with a gauge transformation from the velocity to
the length gauge.3

III. EXPRESSIONS FOR THE KOHN-SHAM
ELECTRIC FIELD

The KS electric field in Eq. (7) is the sum of three
components. It seems natural to consider the exter-
nal component Eext as an input of the calculation, i.e.
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Eext = E inp. The total classical field Etot is then cal-
culated from Eq. (8) by adding the Hartree component

that in the EDA is the polarization EH = P . This is
not the only possible choice nor always the most con-
venient. When calculating linear and nonlinear optical
susceptibilities, which do not depend on the total or ex-
ternal fields, it is numerically more convenient to choose
the total classical field as input field. As this work objec-
tive is the calculations of optical susceptibilities we adopt
indeed E inp = Etot. The two choices for the input field,
i.e. either the total or external field, have been referred
as “longitudinal geometry” and “transverse geometry”
by Yabana and coworkers23 and are discussed in more
length in Appendix A.

While the choice of the input field is a matter of com-
putational convenience, the choice of the expression for
the xc macroscopic electric field is critical to the accuracy
of the results. Like the microscopic xc potential no exact
expression is known and one should resort to an approx-
imation for the functional form of the xc field. Contrary
to the microscopic xc potential for which hundreds of ap-
proximations exist,24 except for the work of Aulbur and
coworkers25 we are not aware of approximations for the
xc macroscopic field. What does exist in the literature
are xc kernels within the TD-DFT and TD-CDFT that
give a non-zero contribution to the response in the opti-
cal limit. In what follows we link the xc kernel with the
macroscopic field (similarly to Refs. 3 and 11). In fact in
the linear response limit the xc electric field is related to
the polarization p (see for example Refs. 3, 11) through
the xc kernel F xc. The latter describes how the xc electric

field (both microscopic and macroscopic) changes when
the polarization is perturbed. F xc can be defined inde-
pendently through the Dyson equation connecting the
polarization response function of the physical system, χ,

to the polarization response function of the KS system,
χs. By rewriting the relation between Exc and F xc in

reciprocal space26 one obtains3 for the macroscopic com-
ponent (G = 0)

Exc(t) =

∫
dt′
[
F xc

00
(t− t′)P(t′)

− i
∑
G′ 6=0

F xc

0G′(t− t′)
nG′(t′)

G′2
G′
]
, (19)

and for the microscopic components Exc
G (G 6= 0)

Exc
G (t) =

∫
dt′
[
F xc

G0
(t− t′)P(t′)

− i
∑
G′ 6=0

F xc

GG′(t− t′)
nG′(t′)

G′2
G′
]
. (20)

The first term on the RHS of Eq. (19) is directly propor-
tional to the macroscopic polarization, the second term
involves the density and is the microscopic contribution
to the macroscopic field. Note that as we assume the

EDA we do not have the contribution from the micro-
scopic transverse current as in Maitra and coworkers.3

The variation of the microscopic xc potential ∆v̄xc can
be written in terms of the microscopic components Exc

G

as

∆v̄xc
G (t) = i

G · Exc
G (t)

G2
. (21)

Berger11 has recently proposed an approximation for
F xc

00
from current-density functional theory. The approx-

imation however requires the knowledge of the Random-
Phase-approximation (RPA) static dielectric function:
while within a linear response approach this does not
require any additional calculation, within a real-time ap-
proach the RPA static dielectric function needs to be
computed beforehand. Furthermore Berger11 neglects
the microscopic contribution.

An alternative way to derive approximations for F xc

is to rely on the standard TD-DFT xc kernel fxc. The
latter describes how the xc potential changes when the
density is perturbed and is defined from the Dyson equa-
tion relating the density-density response of the physical
and the KS system. The two kernels can be related via
the equation

fxc
GG′(q→ 0; t− t′) = lim

q→0

F xc

GG′(t− t′) · g
|q + G||q + G′|

. (22)

where g is the metric tensor.

For example the long-range corrected (LRC) approxi-
mations fxc ≈ fLRC, which take the form

fLRC

GG′ (q→ 0; t− t′) = lim
q→0

−αLRCδG,0δG′,0

|q|2
δ(t− t′), (23)

can be used. Then F xc

00
· g can be approximated with any

of the αLRC (we assume α > 0) proposed in the literature.
Unfortunately all the approximations proposed so far12,27

neglect the dependence of α on the reciprocal lattice ver-
sors. Furthermore most of the approximations relies on
empirical parameters, with the exception of the family
of bootstrap kernels28,29 that relate α to the electronic
screening in an expression equivalent to that derived by
Berger from TD-CDFT.

In this work, we derive the F xc needed in Eq. (19) from
the Jellium with Gap Model (JGM) kernel proposed by
Trevisanutto and coworkers.13 The latter kernel is a func-
tional of the electronic density n and of the fundamental
gap of the material Egap. In the optical limit the JGM
kernel takes the form of a long-range corrected approxi-
mation with αLRC defined as the cell average13 of

αJGM(r; t) = 4πB̃

[
1− exp

(
−
E2

gap

4πnB̃

)]
. (24)

In the equation above B̃ = (B+Egap)/(1 +Egap), where
B = B[n] is a functional of the density found by fitting
the local field factor of the homogeneous electron gas
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from Quantum Montecarlo data.30 For cubic systems we
thus consider F xc ≈ F JGM with

F JGM

0G
(t− t′) = −1

2
αJGM

G (t)Iδ(t− t′) (25a)

F JGM

G0
(t− t′) = −1

2
α∗JGM

G (t)Iδ(t− t′). (25b)

where αJGM
G (t) is the Fourier transform of Eq. (24) and

I is the identity tensor. Notice that we symmetrized
F JGM

G,G′ so to obtain a Hermitian kernel. Other strategies
of symmetrization have been proposed in the literature,
see Ref. 13 and reference therein. Like standard approxi-
mations for the kernel this approximation neglects mem-
ory effects (i.e. the macroscopic field at time t depends
on the values of the density and polarization only at time
t) and it is thus frequency independent.

Finally, inserting this approximation for the kernel
[Eq. (25)] in the expression for the xc fields [Eq. (19)–
(20)] and using Eq. (21) we obtain

EJGM(t) = αJGM

0 (t)P(t)− i

2

∑
G 6=0

αJGM

G (t)
nG(t)

G2
G

∆v̄JGM

G (t) =
i

2

∑
G6=0

α∗JGM
G (t)

G2
G ·P(t), (26)

where the second term in the RHS of Eq. (20) is zero due
to our symmetrization strategy [Eq. (25)]. In our calcula-
tions we will use either Eq. (26) and or an αoptP approx-
imation for the macroscopic xc electric field in which αopt

is a parameter which gives the best agreement between
the computed and experimental optical absorption spec-
tra. The two approximations will be referred as JGM
polarization function (JGM-PF) and optimal polariza-
tion functional (opt-PF).

IV. COMPUTATIONAL DETAILS

The eigensolutions {|φ0
mk〉} of the zero-field Hamil-

tonian are calculated using the plane-wave pseudopo-
tential density-functional code abinit31 within the lo-
cal density approximation for the xc energy. The ki-
netic cutoff, the lattice constant and the components in-
cluded in the valence and type of the pseudopotential
used in these calculations are collected in Table I. We
have employed norm-conserving pseudopotentials of the
Troullier-Martins type32 for Si, AlAs and CdTe, and of
the Hamann type33 for GaAs. For all the systems we
have used four shifted 8×8×8 Monkhorst-Pack meshes34

to converge the ground-state density. The periodic part
{|u0

mk〉} of the so-generated eigensolutions are used as a
basis to expand the time-dependent KS Bloch-functions
(or more precisely their periodic part)

|unk(t)〉 =
∑
m

|u0
mk〉〈u0

mk|unk(t)〉 =
∑
m

|u0
mk〉ckmn(t)

(27)

and the TD-KS equations [Eq. (18)] can be rewritten
as the equation of motions for the coefficients cknm. We
obtained converged spectra by truncating the sum in
Eq. (27) at m = 9 bands for Si, m = 11 bands for AlAs
and GaAs, and m = 13 for CdTe.

System K (Ha) alatt (Bohr) atom1 atom2

Si 14 10.260 Si: 3s23p2

GaAs 30 10.677 Ga: 4s24p1 As: 4s24p3

AlAs 20 10.696 Al: 3s23p1 As: 4s24p3

CdTe 40 12.249 Cd: 4d105s2 Te: 4d105s25p4

TABLE I. Parameters for the DFT calculations. The kinetic en-
ergy cutoffK, the lattice constant alatt and the non frozen electrons
explicitly included in valence.

The derivatives with respect to the crystal momentum
that appear in Eqs. (2) and (5) for the polarization and
the polarization operator are evaluated numerically. Fol-
lowing Souza and coworkers22 the polarization is rewrit-
ten as

Pα = − ef

2πΩ

aα
Nk⊥

α

∑
k⊥
α

Im ln

Nkα−1∏
i=1

det S(ki,ki + ∆kα).

(28)
where Ω is the cell volume, a is the lattice vector, Nk⊥

α

is the number of k-points in the plane perpendicular to
reciprocal lattice vector bα and ∆kα the spacing between
two successive k points in the α direction. S is the over-
lap matrix

Smn(k,k + ∆kα) = 〈umk|unk+∆kα〉. (29)

The field coupling operator ŵk = E · ∇k is calculated as

ŵk(E) =
ie

4π

3∑
i=α

N‖α(E ·aα)
4D(∆kα)−D(2∆kα)

3
, (30)

where N
k
‖
α

is the number of k-points along the reciprocal

lattice vector bα and

D(∆kα) =
1

2

(
P̂ki+∆kα − P̂ki−∆kα

)
, (31)

P̂ki+∆kα =

occ∑
n

|ũnki+∆kα〉〈unki | (32)

In the definition for the projector [Eq.(32)] |ũnki+∆kα〉
are gauge-covariant,22 i.e. are constructed so that trans-
form under unitary transformation in the same way as
|unki〉:

|ũnki+∆kα〉 =

occ∑
m

[S−1(k,k+∆kα)]mn|umki+∆kα〉. (33)

Equation (30), proposed by Nunes and Gonze,35 corre-
sponds to approximate the Gauge covariant derivative in
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Eq. (18) with a finite difference five-point midpoint for-
mula. The truncation error in this expression converges
as O(∆k4) whereas the three-point midpoint formula
proposed in Ref. 22 and used in our previous works36,37

converges as O(∆k2). Though more cumbersome, we
prefer Eq. (30), since we noticed that when using polar-
ization dependent functionals the EOMs are very sensi-
tive to numerical error. To converge the spectra we con-
sidered 24× 24× 24 mesh for Si and GaAs, 18× 18× 18
for AlAs and CdTe.

In the TD-KS equation [Eq. (18)] we introduce a phe-
nomenological dephasing by adding a decay operator

Rnk(t) =
1

τnk

{
|unk(t)〉〈unk(t)| − |u0

nk〉〈u0
nk|
}

(34)

where the dephasing time τ can depend on the band and
crystal momentum indices. Those parameters take into
account memory-effects from missing electron correlation
and from the coupling with the “environment” (e.g. de-
fects, phonons) that eventually lead to the finite lifetime
of the excitation. Those parameters can be in princi-
ple obtained from theory, for example in the context of
Green’s function theory they can be obtained from the
imaginary part of a self-energy. Here we choose a de-
phasing time τ independent from the band and crystal
momentum indices in such a way to reproduce the broad-
ening of the experimental spectrum. For the nonlinear
optical spectra we used a broadening of 0.2 eV equiva-
lent to a dephasing time of 6.58 fs. For the absorption
spectra we used a broadening of 0.02 eV equivalent to a
dephasing time of about 60 fs, and in the post-processing
we applied a further Gaussian broadening of 0.1 eV.

We introduce as well a scissor operator ∆HQP
k to cor-

rect the KS band gap. The value of the scissor correction
can be calculated from first principles (e.g. from GW cal-
culations38), but in this work we choose the correction so
to reproduce the band gap values found in the literature
(Table II). Table II reports further the optimal value for α
used in the opt-PF approximation as suggested by Botti
and co-workers12. For CdTe—for which to our knowl-
edge there are no time-dependent DFT calculations with
the LRC kernel—we use 0.2 which is obtained from the
fit proposed in Ref 12 to extract the optimal α from the
experimental dielectric constant.39

The final EOM is thus

i∂t|unk(t)〉 =
[
Hs

k(t) + ∆HQP
k + iRk(t)

]
|unk〉. (35)

We perform real-time simulations using a development
version of Yambo40. For the nonlinear optical proper-
ties we input a weak monochromatic electric field for a
comb of frequencies in the range of interest and we obtain
the frequency dependent response functions from the po-
larization by Fourier inversion formula (see Ref. 36 for
details and App. A). For the linear optical properties we
input a delta like pulse and obtain the frequency depen-
dent response from the polarization by Fourier transform.
The EOMs are integrated using the numerical method

proposed in Ref. 22 and used in previous works36,37 with
a time-step 0.01 fs.

Par/Sys Si GaAs AlAs CdTe

α 0.2 0.2 0.35 0.2

∆ (eV) 0.6 0.8 0.9 1.0

TABLE II. Material dependent parameters used in the simula-
tions: the parameter α employed in the opt-PF approximation and
the value of the scissor operator.

V. RESULTS

We considered the optical properties of bulk Si, which
has a diamond structure, and GaAs, AlAs and CdTe,
which have zincblende structure. The two structures are
similar, both are face-centered cubic systems with a two
atom basis (at the origin, and at 1/4 of the unit cell in
each direction). In silicon the two atoms are identical, in
the zincblende structures are the different atoms of the
II-VI (CdTe) or III-V (GaAs and AlAs) compound. In
terms of crystal symmetries this implies that at variance
with silicon they miss the inversion symmetry, and there-
fore have a dipole-allowed SHG. In what follows we study
linear and nonlinear optical properties contrasting the
standard TD-LDA with the real-time DPFT approach.

A. Optical absorption

The experimental optical spectra on Si41, GaAs42,
CdTe43 and AlAs44 (Fig. 1, black dashed lines) show
qualitative similarities. They all present two main fea-
tures, a peak at about 3-3.5 eV (referred as E1) and
stronger second peak at 4.5-5.0 eV (referred as E2). In
GaAs and CdTe, containing heavier third/fourth rows
atoms, the E1 peak is split because of the spin-orbit in-
teraction. Note that we do not include spin-orbit in the
Kohn-Sham Hamiltonian and therefore we do not repro-
duce the splitting at any level of the theory.

Figure 1 compares the experimental optical absorption
spectra with −=[χii] (i.e. the imaginary part of the di-
agonal of the polarizability tensor, where i is any of the
directions x, y, z, see App. A)), obtained from the RPA
and the TD-LDA (without scissor correction). For the
considered systems the two approximations produce very
similar spectra. As the only difference between the TD-
LDA and the RPA is the microscopic xc potential, one
can infer that the effect of the latter is minor as already
discussed in the literature.2,45 The most striking differ-
ence between the experimental and calculated spectra is
the onset that is underestimated by 0.5–1.0 eV. When a
scissor operator is added (see Table II) the agreement is
improved though for Si, GaAs and AlAs the E2 peak is
slightly blue-shifted and more importantly the E1 peak is
either underestimated or appears as a shoulder. Indeed
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FIG. 1. Optical absorption in bulk Si (top left), GaAs (top right),
CdTe (bottom left) and AlAs (bottom right): experimental opti-
cal absorption spectra (open circles) are compared with real-time
simulations at different levels of approximation: TD-LDA (contin-
uous orange line), RPA (green dash-dotted line), both without the
scissor correction, and the IPA (violet dotted line) and RPA (green
dashed line) with scissor correction.

the underestimation of the E1 peak intensity in semi-
conductor by TD-LDA (and similar TD-DFT approxi-
mations) is well known and a signature of missing long-
range correlation (see for example Refs. 2, 45–47). Com-
parison of the RPA spectra and the independent parti-
cle approximation (IPA) spectra shows that crystal local
fields effects mostly reduces the intensity of the E2 peak
by 15–25%. The experimental optical spectrum of CdTe
is well caught within the RPA, but for the overestimation
of the E2 peak intensity.

Figure 2 shows the effects of the macroscopic xc field
that is added through the approximated PFs discussed
in Sec. III. For Si, GaAs and AlAs a clear improvement
is observed for the opt-PF: both intensity and position
of the peaks are reproduced reasonably well. For CdTe
adding the xc macroscopic field lead to an overestimation
of the E1 peak intensity which was well caught within the
RPA. On the other hand the E1/E2 intensity ratio is bet-
ter reproduce by the PFs than within RPA. For the JGM-
PF the agreement is in general less satisfactorily. In par-
ticular for Si the E1 peak intensity is still visibly under-
estimated, while for AlAs it is overestimated. The main
difference between the two approximation is the value of
α: in the opt-PF, α is a parameter optimized to repro-
duce the optical spectra; in the JGM-PF α is determined
from the jellium with a gap model. The model does not
reproduce the optimal value. For Si, αJGM ≈ 0.11 and for
AlAs αJGM ≈ 0.52 respectively smaller and larger than
the optimal value reported in Table II.

It is worth to notice that the xc macroscopic field in
the JGM-PF has as well a microscopic contribution. For
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FIG. 2. Optical absorption in bulk Si (top left), GaAs (top right),
CdTe (bottom left) and AlAs (bottom right): experimental optical
absorption spectra (open circles) are compared with real-time sim-
ulations at different levels of approximation: opt-PF (blue dashed
line), JGM (pink continuous line), RPA(gray dotted line). All ap-
proximations include the scissor operator correction.

AlAs this contribution is singled out in the right panel of
Fig. 5 where it is shown to reduce slightly the absorption.
For silicon (not shown) the microscopic contribution to
the macroscopic field is negligible.

B. Effect of xc macroscopic field on optical
absorption

It is interesting to analyze how an apparently sim-
ple approximation for the xc macroscopic field such as
the αP (in the opt-PF and JGM-PF) correctly “distin-
guishes” where to increase the optical absorption spec-
trum at RPA level. This information is “encoded” in the
macroscopic polarization. In fact, in the linear response
limit the effective Kohn-Sham electric field within the
proposed PF approximations takes the form

Es(ω) = (1− αχ(ω))Etot(ω).

That is, the intensity of the applied field is either ampli-
fied or reduced depending on the sign of <[χii(ω)] since
=[χii(ω)] ≥ 0 for any positive ω. In Fig. 3 (upper panel)
we see that indeed the sign of −<[χ0

ii(ω)] (the real part of
the RPA macroscopic response function) follows closely
that of the correction induced by xc macroscopic contri-
bution −αP which has been calculated by subtracting
the optical absorption obtained by the RPA, =[χ0

ii], from
the optical absorption obtained by opt-PF, =[χii]. To
gain an insight on how the sign of <[χ0

ii] is linked to
the localization of the excitation we consider the pha-
sor representation of χ0

ii(ω) = |χ0
ii(ω)| exp (iφ): the com-
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Effect of the xc macroscopic field on Si optical absorption

FIG. 3. Upper panel: Contribution of the macroscopic xc field to
the optical spectrum of Si calculated as the difference between the
the opt-PF and the RPA optical absorption spectra (pink contin-
uous line) compared with −α<(χ0

ii) (green dashed line). Bottom
panel: phase delay φ between the polarization and the applied elec-
tric field as a function of the applied field frequency at the RPA
(dotted line) and opt-PF (continuous line) level of approximation.
The horizontal line highlight the φ = π/2 delay. See text.

plex argument φ (see bottom panel of Fig. 3) gives the
phase delay between P and E. In particular a delay of
φ = π/2 corresponds to in-phase oscillation of the macro-
scopic polarization current J = −∂P/∂t with E. Where
the optical absorption is negligible those oscillations are
plasmons; where instead it is non–negligible they can be
considered as a signature of delocalized excitations (note
that in fact the optical absorption has a maximum at
φ = π/2). Heuristically, for more localized excitations
we may expect a phase delay larger than π/2, and for
delocalized excitations a phase delay smaller than π/2.

Then, the cosφ, and <(χii) which is proportional to
it, are negative for localized excitations and positive for
the more delocalized ones. A correction proportional to
−<(χii) then increases the absorption in correspondence
of more localized excitation and decreases it for more
delocalized excitations. Note as well that in the RPA
the phase delay is overestimated. Then the absorption,
proportional to sinφ is too small for φ > π/2 (localized
excitation) and too large for φ < π/2 (delocalized exci-
tation).

C. SHG of GaAs, AlAs and CdTe

In zincblende structures the only independent non-zero

SHG component52 is χ
(2)
xyz (or its equivalent by permuta-

tion). The module of the calculated χ
(2)
xyz for the systems

under study is reported in Fig. 4 and compared with ex-
perimental values where available. Note that when the
energies are not corrected by a scissor (left panel) for
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FIG. 4. SHG spectra of GaAs (top panels), AlAs (middle panels)
and CdTe (bottom panels) obtained from real-time simulations at
different levels of approximation. Left panels: IPA (dotted vio-
let), RPA (dashed green) and TD-LDA (continuous orange)—all
without scissor operator correction. For comparison we included
the RPA spectrum of GaAs and AlAs calculated by Luppi et al.48

(open triangles). Right panels: opt-PF (dashed blue) and JGM-PF
(continuous pink) are compared with IPA (dotted gray) and RPA
for CdTe and GaAs. Available experimental results are shown for
GaAs (open circles)49 and CdTe (open circles50 and stars51).

both GaAs and CdTe a large part of the energy range
of the SH spectra is in the absorption region where both
one-photon and two-photon resonances contribute to the
intensity. For AlAs the part of the SH spectra below 2 eV
is instead in the transparency region of the material (only
two-photon contributions). When the scissor-correction
to the energy is applied (right panel), the transparency
region for GaAs and CdTe is below 1 eV and for CdTe
below 3 eV. In the transparency region only two-photon
resonances contribute. Comparing the TD-LDA with
the RPA and the independent particle (IP) spectra (left
panel) shows that crystal local field effects (that tend to
reduce the overall SH intensity) are partially compen-
sated by the microscopic xc effects (that tend to increase
the SH intensity). In general both effects are relatively
stronger than for the optical absorption. Applying the
scissor correction does not correspond to a simple shift
(like in the optical absorption case) but changes the spec-
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FIG. 5. Effect of microscopic components in the JGM-PF on the
optical absorption (right panel) and SHG (left panel) of AlAs. The
plots compare JGM-PF spectra with (green dashed line) and with-
out microscopic effects (magenta continuous line) and the opt-PF
(blue dotted line).

tra. Firstly the SH intensity is reduced overall (because
of sum rules), secondly the intensity is redistributed as
the scissor modifies the relative position of one-photon
and two-photon resonances (that are shifted by a half
of the scissor value). For GaAs and CdTe the addition
of macroscopic correlation through the approximated PF
leads to an enhancement of about 40% in GaAs and 80%
in CdTe with respect to the RPA. On the other hand
as discussed for those systems local field effects are very
large and in fact the spectra form the PF are not sig-
nificantly different than at the IP level, meaning an al-
most exact cancellation of the crystal local effects and
the macroscopic xc effects as describe by the approxi-
mated PFs. Only in the case of AlAs, the macroscopic
correlation enhances significantly the SH, adds features
and redistributes relative weights with respect to the IP
approximation.

Regarding the comparison with experiment (right
panel), in GaAs the peak at 1.5 eV and the feature at
2.2 eV in the experimental SHG are fairly reproduced by
the opt-PF and JGM-PF approximations. All approxi-
mations significantly overestimate the SH for energies be-
low 1 eV. A similar breakdown of the opt-PF approxima-
tion (that within the response theory context corresponds
with the long-range corrected kernel) has been observed
by Luppi and coworkers and traced back to the errors
in the theoretical macroscopic dielectric function.53 For
CdTe, the approximation that is closer to experimental
results (which however are available only around 1 eV)
is the RPA while both PF approximations overestimate
the experimental SH. This is consistent with the results
for optical absorption for which the RPA gives the best
agreement among all approximations considered.

We have also compared our results from real-time sim-
ulations with those obtained from a response approach by
Luppi and co-workers53 and we found a good agreement,
slightly better than our previous work36 thanks to the
higher order approximation for the covariant derivative
[Eq. (30)]. In the left panel of Fig. 4 we show for example
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FIG. 6. THG of Si: |χ(3)
1111| and |3χ(3)

1212| components (see text).
Spectra obtained from real-time simulations at different levels of
approximation. Left panels: TD-LDA (continuous orange line),
RPA (green dashed line), IPA (dotted violet line) without scissor
operator correction are compared with and IPA (gray dotted line)
with scissor operator correction. Right panels: JGM-PF (contin-
uous pink line), opt-PF (blue dashed line) and RPA (gray dotted
line) with scissor operator correction.

the comparison for the RPA. There is a very good corre-
spondence between the two spectra for AlAs. For GaAs
there are small, but still visible differences which we ar-
gue are due to the different pseudopotentials used. In
fact we obtain a similar variation in our results when re-
peating the calculations with different pseudopotentials.
It is known that SHG is very sensitive to changes in the
electronic structure and that is turn changes when using
different pseudopotentials. This is particularly true in
the case of GaAs and the sensitivity on the pseudopo-
tential choice was also observed in the referenced calcu-
lations. Note that in the pseudopotentials we used d or-
bitals are considered as core electrons, whereas they are
included as valence electrons in the calculation of Luppi
and coworkers.53 On the other hand pseudopotentials in-
cluding d electrons that we were testing did not provide
a much better agreement.

D. THG of Si

The THG for Si has two independent components,

χ
(3)
1212 ≡ χ

(3)
xyxy and χ

(3)
1111 ≡ χ

(3)
xxxx. In the expression

for the TH polarization along the direction i,

Pi(3ω) = 3χ
(3)
1212Ei(ω)|E(ω)|2 + (χ

(3)
1111 − 3χ

(3)
1212)E3

i (ω),

3χ
(3)
1212 is the isotropic contribution, while χ

(3)
1111 the

anisotropic contribution. Figure 6 shows the calcula-

tions for A = |χ(3)
1111| and B = |3χ(3)

1212|, the modules
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FIG. 7. THG of Si: anisotropy parameters σ and φ (see text).
Experimental data (open circles)54 compared with results obtained
from real-time simulations at different levels of approximation. Left
panels: TD-LDA (continuous orange line), RPA (green dashed
line), IPA (dotted violet line) without scissor operator correction
are compared with the IPA (gray dotted line) with scissor operator
correction. Right panels: JGM-PF (continuous pink line), opt-PF
(blue dashed line) and RPA (gray dotted line) with scissor operator
correction.

of the 1111 and 1212 components of the THG of Si.54

The TD-LDA spectra (left panels) both present two main
features, a peak around 0.9 eV (three-photon resonance
with E1) and a shoulder around 1.4 eV (three-photon
resonance with E2). Both features are more intense and

pronounced in the |3χ(3)
1212|. Results within TD-LDA re-

semble closely those obtained within the RPA and IP
approximation. For the E1 three-photon resonance the
microscopic xc effects cancel with the local-field effects,
so that TD-LDA almost coincides with the IP approxi-
mation. For higher energies instead, the TD-LDA and
RPA spectra are practically identical. Applying a scissor
operator does not simply shift the peaks by an amount of
about 1/3 of the scissor value. The overall intensity of the
spectra is reduced (as expect from sum rules) and as well
the relative intensity of the E1/E2 resonances changes.
Specifically the ratio is close to or even smaller than 1
in the scissor corrected spectra, while is ≈ 1.2 − 1.3 in
the uncorrected spectra. The macroscopic xc field intro-
duced with the approximations for the PF (right pan-
els) enhances the intensity of the spectra and as well the
E1/E2 ratio. Consistently with what observed for the lin-
ear response the largest α (opt-PF for silicon) produces
the largest correction.

Experimental measurements are available for the ra-
tio R1 between the THG signal obtained with 45 and 0
incident angles and for the ratio R2 between the THG
signal obtained with circularly polarized light and lin-
early polarized light at 0 incident angle. From those

measurements then σ = |1−B/A| and the phase φ(B/A)
can be deduced.54 The experimental results are reported
in Fig. 7. Both σ and φ(A/B) present two features at
about 1.1 eV and 1.4 eV in correspondence of the three-
photon E1 and E2 resonances. All the theoretical re-
sults are very similar irrespective of the approximation

used and the differences observed for the A = |χ(3)
1111| and

B = |3χ(3)
1212| in Fig. 6. The results from the scissor cor-

rected approximations (right panels) are just shifted by
1/3 of the scissor operator. When compared with the
experiment all the approximation reasonably reproduce
the behavior at energies lower than 1 eV. However for
both σ and φ(A/B) (we consider here only the scissor
corrected approximations which have resonances at the
correct energies) the peak in correspondence of the E1

resonance is missing and the feature in correspondence
of the E2 resonance much less pronounced than in ex-
periment. When compared with calculations from Moss
and coworkers55 at the independent particle level from
the electronic structure calculated either with empiri-
cal tight-binding and semi-ab-initio band-structure tech-
niques, the intensity we found for A and B are similar
to the latter, but the main spectral features are similar
to the former. To notice that the THG based on empiri-
cal tight-binding shows in the σ and φ spectra a peak at
1.1 eV.

VI. SUMMARY AND CONCLUSIONS

We have implemented a real-time density functional
approach suitable for infinite periodic crystals in which
we work within the so-called length gauge and calculate
the polarization as a dynamical Berry phase.22 This ap-
proach, in addition to the electron density considers also
the macroscopic polarization as a main variable and ex-
tends to the time-dependent case the DPFT introduced
in the nineties7,18–20 to correctly treat IPC in electric
fields within a density functional framework. In the cor-
responding time-dependent KS equations next to the mi-
croscopic xc potential also appears a macroscopic xc elec-
tric field which is a functional of the macroscopic polar-
ization (and eventually of the microscopic density). We
have derived approximations for the xc electric field ex-
ploiting the connection with long-range corrected approx-
imations for xc kernel within the linear response theory.
We have considered two approximations, the optimal po-
larization functional, linked to the long-range corrected
xc kernel proposed on Ref. 12 and the Jellium with a gap
model polarization functional linked to the analogous ap-
proximation for the xc kernel.13 We have applied this ap-
proach, that we refer to as real-time DPFT, to calculate
the optical absorption, second and third harmonic gen-
eration in different semiconductors (Si, GaAs, AlAs and
CdTe). We have compared results with “standard” real-
time TD-DFT, namely without macroscopic xc effects,
and to experimental results where available. The general
trend is an overall improvement over standard TD-DFT
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as to be expected from the results obtained within the re-
sponse framework.12 Of the considered approximations,
the opt-PF provides the best agreement with the exper-
iment.

The approach here proposed combines the flexibility
of a real-time approach, with the efficiency of DPFT
in capturing long-range correlation. It allows calcula-
tions beyond the linear regime (e.g. second- and third-
harmonic generation, four-wave mixing, Fourier spec-
troscopy or pump-probe experiments) that includes ex-
citonic effects. It is an alternative approach to real-time
TD-DFT for extended system proposed by Bertsch, Ru-
bio and Yabana.56 At variance with our approach the lat-
ter uses the velocity gauge—which has the advantage of
using the velocity operator that is well defined in periodic
systems—rather than the position operator that requires
special attention. On the other hand, although this ap-
proach have shown promising results,57,58 it turns to be
quite cumbersome for studying response functions be-
yond the linear regime due to the presence of divergences
that in principle should cancel, but that are difficult to
treat numerically.59 Furthermore non-local operators—
such as pseudo-potentials or the scissor operator—are
cumbersome to treat in velocity gauge60 while they are
trivial in length gauge.

Similarly to any density-functional approaches, a del-
icate point is the approximation of the xc effects. In
addition to the xc potential as in standard DFT, in this
approach we also need an approximation for the macro-
scopic xc field. Though for the systems here studied the
opt-PF approximation seems to work well, such a good
performance cannot be expected in general. For exam-
ple, based on the experience from linear response calcu-
lations, this approximation is not expect to work very
well for large gap insulators or systems with a reduced
dimensionality (e.g. nanostructures or layers) in which
the electronic screening is small.61 Furthermore, in the
opt-PF the α is chosen has a material dependent pa-
rameter rather than obtained from first-principles. In
this respect within the other approximation here stud-
ied, JGM-PF, α is determined from first-principles but
not always has the optimal value. Further studies then
should try to develop universal approximations to the
polarization functional, possibly going beyond the linear
response formulation that was here used in the derivation
of the polarization functionals.
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Appendix A: Induced field and response functions

One of the objectives of atomistic simulations is the
calculation of the macroscopic dielectric function or of re-
lated response functions of dielectrics. Within TD-DFT
such goal is achieved via the calculations of the micro-
scopic density–density response function χ̃ρρ, defined via
the equation

δnG(q, ω) = χ̃ρρ
GG′(q, ω) δvext

G′ (q, ω). (A1)

Here G are the reciprocal lattice vectors and ω the fre-
quency obtained from the Fourier transforms r→ G and
t→ ω. In addition to χ̃ρρ, the irreducible response func-
tion χρρ and the auxiliary response function χ̄ρρ can be
defined via

δnG(q, ω) = χρρ
GG′(q, ω) δvtot

G′ (q, ω) (A2)

δnG(q, ω) = χ̄ρρ
GG′(q, ω)[δvext

G′ (q, ω) + δv̄H
G′(q, ω)].(A3)

To linear order and at finite momentum (i.e. q 6= 0),
the longitudinal microscopic dielectric function can be
derived from the response functions,

ε−1
GG′(q, ω) = δG,G′ + 4π

χ̃ρρ
GG′(q, ω)

|q + G||q + G′|
, (A4)

εGG′(q, ω) = δG,G′ − 4π
χρρ

GG′(q, ω)

|q + G||q + G′|
. (A5)

The longitudinal macroscopic dielectric function can then
be obtained as εM (q, ω) = 1/ε−1

00 (q, ω). Absorption ex-
periment however are described at q = 0 where the di-
electric function εM (ω) ≡ εM (0, ω) can be obtained only
via a limiting process. They are defined as

εM (ω) =

[
1 + 4π lim

q→0

χ̃ρρ00 (q, ω)

|q|2

]−1

(A6)

εM (ω) = 1− 4π lim
q→0

χ̄ρρ00 (q, ω)

|q|2
. (A7)

As we observed in the introduction this approach is at
least problematic in real-time simulation, where it is nu-
merically more convenient to directly work at q = 0
and thus the density–density response function cannot
be used.

Within DPFT the key quantity is the one which relates
the macroscopic electric field Etot or Eext to the first

order polarization P(1).

P(1)(ω) = χ̃(ω)Eext(ω) (A8)

P(1)(ω) = χ(ω)Etot(ω). (A9)

http://www.archer.ac.uk
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χ(ω) = χ(1)(ω) is the (first–order) polarizability; χ̃(ω) =

χ̃(1)(ω) is the quasi–polarizability. Since we obtain the

polarizability dividing the Fourier transform of the time–
dependent polarization by the input electric field, we ob-
tain either χ̃(ω) or χ(ω) depending on whether we as-

sume E inp = Eext or E inp = Etot. Notice that in this
framework we have already made the distinction between
macroscopic fields, described in terms of Eext/Etot, and
microscopic ones, described in terms of v̄tot/v̄tot. χ̃(ω)

and χ(ω) are thus macroscopic functions. The longitudi-

nal dielectric function can be obtained, to first order in
the field, as

εM (ω) = [1 + χ̃ii(ω)]
−1
, (A10)

εM (ω) = 1− χii(ω), (A11)

where χ̃ii is any of the diagonal components of χ.

More in general the n-order polarization can be ex-
pressed as

P(n)(t) =

∫
dt1 ... dtn×

χ(n)(t− t1, ... , t− tn)×

Etot(t1) ... Etot(tn), (A12)

where χ(n) is the n-order polarizability related to n-order

nonlinear optical properties. Also here we could define
the χ̃(n) as the response to the external field. The two

can be related from the equation

χ̃(n)(ω) = χ(n)(ω)(1− χ(1))n (A13)

As for the linear case we obtain either χ̃(n)(ω) or χ(n)(ω)

depending on whether we assume Einp = Eext or Einp =
Etot. However, since usually χ(n)(ω) is the quantity con-

sidered in the literature the last choice is more convenient
in nonlinear optics.
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