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a b s t r a c t 

This article explores the possibility of analyzing combustion instabilities in liquid rocket engines by mak- 

ing use of Large Eddy Simulations (LES). Calculations are carried out for a complete small-scale rocket

engine, including the injection manifold thrust chamber and nozzle outlet. The engine comprises 42 coax- 

ial injectors feeding the combustion chamber with gaseous hydrogen and liquid oxygen and it operates

at supercritical pressures with a maximum thermal power of 80 MW. The objective of the study is to

predict the occurrence of transverse high-frequency combustion instabilities by comparing two operating

points featuring different levels of acoustic activity. The LES compares favorably with the experiment for

the stable load point and exhibits a nonlinearly unstable transverse mode for the experimentally unsta- 

ble operating condition. A detailed analysis of the instability retrieves the experimental data in terms of

spectral features. It is also found that modifications of the flame structures and of the global combustion

region configuration have similarities with those observed in recent model scale experiments. It is shown

that the overall acoustic activity mainly results from the combination of one transverse and one radial

mode of the chamber, which are also strongly coupled with the oxidizer injectors.

1. Introduction

Combustion dynamics phenomena arise in many applications

and in most cases have serious consequences on the operation of

the system. When they occur in high performance devices like gas

turbines, aero-engines or liquid rocket propulsion stages they often

lead to failure and in extreme cases to the destruction of the sys- 

tem. In many situations, these dynamical phenomena result from

a coupling between combustion and the resonant acoustic modes

of the system. High frequency oscillations coupled by transverse

modes enhance heat fluxes exceeding the nominal heat transfer

rates and leading to melting of the chamber walls with a sub- 

sequent failure and in some cases, spectacular explosions of the

propulsion system [1–3] .

The fundamental understanding of the process leading to a

combustion instability is attributed to Rayleigh [4] who indicated

that the sign of the product of pressure fluctuations and unsteady

heat release rate, integrated over a period of oscillation, defined

the stability of the system. Unstable behavior may be obtained

when this sign is positive. It was later shown that the Rayleigh
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index represented a source term in the balance of acoustic energy

but that the practical use of this equation required an additional

knowledge on the unsteady response of combustion. The instabil- 

ity problem became of considerable technical interest during the

early development of high performance devices like jet engines,

ramjets and liquid rocket engines. Much effort was expanded dur- 

ing that period to develop analytical tools in parallel with model

scale and real engine investigations. It was soon discovered that

instability was linked with delays that are inherent to the combus- 

tion process. This led to the sensitive time lag (STL) theory most

notably developed by Crocco [5,6] , Crocco and Cheng [7] , Tsien [8] ,

Summerfield [9] , Marble and Cox [10] and their colleagues. In this

theoretical framework the time lag is sensitive to the pressure and

other state variables and this in turn translates in a dependance of

the unsteady heat release rate with respect to the pressure which

is usually expressed in terms of an interaction index n and a time

delay τ . This “n − τ ” modeling has been widely used to examine
the linear stability of engines but has remained essentially phe- 

nomenological because the values of n and τ are not known a pri- 

ori so that the model only provides a global description of the un- 

derlying physical mechanisms driving unstable combustion.

The necessity to understand and control combustion instabil- 

ities in rocket engines led to many further studies generating a
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large amount of knowledge. Much of what was learnt was gath- 

ered in NASA’s SP-194 report edited by Harrje and Reardon [11] .

This document gives a comprehensive summary of the main find- 

ings and highlights the key parameters influencing the occurrence

of combustion instabilities in liquid rocket engines such as the

geometry of the thrust chamber which determines the resonant

mode structures, the evaporation rate of the propellant droplets,

the pressure loss through the injectors which governs the coupling

with the propellants feed system etc . Much of the more recent ef- 

fort in this field has been focused on gaining a better understand- 

ing of the fundamental processes controlling instabilities. A ma- 

jor difficulty in the prediction of combustion instabilities is that

they are quite sensitive to minute geometric parameters such as lip

thickness or recess for coaxial injectors. Small variations in operat- 

ing conditions such as the mixture ratio, the momentum flux ratio,

the temperature of propellants, the chamber pressure also have a

first-order impact on stability. This is exemplified in a book edited

by Yang and Anderson [3] , in the monograph written by Culick

[12] and in many further investigations. In the recent period, many

studies pursue the analytical modeling of the driving mechanisms

as for example [13–19] while new model scale experiments and

scaling methods are reported in [20–31] . These experiments have

provided novel information on the interaction between the com- 

bustion region and acoustic modes with much attention focused on

transverse modes which are only weakly damped in thrust cham- 

bers and are consequently the most dangerous (the detrimental ef- 

fect of transverse modes was already well recognized during the

early period [11,32] ). Much work has also concerned control meth- 

ods involving damping enhancement with quarter wave cavities or

Helmholtz resonators or baffles to modify the structure of resonant

modes in the vicinity of the thrust chamber backplane and reduce

its sensitivity to pressure and velocity perturbations (see for exam- 

ple [2,33–35] ).

All these investigations provide new data and help engineering

design but cannot be used at this stage for instability prediction.

This is so because: (1) the fundamental processes driving com- 

bustion instabilities are still not well understood, underlining the

need to identify them, (2) there is lack of numerical tools pro- 

viding a high fidelity representation of the dynamical phenomena

leading to instability and allowing predictive studies applicable in

engineering design.

As the problem involves interactions between a range of physi- 

cal mechanisms operating over multiple time and length scales the

development of computational tools raises difficult challenges. The

present article reports progress made in this direction on the basis

of high-performance Large-Eddy Simulation in combination with

computational acoustics. There are several original aspects in the

present investigation:

• It is based on Large-Eddy Simulations (LES) of flows under su- 

percritical conditions, i.e. operating at pressures exceeding the

critical pressure of the injected propellants.

• Calculations are carried out in a representative configuration

comprising a dome feeding a thrust chamber through multiple

injectors.

• The system is investigated for both linearly-unstable and trig- 

gered self-sustained oscillations.

Moreover, a joint analysis with computational acoustics allows

further interpretation of the LES data.

The study considers an experimental thrust chamber designated

as the BKD comprising a large number of injectors and operated at

the P8 test facility at DLR Lampoldshausen [28,29,36] . Self-excited

combustion instabilities (CI) develop for selected load points at fre- 

quencies corresponding to the transverse acoustic modes of the

chamber. The objective of the present investigation is to analyze

the instability affecting the BKD by making use of a Large Eddy

Simulation of the full engine, from the injection domes to the noz- 

zle outlet. The calculations are also intended to provide an under- 

standing of the physical mechanisms that lead to this transverse

instability. The full 3D simulation provides insight on interactions

between acoustics, turbulent eddies and combustion that could not

be deduced from a simulation of a single injector or by simulating

only a sector of this configuration.

At this point one may note that several studies of LES of un- 

stable configurations can be found in the literature, which mainly

consider longitudinal instabilities in liquid rocket engines (LRE)

and azimuthal instabilities in aeronautical combustion chambers

[37–42] . There are also studies of the coupling between trans- 

verse acoustic modes and single or multiple cryogenic flames

[43–45] , as well as 2D simulations of multiple-injector engines

[46,47] . However, to the authors’ knowledge, there are no LES stud- 

ies on LRE transverse self-excited instabilities, in a full configura- 

tion. The present simulations are carried out with AVBP-RG a real

gas version of the AVBP code in combination with the computa- 

tional acoustics Helmholtz solver AVSP allowing a detailed iden- 

tification of the system modes. Many combustion dynamics sim- 

ulations have already been carried out with AVBP to investigate

longitudinal or azimuthal instabilities (see [38,48–51] for some re- 

cent examples). Liquid rocket engine applications relying on AVBP- 

RG are less common. Calculations have been carried out to ana- 

lyze the structure of cryogenic jets [52,53] , the response of cryo- 

genic jets and cryogenic flames submitted to transverse acoustic

modulations [43,44] or to investigate the response of a multiple

injector configuration modulated by an external actuator [45] . In

this context, the present investigation constitutes the first attempt

to analyze the possible triggering of self-excited transverse insta- 

bilities in a full LRE configuration. Beyond the scientific challenge,

this computation also constitutes a high performance computation

challenge because of the multi-scale nature of the configuration.

This article begins with a presentation of the engine configura- 

tion ( Section 2 ), together with the set of operating conditions con- 

sidered in the simulations. The two solvers used in this analysis

are described in Section 3 . The first (AVBP-RG) allows LES calcula- 

tions including real gas effects while the second (AVSP) provides

the acoustic eigenmodes of the system. Section 4 is devoted to the

comparison of the two load points under well established steady

state operation. The two operating points are then submitted to a

perturbation in the form of a transverse mode to analyze the pos- 

sible nonlinear triggering of the system ( Section 5 ). This leads in

one case to a sustained cycle of oscillation, which is analyzed in

Section 6 .

2. Configuration

The BKD is an experimental model liquid rocket engine de- 

veloped at DLR Lampoldshausen, which operates under conditions

representative of a liquid propellant rocket engine. The thrust

chamber comprises 42 shear coaxial injectors and has a diame- 

ter of 8 cm and a length of slightly more than 20 cm. Geomet- 

rical details are given in Fig. 1 , which also shows the injector pat- 

tern and the location of the experimental pressure transducers, C 1
to C 8 ( Fig. 1 (b)) and also displays a close-up view of one injector

( Fig. 1 (c)).

It is useful to recall that the critical properties of oxygen

and hydrogen are respectively p cr,O 2 = 50 . 4 bar, T cr,O 2 = 155 K,

p cr,H 2 = 13 bar, T cr,H 2 = 33 K. The chamber operates above the

critical pressure of oxygen but the injection temperature of this

propellant is well below the critical value so that the oxygen is

in a transcritical form and its density is high and of the order of

10 0 0 kg m −3 . On the other hand, the hydrogen injection temper- 

ature is above its critical value and it is injected in the chamber

in a supercritical gaseous state. The two reactants, oxygen and
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Fig. 1. BKD experiment operated at DLR Lampoldshausen [28,29] .

Table 1

Experimental data and estimated conditions for each load point.

Data LP1 LP4

Ox./Fuel ratio 4 6

˙ m H 2 [kg s 
−1 ] 1 .11 0 .96

˙ m O 2 [kg s 
−1 ] 4 .44 5 .75

Experiment T d, H 2 [K] 94 96

T d, O 2 [K] 112 111

p d, H 2 [bar] 100 103

p d, O 2 [bar] 78 94

Stability stable unstable

Theory p c [bar] 70 80

T c [K] 3066 3627

hydrogen are introduced in the domes through 2 and 6 manifolds, 

respectively, as shown in Fig. 1 (a). 

The operating conditions investigated are summarized in 

Table 1 . They correspond to one stable (LP1) and one unstable 

(LP4) load point. From these values, assuming that chemical equi- 

librium is reached in the chamber and that the nozzle throat is 

choked, it is possible to estimate the chamber pressure p c , which 

is also given in Table 1 together with the equilibrium temperature 

T c (evaluated with the CEA software [54] ). There are three major 

differences between LP1 and LP4: 

• The chamber pressures are respectively 70 and 80 bar.

• The oxidizer to fuel ratios (ROF) are 4 and 6.

• The mass flow rate of oxygen is higher in the LP4 case and

since the system operates with an excess of hydrogen, this

implies that the power is also greater for LP4 (approximately

66 MW for LP1 versus 86.2 MW for LP4).

The overall objective of this study is to determine the influence

of these conditions on the occurrence of combustion instabilities 

in this engine. 

3. Numerical setup

3.1. LES solver 

The real-gas flow solver AVBP-RG [52,55] jointly developed by 

CERFACS and EM2C is derived from the AVBP software originat- 

ing from CERFACS and IFPEN. It is used to carry out the Large 

Eddy Simulations of the BKD system. The solver is an unstruc- 

tured, explicit, compressible code, which relies on the cell-vertex 

and finite-volume methods [56–58] . A two-step Taylor–Galerkin 

scheme called TTG4A, is used, which is third order in space and 

fourth order in time [59,60] . The solver accounts for multicom- 

ponent real-gas thermodynamics and transport. For that purpose, 

it makes use of the Soave–Redlich–Kwong equation [61] together 

with transport properties relying on the corresponding-state model 

of Chung et al. [62] . The Wall Adapting Linear Eddy (WALE) model 

is used to close the subgrid stress tensor [63] . Thermal and species 

subgrid contributions are deduced assuming an eddy-diffusivity 

approach with a turbulent Prandtl number, Pr t = 0 . 6 and a turbu- 

lent Schmidt number, Sc t = 0 . 6 , equal for all species. Because of 

the high reactivity of hydrogen, under the present conditions, the 

assumption of infinitely-fast chemistry is adequate [64] . This also 

implies that the flame is attached to the inner injector lip, which 

is a good approximation for the hydrogen/oxygen reaction. The 

model relies on the assumption of local chemical equilibrium and a 

β-pdf description of the filtered mixture fraction ˜ Z . In particular,
˜ Z and its variance ˜ Z ′′ 2 are transported and equilibrium mass frac- 

tions are tabulated versus ˜ Z and ˜ Z ′′ 2 . Four species are considered

in the present study: H 2 , O 2 , OH and H 2 O and the tabulated equi- 

librium conditions at the chamber pressure are evaluated with the 

EQUIL program of the CHEMKIN package. Source terms are then 

computed following the method described in [64] . Specific mass 

flow rates and temperature of O 2 and H 2 are imposed at the domes 

manifolds inlets using characteristic treatment of the boundary 

conditions [65] , adapted to real-gas thermodynamics. The outlet 

nozzle is choked, requiring no boundary treatment. The walls are 

assumed to be adiabatic and are treated as no-slip boundaries in 

the injectors and as slip-boundaries in the chamber and in the 

domes. 

3.2. Discretization and computational cost 

Given the multi-scale nature of the configuration ( cf. Fig. 1 : 

chamber length of more than 20 cm, H 2 injector ring of 0.25 mm 

and lip thickness between the propellant channels of only 

0.2 mm.), the meshing requirements for the simulation of the full 

engine raise a challenge. Because two load-points are considered 

and many unstable cycles are required for the convergence of 

statistics, a compromise between computational cost and accuracy 

is sought. The present simulations are carried out on a relatively 

coarse mesh comprising 70 M elements. The associated compu- 

tational cost is 10 0 , 0 0 0 CPU hours per ms of physical time on 

a BlueGene Q. This choice is made on the basis of a trade-off. 

It has been estimated from computations of a single-injector 

[66] that more than 500 M elements would be necessary for a 

high-fidelity LES. The computational cost would then be of about 

1 , 0 0 0 , 0 0 0 CPU hours per ms of physical time on a BlueGene Q. 

Such computational requirements would exceed those available 

for this investigation and would not allow a systematic study of 

multiple operating points. It was decided to perform the present 

calculations on a lighter mesh of 70 M elements for which the 

CPU requirement is ten times lower. An overview of the mesh is 

presented in Fig. 2 . The focus is set on a detailed resolution of the 

injection region, while the resolution is decreased past the first 

quarter of the chamber. 

3.3. Helmholtz solver 

The study of acoustic modes in the BKD relies on the AVSP 

Helmholtz solver [67] . Under the assumption of linear acoustics, 

the local pressure and heat-release-rate fluctuations are defined as 

harmonic functions of the complex angular frequency, ω: 

p ′ ( x, t ) = ℜ 
(
ˆ p ( x ) e −iωt 

)
(1) 

q ′ ( x, t ) = ℜ 
(
ˆ q ( x ) e −iωt 

)
(2) 



(a) Mesh overview.

(b) Closeup on the injection region.

Fig. 2. Unstructured mesh for the LES of the BKD experiment.
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Fig. 3. Temporal evolution of static pressure ( ) and temperature ( ) at

the chamber outlet for LP4.

Then AVSP solves the inhomogeneous Helmholtz equation in the 

frequency domain [68] : 

∇ · c 2 0 ( x ) ∇ ̂  p ( x ) + ω 
2 ˆ p ( x ) = iω [ γ ( x ) − 1 ] ̂  q ( x ) (3) 

where c 0 ( x ) the speed of sound and γ ( x ) the ratio of specific heats 
depend on the location x in the system. 

The AVSP solver has been extensively validated and the compu- 

tational methodology was shown to be able to predict the stability 

map of generic systems including turbulent swirled flames [69] . In 

the present study, we are only interested in the eigenfrequencies 

and structures of the acoustic eigenmodes so that the homoge- 

neous version of Eq. (3) is solved, i.e. the unsteady heat release rate 

q ′ is assumed to be zero and its influence on the frequency and 

spatial structure of the modes is neglected. It should be pointed 

out that the equation of state does not play a role in the deriva- 

tion of the homogeneous Helmholtz equation, so that real-gas ef- 

fects are accounted for simply through the speed of sound field, 

c 0 ( x ). 
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Fig. 5. Longitudinal evolution of cross-section-averaged temperature for the two

load points.

Table 2

Average temperature and pressure for LP1 and LP4 under stationary conditions.

p c [bar] T out [K] p d, H 2 [bar] p d, O 2 [bar]

LP1 66 .3 2867 150 81

LP4 74 .5 3180 143 97

4. Results: steady state regime

Simulations have been carried out for the two load points start- 

ing from an initially quiescent flow at 300 K and specifying the 

equilibrium chamber pressure p c ( cf. Table 1 ). This initial condi- 

tion proved to be robust enough and yielded reasonable transient 

times. By way of example, the temporal evolution of static temper- 

ature and pressure at the chamber outlet is presented in Fig. 3 for 

the LP4 case. A permanent regime is reached after about 8 ms. 

A longitudinal slice of the instantaneous temperature field is 

shown in Fig. 4 . Structures typical of supercritical coaxial flames 

are recovered: (1) because of the high reactivity of hydrogen, a 

diffusion flame is stabilized right at the injector lip; (2) there is 

a rapid expansion of the flame at a distance from the back plane 

of around five injector diameters and (3) the flames are relatively 

long because of the time taken for mass transfer from the dense 

oxygen stream to its lighter surroundings. It can be seen that some 

cold pockets of unburnt gases sometimes reach the nozzle, indicat- 

ing that combustion is not complete. 

A comparison between the two load points is carried out in 

Fig. 5 where the longitudinal evolution of cross-section-averaged 

temperature is presented. In the first quarter of the chamber, the 

two profiles are virtually identical because the locally stoichiomet- 

ric diffusion flame is not affected by the global ROF. However, past 

x = 0 . 05 m, LP1 shows lower values of the temperature consis- 

tently with the lower ROF. 

Stagnation pressure and temperature in the chamber as well 

as pressure in the domes have been evaluated in the permanent 

regime and are gathered in Table 2 . 

Fig. 4. Longitudinal cut of instantaneous temperature for LP4.



Fig. 6. Shape of the perturbation imposed on the pressure for the triggering study.

Comparing these values with the reference data of Table 1 leads 

to the following conclusions: 

• The stagnation pressure and temperature in the chamber are

under-predicted by around 5%. The reason for this small dis- 

crepancy is that combustion is not complete in the LES. It is

thought that the relative under-resolution of the mesh in the

chamber does not allow for sufficient turbulent mixing, so that

some unreacted oxygen reaches the nozzle and escapes from

the chamber before chemical conversion.

• The pressure-loss between the H 2 dome and the chamber is

overestimated by more than a factor two. This is consistent

with the low mesh resolution in the H 2 injectors, which com- 

prises only 5 cells at the smallest section. However, it will be

shown in Section 6.2 with the Helmholtz solver computations

that the first transverse mode of the configuration is not af- 

fected by this variation, which is an a posteriori justification for

the study of combustion instabilities in this slightly different

pressure conditions.

Finally, both load points are predicted as stable by the LES, 

only a relatively low acoustic activity with rms values smaller than 

0.2 bar is recorded under steady state established conditions. 

5. Nonlinear triggering of the instability

Simulations of the LP4 load point do not exhibit a natural self- 

excited combustion instability indicating that the system is lin- 

early stable, perhaps because the level of damping associated with 

the relatively coarse mesh exceeds the gain of the unsteady com- 

bustion process. Still there is a possibility to bring the system 

into an oscillatory regime by imposing an external perturbation 

and observing the subsequent response. This nonlinear triggering 

[70,71] which is often observed in practice, is explored in what 

follows. It is here investigated by setting pressure perturbations of 

different initial amplitudes and examining if the system evolves 

into a limit cycle or if it returns to its initial state. This kind of 

procedure is well known in the propulsion industry where it is 

used to define the stability range of an engine [11] . This takes 

the form of “bomb tests” that excite all the acoustic modes of 

the system and in some cases give rise to self-sustained oscilla- 

tions while in others all oscillations decay at a certain rate. In the 

present study, we use a specific impulsive “bomb-test” by initiat- 

ing a high-amplitude disturbance that corresponds to the analyt- 

ical first transverse mode of the chamber, as illustrated in Fig. 6 . 

This disturbance is not forced at a specific frequency, it is simi- 

lar to an impulse response after which the systems evolves freely. 

Starting from a stable solution in the permanent regime, a pertur- 

bation is superimposed on the pressure field, keeping temperature 

and velocity identical. The nodal line of the perturbation is initially 

aligned with the y axis, which is an arbitrary choice. The location 

of pressure probes C 9 to C 12 , which are added in the LES though 

not present in the experiment, are also reported in Fig. 6 . 

Table 3

Rayleigh source term averaged over the time interval 0 < t < 3 ms, for LP1 and LP4

submitted to different triggering levels of pressure amplitude 1p .

LP1 LP4

1p [bar] 2 .5 5 8 2 .5 5 10

R [kW] 32 .5 39 .9 65 .9 23 .9 29 .1 143

5.1. Pressure traces 

Simulations have been carried out, by varying the relative am- 

plitude, 1p / p c , of the initial perturbation between 3.4% and 13% 

of the chamber pressure. Depending on the load point, this cor- 

responds to 2.5 to 10 bar mean-to-peak amplitude ( cf. Table 3 ). 

For all the cases that will be analyzed only standing modes are 

observed and therefore a single C i probe evolution will be shown. 

Results are summarized in Fig. 7 , which displays the temporal evo- 

lutions of the pressure perturbation p ′ at the C probe locations fea- 

turing the greatest rms value for all the cases considered. 

Regarding LP1, for all initial amplitudes, the imposed perturba- 

tion decays after a short period of time indicating that under these 

conditions the BKD is stable at least when it is disturbed by a 

perturbation having a first transverse modal structure. Moreover, 

after around 3 ms the pressure signals are similar, and there is 

no memory of the initial perturbation. The stability for LP1 con- 

ditions is therefore in agreement with the experimental data. A 

different situation arises for LP4: for small initial amplitudes, the 

perturbation is dissipated but when the level is increased above 

11% of the chamber pressure the oscillations increase with time 

and eventually reach a limit cycle. The limit-cycle amplitude does 

not depend on the initial perturbation and has a maximum rms 

value of p rms = 0 . 15 p c ( i.e. 10.7bar). These results indicate that for 

LP4 the BKD exhibits bistability: if undisturbed, the level of acous- 

tic activity remains low but it evolves into a limit cycle when the 

level of disturbance is sufficiently high. In the experiment, sev- 

eral load points are explored before LP4 by ramping the mass flow 

rates. The level of acoustic activity preceding LP4 is of the order 

of 8 bar peak-to-peak ( cf. Fig. 2 (left) in [28] ), which is signifi- 

cant though not labeled as unstable. The LES cannot reproduce the 

ramping procedure that takes around 20 s. With its initialization, 

the LES requires more amplitude to trigger the instability but self- 

sustained cyclic oscillations similar to the experimental observa- 

tion are observed. 

A frequency analysis of the pressure traces of Fig. 7 has been 

carried out and several peaks are present in the spectral den- 

sity as shown in Fig. 8 . The experimental power spectral densi- 

ties are also shown for comparison, based on a 1 s long pres- 

sure trace. For both load points, a strong peak at the frequency of 

the first transverse mode is observed and the match between LES 

and experiment is excellent. For LP1, the LES predicts 11,100 Hz, 

versus 10,800 Hz in the experiment. For LP4, the frequencies are 

10,700 Hz in the LES and 10,260 Hz in the experiment. A second 

peak is also clearly visible for LP4: at 21,400 Hz in the LES and 

20,500 Hz in the experiment. This value is exactly twice that of 
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Fig. 7. Pressure traces at probe C12 ( Fig. 6 ) for LP1 and LP4 for increasing initial pressure perturbation amplitude, relative to the mean chamber pressure: 1p / p c . The values

of 1p are reported in Table 3 .
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(a) LP1-LES: f1 = 11, 100 Hz.
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(b) LP4-LES: f1 = 10, 700 Hz, f2 =
21, 400 Hz.
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(c) LP1-experiment: f1 = 10, 800 Hz.
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(d) LP4-experiment: f1 = 10, 260 Hz, f2 =
20, 500 Hz.

Fig. 8. PSD of the pressure perturbation for LP1 ( 1p = 8 bar) and LP4 ( 1p = 10 bar). Comparison with experimental spectral densities (raw experimental data courtesy of 

DLR, processed with the same tools as the LES results).

the dominant frequency and the nature of this mode is discussed 

in Section 6 . At this stage it is important also to look at the rela- 

tion between the pressure and heat release rate fields to examine 

the Rayleigh source term which intervenes in the acoustic energy 

balance. 

5.2. Rayleigh index 

In a reacting flow, the Rayleigh index, R , provides a measure 

of the power fed by combustion to the acoustic field [72–75] . For 

linear acoustics at low Mach number, it is defined as: 



R = 
1 

T 

γ − 1 

γ p 0 

∫ 

T

∫ 

V
p ′ (t) q ′ (t) d V d t (4) 

where T is a period of the instability, V the volume occupied by 

the flame, γ the specific heats ratio, p 0 the mean pressure in V and 

q ′ the unsteady heat release rate. The sign of R indicates whether 

combustion drives or damps acoustic oscillations. For a combustion 

instability to grow, it is necessary that R be positive but also that 

its magnitude be sufficient to overcome the fluxes of acoustic en- 

ergy at the boundaries as well as the various dissipative processes 

in the system. 

The Rayleigh index has been evaluated for the different cases, 

and the values, averaged over the first 3 ms (when there is acoustic 

activity in both LP1 and LP4) are compared in Table 3 . It appears 

that for all cases, R is positive, indicating that combustion feeds 

energy in the acoustic perturbations. This indicates that when the 

initial pressure perturbation is damped, it is because outgoing 

fluxes and dissipation over the volume and at the boundaries are 

larger than the Rayleigh source term. 

Furthermore, for both load points, R increases with the initial 

perturbation amplitude. Finally, for LP4 with the largest pertur- 

bation, R is multiplied by a factor of 4.9 when 1p is changed 

from 5 to 10 bar. It is therefore the strongly nonlinear response 

of the coupled system composed of the injectors and the flames 

that allows the occurrence of a combustion instability in this 

case. 

The previous parametric study indicates that: 

1. The LES of the full engine is able to retrieve the occurrence of

a combustion instability in the system under certain operating

conditions. Despite the absence of self-excited oscillations, the

triggering analysis shows that LP1 remains stable for all trig- 

gering disturbance levels while LP4 exhibits bistability and re- 

quires a fairly strong initial perturbation to move into a self- 

sustained regime of oscillation.

2. In the unstable case, the Rayleigh source term grows more

rapidly than the square of the triggering amplitude, a feature

which may be caused by the nonlinear response of the injec- 

tion system and flame collection to the triggering amplitude.

6. Detailed analysis of LP4 limit cycle

It is now worth examining the limit cycle obtained in the 

LP4 case for an initial perturbation 1p = 10 bar, corresponding 

to a 13% pressure disturbance with respect to the mean chamber 

pressure. 

6.1. Power spectral density fields 

The power spectral densities (PSD) of the pressure signals from 

both the LES and the experiment have a striking degree of similar- 

ity. They both feature two dominant peaks ( cf. Fig. 8 ). In the LES 

the respective frequencies are f 1 = 10 , 700 Hz and f 2 = 21 , 400 Hz. 

In order to determine the spatial structure of the perturbations as- 

sociated with these frequencies, the fields of pressure oscillation 

corresponding to the peaks in PSD are plotted in Fig. 9 in the form 

of color maps. It is clear from Fig. 9 (a) that f 1 corresponds to the 

first transverse mode of the chamber, as expected. There is how- 

ever new information in this field. First, it appears that the trans- 

verse mode in the chamber is coupled with a longitudinal mode of 

the oxygen injectors, which is supported by the experimental find- 

ings of [36] . The associated structure resembles that of a 3/2-wave 

mode. One also notices that there are no pressure fluctuations in 

the hydrogen injectors and dome. This indicates an acoustic de- 

coupling between the chamber and this dome for this particular 

mode. The nodal line, initially aligned with the y axis is marginally 

shifted and this mode presents a well defined standing nature. The 

same analysis is carried out for f 2 and the corresponding shape is 

shown in Fig. 9 (b). There is an intense longitudinal acoustic activity 

in the injectors at a wavelength double that of the f 1 mode, con- 

sistent with the frequency ratio. Because the inner and outer rings 

of injectors are out of phase, the mode in the chamber has a radial 

shape in the first part of the chamber. Its amplitude is attenuated 

rather rapidly in the axial direction. 

6.2. Eigenmodes determined with a Helmholtz solver 

The Helmholtz solver AVSP ( cf. Section 3.3 ) has been used 

to compute the acoustic eigenmodes of the BKD. Because AVSP 

uses the low-Mach-number approximation, the nozzle is removed 

Fig. 9. Fields of power spectral density (PSD) for the two dominant frequencies of LP4 triggered to a limit cycle. Same orientation as Fig. 6 for the cuts.



Fig. 10. Solutions of the Helmholtz solver AVSP corresponding to the peak frequencies arising in the spectral densities of the LES pressure signals ( cf. Fig. 8 ). Same orientation

as Fig. 6 for the cuts.

from the computation and replaced by an equivalent impedance 

[76,77] . Additionally, because the LES indicates that there is lit- 

tle acoustic activity in the hydrogen dome, this part of the ge- 

ometry is removed in the AVSP computation. All walls as well 

as the oxygen feeding lines are treated as rigid walls ( i.e. zero 

normal acoustic-velocity fluctuations) and the impedance of the 

hydrogen stream is modeled by the value measured in the LES 

( Z = −1 . 160 − i 0 . 255 for f 1 and Z = −1 . 454 − i 0 . 261 for f 2 ). Tests 

not presented here for the sake of conciseness showed that the re- 

sults of AVSP are marginally sensitive to the value of the hydrogen 

line impedance. Finally, the field of sound speed is extracted from 

the time-averaged LES over the 6 ms after triggering. As a prelim- 

inary step, the influence of the flame is neglected meaning that 

the homogeneous Helmholtz equation is solved. Consequently the 

growth rates of the eigenmodes are not discussed and the possible 

frequency shift caused by unsteady combustion is neglected. 

Figure 10 shows the structure of the two modes calculated with 

AVSP, at frequencies corresponding to the peaks found in the LES 

spectra ( cf. Fig. 8 (b)). Because the Helmholtz equation is linear, the 

magnitude of the pressure fluctuations predicted by AVSP is irrel- 

evant and should be scaled by the actual amplitude in the exper- 

iment. The colormap is therefore normalized to an arbitrary value 

in Fig. 10 (a) and (b) and covers the full range of fluctuations. 

Both frequencies and mode shapes closely match the fields de- 

duced from LES, presented in Fig. 9 . The transverse (respectively 

radial) structure of the f 1 (respectively f 2 ) mode is recovered, as 

well as the strong coupling with the oxidizer injectors. Because 

the hydrogen feeding line is not included in the AVSP simulation, 

this comparison is an a posteriori validation of the negligible in- 

fluence of the hydrogen dome and injectors on the prediction of 

these modes. However, because the coupling between the oxy- 

gen injectors and the chamber is quite strong for the radial mode 

( Fig. 10 (b)), it is not possible to predict its frequency with precision 

by considering the chamber alone. 

For both modes, there is a strong acoustic activity in the first 

part of the chamber. Consequently, the field of speed of sound in 

this region has a notable impact on the frequencies and shapes of 

the acoustic modes [78–80] . To illustrate this point, the fields of 

speed of sound in time-averaged solutions corresponding to stable 

and unstable cases are presented in Fig. 11 (a) and (b), respectively. 

The shortening of the flames under the influence of the transverse 

mode is quite striking in this visualization. As expected, the cen- 

tral flames that undergo a strong transverse velocity fluctuation are 

more affected than the outer flames. These effects have been ob- 

served in experiments (see for example [27,78] ) and they are also 

Fig. 11. Time averaged fields of speed of sound used as input for the Helmholtz

solver AVSP. Comparison of stable and unstable conditions with identical color

range: 239 m s −1 (light blue) to 1997 m s −1 (dark red). Same orientation as 

Fig. 6 for the cuts. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

documented in some recent calculations and further experiments 

reported in [45] . 

At this point, one should also be reminded that the analysis 

with AVSP is not entirely independent from the LES. The field 

of speed of sound is indeed a necessary input for the Helmholtz 

solver. There are alternatives to the use of the LES field: one may 

use steady-state computations, or even an educated guess such as 

injection conditions in the dome and injector and burnt gases at 

equilibrium in the chamber. However, in the present study, the so- 

lution of the Helmholtz equation showed great sensitivity to this 

input field. The eigenmodes in Fig. 10 were computed with the 

field of Fig. 11 (b), corresponding to the unstable solution. If the 

stable field of Fig. 11 (a) is used instead, the eigenfrequencies are 

affected ( f 1 = 10 , 400 Hz and f 2 = 19 , 950 Hz), but more impor- 

tantly, the structure of the radial mode is qualitatively changed. 

As can be seen in Fig. 12 , the phase shift between the chamber 

and oxygen dome is now changed and there is a smaller number of 

wavelengths in the oxidizer injectors, consistently with the lower 

frequency (19,950 Hz in Fig. 12 versus 21,800 Hz in Fig. 10 (b)). 

6.3. Individual flame dynamics 

The acoustic field in the thrust chamber strongly affects the 

combustion dynamics through pressure and velocity coupling. In 

the present configuration, dominated by a standing transverse 



Fig. 12. Solution of the Helmholtz solver AVSP corresponding to the radial mode

at f 2 = 19 , 950 Hz, when using the field of speed of sound from the stable case of 

Fig. 11 (a). Same orientation as Fig. 6 for the cuts.

Fig. 13. Instantaneous pressure perturbation and temperature fields in a transverse

cut through the chamber 5.5 mm downstream the injector plate.

mode in the chamber, two extreme conditions can be highlighted 

( cf. Fig. 13 ): (1) a so-called A-flame located at a pressure anti-node 

and (2) an N-flame located at a pressure node. An A-flame, of the 

type corresponding to the top and bottom flames in Fig. 13 , experi- 

ences bulk pressure fluctuations and longitudinal velocity fluctua- 

tions resulting from the coupling with the injection of reactants. 

However, an N-flame experiences little pressure variation but a 

strong transverse velocity fluctuation, which is known to result in 

a flattening in the direction orthogonal to the velocity [27,44,81] . 

This flattening is maximum in the center plane of the chamber, as 

seen in Fig. 13 . 

It is interesting to focus on the responses of A- and N-flames. 

For this analysis, an azimuthal cut that passes through the outer 

ring is defined so that it intersects the injectors at their center 

(black circle in Fig. 13 ). A time-resolved output of the heat re- 

lease rate on this surface was recorded, which was subsequently 

integrated around isolated A- and N-flames. The resulting time 

trace of normalized fluctuations of heat release rate are presented 

in Fig. 14 . Because the integration is on a 2D cylindrical cut, 

it contains only a portion of the heat release rate fluctuations, 

nevertheless, it is sufficient to qualitatively distinguish A- and 

N-flames. Focusing on the heat release rate fluctuations at the 

frequency f 1 of the 1T mode, it is clear from Fig. 14 that the re- 

sponse of the A-flame is much stronger than that of the N-flame. 

This observation is consistent with the so-called canceling effect 

reported in other configurations [82,83] . The implication for the 

modeling of the response of these coaxial flames is that it may be 

adequate to relate the unsteady heat release rate to the acoustic 

pressure fluctuation at the injector outlet. However, this observa- 

tion does not presume that the flame itself is sensitive to pressure 

variations, it only suggests that the acoustic pressure is a variable 

that correlates well with the underlying mechanisms driving the 

flame response. Such mechanisms may include variations of local 

strain rate or the formation of vortical structures increasing the 

flame surface. The further examination of these mechanisms is 

beyond the scope of the present paper. 

6.4. Map of Rayleigh index 

The global Rayleigh index, R , of the flame was computed and 

presented in Table 3 for all simulations. The focus is now set on 
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Fig. 14. Time traces of normalized fluctuations of heat release rate for isolated

flames of the outer ring. Integration restricted to an azimuthal planar cut that in- 

tersects the center of the injector.

Fig. 15. Rayleigh index for the external injectors in percentage with respect to the

total chamber R .

the spatial distribution of R in order to understand the relative 

importance of the various types of flames. Figure 15 presents the 

normalized distribution of R , which has been integrated in a box 

around each injector, over the length of the whole chamber. This 

transverse slice provides the radial and azimuthal distribution of R . 

The orientation is the same as that of Fig. 13 , where the pressure- 

field nodal line is more or less horizontal. It is clear that the con- 

tribution of the A-flames is significantly higher than that of the 

N-flames, with maximum contributions at the top and bottom of 

Fig. 15 . Regarding lateral N-flames, their contribution is minimum 

but the central N-flames have an intermediate contribution to the 

overall Rayleigh term. The reason for this is the presence of the 

radial mode at f 2 that has a pressure anti-node at the center of 

the chamber. From this distribution of Rayleigh index, one can 
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spect to the total index in the chamber.

conclude that the flames driving unsteady acoustics are those lo- 

cated at a pressure anti-node. 

A complementary perspective is given in Fig. 16 , which presents 

the axial evolution of the cumulated Rayleigh index. The distribu- 

tion is normalized by the total Rayleigh index so that the value at 

a given x 0 represents the percentage of R for the range 0 < x < 

x 0 . Figure 16 then indicates that at x = 4 cm, which corresponds 

to a little less than 10 injector diameters, 80% of the power that 

drives the instability has been released. First, this indicates that 

the early flame region is the one that drives combustion instabil- 

ities. Second, this dimension is significantly smaller than the to- 

tal flame length and remains fairly compact with respect to the 

wave-length of the first transverse mode. Regarding modeling per- 

spectives, this is an indication that the compact-flame assumption 

might still hold for the prediction of high-frequency combustion 

instabilities in rocket engines, at least for designs similar to that of 

the BKD. 

7. Conclusions

Combustion dynamics in liquid rocket engines is investigated by 

making use of a combination of Large Eddy Simulation and acous- 

tic modal identification. Calculations are carried out in a model 

scale system comprising an ensemble of shear coaxial injectors 

feeding the thrust chamber with liquid oxygen and gaseous hydro- 

gen. This system operates at pressures that are supercritical with 

respect to the critical pressures of the two propellants. The oxy- 

gen is injected at a temperature which is well below the critical 

value and its density is correspondingly very high. This special sit- 

uation is treated with the AVBP-RG flow solver which accounts for 

the real gas effects, in particular those related to the state of the 

liquid oxygen. Calculations are carried out for two operating condi- 

tions investigated experimentally at the DLR Lampoldshausen lab- 

oratory on a system designated as the BKD: LP1 corresponding to 

stable operation and LP4 which leads to self-sustained oscillations. 

In these two cases the calculations yield an established regime of 

operation with little acoustic activity in the thrust chamber. Calcu- 

lations are carried out to see if cyclic oscillations can be observed 

when the system is perturbed by superimposing a large amplitude 

( 1p ) pressure disturbance with a first transverse modal distribu- 

tion. This nonlinear triggering analysis yields the following results: 

• Varying the amplitude 1p of the initial disturbance induces dif- 

ferent responses. For a small 1p, oscillations are initiated but

quickly dissipated. For a 1p greater than a threshold value the

oscillations tend toward a limit cycle in one of the operating

conditions (LP4). The system is linearly stable but the fact that

triggering with a sufficient level may result in a self-sustained

cyclic regime underlines the importance of injection and flame

nonlinearities.

• Varying the operating conditions one finds different levels of

stability: LP1 corresponding to a lower value of the oxidizer to

fuel ratio and to a lower power is always stable, LP4 pertaining

to a higher oxidizer to fuel ratio and to a higher power features

a self-sustained regime of oscillation when the amplitude 1p

is high enough. The stability features are consistent with the

experiment.

• Under unstable operation the system exhibits a coupled mode

between the O 2 feed system and the chamber. The disturbance

in the dome and chamber have a 1T structure but the pressure

oscillation in the dome and chamber are in phase opposition.

• The two main frequencies for LP4 correspond respectively to a

1T transverse mode and to a radial mode in the chamber.

• The structure of these modes, identified via power spectral

analysis of the LES signals are recovered with a Helmholtz

solver.

The detailed analysis of the oscillatory regime indicates that 

many of the features observed in experiments are also well re- 

trieved like the flame shortening under the strong interaction with 

the transverse mode and the flame flattening near the velocity 

anti-nodal plane. 
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