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Recent works on simplified clarinet models using results from dynamic bifurcation theory have allowed to predict
the evolution of the amplitude of sound (the amplitude envelope) for a gradual increase of the blowing pressure.
The unrealistic model that predicted the amplitudes to attain very small values, far below the precision of a
computer, was later corrected by the addition of stochastic noise to the model. The two models are useful in
explaining and understanding why the oscillations appear with a delay relative to the threshold of oscillation that
is predicted by purely steady-state models.
Both the model of the instrument and that of the noise are extremely simplistic, raising the question of its
applicability to real instruments. These models can however be made gradually more complex by introducing
more realistic details in the reed or in the resonator, and applying parameter profiles with more complex shapes or
noise amplitudes. This presentation shows the differences encountered in the time-evolution of the acoustic wave
simulated using two models of different complexity, one with an instantaneous reflection function, another with
dispersion. The article explores to which extent can the dynamic predictive model be used to describe the time
evolution of more realistic models, and hopefully that of the real instrument.

1 Introduction
Raman’s model [1], typically used for bowed

instruments, can also be extended to reed instruments,
providing a simplified model for the clarinet [2] that is more
easily understandable than other more complex models.
It has provided insight in the determination of oscillation
amplitudes and thresholds of oscillation [3] and more
recently, oscillation thresholds in for variable parameters in
undisturbed [4] or noisy [5] conditions. In these two later
works, one of the questions that remains unanswered is how
the predictions of this simplified model compares to more
complex models that include details such as a more realistic
bore, or reed dynamics. This article aims at providing some
insight into this problem, by comparing results obtained
with Raman’s model with slightly more complex models
that include some dispersion in the wave propagation in the
bore. In a first stage reed dynamics is not yet included.

1.1 The Model
Raman’s model supposes that the incoming wave arriving

at the reed is an exact but inverted copy of the outgoing wave,
and further multiplied by a factor smaller or equal to unity.
In practice this insures that the signal generated by the model
is a square wave. The propagation and reflection in the bore
can thus be considered as generating an incoming presure
wave p− by the convolution of an outgoing pressure wave p+

with a reflection function that is simply a Dirac distribution
δ(t − T ):

p−(t) = p+(t) ∗ r(t) = p+(t) ∗ (−δ(t − T )) = −p+(t − T ) (1)

Here, T is the time taken by a roud-trip in the bore.
In a straight resonator, the reflection function is a rather

sharp peak that quickly approaches 0 for the values of the
delay τ far from the propagtion time [6]. It is different from
a Dirac distribution, which has an infinitesimal width. A
real reflection function is usually non-symmetric around
its maximum. However, since the present model is still
simulated in discrete-time, a non-symmetrical reflection
function can easily lead to a period that corresponds to a
fractional number of samples. Although it is possible to
design a reflection function that leads to an integer number
of samples, this case will be dealt with in the future.

The model studied in this article replaces the impulse
reflection function by a spread-out reflection function. For
simplicity, the reflection function is symmetrical, so that the
period of the generated signal (2 ∗T ) can be easily compared

to that of the original Raman’s model. Such a function does
not have physical meaning, but very roughly reproduces the
effect of a low-pass filter which also exists in a straight tube.

Simulations are ran at a higher precision than machine
double precision, with 200 decimal digits. For this purpose,
a python library (mpmath) is used. In variable blowing
pressure simulations with rates of increase of the blowing
pressure of 0.001 and 0.01, 200 decimals is aprroximately
the minimum precision at which round-off errors are
negligible [4].

2 Steady state results
For a first analysis, the simulations are performed at

8 samples per round-trip, that is, the delay corresponding
to a round-trip in the resonator corresponds to 8 samples.
The analysis consists in comparing two simple reflection
functions. The first one corresponds to a Dirac, giving the
same results as the iterated map provided that the initial
condition is given by a vector of 8 identical samples. The
second reflection function is a “rectangular” function with a
variable width w samples (Rectw). Instead of being a copy
of the outgoing wave, the incoming wave is now an average
of w samples of the outgoing wave, so that a step transition
is reflected as a smoothed-out transition. In practice any real
reflection function acts as a filter. The rectangular function
is then a low-pass filter. The two functions are scaled such
that the sum of all samples is the same, as shown in figure 1
for a width w = 3 samples.

Figure 1: Reflection functions used in the examples below:
dirac delta in green and Rect3 in blue

A simulation ran at γ = 0.8, ζ = 0.5, but an exaggerated
value of losses ( fig. 2, with λ = 0.85 vs. typically λ ' 0.95
for the full length of the clarinet resonator [7]) shows that,
although the shape of the permanent regime (or equivalently
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the harmonic decomposition) is quite different in the two
systems, their peak amplitudes match quite closely.
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Figure 2: Steady-state regime: comparison of an
instantaneous reflection function and a “Rectangular”

reflection function of width 3 (Rect3).

Even if the parameters are maintained constant
throughout the simulation, in practice there is a transient
at the beginning of the simulation, because the initial
conditions do not match the permanent regime. For the same
values of the parameter, the initial transient is represented in
figure 3. Once more, the time-evolution of the amplitudes,
or their envelope seems to match in the two cases.
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Figure 3: Transient regime: comparison of the two cases
shown in figure 2

The agreement between the amplitudes can seem natural:
in fact, if for a fraction of the period that is long enough
the pressure remains almost constant (which is observed in
pressure signals measured inside the resonator at particular
notes), the averaging performed by the reflection function
may act on values of pressure that are almost the same,
producing the same amplitude as if they were convoluted by
a dirac function. However, further examples show that this
is not always the case.
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Figure 4: Steady-state regime: comparison of an
instantaneous reflection function and a “rectangular”

reflection function of width 3.

2.1 Significant differences between reflection
functions

Figure 4 shows a simulation similar to the previous
section, but with a lower value of γ = 0.45. In this case the
waveforms are totally different, and this has consequences in
their amplitude, as it is not possible to consider that there is
an almost constant plateau in each period.
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Figure 5: Transient: comparison of an instantaneous
reflection function and a “rectangular” reflection function of

width 3. (same parameters as in figure 4)

In fact, the situation is less dramatic on the starting
transient (fig. 5), because in the beginning the waveform
is closer to a square wave. After a few reflections, the
smoothing effect is too heavy, so that the higher harmonics
are almost absent and the wavefrom is almost sinusoidal.

It should be noticed that there are two effects working in
opposite directions. The rectangular reflection function acts
as a low-pass filter, and successive reflections tend to bring
the waveform close to a sinusoid. The non-linearity (which
can be thought of as a “non-linear instantaneous reflection”
at the extremity of the mouthpiece) is enriching the harmonic
content of the waveform. In fact, if the reflection at the
extremity of the mouthpiece were a passive reflection, the
waveform would eventually become sinusoidal in all cases.
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3 Variations in the parameter space

3.1 Periodicity in parameter space
Figure 6 shows how the regions of period doubling

remain almost constant in both the dirac reflection and the
smoother reflection with a square function of 3 samples
(within a round-trip time of 8 samples). The graphics show
a simulation ran at λ = 0.95 and variable γ on the horizontal
axis and ζ on the vertical axis.
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Figure 6: Limits of the regions with different periodicities:
on the left and bottom, the time-series converges to a

constant value. On most of the parameter-space, the time
series has a period 1 (two round trips), and in the top regions

of increasing periodicity are seen.

3.2 Amplitude in the parameter space
A similar conclusion can be drawn for the amplitude

of the steady state, as shown in figure 7. In this figure, the
amplitude is calculated from the RMS value of a period
in the end of the simulation. Although not shown here,
the amplitudes of the first harmonic show similar results,
although with a scaling factor. Peak amplitudes show
slightly different results.

The parameter space maps show that although a
particular set of parameters produce different behaviour, in
particular different amplitudes of oscillation, these are rather
localised effects when looking at peak-to-peak amplitudes.
This reassuring conclusion, if confirmed in other more

Figure 7: RMS amplitude contours in the parameter space.

complex reflection functions, may mean that differences
observed between models and experimental measurements
[8] are not a consequence of the details of the resonator.

3.3 Detail for constant parameters and
variable γ

Figure 8 shows a cross-section of the map in figure
7 through a line of constant ζ. The peak amplitudes of
oscillation are coincident in most of the range of γ, which
correspond to the regime in which the reed is beating. In the
non-beating region, up to approx 0.5, the situation is similar
to that shown in figures 4 and 5.

However, figure 9 shows that the RMS amplitudes are
always lower throughout the whole range of γ. This is as
expected, since the RMS value of a square wave is always
bigger than that of a different waveform with similar peak
amplitude.

4 Transient times
There are multiple ways of defining the transient time,

no consensus existing on a preferred one. In this section, we
chose to define it as the time needed to reach a fraction of
the final amplitude (see figure 10). Of course this definition
should work reasonably well for signals generated in a
simulation, as in this work, and introduce some problems
with real signals.
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Figure 8: Peak amplitudes of the steady state as a function
of parameter γ. λ = 0.85
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Figure 9: RMS amplitudes of the steady state as a function
of parameter γ. λ = 0.85
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Figure 10: Method of estimating transient times

Defined this way the transient times at 0.1% (1/1000 of
the total amplitude change) are shown in figure 11.

Figure 11: Contours of equal time to arrive at an amplitude
which is nearer than 10% of the final amplitude. Top: dirac
reflection function, bottom: Rect3 reflection function. Color

scale is in number of round-trips.

5 Variable parameter γ
This section investigates the changes in sound envelopes

for variable blowing pressures (parameter γ). In particular,
one of the aims is to check whether oscillations can appear
at significantly different times when the reflection function
is not an impulse. The same principle is used as before,
however there is an important detail on how the growing
parameter is defined when multiple samples per round-trip
are used. In order that the system is similar to the one sample
per round, the input mouth pressure must not vary within
that round trip. Instead of having a linearly increasing mouth
pressure, the input signal resembles a stepped function.

The definition of transient time is now changed from
the previous section. Since the parameter γ does not stop
increasing, the same happens to the oscillation amplitude
(see for instance, the top graphic in figure 12. For this reason,
and because the main delay is the waiting time until the
oscillations appear (the “dynamic oscillation threshold”), the
transient time is now defined as the number of round-trips
until the amplitude reaches a constant value, 0.1 in this case.

With variable parameter, the non-instantaneous reflection
function seems to always show longer delays than the Dirac.
A typical comparative result with the two reflection functions
(dirac impulse and square reflection function) is represented
in figure 12, both in terms of envelope (peak-to-peak) and a
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detail of the time signals at the dynamic oscillation threshold.

Figure 12: Comparison of three simulations with similar
parameters but different reflection functions (top: envelopes,
bottom: time signal in the vicinity of the bifurcation; blue:

one sample per round-trip, green: dirac reflection, red:
square reflection function with a width of 3 samples on 8

samples per round-trip, other parameters are constant
∆γ = 1/1000, ζ = 0.5, λ = 1).

This may be explained by a higher effective loss
parameter (λ) for the square reflection function. In fact, in
small oscillations only the f0 component exists, so that only
the first peak of the reflection function (corresponding to the
first impedance peak) contributes to the exponential growth.

Overal, in a significant part of the parameter space ζ, λ
(the embouchure parameter, and the amount of losses in
the acoustic resonator), oscillations are produced in the
case of an instantaneous (dirac) reflection function, whereas
no oscillations arise in the case of the rectangular (Rect3)
reflection function. These are shown in white in figures 13
and 14 for two different rates of increase of the parameter γ
(the blowing pressure).

Only for stronger lip forces and small acoustic losses
does the rectangular reflection function produce oscillations
(typically with similar peak amplitudes, as in the case of
steady blowing pressures, sect. 3.2). In general, these arise
later than in the case of the instantaneous reflection function,
but bigger lip forces produce smaller relative delays.

The case of faster increasing pressures is harder to
analyse (fig. 14). In general, the relative delays are
comparable to the slower rates of figure 13 if we take into
account that for example during 2 round-trips of the faster

Figure 13: Number of samples between the appearance of
oscillation for a Dirac impulse reflection function and for a

square reflection function 3 samples wide. In the black
region no oscillation exists in both cases, in the white region

only the system with a Dirac reflection oscillates. Mouth
pressure γ increases at a rate of 1/1000 per round trip.

rate, parameter γ increases as much as during 20 round-trips
of the slower rate. However, in a significant region of the
parameter space, very large relative delays arise.

Figure 14: Number of samples between the appearance of
oscillation for a Dirac impulse reflection function and for a

square reflection function 3 samples wide. In the black
region no oscillation exists in both cases, in the white region

only the system with a Dirac reflection oscillates. Mouth
pressure γ increases at a rate of 1/1000 per round trip.

6 Conclusions
The few demonstrations presented in this article are an

overview of differences in behaviour between “equivalent”
self-oscillating systems with the only difference in the
reflection function. It was shown that in many cases
the characteristics of the steady state oscillation are
mostly independent of the reflection function, at least for
the two functions that were tested. There are however
some important differences when the parameters vary
slowly through time: when the reflection function is not
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instantaneous (i.e. it is a function with finite time support
instead of a dirac impulse) the duration of the transient
is slightly longer. In some cases the oscillation cannot be
maintained in similar conditions (same playing parameters
and reflection coefficient). These results will help to explain
the behavior of clarinet instruments when measured in
controlled increases of the blowing pressure [9].
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