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Abstract

Two-player, turn-based, stochastic games with reachability conditions
are considered, where the maximizer has no information (he is blind) and
is restricted to deterministic strategies whereas the minimizer is perfectly
informed. We ask the question of whether the game has maxmin 1, in
other words we ask whether for all ǫ > 0 there exists a deterministic
strategy for the (blind) maximizer such that against all the strategies of
the minimizer, it is possible to reach the set of final states with probability
larger than 1 − ǫ. This problem is undecidable in general, but we define
a class of games, called leaktight half-blind games where the problem
becomes decidable. We also show that mixed strategies in general are
stronger for both players and that optimal strategies for the minimizer
might require infinite-memory.

∗This work was partially supported by the French ANR project ”Stoch-MC” and ”LaBEX

CPU” of Universit de Bordeaux.
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1 Introduction

Two-player stochastic games are a natural framework for modeling and verifica-
tion in the presence of uncertainty, where the problem of control is reduced to
the problem of optimal strategy synthesis [10]. There is a variety of two-player
stochastic games that have been studied, depending on the information available
to the players (perfect information or partial information), the winning objec-
tive (safety, reachability, etc.), the winning condition (surely, almost-surely, or
limit-surely winning; probability higher than some quantity), whether the play-
ers choose actions concurrently or whether they take turns. Stochastic games
with partial observation are particularly well suited for modeling many scenarios
occurring in practice; normally we do not know the exact state of the system
we are trying to model, e.g. we are aided by noisy sensors or by a software
interface that provides only a partial picture. Unfortunately, compared to per-
fect information games, algorithmic problems on partial information games are
substantially harder and often undecidable [3, 18, 16]. Assuming one player to
be perfectly informed while the other player is partially informed (semiperfect-
information games [5, 4]) brings some relief to the computational hardness as
opposed to general partial information games.

In the present paper we consider half-blind stochastic games: one player has
no information (he is blind) and plays deterministically while the other player
is perfectly informed. We study half-blind games for the reachability objective
and maxmin winning condition: we want to decide if for every ǫ > 0 there exists
a deterministic strategy for the maximizer such that against all strategies of the
minimizer, the final states are reached with probability at least 1− ǫ.

The maxmin condition for half-blind games is a generalization of the value 1
problem for probabilistic finite automata [20]. Most decision problems on prob-
abilistic finite automata are undecidable, notably language emptiness [18, 1, 16],
and the value 1 problem [16]. Consequently, stochastic games with partial in-
formation and quantitative winning conditions (the probability of fulfilling the
winning objective is larger than some quantity) are undecidable. Nevertheless
recently there has been some effort on characterizing decidable classes of prob-
abilistic automata [16, 6, 2, 13, 11], with the leaktight class [13] subsuming the
others [12].

Our results. In the present paper we show that a subclass of half-blind
games called leaktight games have a decidable maxmin reachability problem.
The game is abstracted through a finite algebraic structure called the belief
monoid. This is an extension to the Markov monoid used in [13]. Indeed the
elements of the belief monoid are sets of elements of the Markov monoid, and
they contain information on the outcome of the game when one strategy choice
is fixed. The algorithm builds the belief monoid and searches for particular
elements which are witnesses that the set of final states is maxmin reachable.
The proof of the correctness of the algorithm uses k-decomposition trees, a
data structure used in [9] that is related to Simon’s factorization forests. The
k-decomposition trees are used to prove lower and upper bounds on certain out-
comes of the game and show that it behaves as predicted by the belief monoid.
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Comparison with previous work. The proof methods extends those
developped in [13] in three aspects. First, we define a new monoid structure on
top of the Markov monoid structure introduced in [13]. Second, we rely on the
extension of Simon’s factorization forest theorem [21] to k-factorization trees
instead of 2-factorization trees in [13] in order to derive upper and lower bound
on the actual probabilities abstracted by the belief monoid. Third, we rely on
the leaktight hypothesis to prove both completeness and soundness, while in the
case of probabilistic automata the soundness of the abstraction by the Markov
monoid was for free.

Outline of the paper. We start by fixing some notions and notation in
Section 2 as well as providing a couple of examples. In Section 3 we introduce the
belief monoid algorithm and the Markov and belief monoids themselves. The k-
decomposition tree data structure used in the proofs of correctness is introduced
in Section 4, then in Section 5 the class of leaktight games is defined using the
notion of a leak. The correctness of the algorithm is proved in Section 6, and
finally we discuss the power of different types of strategies in Section 7 and
conclude.

2 Half-Blind Games and the Maxmin Reachabil-

ity Problem

Given a set X , we denote by ∆(X) the set of distributions on X , i.e. functions
f : X → [0, 1] such that

∑
x∈X f(x) = 1.

A half-blind game is a two-player, zero-sum, stochastic, turn-based game,
played on a finite bipartite graph, where the maximizer has no information,
whereas the minimizer has perfect information. Formally a game G is given by
the tuple G = (S1,S2,A1,A2, p, F ). The finite set Si is the states controlled by
Player i, the finite set Ai is the actions available to Player i (i = 1, 2). Player
1 is the maximizer and Player 2 is the minimizer. The function p mapping
(S1,A1) to ∆(S2) and (S2,A2) to ∆(S1) gives the dynamics of the game. The
sets S1,S2 and A1,A2 are disjoint, i.e. S1 ∩S2 = ∅ and A1 ∩A2 = ∅. The set
F ⊆ S1 is the set of final states.

A play of such a game takes place in turns. Initially the game is in some
state s1 ∈ S1, then the maximizer (a.k.a. player 1) chooses some action a1 ∈ A1

which moves the game to some state t1 ∈ S2 selected randomly according to
the lottery p(s1, a1). It is up to the minimizer (a.k.a. player 2) now to choose
some action b1 ∈ A2 which moves the game to some state s2 ∈ S1. Then
again maximizer chooses some action a2 ∈ A1 and so on, until the maximizer
decides to stop, at which point, if the game is in a state that belongs to the set
of final states F , the maximizer wins, otherwise it is the minimizer who wins.
The maximizer is totally blind and does not know what happens, he does not
know in which state the game is nor the actions played by minimizer. Moreover
the maximizer plays in a deterministic way, he is not allowed to use a random
generator to select his actions. As a consequence, the decisions of maximizer
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only depend on the time elapsed and can be represented as words onA1. On the
other hand, the minimizer has full information and is allowed to plays actions
selected randomly.

Formally, the set of strategies for the maximizer is denoted by Σ1 they consist
of finite words, i.e. Σ1 = A1

∗. In order to emphasize that the strategies of the
maximizer are words, elements of Σ1 are usually denoted by w.

The minimizer’s strategies are functions from H = (S1A1S2A2)
∗S1 to

∆(A2). Let Σ2 be the set of such strategies. Its elements are typically denoted
by τ .

Fixing strategies w ∈ Σ1 of length n, τ ∈ Σ2 and an initial state s ∈ S1

gives a probability measure on the set Hn = (S1A1S2A2)
nS1 which is denoted

by P
w,τ
s : for a history h = s1a1t1b1 · · · snantnbnsn+1 ∈ Hn,

P
w,τ
s (h) =

n∏

i=1

p(si, ai)(ti) · τ(hi)(bi) · p(ti, bi)(si+1)

if s = s1 and w = a1 · · · an, and 0 otherwise, where hi = s1a1t1b1 · · · siaiti,
1 ≤ i ≤ n.

For t ∈ S1, we will denote by P
w,τ
s (t) the chance of ending up in state t

after starting from state s and playing the respective strategies, i.e P
w,τ
s (t) =∑

ht∈H P
w,τ
s (ht). Whereas for a set of statesR ⊆ S1 let Pw,τ

s (R) =
∑

t∈R P
w,τ
s (t).

2.1 The Maxmin Reachability Problem

Now we can introduce the maxmin reachability and for half-blind games, using
the notation and notions just defined. Given a game with initial state s ∈ S1

and final states F ⊆ S1, the maxmin value val(s) is defined by

val(s) = sup
w∈Σ1

inf
τ∈Σ2

P
w,τ
s (F ) .

In case val(s) = 1, we say that F is maxmin reachable from s.

Problem 1 (Maxmin reachability). Given a game, is the set of final states F
maxmin reachable from the initial state s?

There is no hope to decide this problem in general. The reason is that in
the special case where the minimizer has no choice in any of the states that she
controls, then Problem 1 is equivalent to the value one problem for probabilistic
finite automata which is already known to be undecidable [16]. However, in
the present paper, we establish that Problem 1 is decidable for a subclass of
half-blind games called leaktight games.

2.2 Deterministic Strategies for the Minimizer

In general, strategies of the minimizer are functions from H = (S1A1S2A2)
∗S1

to ∆(A2). However, because in the present paper we focus on the maxmin
reachability problem, we can assume that strategies of the minimizer have a
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much simpler form: the choice of action by the minimizer is deterministic and
only depends on the current state and on how much time has elapsed since
the beginning of the play. Formally, we assume that minimizer strategies are
functions N → (S2 → A2). Denote Σp

2 the set of all such strategies. This
restriction of the set of minimizer strategies does change the answer to the
maxmin reachability problem because of the following theorem.

Theorem 1. Given a game with initial state s ∈ S1 and final states F ⊆ S1

we have
sup
w∈Σ1

inf
τ∈Σp

2

P
w,τ
s (F ) = sup

w∈Σ1

inf
τ∈Σ2

P
w,τ
s (F ).

Proof. Fixing a word w ∈ Σ1 of length n, one can construct an MDP of fi-
nite horizon with state-space S2 × {1, . . . , n} and safety objective. Stationary
strategies suffice to reach the safety objective here (see e.g. [14]). A station-
ary strategy in this MDP is interpreted as a strategy in Σp

2 for the half-blind
game.

2.3 Two Examples

The graph on which a half-blind game is played is visualized as in Figures 1 and
2. The circle states are controlled by the maximizer, and the square states are
controlled by the minimizer, so for the example in Figure 1, S1 = {i, f} and
S2 = {1, 2}. We represent only edges (s, t) such that p(s, a)(t) > 0 for some
action a and we label the edge (s, t) by a if p(s, a)(t) = 1 and by (a, p(s, a, t))
otherwise.

i
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f

2
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2
)

(a, 1

2
)

α

β

a

Figure 1: A half-blind game with
val(i) = 1.
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α2
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b
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(α, 3

4
)

(α, 1

4
)

a, b

a, b

Figure 2: A half-blind game with
val(i) < 1.

For the game in Figure 1 it is easy to see that val(i) = 1, since if the
maximizer plays the strategy an, no matter what strategy the minimizer chooses
the probability to be on the final state is at least 1 − 1

2n . On the other hand
in the game depicted on Figure 2, {f} is not maxmin reachable from i. If
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the maximizer plays a strategy of only a’s then the minimizer always plays the
action β and α1 for example and the probability to be in the final state will be 0.
Therefore the maximizer has to play a b at some point. But then the strategy of
the minimizer will be to play β except against the action just before b, against
that action the minimizer plays α letting at most 1/4 of the chance to go to the
final state, but making sure that the rest of the probability distribution is stuck
in the sink state s. Consequently val(s) = 1/4. It is interesting to note that in
the example in Figure 2, if we fix a strategy for the minimizer first, then for all
ǫ > 0 the maximizer can make the probability of reaching the final state to be
at least 1− ǫ by playing enough a’s to make sure that the token is either in c or
in f and at that point playing b, therefore f is minmax reachable from i, but it
is not maxmin reachable. This is discussed in more details in Section 7.

We refer back to the game in Figure 2 in order to illustrate the belief monoid
algorithm in the next section.

3 The Belief Monoid Algorithm

We abstract the game using two (finite) monoid structures that are constructed,
one on top of the other. Given that the game belongs to the class of leak-
tight games, the monoids will contain enough information to decide maxmin
reachability.

3.1 The Markov Monoid

The Markov monoid is a finite algebraic object that is in fact richer than a
monoid; it is a stabilisation monoid (see [8]). The Markov monoid was used in
[13] to decide the value 1 problem for leaktight probabilistic automata on finite
words.

Elements of the Markov monoid are S1 × S1 binary matrices. They are
typically denoted by capital letters such as U, V,W . The entry that corresponds
to the states s, t ∈ S1 is denoted by U(s, t). We will make use of the notation

s
U
−→ t in place of U(s, t) = 1, when it is helpful.
We define two operations on these matrices: the product and the iteration.

Definition 1. Given two S1×S1 binary matrices U, V , their product (denoted
UV ) is defined for all s, t ∈ S1 as

UV (s, t) =

{
1 if ∃s′ ∈ S1, s

U
−→ s′ ∧ s′

V
−→ t = 1,

0 otherwise.

Given a S1 × S1 binary matrix U that is idempotent, i.e. U2 = U , its iteration
(denoted U#) is defined for all s, t ∈ S1 as

U#(s, t) =

{
1 if s

U
−→ t and t is U -recurrent,

0 otherwise.
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We say that some state t ∈ S1 is U -recurrent, if for all t′ ∈ S1, t
U
−→ t′ =⇒

t′
U
−→ t. Otherwise we say that t is U -transient.

For a set X of binary matrices, we denote 〈X〉 the smallest set of binary
matrices containing X and closed under product and iteration. Let Ba,τ , a ∈

A1, τ ∈ Σp
2 be a matrix defined by s

Ba,τ

−−−→ t ⇐⇒ P
a,τ
s (t) > 0, s, t ∈ S1. Now

the definition of the Markov monoid can be given.

Definition 2 (Markov monoid). The Markov monoid denotedM is

M = 〈{Ba,τ | a ∈ A1, τ ∈ Σp
2} ∪ {1}〉 ,

where 1 is the unit matrix.

3.2 The Belief Monoid

Roughly speaking, while the elements of the Markov monoid try to abstract
the outcome of the game when both strategies are fixed, the belief monoid tries
to abstract the possible outcomes of the game when only the strategy of the
maximizer is fixed. Hence the elements of the belief monoid are subsets ofM,
and they are typically denoted by boldfaced lowercase letters such as u,v,w.

Given two elements of the belief monoid u and v, their product is the product
of their elements, while the iteration of some idempotent u is the sub-Markov
monoid that is generated by u minus the elements in u that are not iterated.

Definition 3. Given u,v ⊆M, their product (denoted uv) is defined as

uv = {UV | U ∈ u, V ∈ v}.

Given u ⊆ M that is idempotent, i.e. u2 = u, its iteration (denoted u#) is
defined as

u# =
〈{

UE#V | U,E, V ∈ u, EE = E
}〉

.

Given a ∈ A1, let a = {Ba,τ | τ ∈ Σp
2}; we give the definition of the belief

monoid.

Definition 4 (Belief Monoid). The belief monoid, denoted B, is the smallest
subset of 2M that is closed under product and iteration and contains {a | a ∈
A1} ∪ {{1}}, where 1 is the unit matrix.

We are interested in a particular kind of elements in the belief monoid, called
reachability witnesses.

Definition 5 (Reachability Witness). An element u ∈ B is called a reachability

witness if for all U ∈ u, s
U
−→ t =⇒ t ∈ F , where s is the initial state of the

game and F is the set of final states.
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We give an informal description of the way that the belief monoid abstracts
the outcomes of the game. Roughly speaking the strategy choice of the max-
imizer corresponds to choosing an element u ∈ B while the strategy choice of
the minimizer corresponds to picking some U ∈ u. Consequently under those
strategy choices, U will tell us the outcome of the game, that is to say if for

some s, t ∈ S1, if we have s
U
−→ t then there is some positive probability (larger

than a uniform bound) of going from the state s to the state t. In case of s 6
U
−→ t

we will be ensured that the probability of reaching the state t from s can be
made arbitrarily small. Therefore if a reachability witness is found then we will
know that for any strategy that the minimizer picks the probability of going to
some non-final state from the initial state can be made to be arbitrarily small.

3.3 The Belief Monoid Algorithm

Algorithm 1: The belief monoid algorithm.

Data: A half-blind game.
Result: Answer to the Maxmin reachability problem.
B ← {a | a ∈ A1}.
Close B by product and iteration
Return true iff there is a reachability witness in B

The belief monoid associated with a given game is computed by the belief
monoid, see Algorithm 1. We will see later that under some condition, the belief
monoid algorithm decides the maxmin rechability problem.

We illustrate the computation of the belief monoid with an example. Con-
sider the game represented on Figure 2. The minimizer has four pure station-
ary strategies τα1α, mapping 1 to α1 and 2 to α, and similarly the strategies
τα1β, τα2α, τα2β . Now we compute Ba,τ where τ is one of the strategies above.
Assume that we have the following order on the states: i < c < s < f , then

Ba,τα1α =

[
1 0 0 1
1 0 0 1
0 0 1 0
0 0 0 1

]
, Ba,τα1β =

[
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, Ba,τα2α =

[
1 1 0 1
1 0 0 1
0 0 1 0
0 0 0 1

]
, and Ba,τα2β =

[
0 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

]
. The set that contains these matrices is the set a. We can verify

that a is not idempotent, since U = Ba,τα1αBa,τα1β 6∈ a2, and the same for
V = Ba,τα1αBa,τα2β . In fact a2 = a ∪ {U, V }. The set a2 on the other hand is
closed under taking products, i.e. a4 = a2. Therefore we can take its iteration
and compute the element (a2)#. The reader can verify that (a2)# contains

(Ba,τα1α)# =

[
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1

]
, (Ba,τα1β )# =

[
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, V and Ba,τα2β . But it also

contains (Ba,τα1β )#Ba,τα1α = Ba,τα1α . Therefore (a2)#b is not a reachability
witness because if we pick A = Ba,τα1α in (a2)# and some B ∈ b, we will have

i
AB
−−→ s, and s is a sink state.
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This roughly tells us that maximizer cannot win with the strategies
(
(a2nb)

)
n
,

because against a2nb the minimizer plays the strategy τα1β for the first 2n− 1
turns and then plays the strategy τα1α against the last a, making sure that after
the b is played the we end up in the sink state s with at least 3/4 probability.
Continuing the computation we can verify that the belief monoid of the game
in Figure 2 does not contain a reachability witness.

3.4 The Extended Markov and Belief Monoids

For defining leaktight half-blind games and in general for the proofs of cor-
rectness of the belief monoid algorithm we use the extended Markov and belief
monoids. In simple words this means that we remember the transitions which
were deleted by the iteration operation. This extension is necessary for detecting
leaks which will be defined in Section .

The elements of the extended Markov monoid are pairs (U, Ũ) of S1 × S1

binary matrices where the right entry is not modified by the iteration operation
and stores the edges that were deleted from the left entry by the iteration
operation. Given two such pairs (U, Ũ) and (V, Ṽ ), define their product to be

(U, Ũ) · (V, Ṽ ) = (UV, Ũ Ṽ ). Given an idempotent (E, Ẽ), define its iteration to

be (E, Ẽ)# = (E#, Ẽ).

Definition 6 (Extended Markov Monoid). The extended Markov monoid (de-

noted M̃) is the smallest set that is closed under product and iteration and
contains {(Ba,τ , Ba,τ ) | a ∈ A1, τ ∈ Σp

2}∪{(1,1)}, where 1 is the unit matrix.

The definition of the extended belief monoid (denoted B̃) remains the same

as that of the belief monoid except that its elements are now subsets of M̃.
We give a few properties of the belief monoid that we use in the sequel and

leave their proofs as an exercise.

Lemma 1. Let e ∈ B̃ be an idempotent element of the extended belief monoid.
Then the following hold: (1) B̃ together with the unit element {{1}} is a monoid;
(2) e# is idempotent; (3) (e#)# = e# and (4) ee# = e#e = e#.

The same properties also hold in the extended Markov monoid since it is a
stabilisation monoid [13].

4 k-Decomposition Trees

The notion of k-decomposition trees was introduced in [9]. A k-decomposition
tree is a data structure for factorizing finite words into factors that are iterated
with respect to some finite monoid. In Section 6 we will use a variant of Simon’s
factorization forest theorem in order to bound the heights of k-decomposition
trees, which in turn will be used to obtain upper and lower bounds on the
probability of certain outcomes of the game.
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Let A be a finite set, (M, ·) a finite monoid and φ a morphism from the
free monoid of A (i.e. A∗) to M . The set A∗ is infinite while M is finite, so
a pigeon-hole principle tells us that if we have a word w that is long enough it
contains some factors w1, . . . , wn such that φ(w1) = · · · = φ(wn). Simon’s forest
factorization theorem is a very strong extension of this principle. It inductively
factorizes the factors themselves in a tree whose height is bounded by a function
of the size of the monoid independently of the length of the word w. Similarly
to [21, 9, 13] we modify slightly this result to take into account the fact that B
andM are not only monoids but they have some more structure.

First we define k-decomposition trees.

Definition 7 (k-decomposition Tree). Let A be a finite alphabet, (M, ·) a finite
monoid, equipped with a unary operation # that maps idempotents of M to
themselves: # : E(M) → E(M) and φ a morphism from A∗ to M . The nodes
of the k-decomposition tree are labeled by pairs (u, U), where u ∈ A∗ and U ∈
M . The right entry of the pair is called the type of the node. Let k > 2
and w ∈ A∗, then a k-decomposition tree of w with respect to M is a rooted
and unranked tree whose root node is labeled by (w,W ) for some W ∈ M and
every node is one of the following kinds: (1) leaves do not contain any children
and are labeled by (a, φ(a)) for a ∈ A; (2) product nodes have exactly two
children, the left one labeled by (u, U) and right one by (v, V ). The node itself
is labeled by (uv, UV ); (3) idempotent nodes have at most k− 1 children labeled
by (u1, E), . . . , (uj , E) where E ∈ E(M) is idempotent and j < k. The node
itself is labeled by (u1 · · ·uj , E) and iteration nodes that have at least k children
labeled by (u1, E), . . . , (uj , E) where E is idempotent and j ≥ k. The node itself
is labeled by (u1 · · ·uj , E

#).

The notion of a k-decomposition tree is introduced in [9], where it is shown
that for all w ∈ A∗ and k > 2 there exists a k-decomposition tree whose height
depends only on the size of M and not the length of the word — given that M
is a stabilisation monoid. We provide a similar proof, for a slightly more general
class of monoids that have the properties (1)-(4) given in Lemma 1 whereas the
definition of a stabilisation monoid requires extra axioms. The proof was also
given in [13] for the case k = 3.

Theorem 2 ([21, 9, 13]). Let A be a finite alphabet, (M, ·) a monoid equipped
with a unary operator # that maps the idempotents of M to themselves and has
the properties (1)-(4) given in Lemma 1, and φ a morphism from A∗ to M . For
all w ∈ A∗, k > 3 there exists a k-decomposition tree of w with respect to M
whose height is at most 3 · |M |2.

We give a proof in the section that follows.
We will use k-decomposition trees in both the proof of soundness of the be-

lief monoid algorithm in Section 6.1, and its completeness in Section 6.2. For
soundness we construct k-decomposition trees for words over the alphabet whose
letters are pairs, where the left component is a letter in A1 and the right com-
ponent is a stationary strategy for the minimizer, with respect to the extended
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Markov monoid M̃. On the other hand for completeness we use k-decomposition
trees over the alphabet A1 with respect to the monoid B̃. The k-decomposition
trees are used to prove lower and upper bounds on the probabilities of certain
outcomes.

4.1 The Height of k-decomposition Trees

This section is devoted to proving Theorem 2.
We start with Simon’s factorization forest theorem. A Ramseyan decompo-

sition tree is the same as a k-decomposition tree except that it does not have
iteration nodes, and there is no restriction on the number of children of idem-
potent nodes.

Let A be a finite alphabet, (M, ·) a finite monoid, and φ a morphism from
A∗ to M . Then Simon’s factorization forest theorem says:

Theorem 3 ([21]). For all w ∈ A∗ there exists a Ramseyan decomposition tree
of w with respect to M whose height is at most 3 · |M |.

Let # be a mapping from the idempotent elements of M to themselves such
that the properties (1) through (4) in Lemma 1 hold. We will prove Theorem 2.
Let w ∈ A∗ and k > 2. We will prove that there exists a k-decomposition tree
of height at most 3 ·J · |M |, where J is the number of J -classes1 which is smaller
than |M |.

According to Simon’s factorization theorem there exists a Ramseyan decom-
position tree T of w of height at most 3 · |M |.

Let φ0 = φ and A0 = A.
Call any idempotent node with children (u1, E), (u2, E), . . . , (uj , E), a prim-

itive iteration node if E# 6= E and j ≥ k. If T does not have any primitive
iteration node, then T0 = T itself is a k-decomposition tree, and we are done.
Otherwise for all primitive iteration nodes that are maximal in depth — i.e.
there are no other primitive iteration nodes below — labeled (w,E) with chil-
dren labeled (w1, E), . . . , (wj , E) where w = w1 · · ·wj and j ≥ k, add a new
letter of the alphabet A1 = A0 ∪ {aw}, and change the morphism φ1(aw) = E#

and φ1(v) = φ0(v) for all other v ∈ A∗
0. The element E# is in the monoid M

since E is idempotent. Also transform the word u by replacing the factor w by
the letter aw and call this word u1.

Now from Theorem 3 applied to M with alphabet A1, morphism φ1 and
word u1 there exists a Ramseyan decomposition tree T1 of height at most 3 · |M |
where now the factor w in T0 is replaced by the leaf (aw, E

#). If T1 does not
contain any primitive iteration node then we are done, we can unwrap the leaf
(aw, E

#) by replacing it with the subtree of T0 rooted in the primitive iteration
node (w,E), except that it keeps the label (w,E#). But if T1 contains some
primitive iteration node then we recurse the process described above which
returns an new alphabet A2, morphism φ2 and Ramseyan decomposition tree
T2.

1J -classes are an important notion in the study of finite semi-groups and monoids. We

give precise definitions below.
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Since we are removing more and more factors of the word u and adding them
as new letters, repeating the procedure described above, must produce some Tk

that does not contain any primitive iteration nodes. We claim that

Claim 1. k ≤ J where J is the number of J -classes of M .

So the number of times that we recurse the procedure above to transform
a Ramseyan decomposition tree to a k-decomposition tree whose height does
not depend on the length of the word 2 but rather on the structure of M
itself. In fact with Claim 1 the k-decomposition tree will have height at most
3 · J · |M | ≤ 3 · |M |2.

To prove Claim 1 we need some results in the theory of finite semigroups, in
particular the Green’s relations.

Let U ∈ M an element of the monoid and define UM = {UU ′ | U ′ ∈ M}
and MUM = {V UV ′ | V, V ′ ∈ M}. Green’s relations are four relations of
equivalence on the elements of M , denoted L,R,J ,H and D defined as follows.
For a more detailed account of the Green’s relations and main theorems on finite
semigroups see e.g. [7, 19] etc.

Definition 8 (Green’s relations). Let U, V ∈M ,

• ULV ⇐⇒ MU = MV,

• URV ⇐⇒ UM = VM,

• UJ V ⇐⇒ MUM = MVM,

• UHV ⇐⇒ ULV and URV,

• UDV ⇐⇒ ∃W ∈M,URW and WLV ⇐⇒ ∃W ∈M,ULW and WRV.

Where the last equivalence is because the relationsR and L commute. Using
these relations we can form partial orders ≤L,≤R,≤J , so that U ≤J V if and
only if MUM ⊆MVM and so on.

Observe that UE#V ≤J E#, UE# ≤J E#, E#V ≤J E# for any two
elements U, V ∈ M , so taking the product of E# with any other element, will
produce another element of the monoid that is smaller with respect to the
relation ≤J . Now we will show that for any idempotent E ∈ M if E# 6=
E then E# <J E. This is Lemma 3 in [21]. Indeed the procedure above,
when transforming primitive iteration nodes, it replaces the label from (w,E)
to (w,E#), hence the number of times that this can be done is bounded by the
number of J -classes hence the Claim 1.

Before we continue with the proof we need two lemmata from the theory of
finite monoids and semigroups.

Lemma 2. No H-class contains more than one idempotent element.

Lemma 3. Let U, V ∈M ,

2Notice that for this to be true at each step we have transform all the primitive iteration

nodes of maximal depth and not one by one.

13



• If U ≤L V and UJ V then ULV .

• If U ≤R V and UJ V then URV .

Proofs of Lemma 2 and Lemma 3 can be found on any textbook on semigroup
theory e.g. [7],[19].

Now we are ready to prove that when iterating we descend the J -classes.

Lemma 4. Let E ∈ M an idempotent element such that E# 6= E. Then
E# <J E.

Proof. Since M fulfills the properties in Lemma 1, in particular property (4),
EE#E = E# hence it follows that E# ≤J E. We assume EJE# and get a
contradiction. Regard that E ≤L E# = EE#, therefore — since M is finite
— from Lemma 3, ELE#. The argument that ERE# is dual. Consequently
EHE#. Since both E and E# are idempotents in the same H-class, Lemma 2
implies that E = E# which is a contradiction.

This concludes the proof of Theorem 2 and gives us a bound on the height
of k-decomposition trees that depends only on the size of the monoid M .

5 Leaks

Leaks were first introduced in [13] to define a decidable class of instances for
the value 1 problem for probabilistic automata on finite words. The decidable
class of leaktight automata is general enough to encompass all known decidable
classes for the value 1 problem [12] and is optimal in some sense [11]. We extend
the notion of leak from probabilistic automata to half-blind games and prove
that when a game does not contain any leak then the belief monoid algorithm
decides the maxmin reachability problem.

We illustrate leaks in the simplified case of probabilistic finite automata.

c

s

r

b

(a, x)

(a, 1− x)

b

a

a, b

c

s

r

Figure 3: A probabilistic finite automaton exhibiting a leak.

Probabilistic automata (PA) can be seen as the degenerate case of half-
blind games where the minimizer has no choice in any of the states that she
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controls. Consider the PA (on the left) in Figure 3. When playing words from
the sequence

(
af(n)

)
n
, the probability of staying in state c (if we start from state

c) is xf(n). Given that 0 < x < 1 and that f is an increasing function, we see
that this probability can be made arbitrarily small by choosing n large enough.
Similarly playing words from the sequence

(
af(n)b

)
n
, starting from the state c

the probability to go to the sink state s is xf(n). The question is what can we say
about the outcome if we play words from the sequence

(
(af(n)b)g(n)

)
n
for some

increasing function g(n). For larger and larger n, is it the case that starting from
the state c the probability of going to the sink state s is bounded away from 1?
The answer depends on the value of x and the functions f, g. This behavior is
illustrated in Figure 3 on the right side. Each time af(n)b is played, the state c
leaks some probability to the sink state s, denoted with the red dashed arrow.
Having two or more leaks at the same time complicates the matters further, and
this is the difficulty making the limit-sure decision problems undecidable in this
setting.

Intuitively a leak happens when there is some communication between two
recurrence classes with transitions that have a small probability of occurring.
Whether this small probability builds up to render one of the recurrence classes
transient is a computationally hard question to answer — and in fact impossible
in general. Other examples of leaks can be found in [12] and the link between
leaks and convergence rates are discussed further in [11].

We give a precise definition.

Definition 9 (Leaks). An element of the extended Markov monoid (U, Ũ) ∈ M̃
is a leak if it is idempotent and there exist r, r′ ∈ S1, such that: (1) r, r′ are

U -recurrent, (2) r 6
U
−→ r′ and (3) r

Ũ
−→ r′.

An element of the extended belief monoid u ∈ B̃ is a leak if it contains
(U, Ũ) ∈ u such that (U, Ũ) is a leak.

A game is leaktight if its extended belief monoid does not contain any leaks.

Note also that the question of whether a game is leaktight is decidable, since
this information can be found in the belief monoid itself.

6 Correctness of the Belief Monoid Algorithm

This section contains the technical bulk of the paper since it is dedicated to
proving that when the game is leaktight the belief monoid algorithm is both
sound (a reachability witness is found implies val(s) = 1) and complete (no
reachability witness is found implies val(s) < 1).

Theorem 4. The belief monoid algorithm solves the maxmin reachability prob-
lem for half-blind leaktight games.

Theorem 4 is a direct consequence of Theorem 5 and Theorem 6 which are
given in the next two sections.
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6.1 Soundness

In this section we give the main ideas to prove soundness of the belied monoid
algorithm.

Theorem 5 (Soundness). Assume that the game is leaktight and that its ex-
tended belief monoid contains a reachability witness. Then the set of final states
is maxmin reachable from the initial state.

Theorem 5 is justifying the yes instances of the belief monoid algorithm, i.e.
if the algorithm replies yes, then indeed val(s) = 1. It is interesting to note
that the equivalent soundness theorem for probabilistic automata in [13] does
not make use of the leaktight hypothesis. Theorem 5 follows as a corollary of:

Lemma 5. Given a game whose extended belief monoid is leaktight, with every
element u ∈ B of its belief monoid we can associate a sequence (un)n, un ∈
Σ1 such that for all (τn)n, τn ∈ Σp

2 there exists U ∈ u and a subsequence
((u′

n, τ
′
n))n ⊂ ((un, τn))n for which

U(s, t) = 0 =⇒ lim
n

P
u′

n,τ
′

n
s (t) = 0,

for all s, t ∈ S1.

We can prove Theorem 5 as follows. We are given a game that is leaktight
and has a reachability witness u ∈ B, to whom we can associate a sequence of
words (un)n according to Lemma 5. If on the contrary there exists ǫ > 0 such
that val(s) ≤ 1 − ǫ then there exists a sequence of strategies (τn)n such that
for all n ∈ N, Pun,τn

s (F ) ≤ 1 − ǫ′, for some ǫ′ > 0. This contradicts Lemma 5
because for the reachability witness we have by definition that for all U ∈ u,
U(s, t) = 1 implies t ∈ F .

We give a short sketch of the main ideas utilized into proving Lemma 5
before continuing with its proof in the section that follows.

To a ∈ B, a ∈ A1 we associate the constant sequence of words (a)n. To the
product of two elements in B we associate the concatenation of their respective
sequences, and to u# ∈ B the sequence (un

n)n is associated, given that (un)n is
coupled with u. Then we consider words whose letters are pairs (a, τ), where
a ∈ A1 and τ is a strategy that maps S2 to A2, i.e. a pure and stationary
strategy, and give a morphism from these words to the extended Markov monoid
M̃. This allows us to construct k-decomposition trees of such words with respect
to M̃. Then the k-decomposition trees are used to prove lower and upper bounds
on the outcomes of the game under the strategy choices given by the word of
pairs. The main idea is that we can construct for longer and longer words,
k-decomposition trees for larger and larger k, thereby making sure that the
iteration nodes have a large enough number of children which enables us to
show that the probability of being in transient states is bounded above by a
quantity that vanishes in the limit.
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6.1.1 Proof of Lemma 5

Denote by Σ′
2 the set of pure and stationary strategies for the minimizer, i.e.

functions from S2 to A2. Let

A = {(a, α) | a ∈ A1, α ∈ Σ′
2}.

Note that A is a finite set. Define φ the morphism from A to M̃, that maps
(a, α) to (Ba,α, Ba,α). Since a is a single letter, taking stationary strategies is
the same as taking strategies from the set Σp

2 since what the strategy plays after
the first turn does not matter. Given a word u ∈ Σ1 and a strategy τ ∈ Σp

2, the
pair (u, τ) can be seen as a word over the alphabet A. I.e. if u = a1 · · ·an and
τ(n) = αn, n ∈ N, we see (u, τ) as (a1, α1)(a2, α2) · · · (an, αn).

Given p ∈ A∗, k > 2 and h ∈ N, let T h
k (p) be the set of all k-decomposition

trees of w with respect to M̃ whose height is at most h. Denote by Th
k(w) ⊆ M̃

the set of types with which the root nodes of the trees in T h
k (w) are labeled.

Note that T h
k (w) and consequently Th

k(w) can be empty, if h is too small.
We define the notion of reification, which intuitively makes precise what it

means for a sequence of strategy choices (i.e. a sequence of words over the

alphabet A) to realize the abstraction that is provided by a subset of M̃.

Definition 10 (Reification). Let (pn)n be a sequence of words over the alphabet

A, h ∈ N and X ⊆ M̃. We say that (pn)n reifies X with height h if there exists
a subsequence (p′n)n ⊂ (pn)n and k ∈ N such that

T
h
k(p

′
n) = X, for n ∈ N,

moreover for infinitely many i > k, X appears infinitely often in the sequence(
T
h
i (p

′
n)
)
n
.

Reification is important because given that a sequence (pn)n reifies some

X ∈ M̃ with height h, we can prove lower and upper bounds on the outcomes
of the game under (pn)n that agree with some element in X .

First we show that any sequence of words over the alphabet A reifies some
X ⊆ M̃.

Lemma 6. Let (pn)n be a sequence of words over the alphabet A. There exists

h ∈ N and X ⊆ M̃ such that (pn)n reifies X with height h.

Proof. Setting h = 3 · |M̃|2, for all k > 2 and n ∈ N, we have Th
k((pn)n) 6= ∅.

This follows from Theorem 2.
Since M̃ is finite there exists X1 ⊆ M̃ and a subsequence (p′n)n ⊂ (pn)n

such that Th
3 (p

′
n) = X1 for all n ∈ N. If moreover there are infinitely many

i > 3 such that X1 appears infinitely often in the sequence
(
Th
i (p

′
n)
)
n
, then the

lemma concludes. Otherwise there exists some k1 ∈ N such that for all i > k1,
X1 appears only finitely often in the sequence

(
Th
i (p

′
n)
)
n
. Now choose some

other subsequence (p′′n)n ⊂ (p′n)n and X2 ⊆ M̃ such that Th
k1
(p′′n) = X2 for
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all n ∈ N. Since M̃ is finite, the process above needs only a finite number of
repetitions in order to find some X ⊆ M̃ such that (pn)n reifies X with height
h.

Intuitively the lemma above means that under all sequences of strategy
choices for the players it is possible to find a subsequence under which the out-
come of the game is explained by an element of the extended Markov monoid.
But this does not say anything about the belief monoid. We would like for all
u ∈ B̃ to have a sequence of words (un)n over the alphabet A1 such that for

any sequence of strategies (τn)n, (pn)n = ((un, τn))n reifies some X ⊆ M̃ and
moreover X and u have at least one element in common. This is the purpose
of the next lemma.

Lemma 7. Let u ∈ B̃, then there exists a sequence of words (un)n over the
alphabet A1, h ∈ N and a function N : N → N, such that for all sequence of
strategies (τn)n in Σp

2, k > 2 and n > N(k),

T
h
k

(
(un, τn)

)
∩ u 6= ∅.

Proof. We proceed by induction on the elements of B̃.

• Base case. For elements a ∈ B̃, where a ∈ A1, set the sequence of
words to be the constant sequence (a)n, set h = 1 and N to the constant
function N(k) := 0 for all k ∈ N. Then for all τ ∈ Σp

2 and k > 2, the
unique k-decomposition tree of (a, τ) is the single leaf node whose type is
in a by definition of the morphism φ and the definition of a itself.

• Product. Assume that the lemma is true for the two elements u,v ∈ B̃,
for (un)n , hu, Nu and (vn)n , hv, Nv respectively. We will show that it

also holds for the element uv ∈ B̃, with the sequence of words (unvn)n,
h = max{hu, hv}+ 1, and N(k) = max{Nu(k), Nv(k)}.

Let (τn)n be a sequence of strategies, k > 2 and n > N(k). Define (τ ′n)n
to be the sequence of strategies that are shifted by the lengths of un, i.e.
τ ′n(i) = τn(i + |un|) for n, i ∈ N. Then by the induction hypothesis since
n > Nu(k) there exists a k-decomposition tree of length at most hu for

(un, τn) whose root node is labeled by some (U, Ũ) ∈ u. Similarly there
exists a k-decomposition tree of length at most hv for (vn, τ

′
n) whose root

node is labeled by some (V, Ṽ ) ∈ v. Consequently we can construct a k-
decomposition tree of length at most max{hu, hv}+ 1 of (unvn, τ) whose

root node is labeled by (U, Ũ) · (U, Ṽ ) = (UV, Ũ Ṽ ) ∈ uv, by making the
root node a product node and add the two subtrees as children.

• Iteration. Assume that the lemma is true for some idempotent u ∈
B̃. Then there exists a sequence (un)n, hu ∈ N and a function Nu for

which the lemma holds. We will prove that it also holds for u# ∈ B̃,
the sequence (un

n)n, h = hu + 3 · |M̃|2 and the function N defined by

N(k) := Nu(k)+k3·|M̃|2 . Let (τn)n be a sequence of strategies, k > 2 and
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n > N(k). Since n > Nu(k) by the induction hypothesis we know that for
all strategies τ , Thu

k

(
(un, τ)

)
∩ u 6= ∅.

For 0 ≤ i < n let τ in be the shifted strategy by ui
n, i.e. τ

i
n(j) = τn(j+ |ui

n|),
j ∈ N.

For 0 ≤ i < n, pick some (Ui, Ũi) ∈ T
hu

k

(
(un, τ

i
n)
)
∩ u and denote by Ti

the associated k-decomposition tree. We modify the alphabet A and add
(un, τ

i
n), 0 ≤ i < n as letters. At the same time modify the morphism

φ by mapping (un, τ
i
n) to (Ui, Ũi).Then applying Theorem 2 to the word

(un
n, τn) we know that there exists a k-decomposition tree of height at most

3 · |M̃|2, where the leaves are labeled by
(
(un, τ

i
n

)
, (Ui, Ũi)), 0 ≤ i < n.

Plugging the trees Ti instead of the leaves we construct a k-decomposition
tree for (un

n, τn) of height at most h = hu + 3 · |M̃|2. Moreover since

n > N(k) ≥ k3·|M̃|2 there must exist at least one iteration node in this
tree therefore the type of the root node can be written as a #-expression
whose #-height is larger than 1. Consequently the type is in u#.

Observe that the height h gets larger when we iterate, and the same for the
function N , but since we do this only a finite number of times (it is induction
on the finite monoid) we can give a uniform height h and function N such that
the lemma above holds for all elements of the extended belief monoid with that
height h and function N .

Combining the two lemmata above we have:

Lemma 8. For all u ∈ B̃ we have a sequence of words (un)n over the alphabet

A1 such that for all (τn)n there exists X ⊆ M̃ such that (pn)n = ((un, τn))n
reifies X with height h. Moreover X ∩ u 6= ∅.

The raison d’tre of the k-decomposition trees, and their bounded height is
because it allows us to give lower and upper bounds on certain outcomes of
the game as in the following lemma. This is where the leaktight hypothesis is
necessary. We start with the lower bound. The proof follows that of [13].

Lemma 9. There exists a function L : (N,N) → R mapping to the non-zero
positive reals such that for all words p = (w, τ) over the alphabet A, k > 2 and
T a k-decomposition tree of p of height at most h with the root node labeled by
(W, W̃ ) ∈ M̃, given that M̃ is leaktight then for all s, t ∈ S1,

W (s, t) = 1 =⇒ P
w,τ
s (t) ≥ L(h, k), and (1)

W̃ (s, t) = 1 ⇐⇒ P
w,τ
s (t) > 0. (2)

Proof. We proceed by induction on the structure of the k-decomposition tree
T .

• Leaves. Leaves are labeled by some
(
(a, α), (Ba,α, Ba,α)

)
for a ∈ A1,

α ∈ Σ′
2. Then (2) is true by definition of Ba,α, and (1) holds for the lower
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bound ν, where ν is the smallest non-zero transition probability appearing
in the transition table of the game.

• Product nodes. Assume that the lemma holds for the children that are
labeled by

(
u, (U, Ũ)

)
and

(
v, (V, Ṽ )

)
with with the lower bound L. It

follows easily that the lemma holds for the parent node that is labeled by(
uv, (UV, Ũ Ṽ )

)
with the lower bound L2. The words u and v above are

words over the alphabet A.

• Idempotent nodes. Similarly to above if the lemma holds for the n chil-
dren (n < k) that are labeled by

(
u1, (U, Ũ)

)
,
(
u2, (U, Ũ)

)
, . . . ,

(
un, (U, Ũ)

)

for some idempotent (U, Ũ) ∈ M̃ with lower bound L, it follows easily that

it also holds for the parent node that is labeled by
(
u1u2 · · ·un, (U, Ũ)

)
for

the lower bound Lk.

• Iteration nodes. Assume that the lemma holds for the n children (n ≥

k) that are labeled by
(
u1, (U, Ũ)

)
,
(
u2, (U, Ũ)

)
, . . . ,

(
un, (U, Ũ)

)
for some

idempotent (U, Ũ) ∈ M̃ with lower bound L. Proving (2) is trivial, so
we show only (1). Let s, t ∈ S1 such that U#(s, t) = 1, by definition t is
U -recurrent. Then

P
u1···un
s (t) ≥ P

u1
s (t)

∑

q∈S1

P
u2···un−1

t (q)Pun
q (t).

Given that (U, Ũ) is leaktight it follows that for all q ∈ S1, P
u2···un−1

t (q) >
0 implies P

un
q (t) ≥ L. Indeed, let q ∈ S1 such that P

u2···un−1

t (q) > 0,

then by the induction hypothesis we have Ũn−2(t, q) = 1 and since Ũ is

idempotent Ũ(t, q) = 1. The state t is U -recurrent, and (U, Ũ) is not a leak,
therefore it follows from the definition of a leak that U(q, t) = 1. Using
the induction hypothesis on the right most child, we have Pun

q (t) ≥ L. By
the induction hypothesis for the left most child we have Pu1

s (t) ≥ L. From
here we conclude that

P
u1···un
s (t) ≥ L2.

By induction we see that the lemma holds for the function L(h, k) = νk
h

.

We now give a proof for the upper bound. Define L = L(3 · |M̃|2, 3) to be
the lower bound given from Lemma 9.

Lemma 10. Let h ∈ N, define and Kh ∈ N such that h · (1 − L)Kh < L and
Kh > |S1|.

For all words p = (w, τ) over the alphabet A, h ∈ N, k > Kh and T a k-

decomposition tree of p of height at most h with the root node labeled by (W, W̃ ) ∈

M̃, given that M̃ is leaktight then for all s, t ∈ S1

W (s, t) = 0 =⇒ P
w,τ
s (t) ≤ h · (1− L|S1|)⌊k/|S1|⌋.
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Proof. We proceed by induction on the structure of the k-decomposition tree
T , while maintaining upper bounds F that are always smaller than h · (1 −
L|S1|)⌊k/|S1|⌋.

• Leaves. The leaves are labeled by
(
(a, α), (Ba,α, Ba,α)

)
for a ∈ A1 and

α ∈ Σ′
2, by definition we have an upper bound of 0.

• Product nodes. Assume that we have (u,
(
U, Ũ)

)
, (v,

(
V, Ṽ )

)
and the

parent node labeled by (uv,
(
UV, ŨṼ )

)
, where u, v are words over the

alphabet A. Let F ≥ 0 be the upper bound of the children, i.e. U(s, t) =
0 =⇒ P

u
s (t) ≤ F . Let s, t ∈ S1 be such that UV (s, t) = 0. Then the

probability of all paths of length two, s, s′, t such that P
u
s (s

′) > 0 and
P
v
s′(t) > 0 is bounded above by F , therefore P

uv
s (t) ≤ F .

• Idempotent nodes. Assume that we have the children p1, . . . , pj , j < k

each decorated by the same idempotent (W, W̃ ), and let s, t ∈ S1 such
that W (s, t) = 0. The words pi are over the alphabet A. By the induction
hypothesis the upper bound F holds for all the children.

Denote by ρ the set of all paths s0s1 · · · sj such that s0 = s, sj = t

and W̃ (si, si+1) = 1for all 0 ≤ i ≤ j − 1. Since W (s, t) = 0 for all π =
s0 · · · sj ∈ ρ there exists 0 ≤ C(π) ≤ j−1 such that W (sC(π), sC(π)+1) = 0
and for all 0 ≤ i ≤ C(π) − 1, W (si, si+1) = 1. Define ρ′ to be the set of
such prefixes, i.e.

ρ′ = {s0 · · · sC(π) | π = s0 · · · sj ∈ ρ}.

The set ρ′ is nonempty because there exists some r ∈ S1 such that
W (s, r) = 1 (this follows from the definition of the half-blind game, in
every state we have some actions).

Then we have

P
p1···pj
s (t) =

∑

s0···sj∈ρ

P
p1
s0 (s1) · · ·P

pj
sj−1

(sj)

≤
∑

π=s0···sC(π)∈ρ′

P
p1
s0 · · ·P

pC(π)
sC(π)−1

(sC(π)) · F

≤ F,

where the first inequality is because of the induction hypothesis andW (sC(π), sC(π)+1) =
0, whereas the second inequality is because for every path π ∈ ρ there is
exactly one path π′ ∈ ρ′ such that π′ is a prefix of π.

• Iteration nodes. Assume that we have the children p1, . . . , pj , j ≥ k

each decorated by the same idempotent (W, W̃ ) ∈ M̃ and for whom the
upper bound F holds. Let s, t ∈ S1 be such that W#(s, t) = 0. In case
W (s, t) = 0 a proof like the one above for idempotent nodes gives F as the
upper bound. Therefore we assume that W (s, t) = 1. Then by definition
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t is W -transient and it communicates with some recurrence classes whose
union we denote by Sr ⊆ S1. We will prove that for all 0 ≤ i < j′ ≤ j
such that j′ − i ≥ |S1| there exists i ≤ i′ ≤ j′ such that i′ − i ≤ |S1| and

P
pi···pi′

t (Sr) ≥ L|S1|. (3)

Let i ∈ {0, . . . j}, then there exists a 3-decomposition tree Ti for the word

pi, whose root node is labeled by the element (Wi, W̃ ) ∈ M̃. It is possible
that W 6= Wi, but for all s

′, t′ ∈ S1, W (s′, t′) = 0 implies that Wi(s
′, t′) =

0. This is because by the induction hypothesis, if W (s′, t′) = 0, we know
that P

ui

s′ (t
′) ≤ F whereas according to Lemma 9 for Ti, if Wi(s

′, t′) = 1
we have P

ui

s′ (t
′) ≥ L, from F ≤ h · (1 − L)k and our choice of k, superior

to Kh, this is a contradiction, hence Wi(s
′, t′) = 0.

Let St be the set of states that are W -reachable from t (for all t′ ∈ St,
W (t, t′) = 1) but not in Sr. These states are all W -transient and more-
over for all i ∈ {0, . . . , j}, there exists a Wi path from t and any state in
St to some element in Sr. This is because for all t′ ∈ St ∪ {t}, r ∈ Sr,

W̃ (t′, r) = 1, and there is no Wi path from Sr to St ∪ {t}, if there was no
Wi path from St ∪ {t} we could construct a leak, which contradicts the

hypothesis that M̃ is leaktight. Similarly, for 0 ≤ i < j′ ≤ j such that
i− j′ ≥ |S1|, if Wi · · ·Wj′(t, Sr) = 0 we can construct a leak by repeating
a factor of Wi · · ·Wj′ , hence we can assume that there exists i ≤ i′ ≤ j′,
such that i′ − i ≤ |S1| and Wi · · ·Wi′(t, Sr) = 1. Then it follows from
Lemma 9 that P

pi···pi′

t (Sr) ≥ L|S1| which concludes (3).

Let ρ be the set of all paths s0 · · · sj such that s0 = s, sj = t and

W̃ (si, si+1) = 1 for all 0 ≤ i ≤ j − 1. We partition ρ into the set ρ1
of all the paths that pass through Sr and ρ2 the set of all paths that do
not. Since t is W -transient, for all r ∈ Sr, W (r, t) = 0, consequently we
can use the argument above for the idempotent nodes to give F as an
upper bound for the probability of the event that constitutes the union
of all the sets in ρ1. As for ρ2, because of transience of t and (3) the
probability of the union of all the paths in ρ2 can be bounded above by
(1− LS1)⌊j/|S1|⌋.

We have shown that the upper bound grows only in the case of iteration
nodes and it always is smaller than h · (1−L|S1|)⌊k/|S1|⌋, since in ascending the
tree, at each level we add at most a term of (1 − L|S1|)⌊k/|S1|⌋.

Now Lemma 5 follows as a corollary of Lemma 10 and Lemma 8. The main
point is that the larger the k the smaller the lower bound we can prove.

6.2 Completeness

Before introducing the main theorem of this section let us give a definition.
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Definition 11 (µ-faithful abstraction). Let u ∈ Σ1 be a word, and µ > 0 a

strictly positive real number. We say that u ∈ B̃ is a µ-faithful abstraction of
the word u if for all (U, Ũ) ∈ u there exists τ ∈ Σp

2 such that for all s, t ∈ S1,

Ũ(s, t) = 1 ⇐⇒ P
u,τ
s (t) > 0 (4)

U(s, t) = 1 =⇒ P
u,τ
s (t) ≥ µ. (5)

This section is devoted to giving the main ideas behind the proof and proving
the following theorem.

Theorem 6. Assume that the game is leaktight. Then there exists µ > 0 such
that for all words u ∈ Σ1 there is some element u ∈ B̃ that is a µ-faithful
abstraction of u.

The notion of µ-faithful abstraction is compatible with product in the fol-
lowing sense.

Lemma 11. Let u,v ∈ B̃ be µ-faithful abstractions of u ∈ Σ1 and v ∈ Σ1

respectively. Then uv is a µ2-faithful abstraction of uv ∈ Σ1.

A näıve use of Lemma 11 shows that any wordw has a µw-faithful abstraction
in B̃, where µw converges to 0 as the length of w increases. However we need
µw to depend only on B̃, independently of |w|. For that we make use of k-
decomposition trees. More precisely we build N -decomposition trees for words

in Σ1 where N = 23·|M̃|. We can construct N -decomposition trees for any word
u ∈ Σ1 whose height is at most 3 · |B̃|2 and since N is fixed we will be able to
propagate the constant µ, it only remains to take care that the constant does
not shrink as a function of the number of children in iteration nodes, hence the
following lemma.

Lemma 12. Let u ∈ Σ1 be a word factorized as u = u1 · · ·un where n >

23·|M̃| = N , and u ∈ B̃ an idempotent element such that u is a µ-faithful
abstraction of ui, 1 ≤ i ≤ n, for some µ > 0. If u is not a leak then u# is a
µ′-faithful abstraction of u, where µ′ = µN+1.

Theorem 6 is an easy consequence from the lemmata above, which can be
shown as follows. We construct a N -decomposition tree for the word u ∈ Σ1,
and propagate the lower bound from the leaf nodes, for which we have the bound
ν > 0 (where ν is the smallest transition probability appearing in the game) up
to the root node. If we know that a bound µ > 0 holds for the children, for
the parents we have the following lower bounds as a function of the kind of the
node: (1) product node: µ2; (2) idempotent node µN ; (3) iteration node µN+1.

Since the length of the tree is at most h = 3 · |B̃|2 we have the lower bound

µ = νh(N+1)

that holds for all u ∈ Σ1.
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Proof of Lemma 12. Let (W, W̃ ) ∈ u# we want to build a strategy τ ∈ Σp
2 such

that (4) and (5) in Definition 11 hold, for (W, W̃ ) the word u and the bound µ′.

Let us first assume that (W, W̃ ) is such that

W = F1G
#
1 · · ·FkG

#
k Fk+1,

W̃ = F̃1G̃1 · · · F̃kG̃kF̃k+1,

where (Fi, F̃i) ∈ u,(Gi, G̃i) ∈ u and (Gi, G̃i) are idempotent.
The set of #-expressions of u ⊆ M denoted by E(u) is a language defined

by the grammar: E(u) := u | E(u) · E(u) | (E(u))#, so the terminal
symbols are the elements of u. There is γu, a natural function mapping E(u)
to M, i.e. the function that is the identity when restricted to the terminal
symbols, otherwise γu(e · e′) = γu(e)γu(e

′), and γu(e
#) = (γu(e))

#. Given
e ∈ E(u) we define its #-height as the number of the deepest nesting of #. E.g.
#− height(U#(VW#)#) = 2.

We can safely make this assumption because for all (U, Ũ) ∈ u we can find

a #-expression e ∈ E(u) whose #-height is 1, such that γu(e) = (U ′, Ũ) and
for all s, t ∈ S1 U(s, t) = 1 =⇒ U ′(s, t) = 1. This is an easy exercise: when
iterating we are removing edges.

Since u is a µ-faithful abstraction of ui,1 ≤ i ≤ n, for all (U, Ũ) in u there
is a strategy in Σp

2 such that (4) and (5) hold. Let τ1 be such a strategy for

(F1, F̃1), τ2 for (G1, G̃1) and so on until τ2k+1 for the selection (Fk+1, F̃k+1). We
define the strategy τ by assigning one of the τi to some part of the word in the
following way:

• against u1 play τ1,

• against u2 play τ2, play τ2 also against u3, u4, . . . , un−2k+1 each,

• against un−2k+2 play τ3, etc., in general against un−2k+1+i play τi+2, 1 ≤
i ≤ 2k − 1.

One can visualize this in the following way.

τ :=
u1
τ1
F1

|
|
|

u2, u3, . . . , un−2k+1
τ2
G1

|
|
|

un−2k+2
τ3
F2

|
|
|

· · ·
|
|
|

un−2k+2k−1
τ2k
Gk

|
|
|

un
τ2k+1

Fk+1

.

This means that τ plays according to τ2 against u2 then it keeps playing accord-
ing to τ2 against u3 and so on until un−2k+1 is read. Note that it is well defined

since we have assumed that n > N , and N = 3 · |M̃|2 ≥ 2k + 1 from Simon’s
forest factorization theorem.

Now we prove (4) for τ and u.

( =⇒ ) Let s, t ∈ S1 be such that s
W̃
−→ t. Since W̃ = F̃1G̃1 · · · G̃kF̃k+1 and

G̃1 is idempotent there exist s1, . . . , sn−1 ∈ S1 such that

s
F̃1−→ s1

G̃1−−→ · · ·
G̃1−−→ sn−2k

F̃2−→ sn−2k+1
G̃2−−→ sn−2k+2 · · ·

G̃k−−→ sn−1
F̃k+1
−−−→ t. (6)
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Let F (s1, . . . , sn−1) be equal to

P
u1,τ1
s (s1)P

u2,τ2
s1 (s2) · · ·P

un−2k+1,τ2
sn−2k−1

(sn−2k)P
un−2k+2,τ3
sn−2k

(sn−2k+1) · · ·P
un,τ2k+1
sn−1

(t).

Then by the choice of τ we have P
u,τ
s (t) ≥ F (s1, . . . , sn−1). Since u is a µ-

faithful abstraction of ui, (6) implies that every factor of F (s1, . . . , sn−1) is
positive, hence P

u,τ
s (t) > 0.

(⇐= ) Let s, t ∈ S1 be such that Pu,τ
s (t) > 0, then similarly as above there

must exist states s1, . . . , sn−1 such that

P
u,τ
s (t) ≥ F (s1, . . . , sn−1) > 0.

This implies (6) since u is a µ-faithful abstraction of all ui, and in turn, (6)

implies that s
W̃
−→ t, since W̃ = F̃1G̃1 · · · G̃kF̃k+1.

Now we prove (5) for τ and u and the bound µ′ = µN+1. Let s, t ∈ S1 such

that s
W
−→ t. Then there exists states s1, . . . , s2k such that

s
F1−→ s1

G#
1−−→ s2

F2−→ · · ·
G#

k−−→ s2k
Fk+1
−−−→ t. (7)

First we will show that

P
u2,...,un−2k+1,τ

′

s1 (s2) ≥ µ2, (8)

where τ ′ is the strategy that plays τ2 against u2, and against u3 and so on. This
is exactly what the strategy τ does, after u1 is read. Then we have

P
u2···un−2k+1,τ

′

s1 (s2) ≥ P
u2,τ2
s1 (s2)

∑

s′∈S1

P
u3···un−2k,τ

′′

s2 (s′)P
un−2k+1,τ2
s′ (s2),

where τ ′′ is the strategy that plays τ2 against u3 ,and against u4 and so on.
The strategy τ ′′ is the same as τ ′ just shifted by the first part u2. From (7)

s1
G#

1−−→ s2 which implies that s2 is G1-recurrent, s1
G̃1−−→ s2 and s1

G1−−→ s2. By

the choice of τ2 because s1
G1−−→ s2 we have

P
u2···un−2k+1,τ

′

s1 (s2) ≥ µ
∑

s′∈S1

P
u3···un−2k,τ

′′

s2 (s′)P
un−2k+1,τ2
s′ (s2). (9)

Let s′ be such that P
u3···un−2k,τ

′′

s2 (s′) > 0. Then from the definition of τ ′′,

s2
G̃n−2k−3

1−−−−−−→ s′ and since G̃1 is idempotent s2
G̃1−−→ s′. We will prove that

s′
G1−−→ s2. There are two cases:

• s′ is G1-recurrent: then both s′ and s2 are G1-recurrent, and s2
G̃1−−→ s′.

Since we have assumed that u is not a leak, then s′
G1−−→ s2.
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• s′ is G1-transient: There exists some state r that is G1-recurrent, such

that s′
G1−−→ r and r 6

G1−−→ s′. Now s′
G1−−→ r implies that s′

G̃1−−→ r, and from

idempotency of G̃1, s2
G̃1−−→ r. Then from the argument for the case above

r
G1−−→ s2, and finally from idempotency of G1, s

′ G1−−→ s2.

We have shown that for all s′ such that P
u3···un−2k,τ

′′

s2 (s′) > 0, s′
G1−−→ s2. As

a consequence, from the choice of τ2 and (9) we have

P
u2···un−2k+1,τ

′

s1 (s2) ≥ µ2.

To finish up with the proof of (5), for all s, s′ ∈ S1 and Gi, s
G#

i−−→ s′ implies

that s
Gi−−→ s′, therefore from (7) we have

s
F1−→ s1

G#
1−−→ s2

F2−→ s3
G2−−→ · · ·

Gk−−→ s2k
Fk+1
−−−→ t, (10)

so for all Gi, 2 ≤ i ≤ k, we write Gi instead of G#
i . Then by the choice of the

strategies τi and the definition of τ ,

P
u,τ
s (t) ≥ P

u1,τ1
s (s1)P

u2,...,un−2k+1,τ
′

s1 (s2) · · ·P
un,τ2k+1
s2k (t) ≥ µ · µ2 · µ2k−1 = µ2k+2,

where for the last inequality we have used (8) and (10). Since 2k + 1 ≤ N , this
concludes the proof of (5) for τ ,u and the bound µ′ = µN+1.

7 Complexity of Optimal Strategies

The maxmin reachability problem solved by the belief monoid algorithm con-
cerns games where the maximizer is restricted to pure strategies, and decides
whether

val(s) = sup
w∈Σ1

inf
τ∈Σ2

P
w,τ
s (F ) = 1

where Σ1 = A1
∗. If we extend further the set Σ1 of strategies of the maximizer

and allow him to have mixed strategies too, then half-blind games have a value.
Let Σm

1 = ∆(A1
∗) be the set of mixed words.

Theorem 7 ([17]). Half-blind games where maximizer can use mixed strategies
have a value:

val(s) = sup
w∈Σm

1

inf
τ∈Σ2

P
w,τ
s (F ) = inf

τ∈Σ2

sup
w∈Σm

1

P
w,τ
s (F ).

Define Σf
2 to be the set of finite-memory strategies for the minimizer. These

are strategies that are stochastic finite-state probabilistic transducers reading
histories and outputting elements of ∆(A2), mixed actions. Let valf (s) =
infτ∈Σf

2
supw∈Σ1

P
w,τ
s (F ).
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In general,
val(s) ≤ val(s) ≤ valf (s).

A natural question is whether the inequalities above are strict in general,
i.e. whether mixed strategies are strictly more powerful for the maximizer and
whether infinite-memory strategies are strictly more powerful for the minimizer.

The former question can be resolved easily. We can find examples where the
maximizer wins more by mixing her strategy. In fact the example in Figure 2
suffices. For this example we have val(s) < val(s).

The latter question — whether there exists an example such that val(s) <
valf(s) — is harder, and its answer is more counter-intuitive. When maximizer
has full information, it is well-known that minimizer can play optimally with
no memory (using a positional strategy). When maximizer is totally blind, one
might believe that minimizer does not need any memory either because playing
against an opponent that is totally blind to satisfy a safety objective seems
rather easy. Surprisingly perhaps, minimizer requires infinite memory to play
optimally against a blind maximizer and satisfy its safety objective. We show
that there exists a game where val(s) < valf (s). This game is based on the
following gadget.

s1

s2

t1

t2

⊤

⊥

F

s

(a, 1
2 )

(a, 1
2 )

b

b

a

α

β

a

b

a

b

Figure 4: A gadget

We give the main idea behind the gadget. The maximizer wants to be able
to ascertain whether she is in state top or bottom after playing his first b so
that she can go to the final state. The objective of the minimizer is to make
the probability of being in the top state equal to that of being in the bottom
state, so that the maximizer cannot win more than 1/2. In order to do this,
when it is his turn to make the choice between α and β (or a mixing of them)
she has to know the exact probability distribution over t1 and t2. But this
is impossible to keep track with a finite-memory strategy, i.e. the maximizer
plays too many a’s for the minimizer’s small memory. Hence the maximizer
can always win slightly more than 1/2. We then use this gadget in a game
that emphasizes the importance of these winnings and prove that in that game
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1/2 = val(s) < valf(s) = 1. We prove this formally.
The game starts either at state s1 or s2 with equal probability. The maxi-

mizer can play a series of a’s and eventually has to play a b if she wants to make
progress. After which the minimizer observes whether the game is in the state
t1 or t2. In case it is in t1 the minimizer has no choice and proceeds to state ⊤.
In case it is in t2 the minimizer can choose between α and β to go either to state
⊤ or to state ⊥. Then the maximizer has to guess which one it is. If the guess
is right she wins if it is wrong she loses by going to the sink state. The goal of
the minimizer is to keep track of the probability distribution on the states of
the game such that when it is her time to make a decision she will play a mixed
(between α and β) action such that the probability to be in ⊤ is equal to the
probability to be in ⊥ equal to 1/2. Keeping track of the distribution will be
impossible with a finite-memory strategy because the sequence of a’s that the
maximizer plays can be arbitrarily long.

Observe that val(γ) = 1/2, where γ is the initial distribution, i.e. γ(s1) =
γ(s2) = 1/2, by giving the optimal strategies as follows. The maximizer can
mix the two words ba and bb with equal probability. Call this mixed word w.
Then for all strategies τ that the minimizer chooses we have P

w,τ
γ (F ) = 1/2.

On the other hand, after a b is played, the probability to be in the state t2 is
always larger than 1/2, Panb,τ

γ (t2) ≥ 1/2, and consequently the minimizer has
an optimal action such that both ⊤ and ⊥ are reached with equal probability
and equal to 1/2. Moreover this optimal action can be played by the minimizer
by keeping track of the distribution on t1 and t2 by counting the number of as
that are played before b. Albeit this requires unbounded memory. We give a
proof of this in what follows.

Assume that the game stops just before the minimizer makes her action,
then we have

P
anb,τ
γ (t2) = 1−

1

2
·
1

2n
=

2n+1 − 1

2n+1

Therefore if τ is optimal, after seeing anb it would play the action β with the
following probability,

τ(anb)(β) =
1

2
·

2n+1

2n+1 − 1
=

1

2
·

1

1− 1
2n+1

.

With such a strategy it would ensure that P
anb,τ
γ (⊤) = P

anb,τ
γ (⊥) = 1/2. We

prove that this is impossible with a finite-memory strategy.
The proof is by contradiction. Assume that the minimizer has a finite-

memory strategy with m states such that against the word anb it plays the
action β with probability 1

2 ·
1

1− 1

2n+1
. From the definition of a finite-memory

strategy, this implies that there exist two m×m stochastic matrices A and B,
and J ⊂ {1, . . . ,m} such that

∑

j∈J

(AnB)i,j =
1

2
·

1

1− 1
2n+1

, (11)
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where i is the initial memory location of the strategy, and for a matrix A we
denote by Ai,j the element on the ith row and jth column. We use the following
well-known theorem. See e.g. [15].

Theorem 8. Let A be a square m × m stochastic matrix and λ1, λ1, . . . , λr

(r ≤ m) its distinct eigenvalues. Then for all n > m

(An)i,j =
r∑

k=1

λn
kPijk(n),

where Pijk are polynomials of smaller order than the multiplicity of λk.

Using Theorem 8 and doing a small calculation we see that indeed there
exist polynomials P1, P2, . . . , Pr such that for all n > m

∑

j∈J

(AnB)i,j =

r∑

k=1

λn
kPk(n).

On the other hand the Taylor expansion for 1
1− 1

2n+1
give us

∑

j∈J

(AnB)i,j =
1

2
· (1 +

1

2n+1
+

1

22(n+1)
+ · · · ).

Therefore

r∑

k=1

λn
kPk(n) =

1

2
· (1 +

1

2n+1
+

1

22(n+1)
+ · · · ). (12)

Now observe that for complex numbers z1, . . . , zm, m ≥ 1, with |z1| = |z2| =
· · · = |zm|, real c > 0, and polynomials f1, . . . , fm on n of degree at most d,

lim
n→∞

c∑m
i=1 z

n
i fi(n)

= 1, (13)

implies that
∑m

i=1 z
n
i fi(n) =

∑m
i=1 ciz

n
i = c for some constants ci. The reason

being that (13) clearly cannot be true for |zi| < 1, as for |zi| ≥ 1 assume that the
dominating term of the denominator has the form nk

∑m
i=1 ciz

n
i for constants

ci, then for (13) to hold we need k = 0. Hence
∑m

i=1 z
n
i fi(n) =

∑m
i=1 ciz

n
i , and

similarly it is necessary that |z1| = |z2| = · · · = |zm| = 1. Finally because of
(13) we have

∑m
i=1 ciz

n
i = c.

Assume without loss of generality that |λ1| = |λ2| = · · · = |λr1 |, for some
1 ≤ r1 ≤ r and that |λ1| ≥ |λi|, 1 ≤ i ≤ r. The expression on the left hand
side of (14) is dominated by

∑r1
k=1 λ

n
kPk(n) whereas the expression on the right

hand side is dominated by the leading term 1/2.
Consequently, because of the equality above, it holds that

lim
n→∞

1
2∑r1

k=1 λ
n
kPk(n)

= 1.
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Applying (13) we have
∑r1

k=1 λ
n
kPk(n) =

∑r1
k=1 λ

n
kck = 1

2 . We substract both of
these equal quantities from (12), to get

r∑

k=r1

λn
kPk(n) =

1

2
· (

1

2n+1
+

1

22(n+1)
+ · · · ). (14)

Repeating the same argument for the leading terms of (14) we have

lim
n→∞

1
2n+2∑r2

k=r1
λn
kPk(n)

= lim
n→∞

1

4
∑r2

k=r1
(2λk)nPk(n)

= 1.

Again, applying (13) we get
∑r2

k=r1
(2λk)

nPk(n) =
∑r2

k=r1
c′k2

nλn
k = 1/4. Hence

we can subtract the quantity 1
2n+2 from both sides in (14). Repeating the same

argument for the eigenvalues that are left we conclude that

0 =
1

2
· (

1

2r(n+1)
+

1

2(r+1)(n+1)
+ · · · ),

which is clearly a contradiction therefore there are no two finite stochastic ma-
trices A,B such that (11) holds, and consequently the minimizer has no finite-
strategy that is optimal in achieving the 1/2 payoff. Nevertheless for all ǫ > 0
the minimizer has ǫ-optimal strategies that have finite-memory. These strategies
would constitute of counting the number of a’s up to some length.

We have shown the following lemma.

Lemma 13. In the game in Figure 4 for all finite-memory strategies τ for the
minimizer there exists a word w such that

P
w,τ
γ (F ) >

1

2
,

where γ is the initial distribution, γ(s1) = γ(s2) = 1/2.

Now we give an example that gives a stronger property. We will use the
game in Figure 4 in another game as a gadget. We then demonstrate that for
this larger game it also holds that val(i) = 1/2 where i is the initial state but
valf(i) = 1, i.e. for all finite-memory strategies τ and ǫ > 0 there is a finite
word that reaches the set of final states with probability larger than 1− ǫ.
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Figure 5: A game for which val∞(i) = 1/2

We give an informal description of the game in Fig. 5. The state i is the
initial state. A fair coin is tossed at i and if it is heads then we move to state ⊤
otherwise we move to state ⊥. Then, we toss a biased coin in ⊤ by playing c1,
if we happen to be in ⊥, playing c1 would not change anything. At this point
another biased coin is tossed by playing c2 as a result we are in one of the states
⊥⊥,⊥⊤,⊤⊤,⊤⊥ after the two coin tosses. Repeating this process n times, i.e.
by playing a(c1c2R)n, we end up in state ⊤ if and only if we had n + 1 heads
and symmetrically we end up in state ⊥ if and only if we have tossed n+1 tails.
Now we play R̄, and by doing so we win if we have tossed n + 1 consecutive
heads, we lose if we have tossed n+ 1 consecutive tails and otherwise we go to
the state i. If we repeat this process k times, i.e. by playing the word

(a(c1c2R)nR̄)k,

then the probability to win the game will be arbitrarily close to 1 (for well chosen
n and k) if and only if the coin tosses are biased towards heads, i.e. x1, x2 > 1/2.
Then the idea is to embed the gadget in Fig.4 in place of the states ⊥ and ⊤.

For all k let
µk = P

(a(c1c2R)nR̄)k

i (¬{f, s}),

the probability to be in any state except the sink (s) or final (f) state after the
word (a(c1c2R)nR̄)k has been played. Then we have

µ0 = 1, and

µk = µk−1(1 −
1

2
xn
1 −

1

2
yn2 ).

Hence

µk = (1−
1

2
xn
1 −

1

2
yn2 )

k.
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Observe that

P
(a(c1c2R)nR̄)k

i (f) =
1

2
xn
1 (µ0 + µ1 + · · ·+ µk−1)

=
1

2
xn
1

1− (1− 1
2x

n
1 −

1
2y

n
2 )

k

1− (1− 1
2x

n
1 −

1
2y

n
2 )

=
xn
1

xn
1 + yn2

· (1− (1−
1

2
xn
1 −

1

2
yn2 )

k).

Then there exists some function g such that limn→∞(1 − 1
2x

n
1 −

1
2y

n
2 )

g(n) = 0.

Also, we have x1 > y2 if and only if limn→∞
xn
1

xn
1+yn

2
= 1.

If we embed the gadget in Fig. 4 in place of the states ⊥ and ⊤ and replace
the letter c1 with the letters a1, b1 from the gadget and symmetrically c2 with
the letters a2, b2, and such that the final state of the gadget embedded on the
right becomes ⊤⊤, the sink state ⊤⊥ and symmetrically the final state of the
gadget embedded on the left becomes ⊥⊤ and the sink state ⊥⊥ together with
Lemma 13 implies the following:

Theorem 9. There exists a game with initial state i, such that 1/2 = val(i) <
valf(i) = 1.

The game in Fig. 5 is not leaktight. We conjecture that for leaktight
games the finite-memory strategies are as powerful as the infinite-memory ones
(val(s) = valf (s)). One can prove that for all distributions on the states of the
game there exists an optimal (mixed) action for the minimizer, and this way
construct an optimal strategy. This strategy has in general unbounded memory.
But intuitively for leaktight games the exact distribution is not important, only
the support. We leave the veracity of this conjecture as an open problem.

Conclusion

We have defined a class of stochastic games with partial observation where the
maxmin-reachability problem is decidable. This holds under the assumption
that maximizer is restricted to deterministic strategies. The extension of this
result to the value 1 problem where maximizer is allowed to use mixed strategies
seems rather challenging.
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