
HAL Id: hal-01320286
https://hal.science/hal-01320286

Submitted on 23 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A quadratic Welch-Berlekamp algorithm to decode
generalized Gabidulin codes, and some variants

Gwezheneg Robert

To cite this version:
Gwezheneg Robert. A quadratic Welch-Berlekamp algorithm to decode generalized Gabidulin codes,
and some variants. IEEE International Symposium on Information Theory (ISIT 2016), Jul 2016,
Barcelone, Spain. pp.2559-2563. �hal-01320286�

https://hal.science/hal-01320286
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A quadratic Welch-Berlekamp algorithm to decode
generalized Gabidulin codes, and some variants

Gwezheneg ROBERT
IRMAR, Université de Rennes 1

Rennes, France
Email: gwezheneg.robert@univ-rennes1.fr

Abstract—Gabidulin codes are Maximum Rank Distance
(MRD) codes. They have been recently generalized to cyclic Ga-
lois extension fields. The unique decoding problem is equivalent
to the linear reconstruction problem.

The aim of this article is the study of an algorithm to solve
this reconstruction problem. We prove that the output of our
algorithm is a solution of the reconstruction problem. Then we
give some variants.

We also establish that (one of the variant of) the algorithm is
quadratic.

Index Terms—Gabidulin codes, rank metric, skew polynomials,
decoding algorithm.

I. MOTIVATION

Gabidulin codes have been discovered in 1978 [4], in
1985 [5] then in 1991 [12]. In Gabidulin’s article, the codes
are defined similarly to Reed-Solomon codes. The difference
between these two kinds of codes is the metric and the evalu-
ated polynomials. Thus, they have some common properties,
like their optimality concerning the Singleton bound. This
optimality explains the various uses of Gabidulin codes.

For example, in network coding, interesting codes are
designed from Gabidulin codes with the lifting construction.
Such codes are also used for distributed storage [10].

Binary Gabidulin codes have been used to design space-
time code [3] [7]. The main difficulty was to get codewords
in the complex field. For this purpose, Gabidulin codes have
been generalized to cyclic Galois extensions of the rational
field [1] [11].

Nevertheless, a large error-correcting capability is useless
without an efficient decoding algorithm. Several algorithms
have been proposed, most of them coming from Reed-
Solomon decoders. Among all these algorithms, we choose the
Welch-Berlemkamp-like one [6] for several reasons. First of
all, the algorithm has a quadratic complexity. Then, it is easy to
implement and requires few memory. Last reasons come from
the study of the algorithm and confirm this choice. A division-
free variant enables the use of this algorithm for codes over
integer rings [11]. Then, there is no conditions on the support
of the Gabidulin code, which enables the adaptation of the
algorithm for decoding erasures [11].

II. CONTRIBUTION

The algorithm we study is inspired by the Welch-Berlekamp
algorithm [2], adapted to Gabidulin codes [6]. We focus on
the reconstruction problem, which is the main part of the

decoder. There are some cases for which the algorithm of [6]
does not work. Namely, the algorithm fails if a discrepancy
(u0 or u1) is zero. In this article, we fill the remaining gaps
and prove that the output is a solution of the reconstruction
problem. Moreover, we give three variants. We also establish
the complexity of the algorithm.

Section III gives definition and properties of generalized
Gabidulin codes. Section IV introduces a decoding method,
based on the reconstruction problem. Proofs are omitted due
to brevity (see [1], [11] and [6]). Contribution concerns the
reconstruction algorithm (Algorithm 2). In Section V, we
prove that the output of the algorithm is a solution of the
reconstruction problem. We also give the algebraic complexity
of this algorithm. Section VI is dedicated to the three variants
of the algorithm.

III. GENERALISED GABIDULIN CODES

In this section, we generalise the definition of Gabidulin
codes to cyclic Galois extensions. We first introduce θ-
polynomials and rank metric.

In the whole article, we consider a cyclic Galois extension
K ↪→ L of degree m, and a generator θ of the Galois group
of the extension. (We directly choose convenient extensions,
which fill the conditions required for Theorems 1 and 4.) Let
B = (b1, . . . , bm) be a K-basis of L (as a K-vector space).
The following mapping enables to turn an element of L into
a vector of Km.

extB : L −→ Km

x = x1b1 + · · ·xmbm 7−→ (x1, . . . , xm)

A. θ-polynomials

θ-polynomials are a particular case of skew polynomials [9].
They are the generalisation of q-polynomials [8] used for
original Gabidulin codes.

Definition 1 (θ-polynomials). • A θ-polynomial with coef-
ficients in L is an element of the form∑

i>0

aiX
i : ai ∈ L,

with a finite number of non-zero ai.
• The degree of a non-zero θ-polynomial

∑
i>0 aiX

i is
deg(A) = max{i : ai 6= 0}. (By convention, the degree
of the zero θ-polynomial is −∞.)



• The set of θ-polynomials with coefficients in L is denoted
by L[X; θ].

We can define some operations over θ-polynomials.

Definition 2 (Operations over θ-polynomials). Let A =∑n
i=0 aiX

i ∈ L[X; θ], B =
∑m
i=0 biX

i ∈ L[X; θ], and
c ∈ L.
• The addition is: A+B =

∑
i(ai + bi)X

i.
• The (symbolic) product is defined by: X · c =
θ(c) · X . Thus the product is well-defined: A · B =∑
i,j aiθ

i(bj)X
i+j .

• The evaluation is: A(c) =
∑
i aiθ

i(c).

The ring of θ-polynomials is a non-commutative ring. There
is a left and a right Euclidean divisions. Notice that in this ring,
there are several ways to define an evaluation. We choose the
operator evaluation since it generalizes the evaluation used in
Gabidulin codes over finite fields.

Remark 1. When we consider finite fields Fq ↪→ Fqm ,
provided with the Frobenius automorphism x 7→ xq , we get
the q-polynomials used in original Gabidulin codes.

The algorithm relies on the three following properties.

Theorem 1. • Let A be a θ-polynomial of degree d. Then
the set of roots of A (i.e. elements x such that A(x) = 0)
is a K-vector space of dimension at most d.

• Let A be a θ-polynomial such that A(vi) = 0 : 1 6 i 6 s,
where v1, . . . , vs are K-linearly independent values of L.
Then either deg(A) > s or A = 0.

Definition 3 (Annihilator θ-polynomial). • Let V be a K-
subspace of L (as a vector space). An annihilator θ-
polynomial of V is a monic non-zero θ-polynomial A
of minimal degree such that :

∀v ∈ V, A(v) = 0.

• Let (v1, . . . , vs) ∈ Ls. An annihilator θ-polynomial
of (v1, . . . , vs) is an annihilator θ-polynomial of
Vect(v1, . . . , vs).

Proposition 2. Given a K-subspace V of L, there is a unique
annihilator θ-polynomial of V . Moreover, its degree is exactly
dim(V ).

Definition 4 (Interpolating θ-polynomial). Let (x1, . . . , xs) ∈
Ls and (y1, . . . , ys) ∈ Ls. An interpolating θ-polynomial I is
a θ-polynomial of minimal degree such that :

∀1 6 i 6 s, I(xi) = yi.

Proposition 3. If x1, . . . , xs are K-linearly independent, then
there exists a unique interpolating θ-polynomial of degree at
most s− 1.

B. Rank metric

Definition 5 (Rank metric). Let x = (x1, . . . , xs) ∈ Ls. The
rank weight of x is the rank of the matrix whose columns are

the column vectors extB(xi) :

wr(x) = rank (extB(x1), · · · , extB(xs)) .

The rank distance between x and y is dr(x, y) = wr(x− y).

There is another way to define this metric.

Definition 6 (Alternative rank metric). Let x = (x1, . . . , xs) ∈
Ls. The rank weight wr′(x) of x is the degree of the annihi-
lator θ-polynomial of Vect(x1, . . . , xs).
The rank distance between x and y is dr′(x, y) = wr′(x− y).

Theorem 4.
∀x ∈ Ls, wr(x) = wr′(x)

Thus, the two metrics are identical and called the rank metric.

Proposition 5 (Singleton bound). Let C be an error correcting
code of length n, dimension k. Then its minimal distance d
(in rank metric), satisfies : d 6 n− k + 1.

Definition 7 (MRD codes). Let C be an error correcting
code of parameters [n, k, d]. The code is MRD (Maximal Rank
Distance) if d = n− k + 1.

C. Gabidulin codes

Definition 8 (Generalised Gabidulin code). Let k 6 n 6 m
be integers and g = (g1, . . . , gn) be K-linearly independent
elements of L. The generalised Gabidulin code Gabθ,k(g) of
length n, dimension k and support g is

Gabθ,k(g) = { (f(g1), . . . , f(gn)) : (1)
f ∈ L[X; θ],deg(f) < k } . (2)

The codeword obtained with the information word f is denoted
by c(f).

Proposition 6. A generalised Gabidulin code is a linear code,
whose generator matrix is θ0(g1) · · · θ0(gn)

...
. . .

...
θk−1(g1) · · · θk−1(gn)

 .

Proposition 7. A generalised Gabidulin code of length n and
dimension k has minimal distance (in rank metric) d = n −
k+1. Thus, generalised Gabidulin codes are MRD codes, and
we can correct an error of rank t if

t 6

⌊
n− k
2

⌋
.

Example 1. Consider the extension F2 ↪→ F24 = F2[α] =
F2[Y ]/(Y 4 + Y + 1), provided with the Frobenius automor-
phism x 7→ x2. Let G be the Gabidulin code of length n = 4,
dimension k = 2 and support g =

(
1, α, α2, α3

)
. We consider

the information word

f = α5 + α7X.

Then, the corresponding codeword is

c(f) =
(
α13, α5, α8, α3

)
∈ F4

16 .



IV. DECODING BY RECONSTRUCTION

The reconstruction problem and its adaptation to the decod-
ing of Gabidulin codes is described in [6]. The method is also
valid for Gabidulin codes over infinite fields..

Let Gabθ,k(g) be a Gabidulin code. Let f be an informa-
tion word, and c(f) the corresponding codeword. During the
transmission, an error is added, and the receiver gets

y = c(f) + e,

where yi = f(gi) + ei. The goal of the receiver is to recover
f , knowing g and y.

Definition 9 (Decoding Problem). Given a Gabidulin code of
length n, dimension k and support g, and a received word
y, solving the Decoding Problem Dec(n, k, g, y) consists of
finding
• a θ-polynomial f ∈ L[X; θ] of degree deg f < k,
• a vector e ∈ Ln of rank w(e) 6 t = bn−k2 c,

such that
yi = f(gi) + ei.

We can reformulate this problem with only θ-polynomials.
This is the linear reconstruction.

Definition 10 (Linear Reconstruction Problem). Given inte-
gers k 6 n and t 6 n, a vector g ∈ Ln of K-linearly
independent values, and a vector y ∈ Ln, solving the Linear
Reconstruction problem LR(n, k, t, g, y) consists of finding
• a θ-polynomial N ∈ L[X; θ] of degree degN < k + t,
• a non-zero θ-polynomial W ∈ L[X; θ] of degree

degW 6 t,
such that

W (yi) = N(gi).

Any solution (f, e) of Dec(n, k, g, y) gives a solution
(N,W ) of LR(n, k, bn−k2 c, g, y), where W is the annihilator
polynomial of e, and N = W · f . The interesting fact is the
reverse property.

Theorem 8. If t 6 bn−k2 c and if there exists a solution of
Dec(n, k, g, y), then any solution of LR(n, k, t, g, y) gives the
solution of Dec(n, k, g, y).

The decoding algorithm is given in Algorithm 1.

Algorithm 1: decoding algorithm
Input: dimension k and length n of the code
Input: (g1, . . . , gn), support of the code
Input: (y1, . . . , yn), received word
Output: f , the information word.
1 : Compute (N,W ), solution of LR(n, k, t, g, y)
2 : Compute Q and R such that N =W ·Q+R

(Euclidean division)
3 : if R = 0
4 : return Q
6 : else
7 : return "Failure : too much errors"
8 : end if

Algorithm 2: reconstruction algorithm
Input: dimension k and length n of the code
Input: error-correcting capability t of the code
Input: (g1, . . . , gn), support of the code
Input: (y1, . . . , yn), received word
Output: N and W solutions of the LR(n, k, t, g, y)

0 : # Initialisation
1 : N0 ←− 1
2 : N1 ←− 0
3 : W0(X)←− 0
4 : W1(X)←− 1
6 : for i from 1 to k
7 : N1 ←− N1 +

yi−N1(gi)
N0(gi)

·N0

9 : N0 ←− (X − θ(N0(xi))
N0(gi)

) ·N0

10 : end for
20 : # Main Loop
21 : for i from k + 1 to n
22 : # Computation of discrepancies
23 : u0 ←− N0(gi)−W0(yi)
24 : u1 ←− N1(gi)−W1(yi)
30 : # Secondary Loop
31 : if u0 6= 0 and u1 = 0
32 : j ←− i+ 1
33 : while u0 6= 0 and u1 = 0 and j 6 n
34 : u0 ←− N0(gj)−W0(yj)
35 : u1 ←− N1(gj)−W1(yj)
36 : j ←− j + 1
37 : end while
38 : if j = n+ 1
39 : return (N1,W1)
40 : else
41 : gi ←→ gj
42 : yi ←→ yj
43 : end if
44 : end if
50 : # update of θ-polynomials, according to discrepancies
51 : if u0 6= 0 and u1 6= 0

52 : N ′0 ←− (X − θ(u1)
u1

) ·N1

53 : W ′0 ←− (X − θ(u1)
u1

) ·W1

55 : N ′1 ←− N0 − u0
u1
N1

56 : W ′1 ←−W0 − u0
u1
W1

58 : end if
61 : if u0 = 0 and u1 6= 0

62 : N ′0 ←− (X − θ(u1)
u1

) ·N1

63 : W ′0 ←− (X − θ(u1)
u1

) ·W1

65 : N ′1 ←− N0

66 : W ′1 ←−W0

68 : end if
71 : if u0 = 0 and u1 = 0
72 : N ′0 ←− X ·N1

73 : W ′0 ←− X ·W1

75 : N ′1 ←− N0

76 : W ′1 ←−W0

78 : end if
81 : N0 ←− N ′0
82 : W0 ←−W ′0
84 : N1 ←− N ′1
85 : W1 ←−W ′1
90 : end for
91 : if n− k is even
92 : return N1,W1

93 : else
94 : return N0,W0

95 : end if

V. PROOF OF CORRECTNESS

We now focus on the Reconstruction algorithm, given above
(Algorithm 2).



The goal of this section is to establish that the output of the
algorithm is a solution of the Reconstruction Problem.

Theorem 9. Let k 6 n and t = bn−k2 c be integer parameters,
g ∈ Ln be n K-linearly independent values of L and y ∈
Ln be a received word. Let (N,W ) denote the output of the
algorithm with these inputs. Then (N,W ) is a solution of the
problem LR(n, k, t, g, y). Namely, we have :

1) N(gi) =W (yi), 1 6 i 6 n
2) deg(N) < k + t
3) deg(W ) 6 t
4) W 6= 0

The proof is cut in three parts.

Proposition 10. With the notations of Theorem 9, we have
N(gi) =W (yi), 1 6 i 6 n.

Proof: We just have to check, by induction, that after
step i, (during initialisation loop or main loop) N and W
verify the induction hypothesis :

H(i) :

{
N0(gj) =W0(yj), 1 6 j 6 i
N1(gj) =W1(yj), 1 6 j 6 i

.

At the end of the algorithm (normal output), we have H(n).
In case of premature input (line 39), we have N0(gj) =
W0(yj), 1 6 j 6 i by induction hypothesis, and we have
N0(gj) = W0(yj), i 6 j, which is part of the conditions of
premature input.

Proposition 11. With the notations of Theorem 9, we have
deg(N) < k + t and deg(W ) 6 t.

Proof: During the initialisation loop, degrees of N1 and
N0 increase by 1 during each step. During the main loop, they
increase as follows:

deg(N ′0) = deg(N1),
deg(W ′0) = deg(W1),
deg(N ′1) 6 max(deg(N0),deg(N1)),
deg(W ′1) 6 max(deg(W0),deg(W1)).

Thus, we have the following upper bounds :

deg(N0) 6 k + b i−k2 c,
deg(W0) 6 b i−k+1

2 c,
deg(N1) 6 k − 1 + b i−k+1

2 c,
deg(W1) 6 b i−k2 c.

At the end of the algorithm (normal output), one of the
pairs (N0,W0) or (N1,W1) verifies the degree conditions.
Since this upper bound is increasing along the steps, in case
of premature output, we get a pair which verifies degree
conditions.

Proposition 12. With the notations of Theorem 9, we have

W 6= 0.

Proof: First, remark that W = 0 implies N = 0. Indeed,
when W = 0, the interpolation conditions become N(gi) = 0,
thus N has n roots linearly independent, so N = 0. Then, we

can list the degree possibilities according to the parity of the
step and according to which polynomial reaches the upper
bounds. The 8 cases are the following.

• For even steps :
– all polynomials reach the upper bound
– only N1 has degree lower than the upper bound
– only W0 has degree lower than the upper bound
– both N1 and W0 have degree lower than the upper

bound
• For odd steps :

– all polynomials reach the upper bound
– only N0 has degree lower than the upper bound
– only W1 has degree lower than the upper bound
– both N0 and W1 have degree lower than the upper

bound
Then, we never have the pair (0, 0) since two polynomials of
the same pair never have lower degree than the upper bound
simultaneously.

Proposition 13. The main part of the algorithm (meaning all
except the secondary loop) requires 2n2+O(n) multiplications
and 2n divisions.

During the secondary loop, some operations are added, due
to computation of discrepancies (lines 34 and 35). In the worst
case (meaning that we compute all possible discrepancies
at each step), we add 1

3 (n − k)(n2 + 5nk + 2k2) + O(n2)
multiplications. The third variant of section VI decreases this
complexity to 0, making the algorithm quadratic.

Remark 2. The secondary loop enables to stop the algorithm
as soon as we have computed a solution. (When the weight of
the error is τ , the algorithm stops after 2τ steps.)

VI. VARIANTS

The goal of this section is to describe some variants of the
algorithm. For each of them, we see the interest and the effect
on the complexity.

A. A division-free algorithm

This variant has interest for codes in number fields. It
enables, when the support of the code, the information word
and the error have coefficients in the integer ring, to get
polynomials whose coefficients are also in the integer ring.
We only have to modify updates, which become : (lines that
do NOT appear in variants haven’t changed)

Modification for ’division-free’ variant
5 : λ← 1
6 : for i from 1 to k
7 : N1 ←− N0(xi)N1 + (λyi −N1(xi)) ·N0

8 : λ←− N0(gi)λ
9 : N0 ←− N0(xi)(X − θ(N0(xi))) ·N0

10 : end for



52,62 : N ′0 ←− (u1X − θ(u1)) ·N1

53,63 : W ′0 ←− (u1X − θ(u1)) ·W1

55 : N ′1 ←− u1N0 − u0N1

56 : W ′1 ←− u1W0 − u0W1

Proposition 14. The algorithm requires 3n2+O(n) multipli-
cations and 0 divisions.

B. Lower degree polynomials

We can remark that N0 and N1 are updated by additions and
left multiplications. Thus, their value along the main loop is a
polynomial combination of their value after the initialisation,
namely the annihilator A of (g1, . . . , gk) and the interpolating
polynomial I of (g1, . . . , gk) and (y1, . . . , yk). Thus, we have

N` = P`A+W` I .

P` is updated by the same formulas as N` and W`.
We have to modify the computation of the discrepancies.

Modification for ’lower-degree’ variant
23,34 : u0 = P0(A(gi)) +W0(I(gi)− yi)
24,35 : u1 = P1(A(gi)) +W1(I(gi)− yi)

The last modification is part of the decoding algorithm
but not of the reconstruction algorithm, since it concerns
the final division W\N of N by W . This division becomes
W\(P A) + I.

Proposition 15. The number of multiplication is decreased by
1.5k(n − k) for the basic algorithm and by 3.5k(n − k) for
the division-free variant.

C. Updating discrepancies

Instead of computing two discrepancies at each step, we
can initialise them after the initialisation of polynomials, and
update them at each step. The discrepancies u0 and u1, now
denoted u0,j and u1,j , since they depend on the pair (gj , yj),
are updated by the same formulas than N0, W0, N1 and W1.
Thus, the following lines are added at the initialisation

Modification for ’updating discrepancies’ variant
11 : for j from k + 1 to n
12 : u0,j ←− N0(gj)−W0(yj)
13 : u1,j ←− N1(gj)−W1(yj)
14 : end for

Computations of discrepancies (lines 23, 24, 34 and 35) are
removed.

Then, updates become

Modification for ’updating discr.’ variant
54, 64 : u0,j ←− (X − θ(u1)

u1
) · u1,j

57 : u1,j ←− u0,j − u0

u1
u1,j

74 : u0,j ←− X · u1,j
67, 77 : u1,j ←− u0,j

The advantage of this variant is that the secondary loop doesn’t
require computation. Thus, the algorithm is always quadratic.

Proposition 16. The main part of the algorithm (meaning all
except additional computations from the secondary loop) has
the same complexity for the basic algorithm. In the division-
free variant, there are O(n2−k2) additional multiplications. In
both cases, the number of computation in the secondary loop
is decreased to 0, thus the algorithm is always quadratic.

VII. CONCLUSION

In this paper, we have described an algorithm solving the
reconstruction problem, which is the main step of the decoding
of generalised Gabidulin codes. We have proved that the
output of the algorithm is a solution of the reconstruction
problem. We have adapted the algorithm to integer rings with
the ’division-free’ variant.

We have also established that the algorithm is quadratic.
Indeed, the main part of the algorithm (lines 1 to 29 and 50
to 95) requires a quadratic number of operations, in all
variants. In the basic algorithm (meaning Algorithm 2 without
variant), the secondary loop (lines 30 to 49) is cubic in the
worst case. The ’updating discrepancies’ variant enables to
decrease the number of these additional computations to 0,
making the whole algorithm always quadratic.

Another improvement concerning the complexity is given.
The ’lower degree’ variant enables to decrease the constants
hidden in the O-notation.

REFERENCES

[1] Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Rank metric and
Gabidulin codes in characteristic zero. In ISIT 2013 IEEE International
Symposium on Information Theory, 2013.

[2] Elwyn R Berlekamp and Lloyd R Welch. Error correction for algebraic
block codes, December 30 1986. US Patent 4,633,470.

[3] M Bossert, EM Gabidulin, and P Lusina. Space-time codes based on
Gaussian integers. In Information Theory, 2002. Proceedings. 2002 IEEE
International Symposium on, page 273. IEEE, 2002.

[4] Ph Delsarte. Bilinear forms over a finite field, with applications to
coding theory. Journal of Combinatorial Theory, Series A, 25(3):226–
241, 1978.

[5] Ernest Mukhamedovich Gabidulin. Theory of codes with maximum rank
distance. Problemy Peredachi Informatsii, 21(1):3–16, 1985.

[6] Pierre Loidreau. A Welch–Berlekamp like algorithm for decoding
Gabidulin codes. In Coding and Cryptography, pages 36–45. Springer,
2006.

[7] H-F Lu and PY Kumar. A unified construction of space-time codes with
optimal rate-diversity tradeoff. Information Theory, IEEE Transactions
on, 51(5):1709–1730, 2005.

[8] Oystein Ore. On a special class of polynomials. Transactions of the
American Mathematical Society, 35(3):559–584, 1933.

[9] Oystein Ore. Theory of non-commutative polynomials. Annals of
mathematics, pages 480–508, 1933.

[10] Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and
Sriram Vishwanath. Optimal locally repairable and secure codes for
distributed storage systems. Information Theory, IEEE Transactions on,
60(1):212–236, 2014.

[11] Gwezheneg Robert. Codes de Gabidulin en caractéristique nulle.
Application au codage espace-temps. PhD thesis, Université de Rennes
1, 2015.

[12] Ron M. Roth. Maximum-rank array codes and their application to
crisscross error correction. Information Theory, IEEE Transactions on,
37(2):328–336, 1991.


