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Abstract

Spoken utterance retrieval was largely studied in the last decades, with the pur-
pose of indexing large audio databases or of detecting keywords in continuous
speech streams. While the indexing of closed corpora can be performed via a
batch process, on-line spotting systems have to synchronously detect the tar-
geted spoken utterances. We propose a two-level architecture for on-the-fly term
spotting. The first level performs a fast detection of the speech segments that
probably contain the targeted utterance. The second level refines the detection
on the selected segments, by using a speech recognizer based on a query-driven
decoding algorithm. Experiments are conducted on both broadcast and spon-
taneous speech corpora. We investigate the impact of the spontaneity level on
system performance. Results show that our method remains effective even if
the recognition rates are significantly degraded by disfluencies.

1. Introduction

Term detection has been extensively studied in the last decades in the two
different contexts of spoken term detection (STD): large speech databases and
keyword spotting in continuous speech streams. The first topic recently faced a
growing interest, stemming from the critical need of content-based structuring of
audio-visual collections. Since the STD task relies on the indexing of the whole
speech database, word spotting systems perform a sequential parsing of the
speech stream with the purpose of detecting the targeted word sequence. Here,
we focus on on-the-fly term spotting, where the detection must be synchronously
notified, at the moment where it occurs in the speech stream. This task refers
to a usage scenario where early detection is critical, such as supervision and
automation of operator-assisted calls (Wilpon et al., 1990; Wohlford et al., 1980).

For all these detection tasks, performances reported in the literature are quite
good on clean conditions, especially on broadcast news data that were largely
used for speech processing system benchmarking (Fiscus et al., 2007; Garofolo
et al., 2000). In more difficult conditions, such as noisy or spontaneous speech,
performances are dramatically degraded by recognition errors (Pinto et al., 2008;
Yu et al., 2005; Saraclar, 2004).
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Efficiency and scalability issues are generally considered as critical in detec-
tion tasks, due to the size of speech databases or, in the spotting case, due to the
need of as soon as possible (ASAP) detection. Some aspects of this problem are
commonly encountered in both spotting and large vocabulary continuous speech
recognition (LVCSR) contexts, such as fast likelihood computation (Bocchieri
and Mak, 1997; Ortmanns et al., 1997) or fast acoustic matching (Knill and
Young, 1996; Cardillo et al., 2002). On the STD task, the search algorithm op-
erates on data that were indexed by an off-line process. On-the-fly term spotting
adds new problems due to on-line processing: the entire speech database is not
available for indexing, and the full processing chain, from the signal to the fi-
nal decision, must be performed as fast as possible in order to limit the delay
between the speech utterance and the notification of detection.

Even if using only a real-time recognition system could be envisaged, this
approach has two major drawbacks: first, strict pruning schemes have to be
used to reach real time, impacting dramatically on the word error rate (WER),
especially in adverse acoustic conditions; secondly, automatic speech recognition
(ASR) usually relies on closed dictionaries, and some specific modeling strate-
gies have to be used for out-of-vocabulary words (OOV) handling. This lexical
coverage problem is a key issue in term detection, the system effectiveness being
highly sensitive to it: OOV are frequently meaningful words and may probably
be queried by the user. A solution is to map the terms in a sub-lexical repre-
sentation allowing for the search of terms without using any recognition lexicon
(Manos, 1996).

Generally, subword-level decoding consists in a fast acoustic matching be-
tween the signal and the phonetic or syllabic transcription of the term (Rose,
1993; Lau and Seneff, 1997). Various developments of this idea were evaluated in
the past, with the purpose of being able to detect OOV and of improving system
robustness (Manos, 1996). In (Pinto et al., 2008), the phonetic search integrates
the phoneme confusion matrix in order to limit the impact of recognition errors.
Other authors combine complementary acoustic scoring methods, for example
Gaussian mixture models (GMM) and multilayer perceptrons (MLP)-based es-
timators (Pinto et al., 2007; Bourlard et al., 1994). In (Yu et al., 2005), the au-
thors propose, in the context of the STD task, to estimate the scores of the OOV
by combining the posterior probabilities of their phonetic substrings. Therefore,
many of the fast wordspotters are based on off-line phonetic matching. They
generally use two models representing respectively the targeted word (or term)
and the “garbage”, the latter aiming to “absorb” all non-targeted utterances
(Bourlard et al., 1994; Manos and Zue, 1997; Junkawitsch et al., 1996). These
models are built from Hidden Markov Models (HMM) representing sub-lexical
units, typically phonemes or triphones.

Phonetics-based approaches allow for a high speed spotting and OOV detec-
tion, but the system’s performance suffers from a lack of linguistic information
that help distinguish targeted terms from phonetically close utterances (Szoke
et al., 2005), especially on short phonetic sequences (Cardillo et al., 2002).
Therefore, many authors proposed hybrid approaches that combine phonetic
search and ASR-based detection in off-line detection systems, in both spotting
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and STD contexts (Szoke et al., 2008; Logan et al., 2005; Akbacak et al., 2008;
Mamou et al., 2007).

In this paper, we investigate the use of such a hybrid approach in the specific
context of on-the-fly term spotting. We propose a two-level architecture in which
the first level performs a phonetic filtering of the speech streams, while the
second level involves an open-vocabulary LVCSR system. These two cascaded
components are optimized in order to sequentially maximize the recall at the
first level, and precision at the second.

At the first level, fast-matching is viewed as a filtering task that aims to ac-
cept or reject segments, according to the probability of the targeted terms being
inside. Starting from this idea, we present a general scheme in which the term
pronunciation graph is mapped into a graph of phonetic filters. The resulting
graph is then pruned in order to minimize its complexity, while maximizing its
detection capacity.

At the second level, speech segments that passed the first filtering step are
processed by an ASR-based term spotter with the purpose of refining the term
detection. We propose to improve the detection rate by integrating the query
(i.e. the searched word sequence). This integration is based on the driven
decoding algorithm (DDA) that was previously proposed in Lecouteux et al.
(2006)).

The rest of the paper is organized as follows: Section 2 presents the global
architecture of our term spotter. Section 3 describes the first level, that aims to
identify the speech segments in which the query probably is. We first present
a GMM-based approach to acoustic filtering, and we extend the method to
neuromimetic filtering. In Section 4, we present the second level, where a query-
driven decoding strategy is used for refining the term spotting. In Section 5, we
present the experimental framework; results on clean and spontaneous speech
are reported and discussed in Section 6. Finally, we conclude the paper and we
propose some perspectives.

2. Principle and System Architecture

Starting from a text query composed of a short sequence of words, the term
spotting system is supposed to scan a speech stream and to synchronously notify
any occurrence of the targeted word sequence.

The global processing chain consists of two stages. In the first stage, the
spotter is configured according to the query. This query-dependent adaptation
concerns the two main components of the system that are: (i) the phonetic
spotter, and (ii) the query-driven ASR system. Obviously, no information about
the speech stream is available at this moment. Then, the detection system is
ready to perform the synchronous scanning of the speech stream.

The approach that we propose consists in building, at the first stage, a query-
dependent detection system that has to be as accurate as possible, while being
able to perform on-the-fly detection. We use a two-level architecture, where
the first level performs a fast, but poorly accurate detection, the detection

3



hypotheses being validated by a more costly detection process at the second
level.

Written queries are first phonetically transcribed by using a pronunciation
lexicon and a rule-based phonetizer, which produces the word-sequence pronun-
ciation graph. Starting from this phonetic representation, an acoustic filter is
built, that is composed from a graph of phonetic filters. Phonetic filters may
be based on GMM or MLP. In the following, the full filtering graph is named
acoustic filter, while phonetic filters operate at the node level.

At this point, our goal is to maximize the accuracy and the computational
efficiency under the constraint of maximal recall rates.

Each speech segment selected by the first level is passed to the second level,
as shown in Figure 1. The second level consists of an ASR system based on the
driven-decoding algorithm. At this stage, ASR-based processing aims to refine
the detection, focusing on precision improvement.

Figure 1: A two-level architecture for on-the-fly term detection. The query is encoded as
an acoustic filter that extracts relevant areas from the speech stream. Speech segments that
passed the filter are processed by a query-driven speech recognizer.

3. Acoustic filtering

3.1. Query encoding
The first step consists in transcribing the written query to phonetic strings.

All the pronunciation variants of in-vocabulary terms are extracted from a dic-
tionary that has been manually checked, since the OOV are automatically tran-
scribed by using a rule-based phonetization system. Then, all these phonetic
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transcriptions are compiled in a graph of phonemes where each path represents
a pronunciation variant.

Figure 2: From the requested term to the smart query. The written query is transcribed into
a pronunciation graph. The best subgraph, which maximizes its accuracy while minimizing
its CPU cost, is extracted to build the smart query.

Classical approaches use such representations for spotting words by aligning
the graph and the signal in a sliding window, the global path probability being
used for taking the final detection decision. This approach is sub-optimal in
terms of CPU-resource consumption: evaluation of the full path probability is
generally useless as the intermediate scores could be sufficient to prune the low-
probability paths. We implement such an as soon as possible cutoff by plugging,
to each graph node, a phonetic filter that will be able to stop or to continue the
path evaluation process. This filtering process is described in detail in the next
two sections, where GMM-based and neuromimetic filters are presented.

Considering this strategy of ASAP cutoff, it is clear that the most discrimi-
native parts of the graph should be evaluated first, with the purpose of reducing
the CPU-time while preserving the spotting accuracy. Therefore, the graph may
be reduced according to both the complexity and the discriminative capacity of
its sub-graphs. We propose a graph reduction algorithm that is fully described
in Section 3.4.

3.2. GMM-based phonetic filters
GMM-based filters use the acoustic models involved in the ASR system.

Each filter fi is associated to an emitting state Si extracted from the HMM set
of the ASR system. The phonetic graph is developed according to the HMM
topologies, each phoneme-dependent node being splitted into a sequence of n
state-dependent nodes.

The resulting state-dependent filters should be able to stop the graph ex-
ploration when observation Xt is out of the model domain. This is achieved by
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specifying, for each filter, a lower limit ci for the normalized likelihood ll(Xt|Si):

ll(Xt|Si) =
P (Xt|Si)

P (Xt|UBM)
(1)

where Xt is a speech frame of 39 coefficients, composed of 12 PLP coefficients,
energy and their first and second order derivatives. The Universal Background
Model (UBM) is a generic model that represents the speech signal, indepen-
dently of the phonetic units. Here, UBM is a GMM of 64 Gaussian com-
ponents, estimated by using the Expectation-Maximization procedure on the
training corpus.

The filter-dependent cutoff thresholds ci are estimated on the training set,
by computing the upper bound of ci values, under the constraint ll(Xt|Si) >
ci,∀Xt ∈ Ωi, where Ωi is the subset of the training corpus emitted by state Si.

When the final node of the graph is reached (i.e. all phonetic filters were
passed), a last selection rule is applied at the segment level. This rule relies
on the full path probabilities of the targeted terms, normalized by the segment
duration. We search first, in the training corpus, the lowest probability of the
targeted terms. We use this lower bound C as a rejection threshold. Therefore,
all accepted speech sequences X = {Xt} satisfy the constraint:

P (X|S) > C (2)

where S = {Si} is the state sequence corresponding to the phonetic string, and
C is the query-dependent threshold.

3.3. Neuromimetic phonetic filters
Discriminative methods for word spotting have been recently investigated

in (Keshet et al., 2009; Ezzat and Poggio, 2008; Benayed et al., 2004). This
approach is motivated by the fact that spotting should be stated as a classifica-
tion task (in rejected/accepted hypotheses), rather than a probability estimation
task. The goal of acoustic filtering is to reject non-relevant segments. Consider-
ing that discriminative approaches should be more efficient for segment filtering,
we propose the use of multi-layer neural networks as phonetic filters.

MLP-based filtering integrates the general scheme that was used with GMM-
based filters, GMM-based phonetic filters being simply substituted for MLP
classifiers as probability estimators.

We use one MLP classifier for each of the emitting states Si that compose an
initial context-independent HMM set. We follow the modeling method proposed
in (Ellis and Morgan, 1999; Zhu et al., 2005). MLP filters operate at the frame
level. The input vectors are composed of 351 coefficients, resulting from the
concatenation of 9 frames of 39 coefficients each. The latter are classical 12
PLP coefficients, energy, and the first and second order derivatives of these 13
components. The hidden layer is composed of 1024 cells. MLPs are trained
on a large corpus by using the classical back-propagation learning rule. This
training step relies on a state-level segmentation that is performed by using the
ASR system and its HMM-based acoustic models.
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Each classifier has one output layer that is supposed to provide an estimation
of the probability P (Xt|Si) of the frame Xt, given the state Si. MLP-based
phonetic filters are then integrated in the filtering graphs in a similar way to
GMM-based filters: a cutoff threshold ci is associated to each of these neural
nets, allowing for the rejection of the detection hypothesis when the output
score is low. The ci values are computed on the training corpus, by estimating
the lowest output value obtained by the positive training examples emitted by
the Si states. A segment-level threshold C is used for rejecting the detection
hypothesis when the full path probability P (X|ph) is lower than C. This full
path probability is estimated by a Viterbi alignment based on neural probability
estimators, and normalized according to the size of the considered path.

Finally, the filtering strategy is strictly similar to the one used in the GMM
case. MLPs are used as probability estimators, and integrated as phonetic filters
with respect to the global filtering scheme initially designed for the GMM-based
filtering.

3.4. Smart phonetic queries
The basic idea of this mechanism is that some parts of the phonetic query

may have a discriminative capacity significantly better than others, for different
reasons; first, the less frequent a phoneme-sequence is, the more specific to the
targeted term this sequence is. Secondly, according to the phonetic filter per-
formances, the use of partial queries may provide a better complexity/accuracy
trade-off. For example, the search for “olympic games” could be reduced to the
phonetic pattern “ympic g...”, with a significant computational gain and with-
out any significant negative impact on accuracy. It is important to note that
the recall rates are not influenced by the query reduction, an utterance spotted
by the full phonetic string being necessarily spotted by any of its substrings.

A similar issue has been addressed in a different context by (Yu et al., 2005;
Allauzen et al., 2004). The authors proposed to handle OOV queries in an
audio search task. They approximated term frequency by backing-off to the
frequency of the phonetic substrings of the targeted terms. Our idea is to
find the optimal substring in terms of both accuracy and complexity, with the
purpose of maximizing the former, while minimizing the latter.

At this point, the question is how to find the best subgraph. The first step is
to define an objective function Fob(f) that quantifies the complexity/accuracy
trade-off for a given filter f associated to a multi-word query W .

For simplicity, we first linearize the graph by merging competing models into
a common phonetic filter. The resulting filter f = {fi}i=0,n is composed of the
cascade of the n phonetic filters fi, corresponding to a phonetic sequence ph
and to the associated state sequence Si. The relevance of f is estimated via the
objective function Fob(f) that combines a computational cost term cpx(f) with
an accuracy index acc(f).

We use a complexity index cpx() that relies on an estimate of the number
of frames that may be submitted to each phonetic filter fk. The probability of
reaching fi depends on the probability of passing all the previous filters fk,i>k≥0
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in the cascade of filters. In order to estimate the probability of passing a fil-
ter fi, we associate, to each of them, a random variable Di(Xt) that indicates
whether a frame passed the filter, or not. Therefore, Di is set to 1 when the
inequality ll(Xt|Si) > ci holds, and Di is set to 0 otherwise. The prior proba-
bility of passing fi is denoted by P (Di = 1). Prior probabilities are estimated
by counting the number of frames that pass the filter on the training corpus,
normalized by the total number of frames.

The prior probability of reaching the phonetic filter i is the product of the
prior probabilities P (Dk = 1), k < i of passing the previous filters fk.

Finally, the computational cost of the cascade f of filters is estimated by
summing over all prior probabilities of reaching the filters from the cascade:

cpx(f) = g ∗ (1 +
n∑
k=0

k∏
i=0

P (Di = 1)) (3)

were g is a constant computational cost factor that will be set to 1 in our
experiments.

The accuracy of the filter f = {fi, fi−...f0} can be defined as the prior
probability that f performs a correct detection. This value depends on two
elements. First, the smart phonetic query may match an incorrect word ut-
terance even if the two phonetic strings are identical. For example, the search
for “Olympic games” by using the very short sub-query “pic” will probably re-
turn many wrong, but acoustically close, words such “picture”. Secondly, the
phonetic filters may fail, by accepting false utterances.

The first element may be evaluated by estimating, in the training corpus,
the probability of the targeted term W when the phonetic sequence ph is en-
countered. This value is computed as follows:

P (W |ph) =
|W |
|ph|

(4)

where |W | is the number of utterances of the term W in the training corpus,
and |ph| is the number of utterances of the phonetic sequence ph in the same
corpus.

In a similar way, the phonetic filter accuracy P (Si|Di = 1) represents the
prior probability that the filter fi perform a correct detection. This value is
estimated on the training corpus, by counting the number of frames that passed
the filter, while actually being emitted by the state Si.

Finally, the global accuracy of the filter f is estimated according to the
accuracy of each of its phonetic filters fi and to the accuracy of the phonetic
sequence ph = {Si}:

acc(f) = P (W |ph) ∗
n∏
i=0

P (Si|Di = 1) (5)

The objective function is defined as:

Fob(f) = acc(f)− γ ∗ cpx(f) (6)
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where γ is a fudge factor empirically determined.
This function is used for sub-queries ranking, the selected smart phonetic

query being the one that maximizes Fob:

fsq = arg max
k

Fob(fk) (7)

For each query W , the sub-query selection is achieved by an exhaustive
evaluation of all parts of the cascade of filters f . Then, the initial full filter f is
substituted for the sub-query fsq, and this reduced filter is used for the acoustic
filtering achieved at the first level in our system.

This technique of best phonetic substring search is used for both GMM-based
and MLP-based system. Nevertheless, the Fob function relies on the accuracy
of the phonetic filters fi that are dependent on the frame-level probability es-
timators. Therefore, the smart phonetic query selection process is performed
independently for the GMM and MLP based filtering methods.

4. Query-driven decoding

The goal of this step is to refine the detection achieved at the first level.
Speech segments that passed the filtering process are submitted to the ASR
system for a full decoding pass. In order to be sure that the speech segment
contains the full targeted speech utterance even if only a part of the phonetic
string is spotted (due to smart queries), we enlarge the segment before and after
the spotted area. In our experiments, we used an offset of 0.5 second from the
segment borders.

Spotting by using ASR systems is known to be focused on accuracy, since
the prior probability of having the targeted terms in a transcription is low. On
the other hand, transcription errors may introduce mistakes and lead to misses
of correct utterances, especially on large queries: the longer the searched term
is, the higher the probability of encountering an erroneous word is. In order
to limit this risk, the prior probability of the query is slightly boosted by the
driven decoding algorithm (DDA) (Lecouteux et al., 2006).

This algorithm aims to align a priori transcripts by using a speech recognition
engine. The algorithm proceeds in two steps. First, the provided transcripts hp
and the current hypothesis hc are synchronized by using an alignment algorithm
by minimization of the editing distance between the two word strings hp and
hc.

Once the hypothesis is aligned with the transcript, the algorithm estimates
the matching transcript-to-hypothesis score (denoted α). This score is based on
the number of words in the short-term history, which are correctly aligned with
the transcript: only three values are used, corresponding respectively to a full
alignment of the current trigram, a full alignment of the current bi-gram and an
alignment of one word only. Values of α are empirically determined, by testing
various configurations on a development corpus. Then, trigram probabilities are
modified by using the following re-scoring rule:
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P̃ (wi|wi−1, wi−2) = P 1−α(wi|wi−1, wi−2) (8)

where P̃ (wi|wi−1, wi−2) is the updated trigram probability of a word wi knowing
the history wi−1, wi−2, and P (wi|wi−1, wi−2) is the initial probability of the
trigram.

Here, we used DDA as a post-processor operating on a segment previously
identified as a good candidate by the acoustic filter. The targeted terms are
used as a priori transcripts, leading to a slight boosting of the linguistic scores
of the hypotheses that match the query.

At this step, OOV probabilities are interpolated by backing off to unknown
word probabilities. Unknown word probabilities are estimated classically: we
tag as unk all the words in the training set that are out of the recognition
vocabulary. Then, unk is viewed as a word and its linguistic probabilities are
classically estimated.

Then, a trigram probability of an OOV word woov can be decomposed ac-
cording to the conditional probability of the unknown word and the probability
of woov, given unk:

P (woov|w−1, w−2) = P (woov|unk) ∗ P (unk|w−1, w−2) (9)

Here, we use a priorly fixed value for P (woov|unk). In the following experi-
ments, this probability is set to 10−4.

5. Experimental framework

5.1. The LIA broadcast news system
The experiments reported in this paper are carried out by using the LIA

broadcast news (BN) system, which was involved in the ESTER evaluation
campaign (Linarès et al., 2007). This system relies on an A∗ decoder with
HMM-based context-dependent acoustic models and trigram language models.
HMMs are classical three-state left-right models; state tying is achieved by us-
ing decision trees. Acoustic vectors are composed of 12 PLP coefficients, the
energy, and first and second order derivatives of these 13 parameters. Two con-
figurations are involved in the experiments, according to their decoding speed
expressed as a real time factor, i.e. the time required by the system to decode
one hour of speech signal. We used the real-time (noted 1xRT) and the three
times real-time (noted 3xRT) systems in the experiments. The 1xRT system
uses acoustic models that have only 24 Gaussian components per state and a
strict pruning scheme, whereas the 3xRT system relies on 64 Gaussians per state
models.

5.2. The EPAC and ESTER corpora
ESTER is a large corpus developed in the framework of the ESTER-2005

evaluation campaign. It is composed of 80 hours of French broadcast news. We
use these materials as a training set, for both GMM and MLP estimates. Tests
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are conducted on the EPAC corpus, which is provided by the EPAC project
(Dufour et al., 2009). This project aims to investigate methods for spontaneous
speech recognition and understanding. With this purpose, about 11 hours of
spontaneous speech were extracted from the non-transcribed ESTER database
and manually labeled according to their degree of spontaneity: degree 1 stands
for read speech, and degree 10 stands for highly disfluent speech. Here, we
consider two classes: medium, corresponding respectively to degrees 1 to 4, and
high, corresponding to degrees 5 and above.

In the sequel, the EPAC corpus is used only for testing. Acoustic filtering
and smart querying are calibrated on the ESTER training materials. 270 test
queries composed the test set, including 130 in-vocabulary (IV) queries, 70 OOV
and 70 hybrid queries, the latter including both known words and OOV. The
query size is 1 to 4 words long, hybrid queries being composed of at least 2
words. The baseline performance of the ASR system in the 1xRT configuration
is 40.3% WER, corresponding to WERs of 33.2% and 47.2% on medium and
highly spontaneous subsets, respectively. In the 3xRT configuration, these rates
decrease to 31.1% and 43.5%.

6. Results

6.1. Phonetic filtering evaluation
The acoustic filtering is evaluated in various configurations. The baseline

system consists of a classical phonetic matching, which uses a Viterbi alignment
between the phonetic graph and the signal window. The acoustic models are
context-independent HMMs trained on ESTER data. We first study the impact
of the ASAP pruning technique (A-GMM). Then, smart querying is added to
the previous filtering system (A+SR-GMM). Finally, we evaluate MLP-based
filtering, with ASAP pruning and smart querying (A+SR+MLP). In Table 1
we show the results on the EPAC spontaneous speech database in terms of
recall rates, real-time factor (RT-factor) and filtering rates, the latter being the
cumulated duration of the selected speech segments, normalized by the whole
duration of the speech stream.

Table 1: Acoustic filtering performed by a simple Viterbi alignment on context-free HMMs
(Baseline), with GMM-filtering and ASAP pruning (A-GMM), with ASAP and smart query-
ing coupled with GMM-based filters (A-SR-GMM) and MLP-based filters (A-SR-MLP). Per-
formances are reported in terms of recall, filtering rates and CPU time consumption. Tests
are conducted on the EPAC spontaneous speech corpus.

Baseline A-GMM A-SR-GMM A-SR-MLP

Recall 0.99 0.97 0.97 0.97
Filt. rate 0.65 0.33 0.37 0.23
RT-fact. 0.1 0.05 0.03 0.05
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Results show that the ASAP pruning technique allows for a drastic reduction
of the number of accepted speech segments. Smart querying does not impact
significantly on the filtering rates, but provides a strong CPU-time saving, the
filtering time being reduced by a factor of two. Comparisons between GMM
and MLP filters demonstrate the efficiency of a discriminative approach in such
a filtering task. As expected, MLP performs a much more selective filtering of
the speech segments (from 37% to 23%), at similar recall rates.

6.2. Evaluation of the query-driven decoding strategy
Here, the performance of the full system is evaluated. We report baseline

results obtained with the LIA real-time ASR system (ASR-1xRT). In order to
have a glimpse on the performance of the system without strong constraints on
the decoding time, results for the 3xRT system are also reported. For these two
systems, no query-dependent mechanisms are used, the search of terms being
directly performed on the outputs of the ASR system.

Then, we estimate the detection rates by using DDA only, without acoustic
filtering (DDA-1xRT). Considering the filtering of speech streams, only 37% of
the whole speech duration has to be processed by the recognition system (and
23% for MLP).

Methods based on both acoustic filtering and driven decoding are evaluated
by using a more accurate ASR system. We take advantage of the filtering by
using a 3xRT configuration, the full process satisfying the real-time constraint.

Performances obtained with the full filtering method based on GMM (GMM+
DDA-3xRT) and on MLP (MLP+DDA-3xRT) are reported in Table 2 in terms
of the F-measure, which is computed as the harmonic mean of the recall and
the precision:

F =
2 ∗ precision ∗ recall

precision + recall
(10)

Table 2: The F-measure on the EPAC spontaneous speech test set, for the ASR-only approach
in real-time (ASR-1xRT) and 3xRT configurations (3xRT), for the ASR with driven decoding
algorithm and without acoustic filtering (DDA-1xRT), on the full system including acoustic
filtering and driven decoding, with GMM-based filters (DDA-AF-GMM) and MLP-based filters
(DDA-AF-MLP).

System IV OOV Hybrid Total

ASR-3xRT 0.66 x x x
ASR-1xRT 0.56 x x x
DDA-1xRT 0.65 0.79 0.75 0.72

DDA-AF-GMM 0.78 0.86 0.76 0.77
DDA-AF-MLP 0.76 0.89 0.80 0.80

The results show that DDA provides significant improvements in all cases: by
using the real-time DDA algorithm, the F-measure is similar to the one obtained
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with the best ASR-only 3xRT configuration, which is clearly out of the speed
requirement for on-the-fly processing. The full two-level system benefits from
both acoustic filtering and query-driven decoding; the absolute F-measure gain
is of 20%, compared to the ASR-1xRT on IV queries. Compared to the DDA-
1xRT system that handles OOV queries, the combination of acoustic filtering
and query-driven decoding provides an absolute F-measure gain of about 8%.
The boosting of linguistic probabilities seems to be really efficient for ASR-based
spotting: on multi-word queries, the prior probability of making a mistake in
the whole sequence is high. By integrating the query itself in the recognition
process, we provide additional information that tends to limit the errors on the
targeted utterance.

The last point is that all DDA-based systems perform better on OOV and
hybrid queries. OOV are relatively long, and the size of the phonetic sequences
clearly helps in the identification process. Moreover, the use of penalized un-
known word probabilities tends to increase the real probability of the targeted
terms, which would be very low on OOV, the recognition lexicon being built by
collecting the most frequent words from the training corpus.

6.3. Detection performance according to the spontaneity level
The following experiments investigate the impact of the spontaneity level on

the detection rates. We use the classification in medium and high spontaneity
level, by relying on our two-level STD system.

Table 3: Detection rates for the real-time ASR system with query-driven decoding DDA-
1xRT, according to the level of spontaneity. Tests are conducted on the 11-hour EPAC test
corpus, by using 270 queries composed of 1 to 4 words (70 OOV queries, 70 hybrid and 130
IV queries) .

Spontaneity Level Recall Precision F-measure
Medium 0.63 0.97 0.76

High 0.62 0.65 0.63

Table 4: Detection rates of the two-level system with GMM-based acoustic filtering and query-
driven decoding DDA-AF-GMM, according to the level of spontaneity. Tests are conducted
on the 11-hour EPAC test corpus, by using 270 queries composed of 1 to 4 words (70 OOV
queries, 70 hybrid and 130 IV queries).

Spontaneity Level Recall Precision F-measure
Medium 0.65 0.97 0.78

High 0.74 0.81 0.77

The results for the ASR system with query-driven decoding (DDA-1xRT) are
reported in Table 3. As expected, the performances are significantly affected
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Table 5: Detection rates of the two-level system with Neuromimetic acoustic filtering and
query-driven decoding DDA-AF-MLP, according to the level of spontaneity. Tests are con-
ducted on the 11-hour EPAC test corpus, by using 270 queries composed of 1 to 4 words (70
OOV queries, 70 hybrid and 130 IV queries).

Spontaneity Level Recall Precision F-measure
Medium 0.73 0.97 0.83

High 0.73 0.83 0.78

by disfluent speech, the F-measure decreasing from 0.76 to 0.63; the recall rates
remain stable, but the precision rate decreases by about 0.32 in absolute value.
The acoustic filtering clearly provides a gain in all the conditions, but the more
interesting point is that it seems to be highly robust to spontaneous speech:
the results reported in Table 4 show that GMM-based filtering leads to simi-
lar results on medium and high spontaneity levels in terms of F-measure, the
degradation of the precision rate being compensated by the improvement of the
recall rate. The MLP-based system (see Table 6.3) outperforms the GMM-based
system on medium spontaneity degrees (from 0.78 to 0.83), but the F-measure
is affected by speech spontaneity. For highly spontaneous speech, GMM and
MLP -based approaches perform similarly.

7. CONCLUSIONS AND PERSPECTIVES

We presented a two-level architecture for on-the-fly term spotting, where the
full process is query-driven. The first level relies on an optimized representa-
tion of the query as a cascade of phonetic filters. The second level performs a
query-driven decoding on speech segments that passed the first-level filter. We
evaluated the performance of this technique on spontaneous speech. Results
demonstrated that ASAP pruning combined with sub-query search improves
significantly the phonetic matching efficiency, in all test conditions. Moreover,
query-driven decoding provides a significant improvement compared to uncon-
strained decoding. The performances according to the level of spontaneity show
that the proposed methods are be more robust to disfluencies than ASR-only
ones, with respect to the real-time constraint.

Globally, experiments demonstrate the interest of integrating query-dependent
information in the detection process, especially with ASR-based spotting. At
the acoustic level, this allows for a fast matching that benefits from the par-
ticularities of the query phonetic sequence. At the linguistic level, boosting
the n-gram probabilities of the word sequence improves significantly the perfor-
mance of ASR-based spotting systems.

Since the proposed architecture is designed for on-the-fly term spotting, some
of the techniques herein could be used in the spoken term detection task as well.
We now plan to develop our proposal in this way.
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