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Abstract
Spectral clustering has become a popular tech-
nique due to its high performance in many con-
texts. It comprises three main steps: create a sim-
ilarity graph between N objects to cluster, com-
pute the first k eigenvectors of its Laplacian ma-
trix to define a feature vector for each object, and
run k-means on these features to separate objects
into k classes. Each of these three steps becomes
computationally intensive for large N and/or k.
We propose to speed up the last two steps based
on recent results in the emerging field of graph
signal processing: graph filtering of random sig-
nals, and random sampling of bandlimited graph
signals. We prove that our method, with a gain in
computation time that can reach several orders of
magnitude, is in fact an approximation of spec-
tral clustering, for which we are able to control
the error. We test the performance of our method
on artificial and real-world network data.

1. Introduction
Spectral clustering (SC) is a fundamental tool in data min-
ing (Nascimento & de Carvalho, 2011). Given a set of N
data points {x1, . . . ,xN}, the goal is to partition this set
into k weakly inter-connected clusters. Several spectral
clustering algorithms exist, e.g., (Belkin & Niyogi, 2003;
Ng et al., 2002; Shi & Malik, 2000; Zelnik-Manor & Per-
ona, 2004), but all follow the same scheme. First, com-
pute weights Wij > 0 that model the similarity between
pairs of data points (xi,xj). This gives rise to a graph G
with N nodes and adjacency matrix W = (Wij)16i,j6N ∈
RN×N . Second, compute the first k eigenvectors Uk :=
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(u1, . . . ,uk) ∈ RN×k of the Laplacian matrix L ∈ RN×N
associated to G (see Sec. 2 for L’s definition). And finally,
run k-means using the rows of Uk as feature vectors to par-
tition the N data points into k clusters. This k-way scheme
is a generalisation of Fiedler’s pioneering work (1973).

SC is mainly used in two contexts: 1) if the N data
points show particular structures (e.g., concentric circles)
for which naive k-means clustering fails; 2) if the input
data is directly a graph G modeling a network (White &
Smyth, 2005), such as social, neuronal, or transportation
networks. SC suffers nevertheless from three main compu-
tational bottlenecks for large N and/or k: the creation of
the similarity matrix W; the partial eigendecomposition of
the graph Laplacian matrix L; and k-means.

1.1. Related work

Circumventing these bottlenecks has raised a significant in-
terest in the past decade. Several authors have proposed
ideas to tackle the eigendecomposition bottleneck, e.g.,
via the power method (Boutsidis & Gittens, 2015; Lin &
Cohen, 2010), via a careful optimisation of diagonalisa-
tion algorithms in the context of SC (Liu et al., 2007),
or via matrix column-subsampling such as in the Nyström
method (Fowlkes et al., 2004), the nSPEC and cSPEC
methods of (Wang et al., 2009), or in (Chen & Cai, 2011;
Sakai & Imiya, 2009). All these methods aim to quickly
compute feature vectors, but k-means is still applied on N
feature vectors. Other authors, inspired by research aiming
at reducing k-means complexity (Jain, 2010), such as the
line of work on coresets (Har-Peled & Mazumdar, 2004),
have proposed to circumvent k-means in high dimension
by subsampling a few data points out of the N available
ones, applying SC on its reduced similarity graph, and in-
terpolating the results back on the complete dataset. One
can find similar methods in (Yan et al., 2009) and (Wang
et al., 2009)’s eSPEC proposition, where two different in-
terpolation methods are used. Both methods are heuristic:
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there is no proof that these methods approach the results of
SC. Also, let us mention (Dhillon et al., 2007) that circum-
vents both the eigendecomposition and the k-means bot-
tlenecks: the authors reduce the graph’s size by successive
aggregation of nodes, apply SC on this small graph, and
propagate the results on the complete graph using kernel
k-means to control interpolation errors. The kernel is com-
puted so that kernel k-means and SC share the same objec-
tive function (Filippone et al., 2008). Finally, we mention
works (Boutsidis et al., 2011; Cohen et al., 2015) that con-
centrate on reducing the feature vectors’ dimension in the
k-means problem, but do not sidestep the eigendecomposi-
tion nor the large N issues.

1.2. Contribution: compressive clustering

In this work, inspired by recent advances in the emerg-
ing field of graph signal processing (Sandryhaila & Moura,
2014; Shuman et al., 2013), we circumvent SC’s last two
bottlenecks and detail a fast approximate spectral clustering
method for large datasets, as well as the supporting theory.
We suppose that the Laplacian matrix L ∈ RN×N of G is
given. Our method is made of two ingredients.

The first ingredient builds upon recent works (Ramasamy
& Madhow, 2015; Tremblay et al., 2016) that avoid the
costly computation of the eigenvectors of L by filtering
O(log(k)) random signals on G that will then serve as fea-
ture vectors to perform clustering. We show in this paper
how to incorporate the effects of non-ideal, but computa-
tionally efficient, graph filters on the quality of the feature
vectors used for clustering.

The second ingredient uses a recent sampling theory of
bandlimited graph-signals (Puy et al., 2015) to reduce the
computational complexity of k-means. Using the fact that
the indicator vectors of each cluster are approximately ban-
dlimited on G, we prove that clustering a random subset of
O(k log(k)) nodes of G using random features vectors of
size O(log(k)) is sufficient to infer rapidly and accurately
the cluster label of all N nodes of the graph. Note that the
complexity of k-means is reduced toO(k2 log2(k)) instead
ofO(Nk2) for SC. One readily sees that this method scales
easily to large datasets, as will be demonstrated on artifical
and real-world datasets containing up to N = 106 nodes.

The proposed compressive spectral clustering method can
be summarised as follows:

• generate a feature vector for each node by filtering
O(log(k)) random Gaussian signals on G;

• sample O(k log(k)) nodes from the full set of nodes;
• cluster the reduced set of nodes;
• interpolate the cluster indicator vectors back to the

complete graph.

2. Background
2.1. Graph signal processing

Let G = (V, E ,W) be an undirected weighted graph with
V the set of N nodes, E the set of edges, and W the
weighted adjacency matrix such that Wij = Wji > 0 is
the weight of the edge between nodes i and j.

The graph Fourier matrix. Consider the graph’s nor-
malized Laplacian matrix L = I − D−1/2WD−1/2 where
I is the identity in dimension N , and D is diagonal with
Dii =

∑
j 6=i Wij . L is real symmetric and positive semi-

definite, therefore diagonalizable as L = UΛUᵀ, where
U := (u1|u2| . . . |uN ) ∈ RN×N is the orthonormal ba-
sis of eigenvectors and Λ ∈ RN×N the diagonal matrix
containing its sorted eigenvalues : 0 = λ1 6 . . . 6
λN 6 2 (Chung, 1997). By analogy to the continu-
ous Laplacian operator whose eigenfunctions are the clas-
sical Fourier modes and eigenvalues their squared fre-
quencies, the columns of U are considered as the graph’s
Fourier modes, and {

√
λl}l as its set of associated “fre-

quencies” (Shuman et al., 2013). Other types of graph
Fourier matrices have been proposed, e.g., (Sandryhaila &
Moura, 2013), but in order to exhibit the link between graph
signal processing and SC, the Laplacian-based Fourier ma-
trix appears more natural.

Graph filtering. The graph Fourier transform x̂ of a sig-
nal x defined on the nodes of the graph (called a graph
signal) reads: x̂ = Uᵀx. Given a continuous filter func-
tion h defined on [0, 2], its associated graph filter operator
H ∈ RN×N is defined as H := h(L) = Uh(Λ)Uᵀ, where
h(Λ) := diag(h(λ1), h(λ2), · · · , h(λN )). The signal x fil-
tered by h is Hx. In the following, we consider ideal low-
pass filters, denoted by hλc

, that satisfy, for all λ ∈ [0, 2],

hλc
(λ) = 1, if λ 6 λc, and hλc

(λ) = 0, if not. (1)

Denote by Hλc
the graph filter operator associated to hλc

.

Fast graph filtering. To filter a signal by h without di-
agonalizing L, one may approximate h by a polynomial h̃
of order p satisfying h̃(λ) :=

∑p
l=0 αlλ

l ' h(λ) for all
λ ∈ [0, 2], where α1, . . . , αp ∈ R. In matrix form, we have
H̃ := h̃(L) =

∑p
l=0 αlL

l ' H. Let us highlight that we
never compute the potentially dense matrix H̃ in practice.
Indeed, we are only interested in the result of the filtering
operation: H̃x =

∑p
l=0 αlL

lx ≈ Hx for x ∈ RN , obtain-
able with only p successive matrix-vector multiplications
with L. The computational complexity of filtering a signal
is thus O(p#E), where #E is the number of edges of G.

2.2. Spectral clustering

We choose here Ng et al.’s method (2002) based on the nor-
malized Laplacian as our standard SC method. The input
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Algorithm 1 Spectral Clustering (Ng et al., 2002)
Input: The Laplacian matrix L, the number of clusters k

1· Compute Uk ∈ RN×k, L’s first k eigenvectors: Uk =
(u1|u2| · · · |uk).
2· Form the matrix Yk ∈ RN×k from Uk by nor-
malizing each of Uk’s rows to unit length: (Yk)ij =

(Uk)ij /
√∑k

j=1 U2
ij .

3· Treat each node i as a point in Rk by defining its fea-
ture vector fi ∈ Rk as the transposed i-th row of Yk:

fi := Yᵀ
kδi,

where δi(j) = 1 if j = i and 0 otherwise.
4· To obtain k clusters, run k-means with the Euclidean
distance:

Dij := ‖fi − fj‖ (2)

is the adjacency matrix W representing the pairwise simi-
larity of all the N objects to cluster1. After computing its
Laplacian L, follow Alg. 1 to find k classes.

3. Principles of CSC
Compressive spectral clustering (CSC) circumvents two of
SC’s bottlenecks, the partial diagonalisation of the Lapla-
cian and the high-dimensional k-means, thanks to the fol-
lowing ideas.

1) Perform a controlled estimation D̃ij of the spectral clus-
tering distanceDij (see Eq (2)), without partially diagonal-
izing the Laplacian, by fast filtering a few random signals
with the polynomial approximation h̃λk

of the ideal low
pass filter hλk

(see Eq. (1)). A theorem recently published
independently by two teams (Ramasamy & Madhow, 2015;
Tremblay et al., 2016) shows that this is possible when
there is no normalisation step (step 2 in Alg. 1) and when
the order p of the polynomial approximation tends to infin-
ity, i.e., when h̃λk

= hλk
. In Sec. 3.1, we provide a first

extension of this theorem that takes into account normalisa-
tion. A complete extension that also takes into account the
polynomial approximation error is presented in Sec. 4.2.

2) Run k-means on n randomly selected feature vectors out
of the N available ones - thus clustering the corresponding
n nodes into k groups - and interpolate the result back on
the full graph. To guarantee robust reconstruction, we take
advantage of our recent results on random sampling of k-

1In network analysis, the raw data is directly W. In the case
where one starts with a set of data points (x1, . . . ,xN ), the
first step consists in deriving W from the pairwise similarities
s(xi,xj). See (von Luxburg, 2007) for several choices of simi-
larity measure s and several ways to create W from the s(xi,xj).

bandlimited graph signals. In Sec. 3.2, we explain why
these results are applicable to clustering and show that it is
sufficient to sample n = O(k log k) features only! Note
that to cluster data into k groups, one needs at least k sam-
ples. This result is thus optimal up to the extra log k factor.

3.1. Ideal filtering of random signals

Definition 3.1 (Local cumulative coherence). Given a
graph G, the local cumulative coherence of order k at node

i is2 vk(i) := ‖Uᵀ
kδi‖ =

√∑k
j=1 U2

ij .

Let us define the diagonal matrix: Vk(i, i) = 1/vk(i). Note
that we assume that vk(i) > 0. Indeed, in the pathologic
cases where vk(i) = 0 for some nodes i, step 2 of the
standard SC algorithm cannot be run either. Now, con-
sider the matrix R = (r1|r2| · · · |rd) ∈ RN×d consisting
of d random signals ri, whose components are indepen-
dent Bernouilli, Gaussian, or sparse (as in Theorem 1.1
of (Achlioptas, 2003)) random variables. To fix ideas in
the following, we consider the components as independent
random Gaussian variables of mean zero and variance 1/d.
Consider the coherence-normalized filtered version of R,
VkHλk

R ∈ RN×d, and define node i’s new feature vector
f̃i ∈ Rd as the transposed i-th line of this filtered matrix:

f̃i := (VkHλk
R)ᵀδi.

The following theorem shows that, for large enough d,

D̃ij :=
∥∥∥f̃i − f̃j∥∥∥ = ‖(VkHλk

R)ᵀ(δi − δj)‖

is a good estimation of Dij with high probability.

Theorem 3.2. Let ε ∈]0, 1] and β > 0 be given. If d is
larger than

4 + 2β

ε2/2− ε3/3
logN,

then with probability at least 1−N−β , we have

(1− ε)Dij 6 D̃ij 6 (1 + ε)Dij .

for all (i, j) ∈ {1, . . . , N}2.

The proof is provided in the supplementary material.

In Sec. 4.2, we generalize this result to the real-world case
where the low-pass filter is approximated by a finite order
polynomial; we also prove that, as announced in the intro-
duction, one only needs d = O(log k) features when using
the downsampling scheme that we now detail.

2Throughout this paper, ‖.‖ stands for the usual `2-norm.
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3.2. Downsampling and interpolation

For j = 1, . . . , k, let us denote by cj ∈ RN the ground-
truth indicator vector of cluster Cj , i.e.,

(cj)i :=

{
1 if i ∈ Cj ,
0 otherwise, ∀i ∈ {1, . . . , N}.

To estimate cj , one could run k-means on the N feature
vectors {f̃1, . . . , f̃N} , as done in (Ramasamy & Madhow,
2015; Tremblay et al., 2016). Yet, this is still inefficient for
large N . To reduce the computational cost further, we pro-
pose to run k-means on a small subset of n feature vectors
only. The goal is then to infer the labels of allN nodes from
the labels of the n sampled nodes. To this end, we need 1)
a low-dimensional model that captures the regularity of the
vectors cj , 2) to make sure that enough information is pre-
served after sampling to be able to recover the vectors cj ,
and 3) an algorithm that rapidly and accurately estimates
the vectors cj by exploiting their regularity.

3.2.1. THE LOW-DIMENSIONAL MODEL

For a simple regular (with nodes of same degree) graph of k
disconnected clusters, it is easy to check that {c1, . . . , ck}
form a set of orthogonal eigenvectors of L with eigenvalue
0. All indicator vectors cj therefore live in span(Uk). For
general graphs, we assume that the indicator vectors cj live
close to span(Uk), i.e., the difference between any cj and
its orthogonal projection onto span(Uk) is small. Exper-
iments in Section 5 will confirm that it is a good enough
model to recover the cluster indicator vectors.

In graph signal processing words, one can say that cj is ap-
proximately k-bandlimited, i.e., its k first graph Fourier co-
efficients bear most of its energy. There has been recently
a surge of interest around adapting classical sampling the-
orems to such bandlimited graph signals (Anis et al., 2015;
Chen et al., 2015; Marques et al., 2015; Tsitsvero et al.,
2015). We rely here on the random sampling strategy pro-
posed in (Puy et al., 2015) to select a subset of n nodes.

3.2.2. SAMPLING AND INTERPOLATION

The subset of feature vectors is selected by drawing n
indices Ω := {ω1, . . . , ωn} uniformly at random from
{1, . . . , N} without replacement. Running k-means on the
subset of features {f̃ω1

, . . . , f̃ωn
} thus yields a clustering

of the n sampled nodes into k clusters. We denote by
crj ∈ Rn the resulting low-dimensional indicator vectors.
Our goal is now to recover cj from crj .

Consider that k-means is able to correctly identify
c1, . . . , ck ∈ RN using the original set of features
{f1, . . . ,fN} with the SC algorithm (otherwise, CSC is
doomed to fail from the start). Results in (Ramasamy &
Madhow, 2015; Tremblay et al., 2016) show that k-means

is also able to identify the clusters using the feature vec-
tors {f̃1, . . . , f̃N}. This is explained theoretically by the
fact that the distance between all pairs of feature vectors
is preserved (see Theorem 3.2). Then, as choosing a sub-
set {f̃ω1

, . . . , f̃ωn
} of {f̃1, . . . , f̃N} does not change the

distance between the feature vectors, we can hope that k-
means correctly clusters the n sampled nodes, provided that
each cluster is sufficiently sampled. Experiments in Sec. 5
will confirm this intuition. In this ideal situation, we have

crj = M cj , (3)

where M ∈ Rn×N is the sampling matrix satisfying:

Mij :=

{
1 if j = ωi,
0 otherwise. (4)

To recover cj from its n observations crj , Puy et al. (2015)
show that the solution to the optimisation problem

min
x∈RN

∥∥Mx− crj
∥∥2
2

+ γ xᵀg(L)x, (5)

is a faithful 3 estimation of cj , provided that cj is close to
span(Uk) and that M satisfies the restricted isometry prop-
erty (discussed in the next subsection). In (5), γ > 0 is
a regularisation parameter and g a positive non-decreasing
polynomial function (see Section 2.1 for the definition of
g(L)). This reconstruction scheme is proved to be robust
to: 1) observation noise, i.e., to imperfect clustering of the
n nodes in our context; 2) model errors, i.e., the indica-
tor vectors do not need to be exactly in span(Uk) for the
method to work. Also, the performance is shown to depend
on the ratio g(λk)/g(λk+1). The smaller it is, the better the
reconstruction. To decrease this ratio, we decide to approx-
imate the ideal high-pass filter gλk

(λ) = 1−hλk
(λ) for the

reconstruction. Remark that this filter favors the recovery
of signals living in span(Uk). The approximation g̃λk

of
gλk

is obtained using a polynomial (as in Sec. 2.1), which
permits us to find fast algorithms to solve (5).

3.2.3. HOW MANY FEATURES TO SAMPLE?

We terminate this section by providing the theoretical num-
ber of features n one needs to sample in order to make sure
that the indicator vectors can be faithfully recovered. This
number is driven by the following quantity.
Definition 3.3 (Global cumulative coherence). The global
cumulative coherence of order k of the graph G is
νk :=

√
N · max16i6N {vk(i)} .

It is shown in (Puy et al., 2015) that νk ∈ [k1/2, N1/2].
Theorem 3.4 ((Puy et al., 2015)). Let M be a random sam-
pling matrix constructed as in (4). For any δ, ε ∈ ]0, 1[,

(1− δ) ‖x‖22 6
N

n
‖Mx‖22 6 (1 + δ) ‖x‖22 (6)

3precise error bounds are provided in (Puy et al., 2015).
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for all x ∈ span(Uk) with probability at least 1 − ε pro-
vided that

n >
6

δ2
ν2k log

(
k

ε

)
.

The above theorem presents a sufficient condition on n en-
suring that M satisfies the restricted isometry property (6).
This condition is required to ensure that the solution of (5)
is an accurate estimation of cj . The above theorem thus
indicates that sampling O(ν2k log k) features is sufficient to
recover the cluster indicator vectors.

For a simple regular graph G made of k disconnected clus-
ters, we have seen that Uk = (c1, . . . , ck) up to a normali-
sation of the vectors. Therefore, νk = N1/2/mini{N1/2

i },
where Ni is the size of the ith cluster. If the clusters have
the same size Ni = N/k then νk = k1/2, the lower
bound on νk. In this simple optimal scenario, sampling
O(ν2k log k) = O(k log k) features is thus sufficient to re-
cover the cluster indicator vectors.

The attentive reader will have noticed that for graphs where
ν2k ≈ N , no downsampling is possible. Yet, a simple so-
lution exists in this situation: variable density sampling.
Indeed, it is proved in (Puy et al., 2015) that, whatever the
graph G, there always exists an optimal sampling distribu-
tion such that n = O(k log k) samples are sufficient to sat-
isfy Eq. (6). This distribution depends on the profile of the
local cumulative coherence and can be estimated rapidly
(see (Puy et al., 2015) for more details). In this paper, we
only consider uniform sampling to simplify the explana-
tions, but keep in mind that in practice results will always
be improved if one uses variable density sampling. Note
also that one cannot expect to sample less than k nodes to
find k clusters. Up to the extra log(k), our result is optimal.

4. CSC in practice
We have detailed the two fundamental theoretical notions
supporting our algorithm, presented in Alg. 2. However,
some steps in Alg. 2 still need to be clarified. In partic-
ular, Sec. 4.2 provides an extension of Theorem 3.2 that
takes into account the use of a non-ideal low-pass filter (to
handle the practical case where the order of the polynomial
approximation is finite). This theorem in fine explains and
justifies step 4 of Alg. 2. Then, in Sec. 4.3, important de-
tails are discussed such as the estimation of λk (step 1) and
the choice of the polynomial approximation (step 2). We
finish this section with complexity considerations.

4.1. The CSC algorithm

As for SC (see Sec. 2.2), the algorithm starts with the ad-
jacency matrix W of a graph G. After computing its Lapla-
cian L, the CSC algorithm is summarized in Alg. 2. The

Algorithm 2 Compressive Spectral Clustering
Input: The Laplacian matrix L, the number of clusters
k; and parameters typically set to n = 2k log k, d =
4 log n, p = 50 and γ = 10−3.

1· Estimate L’s k-th eigenvalue λk as in Sec. 4.3.
2· Compute the polynomial approximation h̃λk

of order
p of the ideal low-pass filter hλk

.
3· Generate d random Gaussian signals of mean 0 and
variance 1/d: R = (r1|r2| · · · |rd) ∈ RN×d.
4· Filter R with H̃λk

= h̃λk
(L) as in Sec. 2.1 and define,

for each node i, its feature vector f̃i ∈ Rd:

f̃i =
[(

H̃λk
R
)ᵀ
δi

]/∥∥∥(H̃λk
R
)ᵀ
δi

∥∥∥.
5· Generate a random sampling matrix M ∈ Rn×N
as in Eq. (4) and keep only n feature vectors:
(f̃ω1
| . . . |f̃ωn

)ᵀ = M(f̃1| . . . |f̃N )ᵀ.
6· Run k-means on the reduced dataset with the Eu-
clidean distance: D̃r

ij =
∥∥∥f̃ωi − f̃ωj

∥∥∥ to obtain k re-
duced indicator vectors crj ∈ Rn, one for each cluster.

7· Interpolate each reduced indicator vector crj with the
optimisation problem of Eq. (5), to obtain the k indicator
vectors c̃j∗ ∈ RN on the full set of nodes.

output c̃∗j (i) is not binary and in fact quantifies how much
node i belongs to cluster j, useful for fuzzy partitioning. To
obtain an exact partition of the nodes, we normalize each
indicator vector c̃∗j , and assign node i to the cluster j for
which c̃∗j (i)/

∥∥c̃∗j∥∥ is maximal.

4.2. Non-ideal filtering of random signals

In this section, we improve Theorem 3.2 by studying how
the error of the polynomial approximation h̃λk

of hλk
prop-

agates to the spectral distance estimation, and by taking
into account the fact that k-means is performed on the re-
duced set of features (f̃ω1 | . . . |f̃ωn)ᵀ = M(f̃1| . . . |f̃N )ᵀ.
We denote by MYk ∈ Rn×k the ideal reduced feature ma-
trix. We have (fω1

| · · · |fωn
)ᵀ = M(f1| · · · |fN )ᵀ = MYk.

The actual distances we want to estimate using random sig-
nals are thus, for all (i, j) ∈ {1, . . . , n}2

Dr
ij :=

∥∥fωi
− fωj

∥∥ =
∥∥Yᵀ

kMᵀ(δri − δrj )
∥∥ ,

where the {δri } are here Diracs in n dimensions.

Consider the random matrix R = (r1|r2| · · · |rd) ∈ RN×d
constructed as in Sec. 3.1. Its filtered, normalized and re-
duced version is MVkH̃λk

R ∈ Rn×d. The new feature vec-
tor f̃ωi

∈ Rd associated to node ωi is thus

f̃ωi
= (MVkH̃λk

R)ᵀδri .
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The normalisation of Step 4 in Alg. 2 approximates the ac-
tion of Vk in the above equation. More details and justifica-
tions are provided in the “Important remark” at the end of
this section. The distance between any two features reads

D̃r
ij :=

∥∥∥f̃ωi
− f̃ωj

∥∥∥ =
∥∥∥RᵀH̃ᵀ

λk
Vᵀ
kMᵀ(δri − δrj )

∥∥∥ .
We now study how well D̃r

ij estimates Dr
ij .

Approximation error. Denote e(λ) the approximation er-
ror of the ideal low-pass filter:

∀λ ∈ [0, 2], e(λ) := h̃λk
(λ)− hλk

(λ).

In the form of graph filter operators, one has

h̃λk
(L) = H̃λk

= Hλk
+ E = hλk

(L) + e(L).

We model the error e using two parameters: e1 (resp. e2)
the maximal error for λ 6 λk (resp. λ > λk). We have

e1 := sup
λ∈{λ1,...,λk}

|e(λ)|, e2 := sup
λ∈{λk+1,...,λN}

|e(λ)|.

The resolution parameter. In some cases, the ideal re-
duced spectral distance Dr

ij may be null. In such cases,
approximating Dr

ij = 0 using a non-ideal filter is not pos-
sible. In fact, non-ideal filtering introduces an irreducible
error on the estimation of the feature vectors that is not pos-
sible to compensate in general. We thus introduce a resolu-
tion parameterDr

min below which the distancesDr
ij do not

need to be approximated exactly, but should remain below
Dr
min (up to a tolerated error).

Theorem 4.1 (General norm conservation theorem). Let
Dr
min ∈

]
0,
√

2
]

be a chosen resolution parameter. For
any δ ∈ ]0, 1], β > 0, if d is larger than

16(2 + β)

δ2 − δ3/3
log n,

then, for all (i, j) ∈ {1, . . . , n}2,

(1− δ)Dr
ij 6 D̃r

ij 6 (1 + δ)Dr
ij , if Dr

ij > Dr
min,

and
D̃r
ij < (1 + δ)Dr

min, if Dr
ij < Dr

min,

with probability at least 1− 2n−β provided that√
|e21 − e22| +

√
2 e2

Dr
min mini{vk(i)}

6
δ

2 + δ
. (7)

The proof is provided in the supplementary material.

Consequence of Theorem 4.1. All distances smaller (resp.
larger) than the chosen resolution parameter Dr

min are esti-
mated smaller than (1 + δ)Dr

min (resp. correctly estimated

up to a relative error δ). Moreover, for a fixed distance
estimation error δ, the lower we decide to fix Dr

min, the
lower should also be the errors e1 and/or e2 to ensure that
Eq. (7) still holds, which implies an increase of the order
p of the polynomial approximation of the ideal filter hλk

,
and ultimately, that means a higher computation time for
the filtering operation of the random signals.

Important remark. The feature matrix VkH̃λk
R can be

easily computed if one knows the cut-off value λk and the
local cumulative coherences vk(i). Unfortunately, this is
not the case in practice. We propose a solution to estimate
λk in Sec. 4.3. To estimate vk(i), one can use the results in
Sec. 4 of (Puy et al., 2015) showing that vk(i) = ‖Uᵀ

kδi‖ ≈
‖(Hλk

R)ᵀδi‖. Thus, a practical way to estimate VkH̃λk
R

is to first compute H̃λk
R and then normalize its rows to unit

length, as done in Step 4 of Alg. 2.

4.3. Polynomial approximation and estimation of λk

The polynomial approximation. Theorem 4.1 uses a sep-
arate control on e(λ) below λk (with e1) and above λk
(with e2). To have such a control in practice, one would
need to use rational filters (ratio of two polynomials) to ap-
proximate hλk

. Such filters have been introduced in the
graph context (Shi et al., 2015), but they involve another
optimisation step that would burden our main message. We
prefer to simplify our analysis by using polynomials for
which only the maximal error can be controlled. We write

em := max(e1, e2) = sup
λ∈{λ1,...,λN}

|e(λ)| . (8)

In this easier case, one can show that Theorem 4.1 is still
valid if Eq. (7) is replaced by

√
2 em

Dr
min mini{vk(i)}

6
δ

2 + δ
. (9)

In our experiments, we could follow (Shuman et al., 2011)
and use truncated Chebychev polynomials to approximate
the ideal filter, as these polynomials are known to require a
small degree to ensure a given tolerated maximal error em.
We prefer to follow (Napoli et al., 2013) who suggest to use
Jackson-Chebychev polynomials: Chebychev polynomials
to which are added damping multipliers to alleviate the un-
wanted Gibbs oscillations around the cut-off frequency λk.

The polynomial’s order p. For a fixed δ, Dr
min, and

mini{vk(i)}, one should use the Jackson-Chebychev poly-
nomial of smallest order p∗ ensuring that em satisfies
Eq. (9), in order to optimize the computation time while
making sure that Theorem 4.1 applies. Studying p∗ theo-
retically without computing the Laplacian’s complete spec-
trum (see Eq. (8)) is beyond the scope of this paper. Exper-
imentally, p = 50 yields good results (see Fig. 2c).
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Estimation of λk. The fast filtering step is based on
the polynomial approximation of hλk

, which is itself
parametrized by λk. Unless we compute the first k eigen-
vectors of L, thereby partly loosing our efficiency edge on
other methods, we cannot know the value of λk with infi-
nite precision. To estimate it efficiently, we use eigencount
techniques (Napoli et al., 2013): based on low-pass filter-
ing with a cut-off frequency at λ of random signals, one ob-
tains an estimation of the number of enclosed eigenvalues
in the interval [0, λ]. Starting with λ = 2 and proceeding
by dichotomy on λ, one stops the algorithm as soon as the
number of enclosed eigenvalues equals k. For each value
of λ, in order to have a proper estimation of the number
of enclosed eigenvalues, we choose to filter 2 logN ran-
dom signals with Jackson-Chebychev polynomial approxi-
mation of the ideal low-pass filters.

4.4. Complexity considerations

The complexity of steps 2, 3 and 5 of Alg. 2 are not detailed
as they are insignificant compared to the others. First, note
that fast filtering a graph signal costsO(p#E).4 Therefore,
Step 1 costs O(p#E logN) per iteration of the dichotomy,
and Step 4 costs O(p#E log n) (as d = O(log n)). Step
7 requires to solve Eq. (5) with the polynomial approx-
imation of gλk

(λ) = 1 − hλk
(λ). When solved, e.g.,

by conjugate gradient or gradient descent, this step costs
a fast filtering operation per iteration of the solver and
for each of the k classes. Step 7 thus costs O(p#Ek).
Also, the complexity of k-means to cluster Q feature vec-
tors of dimension r into k classes is O(kQr) per itera-
tion. Therefore, Step 6 with Q = n and r = d =
O(log(n)) costs O(kn log n). CSC’s complexity is thus
O (kn log n+ p#E (logN + log n+ k)) . In practice, we
are interested in sparse graphs: #E = O(N). Using the
fact that n = O(k log k), CSC’s complexity simplifies to

O
(
k2 log2 k + pN (logN + k)

)
.

SC’s k-means step has a complexity of O(Nk2) per itera-
tion. In many cases5 this sole task is more expensive than
the CSC algorithm. On top of this, SC has the additional
complexity of computing the first k eigenvectors of L, for
which the cost of ARPACK - a popular eigenvalue solver -
is O(k3 +Nk2) (see, e.g., Sec. 3.2 of (Chen et al., 2011)).

This study suggests that CSC is faster than SC for large
N and/or k. The above algorithms’ number of iterations
are not taken into account as they are difficult to predict
theoretically. Yet, the following experiments confirm the
superiority of CSC over SC in terms of computational time.

5. Experiments
We first perform well-controlled experiments on the
Stochastic Block Model (SBM), a model of random graphs
with community structure, that was showed suitable as a
benchmark for SC in (Lei & Rinaldo, 2015). We also show
performance results on a large real-world network. Im-
plementation was done in Matlab R2015a, using the built-
in function kmeans with 20 replicates, and the function
eigs for SC. Experiments were done on a laptop with
a 2.60 GHz Intel i7 dual-core processor running OS Fe-
dora release 22 with 16 GB of RAM. The fast filtering
part of CSC uses the gsp cheby op function of the GSP
toolbox (Perraudin et al., 2014). Equation (5) is solved
using Matlab’s gmres function. All our results are re-
producible with the CSCbox downloadable at http://
cscbox.gforge.inria.fr/.

5.1. The Stochastic Block Model

What distinguishes the SBM from Erdos-Renyi graphs is
that the probability of connection between two nodes i and
j is not uniform, but depends on the community label of
i and j. More precisely, the probability of connection be-
tween nodes i and j equals q1 if they are in the same com-
munity, and q2 if not. In a first approach, we look at graphs
with k communities, all of same size N/k. Furthermore,
instead of considering the probabilities, one may fully char-
acterize a SBM by providing their ratio ε = q2

q1
, as well as

the average degree s of the graph. The larger ε, the more
difficult the community structure’s detection. In fact, De-
celle et al. (2011) show that a critical value εc exists above
which community detection is impossible at the large N
limit: εc = (s−

√
s)/(s+

√
s(k − 1)).

5.2. Performance results

In Figs. 2 a-d), we compare the recovery performance of
CSC versus SC for different parameters. The performance
is measured by the Adjusted Rand similarity index (Hubert
& Arabie, 1985) between the SBM’s ground truth and the
obtained partitions. It varies between−1 and 1. The higher
it is, the better is the reconstruction. These figures show
that the performance of CSC saturates at the default values
of n, d, p and γ (see top of Alg. 2). Experiments on the
SBM with heterogeneous community sizes are provided in
the supplementary material and show similar results.

Fig. 2 e) shows the estimation results of λk for different val-
ues of ε : it is overestimated in the SBM context. As long
as the estimated value stays under λk+1, this overestima-
tion does not have a strong impact on the method. On the
other hand, as ε becomes larger than ∼ 0.06, our estima-

4Recall that p is the order of the polynomial filter.
5Roughly, all cases for which k2 > p(logN + k).

http://cscbox.gforge.inria.fr/
http://cscbox.gforge.inria.fr/
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Figure 1. (a-d): recovery performance of CSC on a SBM with N = 103, k = 20, s = 16 versus ε, for different n, d, p, γ. Default is
n = 2k log k, d = 4 logn, p = 50 and γ = 10−3. All results are averaged over 20 graph realisations. e) Estimation of λk (‘λk est’)
and the true values of λk and λk+1, versus ε on the same SBM. f-g) Performance and time of computation on a SBM with ε = εc/4 and
different values of N and k; for CSC, PM (Power Method) and SC. For N = 106 and k = 200, we stopped SC (and PM) after 20h of
computation. Figures f and g are averaged over 3 graph realisations. N.B.: Fig. f is zoomed around high values of the recovery score,
and Fig. g is plotted in log-log. h) Time of computation (in hours) and modularity (in bold) of the obtained partitions for SC and CSC on
the Amazon graph. For k = 1000, SC’s eigendecomposition converges in 17h, and we stopped k-means after 21 hours of computation.

tion of λk is larger than λk+1, which means that our feature
vectors start to integrate some unwanted information from
eigenvectors outside of span(Uk). Even though the impact
of this additional information is application-dependent and
in some cases insignificant, further efforts to improve the
estimation of λk would be beneficial to our method.

In Figs. 2 f-g) we fix ε to εc/4, n, d, p and γ to the values
given in Alg. 2, and vary N and k. We compare the recov-
ery performance and the time of computation of CSC, SC
and Boutsidis’ power method (Boutsidis & Gittens, 2015).
The power method (PM), in a nutshell, 1) applies the Lapla-
cian matrix to the power r to k random signals, 2) computes
the left singular vectors of theN×k obtained matrix, to ex-
tract feature vectors, 3) applies k-means in high-dimension
(like SC) with these feature vectors. In our experiments, we
use r = 10. The recovery performances are nearly identi-
cal in all situations, even though CSC is only a few percents
under SC and PM (Fig. f is zoomed around the high values
of the recovery score). For the time of computation, the
experiments confirm that all three methods are roughly lin-
ear in N and polynomial in k (Fig. g is plotted in log-log),
with a lower exponent for CSC than for SC and PM; such
that SC and PM are faster for k = 20 but CSC becomes
up to an order of magnitude faster as k increases to 200.
Note that the SBM is favorable to SC as Matlab’s function
eigs converges very fast in this case, e.g., for N = 105, it
finds the first k = 200 eigenvectors in less than 2 minutes!
PM sidesteps successfully the cost of eigs, but the cost of
k-means in high-dimension is still a strong bottleneck.

We finally compare CSC and SC on a real-world dataset:
the Amazon co-purchasing network (Yang & Leskovec,
2015). It is an undirected connected graph comprising
N = 334 863 nodes and #E = 925 872 edges. The results
are presented in Fig.2 h) for three values of k. As there is no
clear ground truth in this case, we use the modularity (New-
man & Girvan, 2004) to measure the algorithm’s cluster-
ing performance, a well-known cost function that measures
how well a given partition separates a network in different
communities. Note that the 20 replicates of k-means would
not converge for SC with the default maximum number of
iterations set to 100. For a fair comparison with CSC, we
used only 2 replicates with a maximum number of itera-
tions set to 1000 for SC’s k-means step. We see that for the
same clustering performance, CSC is much faster than SC,
especially as k increases. The PM algorithm on this dataset
does not perform well: even though the features are esti-
mated quickly, they apparently do not form clear classes
such that its k-means step takes even longer than SC’s. For
the three values of k, we stopped the PM algorithm after a
time of computation exceeding SC’s.

6. Conclusion
By graph filtering O(log k) random signals, we construct
feature vectors whose interdistances approach the standard
SC feature distances. Then, building upon compressive
sensing results, we show that one can sample O(k log k)
nodes from the set of N nodes, cluster this reduced set of
nodes and interpolate the result back to the whole graph.
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If the low-dimensional k-means result is correct, i.e., if
Eq. (3) is verified, we guarantee that the interpolation is a
good approximation of the SC result. To improve the clus-
tering result of the reduced set of nodes, one could consider
the concept of community cores (Seifi et al., 2013). In fact,
as the filtering and the low-dimensional clustering steps are
fairly cheap to compute, one could repeat these steps for
different random signals, keep the sets of nodes that are al-
ways classified together and use only these stable “cores”
for interpolation. Our experiments show that even without
such potential improvements, CSC proves efficient and ac-
curate in synthetic and real-world datasets; and could be
preferred to SC for large N and/or k.
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A. Proof of Theorem 3.2
Proof. Note that Hλk

= UkUᵀ
k , and that Yk = VkUk.

We rewrite
∥∥∥f̃i − f̃j∥∥∥ in a form that will let us apply the

Johnson-Lindenstrauss lemma of norm conservation:∥∥∥f̃i − f̃j∥∥∥ =
∥∥RᵀHᵀ

λk
Vᵀ
k(δi − δj)

∥∥
= ‖RᵀUkUᵀ

kVᵀ
k(δi − δj)‖

= ‖RᵀUk(fi − fj)‖

(10)

where the fi are the standard SC feature vectors. Apply-
ing Theorem 1.1 of (Achlioptas, 2003) (an instance of the
Johnson-Lindenstrauss lemma) to ‖RᵀUk(fi − fj)‖, the
following holds. If d is larger than:

4 + 2β

ε2/2− ε3/3
logN, (11)

then with probability at least 1 −N−β , we have, ∀(i, j) ∈
{1, . . . , N}2:

(1− ε) ‖Uk(fi − fj)‖ 6 D̃ij 6 (1 + ε) ‖Uk(fi − fj)‖ .

As the columns of Uk are orthonormal, we end the proof:

∀(i, j) ∈ [1, N ]2 ‖Uk(fi − fj)‖ = ‖fi − fj‖ = Dij .

B. Proof of Theorem 4.1
Proof. Recall that: D̃r

ij :=
∥∥∥f̃ωi

− f̃ωj

∥∥∥ =∥∥∥RᵀH̃ᵀ
λk

Vᵀ
kMᵀδrij

∥∥∥ , where δrij = δri − δrj . Given

that H̃λk
= Hλk

+ E and using the triangle inequality in
the definition of D̃r

ij , we obtain

∥∥RᵀHᵀ
λk

Vᵀ
kMᵀδrij

∥∥ −∥∥RᵀEᵀVᵀ
kMᵀδrij

∥∥ 6 D̃r
ij 6

∥∥RᵀEᵀVᵀ
kMᵀδrij

∥∥ + (12)∥∥RᵀHᵀ
λk

Vᵀ
kMᵀδrij

∥∥ ,
We continue the proof by bounding

∥∥RᵀHᵀ
λk

Vᵀ
kMᵀ δrij

∥∥
and

∥∥RᵀEᵀVᵀ
kMᵀ δrij

∥∥ separately.

Let δ ∈]0, 1]. To bound
∥∥RᵀHᵀ

λk
Vᵀ
kMᵀδrij

∥∥, we set ε = δ/2
in Theorem 3.2. This proves that if d is larger than

d0 =
16(2 + β)

δ2 − δ3/3
log n,

then with probability at least 1− n−β ,

(
1− δ

2

)
Dr
ij 6

∥∥RᵀHᵀ
λk

Vᵀ
kMᵀδrij

∥∥ 6

(
1 +

δ

2

)
Dr
ij ,

for all (i, j) ∈ {1, . . . , n}2. To bound
∥∥RᵀEᵀVᵀ

kMᵀδrij
∥∥,

we use Theorem 1.1 in (Achlioptas, 2003). This theorem
proves that if d > d0, then with probability at least 1−n−β ,

∥∥RᵀEᵀVᵀ
kMᵀδrij

∥∥ 6

(
1 +

δ

2

)∥∥EᵀVᵀ
kMᵀδrij

∥∥ ,
for all (i, j) ∈ {1, . . . , n}2. Using the union bound and
(12), we deduce that, with probability at least 1− 2n−β ,

(
1− δ

2

)
Dr
ij −

(
1 +

δ

2

)∥∥EᵀVᵀ
kMᵀδrij

∥∥
6 D̃r

ij 6 (13)(
1 +

δ

2

)∥∥EᵀVᵀ
kMᵀδrij

∥∥ +

(
1 +

δ

2

)
Dr
ij ,

for all (i, j) ∈ {1, . . . , n}2 provided that d > d0.

Then, as e is bounded by e1 on the first k eigenvalues of the
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spectrum and by e2 on the remaining ones, we have∥∥EᵀVᵀ
kMᵀ δrij

∥∥2 =
∥∥Ue(Λ)UᵀVᵀ

kMᵀ δrij
∥∥2

=
∥∥e(Λ)UᵀVᵀ

kMᵀ δrij
∥∥2

=

N∑
l=1

e(λl)
2
∣∣(MVkul)

ᵀδrij
∣∣2

6 e21

k∑
l=1

∣∣(MVkul)
ᵀδrij

∣∣2
+ e22

N∑
l=k+1

∣∣(MVkul)
ᵀδrij

∣∣2
= e21

∥∥Uᵀ
kVᵀ

kMᵀδrij
∥∥2

+ e22

(∥∥UᵀVᵀ
kMᵀδrij

∥∥2 − ∥∥Uᵀ
kVᵀ

kMᵀδrij
∥∥2)

= (e21 − e22)
∥∥Uᵀ

kVᵀ
kMᵀδrij

∥∥2
+ e22

∥∥UᵀVᵀ
kMᵀδrij

∥∥2
= (e21 − e22) (Dr

ij)
2 + e22

∥∥Vᵀ
kMᵀδrij

∥∥2
6 (e21 − e22) (Dr

ij)
2 +

2 e22
mini{vk(i)2}

.

The last step follows from the fact that

∥∥Vᵀ
kMᵀ δrij

∥∥2 =

N∑
l=1

1

vk(l)2
∣∣(Mᵀδrij)(l)

∣∣2
=

1

vk(ωi)2
+

1

vk(ωj)2
6

2

mini{vk(i)}2

Define, for all (i, j) ∈ {1, . . . , n}2:

eij :=
√
|e21 − e22|Dr

ij +

√
2e2

mini{vk(i)}
.

Thus, the above inequality may be rewritten as:∥∥EᵀVᵀ
kMᵀ δrij

∥∥ 6 eij ,

for all (i, j) ∈ {1, . . . , n}2, which combined with (13)
yields(

1− δ

2

)
Dr
ij −

(
1 +

δ

2

)
eij

6 D̃r
ij 6 (14)(

1 +
δ

2

)
eij +

(
1 +

δ

2

)
Dr
ij ,

for all (i, j) ∈ {1, . . . , n}2, with probability at least 1 −
2n−β provided that d > d0.

Let us now separate two cases. In the case where Dr
ij >

Dr
min > 0, we have

eij =
eij
Dr
ij

Dr
ij =

(√
|e21 − e22|+

√
2e2

Dr
ij mini{vk(i)}

)
Dr
ij

6

(√
|e21 − e22|+

√
2e2

Dr
min mini{vk(i)}

)
Dr
ij

6
δ

2 + δ
Dr
ij .

provided that Eq. (7) of the main paper holds. Combin-
ing the last inequality with (14) proves the first part of the
theorem.

In the case where Dr
ij < Dr

min, we have

eij <
√
|e21 − e22|Dr

min +

√
2 e2

mini{vk(i)}
6

δ

2 + δ
Dr
min.

provided that Eq. (7) of the main paper holds. Combining
the last inequality with (14) terminates the proof.

C. Experiments on the SBM with
heterogeneous community sizes

We perform experiments on a SBM with N = 103, k =
20, s = 16 and hetereogeneous community sizes. More
specifically, the list of community sizes is chosen to be:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50, 55, 60, 65, 70,
75, 80, 85, 90 and 95 nodes. In this scenario, there is no
theoretical value of ε over which it is proven that recovery is
impossible in the largeN limit. Instead, we vary ε between
0 and 0.2 and show the recovery performance results with
respect to n, d, p and γ in Fig. 2. Results are similar to
the homogeneous case presented in Fig. 1(a-d) of the main
paper.
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Asymptotic analysis of the stochastic block model for
modular networks and its algorithmic applications. Phys.
Rev. E, 84:066106, 2011.

Dhillon, I.S., Guan, Y., and Kulis, B. Weighted graph
cuts without eigenvectors a multilevel approach. Pattern

Analysis and Machine Intelligence, IEEE Transactions
on, 29(11):1944–1957, 2007.

Fiedler, M. Algebraic connectivity of graphs. Czechoslo-
vak mathematical journal, 23(2):298–305, 1973.

Filippone, M., Camastra, F., Masulli, F., and Rovetta, S.
A survey of kernel and spectral methods for clustering.
Pattern Recognition, 41(1):176 – 190, 2008.

Fowlkes, C., Belongie, S., Chung, F., and Malik, J. Spectral
grouping using the nystrom method. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26(2):
214–225, 2004.

Har-Peled, Sariel and Mazumdar, Soham. On coresets for
k-means and k-median clustering. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of com-
puting, pp. 291–300. ACM, 2004.

Hubert, L. and Arabie, P. Comparing partitions. Journal of
classification, 2(1):193–218, 1985.

Jain, Anil K. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8):651 – 666, 2010.

Lei, J. and Rinaldo, A. Consistency of spectral clustering
in stochastic block models. Ann. Statist., 43(1):215–237,
2015.

Lin, F. and Cohen, W. W. Power iteration clustering.
In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), Haifa, Israel, pp. 655–
662, 2010.

Liu, T.-Y., Yang, H.-Y., Zheng, X., Qin, T., and Ma, W.-Y.
Fast large-scale spectral clustering by sequential shrink-
age optimization. In Advances in Information Retrieval,
pp. 319–330. 2007.

Marques, A., Segarra, S., Leus, G., and Ribeiro, A. Sam-
pling of graph signals with successive local aggrega-
tions. Signal Processing, IEEE Transactions on, PP(99):
1–1, 2015.

Napoli, Edoardo Di, Polizzi, Eric, and Saad, Yousef. Ef-
ficient estimation of eigenvalue counts in an interval.
arXiv, abs/1308.4275, 2013.

Nascimento, M.C.V. and de Carvalho, A.C.P.L.F. Spectral
methods for graph clustering a survey. European Jour-
nal of Operational Research, 211(2):221 – 231, 2011.

Newman, M. E. J. and Girvan, M. Finding and evaluat-
ing community structure in networks. Phys. Rev. E, 69:
026113, 2004.



Compressive Spectral Clustering

Ng, A.Y., Jordan, M.I., and Weiss, Y. On spectral clus-
tering: Analysis and an algorithm. In Dietterich, T.G.,
Becker, S., and Ghahramani, Z. (eds.), Advances in Neu-
ral Information Processing Systems 14, pp. 849–856.
MIT Press, 2002.

Perraudin, N., Paratte, J., Shuman, D., Kalofolias, V., Van-
dergheynst, P., and Hammond, D.K. Gspbox: A toolbox
for signal processing on graphs. arXiv, abs/1408.5781,
2014.

Puy, G., Tremblay, N., Gribonval, R., and Vandergheynst,
P. Random sampling of bandlimited signals on graphs.
arXiv, abs/1511.05118, 2015.

Ramasamy, D. and Madhow, U. Compressive spectral em-
bedding: sidestepping the SVD. In Advances in Neural
Information Processing Systems 28, pp. 550–558. 2015.

Sakai, Tomoya and Imiya, Atsushi. Fast spectral cluster-
ing with random projection and sampling. In Machine
Learning and Data Mining in Pattern Recognition, pp.
372–384. 2009.

Sandryhaila, A. and Moura, J.M.F. Discrete signal process-
ing on graphs. Signal Processing, IEEE Transactions on,
61(7):1644–1656, 2013.

Sandryhaila, A. and Moura, J.M.F. Big data analysis with
signal processing on graphs: Representation and pro-
cessing of massive data sets with irregular structure. Sig-
nal Processing Magazine, IEEE, 31(5):80–90, 2014.

Seifi, M., Junier, I., Rouquier, J.-B., Iskrov, S., and Guil-
laume, J.-L. Stable community cores in complex net-
works. In Complex Networks, pp. 87–98. 2013.

Shi, J. and Malik, J. Normalized cuts and image segmen-
tation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888–905, 2000.

Shi, X., Feng, H., Zhai, M., Yang, T., and Hu, B. In-
finite impulse response graph filters in wireless sensor
networks. Signal Processing Letters, IEEE, 22(8):1113–
1117, 2015.

Shuman, D.I., Vandergheynst, P., and Frossard, P. Cheby-
shev polynomial approximation for distributed signal
processing. In Distributed Computing in Sensor Systems
and Workshops (DCOSS), International Conference on,
pp. 1–8, 2011.

Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal process-
ing on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. Signal Process-
ing Magazine, IEEE, 30(3):83–98, 2013.

Tremblay, N., Puy, G., Borgnat, P., Gribonval, R., and
Vandergheynst, P. Accelerated spectral clustering us-
ing graph filtering of random signals. In Acoustics,
Speech and Signal Processing (ICASSP), IEEE Interna-
tional Conference on, 2016. accepted.

Tsitsvero, M., Barbarossa, S., and Lorenzo, P. Di. Signals
on graphs: Uncertainty principle and sampling. arXiv,
abs/1507.08822, 2015.

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416, 2007.

Wang, L., Leckie, C., Ramamohanarao, K., and Bezdek, J.
Approximate spectral clustering. In Advances in Knowl-
edge Discovery and Data Mining, pp. 134–146. 2009.

White, S. and Smyth, P. A spectral clustering approach to
finding communities in graph. In SDM, volume 5, pp.
76–84. SIAM, 2005.

Yan, D., Huang, L., and Jordan, M.I. Fast approximate
spectral clustering. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’09, pp. 907–916, New
York, NY, USA, 2009.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and In-
formation Systems, 42(1):181–213, 2015.

Zelnik-Manor, L. and Perona, P. Self-tuning spectral clus-
tering. In Advances in neural information processing
systems, pp. 1601–1608, 2004.


