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Introduction

Spectral clustering (SC) is a fundamental tool in data mining [START_REF] Nascimento | Spectral methods for graph clustering a survey[END_REF]. Given a set of N data points {x 1 , . . . , x N }, the goal is to partition this set into k weakly inter-connected clusters. Several spectral clustering algorithms exist, e.g., [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF][START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF]), but all follow the same scheme. First, compute weights W ij 0 that model the similarity between pairs of data points (x i , x j ). This gives rise to a graph G with N nodes and adjacency matrix W = (W ij ) 1 i,j N ∈ R N ×N . Second, compute the first k eigenvectors U k := (u 1 , . . . , u k ) ∈ R N ×k of the Laplacian matrix L ∈ R N ×N associated to G (see Sec. 2 for L's definition). And finally, run k-means using the rows of U k as feature vectors to partition the N data points into k clusters. This k-way scheme is a generalisation of Fiedler's pioneering work (1973).

SC is mainly used in two contexts: 1) if the N data points show particular structures (e.g., concentric circles) for which naive k-means clustering fails; 2) if the input data is directly a graph G modeling a network [START_REF] White | A spectral clustering approach to finding communities in graph[END_REF], such as social, neuronal, or transportation networks. SC suffers nevertheless from three main computational bottlenecks for large N and/or k: the creation of the similarity matrix W; the partial eigendecomposition of the graph Laplacian matrix L; and k-means.

Related work

Circumventing these bottlenecks has raised a significant interest in the past decade. Several authors have proposed ideas to tackle the eigendecomposition bottleneck, e.g., via the power method [START_REF] Boutsidis | Spectral clustering via the power method -provably[END_REF][START_REF] Lin | Power iteration clustering[END_REF], via a careful optimisation of diagonalisation algorithms in the context of SC [START_REF] Liu | Fast large-scale spectral clustering by sequential shrinkage optimization[END_REF], or via matrix column-subsampling such as in the Nyström method [START_REF] Fowlkes | Spectral grouping using the nystrom method[END_REF], the nSPEC and cSPEC methods of [START_REF] Wang | Approximate spectral clustering[END_REF], or in [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Sakai | Fast spectral clustering with random projection and sampling[END_REF]. All these methods aim to quickly compute feature vectors, but k-means is still applied on N feature vectors. Other authors, inspired by research aiming at reducing k-means complexity [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF], such as the line of work on coresets [START_REF] Har-Peled | On coresets for k-means and k-median clustering[END_REF], have proposed to circumvent k-means in high dimension by subsampling a few data points out of the N available ones, applying SC on its reduced similarity graph, and interpolating the results back on the complete dataset. One can find similar methods in [START_REF] Yan | Fast approximate spectral clustering[END_REF] and [START_REF] Wang | Approximate spectral clustering[END_REF]'s eSPEC proposition, where two different interpolation methods are used. Both methods are heuristic: there is no proof that these methods approach the results of SC. Also, let us mention [START_REF] Dhillon | Weighted graph cuts without eigenvectors a multilevel approach[END_REF] that circumvents both the eigendecomposition and the k-means bottlenecks: the authors reduce the graph's size by successive aggregation of nodes, apply SC on this small graph, and propagate the results on the complete graph using kernel k-means to control interpolation errors. The kernel is computed so that kernel k-means and SC share the same objective function [START_REF] Filippone | A survey of kernel and spectral methods for clustering[END_REF]. Finally, we mention works [START_REF] Boutsidis | Stochastic dimensionality reduction for k-means clustering[END_REF][START_REF] Cohen | Dimensionality reduction for k-means clustering and low rank approximation[END_REF] that concentrate on reducing the feature vectors' dimension in the k-means problem, but do not sidestep the eigendecomposition nor the large N issues.

Contribution: compressive clustering

In this work, inspired by recent advances in the emerging field of graph signal processing [START_REF] Sandryhaila | Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure[END_REF][START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF], we circumvent SC's last two bottlenecks and detail a fast approximate spectral clustering method for large datasets, as well as the supporting theory. We suppose that the Laplacian matrix L ∈ R N ×N of G is given. Our method is made of two ingredients.

The first ingredient builds upon recent works [START_REF] Ramasamy | Compressive spectral embedding: sidestepping the SVD[END_REF][START_REF] Tremblay | Accelerated spectral clustering using graph filtering of random signals[END_REF] that avoid the costly computation of the eigenvectors of L by filtering O(log(k)) random signals on G that will then serve as feature vectors to perform clustering. We show in this paper how to incorporate the effects of non-ideal, but computationally efficient, graph filters on the quality of the feature vectors used for clustering.

The second ingredient uses a recent sampling theory of bandlimited graph-signals [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] to reduce the computational complexity of k-means. Using the fact that the indicator vectors of each cluster are approximately bandlimited on G, we prove that clustering a random subset of O(k log(k)) nodes of G using random features vectors of size O(log(k)) is sufficient to infer rapidly and accurately the cluster label of all N nodes of the graph. Note that the complexity of k-means is reduced to O(k 2 log 2 (k)) instead of O(N k 2 ) for SC. One readily sees that this method scales easily to large datasets, as will be demonstrated on artifical and real-world datasets containing up to N = 10 6 nodes.

The proposed compressive spectral clustering method can be summarised as follows:

• generate a feature vector for each node by filtering O(log(k)) random Gaussian signals on G; • sample O(k log(k)) nodes from the full set of nodes; • cluster the reduced set of nodes; • interpolate the cluster indicator vectors back to the complete graph.

Background

Graph signal processing

Let G = (V, E, W) be an undirected weighted graph with V the set of N nodes, E the set of edges, and W the weighted adjacency matrix such that W ij = W ji 0 is the weight of the edge between nodes i and j.

The graph Fourier matrix. Consider the graph's normalized Laplacian matrix L = I -D -1/2 WD -1/2 where I is the identity in dimension N , and D is diagonal with D ii = j =i W ij . L is real symmetric and positive semidefinite, therefore diagonalizable as L = UΛU , where , 1997). By analogy to the continuous Laplacian operator whose eigenfunctions are the classical Fourier modes and eigenvalues their squared frequencies, the columns of U are considered as the graph's Fourier modes, and { √ λ l } l as its set of associated "frequencies" [START_REF] Shuman | The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[END_REF]. Other types of graph Fourier matrices have been proposed, e.g., [START_REF] Sandryhaila | Discrete signal processing on graphs[END_REF], but in order to exhibit the link between graph signal processing and SC, the Laplacian-based Fourier matrix appears more natural.

U := (u 1 |u 2 | . . . |u N ) ∈ R N ×N is the orthonormal ba- sis of eigenvectors and Λ ∈ R N ×N the diagonal matrix containing its sorted eigenvalues : 0 = λ 1 . . . λ N 2 (Chung
Graph filtering. The graph Fourier transform x of a signal x defined on the nodes of the graph (called a graph signal) reads: x = U x. Given a continuous filter function h defined on [0, 2], its associated graph filter operator H ∈ R N ×N is defined as H := h(L) = Uh(Λ)U , where h(Λ) := diag(h(λ 1 ), h(λ 2 ), • • • , h(λ N )). The signal x filtered by h is Hx. In the following, we consider ideal lowpass filters, denoted by h λc , that satisfy, for all λ ∈ [0, 2],

h λc (λ) = 1, if λ λ c , and h λc (λ) = 0, if not. (1)
Denote by H λc the graph filter operator associated to h λc .

Fast graph filtering. To filter a signal by h without diagonalizing L, one may approximate h by a polynomial h of order p satisfying h(λ) := p l=0 α l λ l h(λ) for all λ ∈ [0, 2], where α 1 , . . . , α p ∈ R. In matrix form, we have

H := h(L) = p l=0 α l L l H.
Let us highlight that we never compute the potentially dense matrix H in practice. Indeed, we are only interested in the result of the filtering operation: Hx = p l=0 α l L l x ≈ Hx for x ∈ R N , obtainable with only p successive matrix-vector multiplications with L. The computational complexity of filtering a signal is thus O(p#E), where #E is the number of edges of G.

Spectral clustering

We choose here Ng et al.'s method (2002) based on the normalized Laplacian as our standard SC method. The input Algorithm 1 Spectral Clustering [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] Input: The Laplacian matrix L, the number of clusters k

1• Compute U k ∈ R N ×k , L's first k eigenvectors: U k = (u 1 |u 2 | • • • |u k ). 2• Form the matrix Y k ∈ R N ×k from U k by nor- malizing each of U k 's rows to unit length: (Y k ) ij = (U k ) ij / k j=1 U 2 ij . 3• Treat
each node i as a point in R k by defining its feature vector f i ∈ R k as the transposed i-th row of Y k :

f i := Y k δ i ,
where δ i (j) = 1 if j = i and 0 otherwise. 4• To obtain k clusters, run k-means with the Euclidean distance:

D ij := f i -f j (2)
is the adjacency matrix W representing the pairwise similarity of all the N objects to cluster 1 . After computing its Laplacian L, follow Alg. 1 to find k classes.

Principles of CSC

Compressive spectral clustering (CSC) circumvents two of SC's bottlenecks, the partial diagonalisation of the Laplacian and the high-dimensional k-means, thanks to the following ideas.

1) Perform a controlled estimation Dij of the spectral clustering distance D ij (see Eq (2)), without partially diagonalizing the Laplacian, by fast filtering a few random signals with the polynomial approximation hλ k of the ideal low pass filter h λ k (see Eq. ( 1)). A theorem recently published independently by two teams [START_REF] Ramasamy | Compressive spectral embedding: sidestepping the SVD[END_REF][START_REF] Tremblay | Accelerated spectral clustering using graph filtering of random signals[END_REF] shows that this is possible when there is no normalisation step (step 2 in Alg. 1) and when the order p of the polynomial approximation tends to infinity, i.e., when hλ k = h λ k . In Sec. 3.1, we provide a first extension of this theorem that takes into account normalisation. A complete extension that also takes into account the polynomial approximation error is presented in Sec. 4.2.

2) Run k-means on n randomly selected feature vectors out of the N available ones -thus clustering the corresponding n nodes into k groups -and interpolate the result back on the full graph. To guarantee robust reconstruction, we take advantage of our recent results on random sampling of k-

1 In network analysis, the raw data is directly W. In the case where one starts with a set of data points (x1, . . . , xN ), the first step consists in deriving W from the pairwise similarities s(xi, xj). See [START_REF] Von Luxburg | A tutorial on spectral clustering[END_REF] for several choices of similarity measure s and several ways to create W from the s(xi, xj). bandlimited graph signals. In Sec. 3.2, we explain why these results are applicable to clustering and show that it is sufficient to sample n = O(k log k) features only! Note that to cluster data into k groups, one needs at least k samples. This result is thus optimal up to the extra log k factor. 

i is 2 v k (i) := U k δ i = k j=1 U 2 ij .
Let us define the diagonal matrix:

V k (i, i) = 1/v k (i).
Note that we assume that v k (i) > 0. Indeed, in the pathologic cases where v k (i) = 0 for some nodes i, step 2 of the standard SC algorithm cannot be run either. Now, con-

sider the matrix R = (r 1 |r 2 | • • • |r d ) ∈ R N ×d consisting of d random signals r i
, whose components are independent Bernouilli, Gaussian, or sparse (as in Theorem 1.1 of [START_REF] Achlioptas | Database-friendly random projections: Johnson-lindenstrauss with binary coins[END_REF]) random variables. To fix ideas in the following, we consider the components as independent random Gaussian variables of mean zero and variance 1/d.

Consider the coherence-normalized filtered version of R, V k H λ k R ∈ R N ×d
, and define node i's new feature vector fi ∈ R d as the transposed i-th line of this filtered matrix:

fi := (V k H λ k R) δ i .
The following theorem shows that, for large enough d,

Dij := fi -fj = (V k H λ k R) (δ i -δ j )
is a good estimation of D ij with high probability.

Theorem 3.2. Let ∈]0, 1] and β > 0 be given. If d is larger than

4 + 2β 2 /2 -3 /3 log N,
then with probability at least 1 -N -β , we have

(1 -)D ij Dij (1 + )D ij .
for all (i, j) ∈ {1, . . . , N }2 .

The proof is provided in the supplementary material.

In Sec. 4.2, we generalize this result to the real-world case where the low-pass filter is approximated by a finite order polynomial; we also prove that, as announced in the introduction, one only needs d = O(log k) features when using the downsampling scheme that we now detail.

Downsampling and interpolation

For j = 1, . . . , k, let us denote by c j ∈ R N the groundtruth indicator vector of cluster C j , i.e.,

(c j ) i := 1 if i ∈ C j , 0 otherwise, ∀i ∈ {1, . . . , N }.
To estimate c j , one could run k-means on the N feature vectors { f1 , . . . , fN } , as done in [START_REF] Ramasamy | Compressive spectral embedding: sidestepping the SVD[END_REF][START_REF] Tremblay | Accelerated spectral clustering using graph filtering of random signals[END_REF]). Yet, this is still inefficient for large N . To reduce the computational cost further, we propose to run k-means on a small subset of n feature vectors only. The goal is then to infer the labels of all N nodes from the labels of the n sampled nodes. To this end, we need 1) a low-dimensional model that captures the regularity of the vectors c j , 2) to make sure that enough information is preserved after sampling to be able to recover the vectors c j , and 3) an algorithm that rapidly and accurately estimates the vectors c j by exploiting their regularity.

THE LOW-DIMENSIONAL MODEL

For a simple regular (with nodes of same degree) graph of k disconnected clusters, it is easy to check that {c 1 , . . . , c k } form a set of orthogonal eigenvectors of L with eigenvalue 0. All indicator vectors c j therefore live in span(U k ). For general graphs, we assume that the indicator vectors c j live close to span(U k ), i.e., the difference between any c j and its orthogonal projection onto span(U k ) is small. Experiments in Section 5 will confirm that it is a good enough model to recover the cluster indicator vectors.

In graph signal processing words, one can say that c j is approximately k-bandlimited, i.e., its k first graph Fourier coefficients bear most of its energy. There has been recently a surge of interest around adapting classical sampling theorems to such bandlimited graph signals [START_REF] Anis | Efficient sampling set selection for bandlimited graph signals using graph spectral proxies[END_REF][START_REF] Chen | Discrete signal processing on graphs: Sampling theory[END_REF][START_REF] Marques | Sampling of graph signals with successive local aggregations[END_REF][START_REF] Tsitsvero | Signals on graphs: Uncertainty principle and sampling[END_REF]. We rely here on the random sampling strategy proposed in [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] to select a subset of n nodes.

SAMPLING AND INTERPOLATION

The subset of feature vectors is selected by drawing n indices Ω := {ω 1 , . . . , ω n } uniformly at random from {1, . . . , N } without replacement. Running k-means on the subset of features { fω1 , . . . , fωn } thus yields a clustering of the n sampled nodes into k clusters. We denote by c r j ∈ R n the resulting low-dimensional indicator vectors.

Our goal is now to recover c j from c r j . Consider that k-means is able to correctly identify c 1 , . . . , c k ∈ R N using the original set of features {f 1 , . . . , f N } with the SC algorithm (otherwise, CSC is doomed to fail from the start). Results in [START_REF] Ramasamy | Compressive spectral embedding: sidestepping the SVD[END_REF][START_REF] Tremblay | Accelerated spectral clustering using graph filtering of random signals[END_REF] show that k-means is also able to identify the clusters using the feature vectors { f1 , . . . , fN }. This is explained theoretically by the fact that the distance between all pairs of feature vectors is preserved (see Theorem 3.2). Then, as choosing a subset { fω1 , . . . , fωn } of { f1 , . . . , fN } does not change the distance between the feature vectors, we can hope that kmeans correctly clusters the n sampled nodes, provided that each cluster is sufficiently sampled. Experiments in Sec. 5 will confirm this intuition. In this ideal situation, we have

c r j = M c j , (3) 
where M ∈ R n×N is the sampling matrix satisfying:

M ij := 1 if j = ω i , 0 otherwise. ( 4 
)
To recover c j from its n observations c r j , [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] show that the solution to the optimisation problem

min x∈R N Mx -c r j 2 2 + γ x g(L)x, (5) 
is a faithful 3 estimation of c j , provided that c j is close to span(U k ) and that M satisfies the restricted isometry property (discussed in the next subsection). In (5), γ > 0 is a regularisation parameter and g a positive non-decreasing polynomial function (see Section 2.1 for the definition of g(L)). This reconstruction scheme is proved to be robust to: 1) observation noise, i.e., to imperfect clustering of the n nodes in our context; 2) model errors, i.e., the indicator vectors do not need to be exactly in span(U k ) for the method to work. Also, the performance is shown to depend on the ratio g(λ k )/g(λ k+1 ). The smaller it is, the better the reconstruction. To decrease this ratio, we decide to approximate the ideal high-pass filter g λ k (λ) = 1-h λ k (λ) for the reconstruction. Remark that this filter favors the recovery of signals living in span(U k ). The approximation gλ k of g λ k is obtained using a polynomial (as in Sec. 2.1), which permits us to find fast algorithms to solve (5).

HOW MANY FEATURES TO SAMPLE?

We terminate this section by providing the theoretical number of features n one needs to sample in order to make sure that the indicator vectors can be faithfully recovered. This number is driven by the following quantity. Definition 3.3 (Global cumulative coherence). The global cumulative coherence of order k of the graph G is

ν k := √ N • max 1 i N {v k (i)} .
It is shown in [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] that [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF]). Let M be a random sampling matrix constructed as in (4). For any δ, ∈ ]0, 1[,

ν k ∈ [k 1/2 , N 1/2 ]. Theorem 3.4 ((
(1 -δ) x 2 2 N n M x 2 2 (1 + δ) x 2 2
(6)

3 precise error bounds are provided in [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF].

for all x ∈ span(U k ) with probability at least 1provided that

n 6 δ 2 ν 2 k log k .
The above theorem presents a sufficient condition on n ensuring that M satisfies the restricted isometry property (6). This condition is required to ensure that the solution of ( 5) is an accurate estimation of c j . The above theorem thus indicates that sampling O(ν 2 k log k) features is sufficient to recover the cluster indicator vectors.

For a simple regular graph G made of k disconnected clusters, we have seen that U k = (c 1 , . . . , c k ) up to a normalisation of the vectors. Therefore,

ν k = N 1/2 / min i {N 1/2 i },
where N i is the size of the i th cluster. If the clusters have the same size N i = N/k then ν k = k 1/2 , the lower bound on ν k . In this simple optimal scenario, sampling

O(ν 2 k log k) = O(k log k)
features is thus sufficient to recover the cluster indicator vectors.

The attentive reader will have noticed that for graphs where ν 2 k ≈ N , no downsampling is possible. Yet, a simple solution exists in this situation: variable density sampling. Indeed, it is proved in [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] that, whatever the graph G, there always exists an optimal sampling distribution such that n = O(k log k) samples are sufficient to satisfy Eq. ( 6). This distribution depends on the profile of the local cumulative coherence and can be estimated rapidly (see [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] for more details). In this paper, we only consider uniform sampling to simplify the explanations, but keep in mind that in practice results will always be improved if one uses variable density sampling. Note also that one cannot expect to sample less than k nodes to find k clusters. Up to the extra log(k), our result is optimal.

CSC in practice

We have detailed the two fundamental theoretical notions supporting our algorithm, presented in Alg. 2. However, some steps in Alg. 2 still need to be clarified. In particular, Sec. 4.2 provides an extension of Theorem 3.2 that takes into account the use of a non-ideal low-pass filter (to handle the practical case where the order of the polynomial approximation is finite). This theorem in fine explains and justifies step 4 of Alg. 2. Then, in Sec. 4.3, important details are discussed such as the estimation of λ k (step 1) and the choice of the polynomial approximation (step 2). We finish this section with complexity considerations.

The CSC algorithm

As for SC (see Sec. 2.2), the algorithm starts with the adjacency matrix W of a graph G. After computing its Laplacian L, the CSC algorithm is summarized in Alg. 2. The output c * j (i) is not binary and in fact quantifies how much node i belongs to cluster j, useful for fuzzy partitioning. To obtain an exact partition of the nodes, we normalize each indicator vector c * j , and assign node i to the cluster j for which c * j (i)/ c * j is maximal.

Non-ideal filtering of random signals

In this section, we improve Theorem 3.2 by studying how the error of the polynomial approximation hλ k of h λ k propagates to the spectral distance estimation, and by taking into account the fact that k-means is performed on the reduced set of features ( fω1

| . . . | fωn ) = M( f1 | . . . | fN ) .
We denote by MY k ∈ R n×k the ideal reduced feature matrix. We have

(f ω1 | • • • |f ωn ) = M(f 1 | • • • |f N ) = MY k .
The actual distances we want to estimate using random signals are thus, for all (i, j) ∈ {1, . . . , n} 2

D r ij := f ωi -f ωj = Y k M (δ r i -δ r j ) ,
where the {δ r i } are here Diracs in n dimensions. Consider the random matrix R = (r

1 |r 2 | • • • |r d ) ∈ R N ×d constructed as in Sec. 3.1. Its filtered, normalized and re- duced version is MV k Hλ k R ∈ R n×d . The new feature vec- tor fωi ∈ R d associated to node ω i is thus fωi = (MV k Hλ k R) δ r i .
The normalisation of Step 4 in Alg. 2 approximates the action of V k in the above equation. More details and justifications are provided in the "Important remark" at the end of this section. The distance between any two features reads

Dr ij := fωi -fωj = R H λ k V k M (δ r i -δ r j ) .
We now study how well Dr ij estimates D r ij . Approximation error. Denote e(λ) the approximation error of the ideal low-pass filter:

∀λ ∈ [0, 2], e(λ) := hλ k (λ) -h λ k (λ).
In the form of graph filter operators, one has

hλ k (L) = Hλ k = H λ k + E = h λ k (L) + e(L).
We model the error e using two parameters: e 1 (resp. e 2 ) the maximal error for λ λ k (resp. λ > λ k ). We have

e 1 := sup λ∈{λ1,...,λ k } |e(λ)|, e 2 := sup λ∈{λ k+1 ,...,λ N } |e(λ)|.
The resolution parameter. In some cases, the ideal reduced spectral distance D r ij may be null. In such cases, approximating D r ij = 0 using a non-ideal filter is not possible. In fact, non-ideal filtering introduces an irreducible error on the estimation of the feature vectors that is not possible to compensate in general. We thus introduce a resolution parameter D r min below which the distances D r ij do not need to be approximated exactly, but should remain below D r min (up to a tolerated error).

Theorem 4.1 (General norm conservation theorem). Let D r min ∈ 0, √ 2 be a chosen resolution parameter. For any δ ∈ ]0, 1], β > 0, if d is larger than

16(2 + β) δ 2 -δ 3 /3 log n, then, for all (i, j) ∈ {1, . . . , n} 2 , (1 -δ)D r ij Dr ij (1 + δ)D r ij , if D r ij D r min , and 
Dr ij < (1 + δ)D r min , if D r ij < D r min , with probability at least 1 -2n -β provided that |e 2 1 -e 2 2 | + √ 2 e 2 D r min min i {v k (i)} δ 2 + δ . ( 7 
)
The proof is provided in the supplementary material.

Consequence of Theorem 4.1. All distances smaller (resp. larger) than the chosen resolution parameter D r min are estimated smaller than (1 + δ)D r min (resp. correctly estimated up to a relative error δ). Moreover, for a fixed distance estimation error δ, the lower we decide to fix D r min , the lower should also be the errors e 1 and/or e 2 to ensure that Eq. ( 7) still holds, which implies an increase of the order p of the polynomial approximation of the ideal filter h λ k , and ultimately, that means a higher computation time for the filtering operation of the random signals.

Important remark. The feature matrix V k Hλ k R can be easily computed if one knows the cut-off value λ k and the local cumulative coherences v k (i). Unfortunately, this is not the case in practice. We propose a solution to estimate λ k in Sec. 4.3. To estimate v k (i), one can use the results in Sec. 4 of [START_REF] Puy | Random sampling of bandlimited signals on graphs[END_REF] 

showing that v k (i) = U k δ i ≈ (H λ k R) δ i .
Thus, a practical way to estimate V k Hλ k R is to first compute Hλ k R and then normalize its rows to unit length, as done in Step 4 of Alg. 2.

Polynomial approximation and estimation of λ k

The polynomial approximation. Theorem 4.1 uses a separate control on e(λ) below λ k (with e 1 ) and above λ k (with e 2 ). To have such a control in practice, one would need to use rational filters (ratio of two polynomials) to approximate h λ k . Such filters have been introduced in the graph context [START_REF] Shi | Infinite impulse response graph filters in wireless sensor networks[END_REF], but they involve another optimisation step that would burden our main message. We prefer to simplify our analysis by using polynomials for which only the maximal error can be controlled. We write 

In this easier case, one can show that Theorem 4.1 is still valid if Eq. ( 7) is replaced by

√ 2 e m D r min min i {v k (i)} δ 2 + δ . (9) 
In our experiments, we could follow [START_REF] Shuman | Chebyshev polynomial approximation for distributed signal processing[END_REF] and use truncated Chebychev polynomials to approximate the ideal filter, as these polynomials are known to require a small degree to ensure a given tolerated maximal error e m . We prefer to follow [START_REF] Napoli | Efficient estimation of eigenvalue counts in an interval[END_REF] who suggest to use Jackson-Chebychev polynomials: Chebychev polynomials to which are added damping multipliers to alleviate the unwanted Gibbs oscillations around the cut-off frequency λ k .

The polynomial's order p. For a fixed δ, D r min , and min i {v k (i)}, one should use the Jackson-Chebychev polynomial of smallest order p * ensuring that e m satisfies Eq. ( 9), in order to optimize the computation time while making sure that Theorem 4.1 applies. Studying p * theoretically without computing the Laplacian's complete spectrum (see Eq. ( 8)) is beyond the scope of this paper. Experimentally, p = 50 yields good results (see Fig. 2c).

Estimation of λ k . The fast filtering step is based on the polynomial approximation of h λ k , which is itself parametrized by λ k . Unless we compute the first k eigenvectors of L, thereby partly loosing our efficiency edge on other methods, we cannot know the value of λ k with infinite precision. To estimate it efficiently, we use eigencount techniques [START_REF] Napoli | Efficient estimation of eigenvalue counts in an interval[END_REF]: based on low-pass filtering with a cut-off frequency at λ of random signals, one obtains an estimation of the number of enclosed eigenvalues in the interval [0, λ]. Starting with λ = 2 and proceeding by dichotomy on λ, one stops the algorithm as soon as the number of enclosed eigenvalues equals k. For each value of λ, in order to have a proper estimation of the number of enclosed eigenvalues, we choose to filter 2 log N random signals with Jackson-Chebychev polynomial approximation of the ideal low-pass filters.

Complexity considerations

The complexity of steps 2, 3 and 5 of Alg. 2 are not detailed as they are insignificant compared to the others. First, note that fast filtering a graph signal costs O(p #E). SC's k-means step has a complexity of O(N k 2 ) per iteration. In many cases5 this sole task is more expensive than the CSC algorithm. On top of this, SC has the additional complexity of computing the first k eigenvectors of L, for which the cost of ARPACK -a popular eigenvalue solveris O(k 3 + N k 2 ) (see, e.g., Sec. 3.2 of (Chen et al., 2011)).

This study suggests that CSC is faster than SC for large N and/or k. The above algorithms' number of iterations are not taken into account as they are difficult to predict theoretically. Yet, the following experiments confirm the superiority of CSC over SC in terms of computational time.

Experiments

We first perform well-controlled experiments on the Stochastic Block Model (SBM), a model of random graphs with community structure, that was showed suitable as a benchmark for SC in [START_REF] Lei | Consistency of spectral clustering in stochastic block models[END_REF]. We also show performance results on a large real-world network. Implementation was done in Matlab R2015a, using the builtin function kmeans with 20 replicates, and the function eigs for SC. Experiments were done on a laptop with a 2.60 GHz Intel i7 dual-core processor running OS Fedora release 22 with 16 GB of RAM. The fast filtering part of CSC uses the gsp cheby op function of the GSP toolbox [START_REF] Perraudin | A toolbox for signal processing on graphs[END_REF]. Equation ( 5) is solved using Matlab's gmres function. All our results are reproducible with the CSCbox downloadable at http:// cscbox.gforge.inria.fr/.

The Stochastic Block Model

What distinguishes the SBM from Erdos-Renyi graphs is that the probability of connection between two nodes i and j is not uniform, but depends on the community label of i and j. More precisely, the probability of connection between nodes i and j equals q 1 if they are in the same community, and q 2 if not. In a first approach, we look at graphs with k communities, all of same size N/k. Furthermore, instead of considering the probabilities, one may fully characterize a SBM by providing their ratio = q2 q1 , as well as the average degree s of the graph. The larger , the more difficult the community structure's detection. In fact, [START_REF] Decelle | Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications[END_REF] show that a critical value c exists above which community detection is impossible at the large N limit: c = (s -√ s)/(s + √ s(k -1)).

Performance results

In Figs. 2 a-d), we compare the recovery performance of CSC versus SC for different parameters. The performance is measured by the Adjusted Rand similarity index [START_REF] Hubert | Comparing partitions[END_REF] between the SBM's ground truth and the obtained partitions. It varies between -1 and 1. The higher it is, the better is the reconstruction. These figures show that the performance of CSC saturates at the default values of n, d, p and γ (see top of Alg. 2). Experiments on the SBM with heterogeneous community sizes are provided in the supplementary material and show similar results. tion of λ k is larger than λ k+1 , which means that our feature vectors start to integrate some unwanted information from eigenvectors outside of span(U k ). Even though the impact of this additional information is application-dependent and in some cases insignificant, further efforts to improve the estimation of λ k would be beneficial to our method.

In Figs. 2 f-g) we fix to c /4, n, d, p and γ to the values given in Alg. 2, and vary N and k. We compare the recovery performance and the time of computation of CSC, SC and Boutsidis' power method [START_REF] Boutsidis | Spectral clustering via the power method -provably[END_REF]. The power method (PM), in a nutshell, 1) applies the Laplacian matrix to the power r to k random signals, 2) computes the left singular vectors of the N ×k obtained matrix, to extract feature vectors, 3) applies k-means in high-dimension (like SC) with these feature vectors. In our experiments, we use r = 10. The recovery performances are nearly identical in all situations, even though CSC is only a few percents under SC and PM ( We finally compare CSC and SC on a real-world dataset: the Amazon co-purchasing network [START_REF] Yang | Defining and evaluating network communities based on ground-truth[END_REF]. It is an undirected connected graph comprising N = 334 863 nodes and #E = 925 872 edges. The results are presented in Fig. 2 h) for three values of k. As there is no clear ground truth in this case, we use the modularity [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] to measure the algorithm's clustering performance, a well-known cost function that measures how well a given partition separates a network in different communities. Note that the 20 replicates of k-means would not converge for SC with the default maximum number of iterations set to 100. For a fair comparison with CSC, we used only 2 replicates with a maximum number of iterations set to 1000 for SC's k-means step. We see that for the same clustering performance, CSC is much faster than SC, especially as k increases. The PM algorithm on this dataset does not perform well: even though the features are estimated quickly, they apparently do not form clear classes such that its k-means step takes even longer than SC's. For the three values of k, we stopped the PM algorithm after a time of computation exceeding SC's.

Conclusion

By graph filtering O(log k) random signals, we construct feature vectors whose interdistances approach the standard SC feature distances. Then, building upon compressive sensing results, we show that one can sample O(k log k) nodes from the set of N nodes, cluster this reduced set of nodes and interpolate the result back to the whole graph.

3. 1 .

 1 Ideal filtering of random signals Definition 3.1 (Local cumulative coherence). Given a graph G, the local cumulative coherence of order k at node

Algorithm 2

 2 Compressive Spectral Clustering Input: The Laplacian matrix L, the number of clusters k; and parameters typically set to n = 2k log k, d = 4 log n, p = 50 and γ = 10 -3 . 1• Estimate L's k-th eigenvalue λ k as in Sec. 4.3. 2• Compute the polynomial approximation hλ k of order p of the ideal low-pass filter h λ k . 3• Generate d random Gaussian signals of mean 0 and variance 1/d: R = (r 1 |r 2 | • • • |r d ) ∈ R N ×d . 4• Filter R with Hλ k = hλ k (L) as in Sec. 2.1 and define, for each node i, its feature vector fi ∈ R d : fi = Hλ k R δ i Hλ k R δ i . 5• Generate a random sampling matrix M ∈ R n×N as in Eq. (4) and keep only n feature vectors: ( fω1 | . . . | fωn ) = M( f1 | . . . | fN ) . 6• Run k-means on the reduced dataset with the Euclidean distance: Dr ij = fωifωj to obtain k reduced indicator vectors c r j ∈ R n , one for each cluster. 7• Interpolate each reduced indicator vector c r j with the optimisation problem of Eq. (5), to obtain the k indicator vectors cj * ∈ R N on the full set of nodes.

  e m := max(e 1 , e 2 ) = sup λ∈{λ1,...,λ N } |e(λ)| .

  4 Therefore, Step 1 costs O(p #E log N ) per iteration of the dichotomy, and Step 4 costs O(p #E log n) (as d = O(log n)).Step 7 requires to solve Eq. (5) with the polynomial approximation ofg λ k (λ) = 1 -h λ k (λ).When solved, e.g., by conjugate gradient or gradient descent, this step costs a fast filtering operation per iteration of the solver and for each of the k classes. Step 7 thus costs O(p #Ek). Also, the complexity of k-means to cluster Q feature vectors of dimension r into k classes is O(kQr) per iteration. Therefore, Step 6 with Q = n and r = d = O(log(n)) costs O(kn log n). CSC's complexity is thus O (kn log n + p #E (log N + log n + k)) . In practice, we are interested in sparse graphs: #E = O(N ). Using the fact that n = O(k log k), CSC's complexity simplifies to O k 2 log 2 k + pN (log N + k) .

Fig. 2 eFigure 1 .

 21 Fig.2e) shows the estimation results of λ k for different values of : it is overestimated in the SBM context. As long as the estimated value stays under λ k+1 , this overestimation does not have a strong impact on the method. On the other hand, as becomes larger than ∼ 0.06, our estima-

  Fig. f is zoomed around the high values of the recovery score). For the time of computation, the experiments confirm that all three methods are roughly linear in N and polynomial in k (Fig. g is plotted in log-log), with a lower exponent for CSC than for SC and PM; such that SC and PM are faster for k = 20 but CSC becomes up to an order of magnitude faster as k increases to 200.Note that the SBM is favorable to SC as Matlab's function eigs converges very fast in this case, e.g., for N = 10 5 , it finds the first k = 200 eigenvectors in less than 2 minutes! PM sidesteps successfully the cost of eigs, but the cost of k-means in high-dimension is still a strong bottleneck.

Throughout this paper, . stands for the usual 2-norm.

Recall that p is the order of the polynomial filter.

Roughly, all cases for which k 2 > p(log N + k).

If the low-dimensional k-means result is correct, i.e., if Eq. ( 3) is verified, we guarantee that the interpolation is a good approximation of the SC result. To improve the clustering result of the reduced set of nodes, one could consider the concept of community cores [START_REF] Seifi | Stable community cores in complex networks[END_REF]. In fact, as the filtering and the low-dimensional clustering steps are fairly cheap to compute, one could repeat these steps for different random signals, keep the sets of nodes that are always classified together and use only these stable "cores" for interpolation. Our experiments show that even without such potential improvements, CSC proves efficient and accurate in synthetic and real-world datasets; and could be preferred to SC for large N and/or k.
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We rewrite fifj in a form that will let us apply the Johnson-Lindenstrauss lemma of norm conservation:

where the f i are the standard SC feature vectors. Applying Theorem 1.1 of [START_REF] Achlioptas | Database-friendly random projections: Johnson-lindenstrauss with binary coins[END_REF] (an instance of the Johnson-Lindenstrauss lemma) to R U k (f i -f j ) , the following holds. If d is larger than:

then with probability at least 1 -N -β , we have,

As the columns of U k are orthonormal, we end the proof:

B. Proof of Theorem 4.1

Proof. Recall that:

Given that Hλ k = H λ k + E and using the triangle inequality in the definition of Dr ij , we obtain

We continue the proof by bounding R H

for all (i, j) ∈ {1, . . . , n} 2 . To bound R E V k M δ r ij , we use Theorem 1.1 in [START_REF] Achlioptas | Database-friendly random projections: Johnson-lindenstrauss with binary coins[END_REF]. This theorem proves that if d > d 0 , then with probability at least 1-n -β ,

for all (i, j) ∈ {1, . . . , n} 2 . Using the union bound and (12), we deduce that, with probability at least 1 -2n -β ,

for all (i, j) ∈ {1, . . . , n} 2 provided that d > d 0 .

Then, as e is bounded by e 1 on the first k eigenvalues of the

Compressive Spectral Clustering spectrum and by e 2 on the remaining ones, we have

The last step follows from the fact that

Define, for all (i, j) ∈ {1, . . . , n} 2 :

Thus, the above inequality may be rewritten as:

for all (i, j) ∈ {1, . . . , n} 2 , which combined with ( 13) yields

for all (i, j) ∈ {1, . . . , n} 2 , with probability at least 1 -2n -β provided that d > d 0 .

Let us now separate two cases. In the case where D r ij D r min > 0, we have

provided that Eq. ( 7) of the main paper holds. Combining the last inequality with ( 14) proves the first part of the theorem.

In the case where D r ij < D r min , we have

provided that Eq. ( 7) of the main paper holds. Combining the last inequality with ( 14) terminates the proof.

C. Experiments on the SBM with heterogeneous community sizes

We perform experiments on a SBM with N = 10 3 , k = 20, s = 16 and hetereogeneous community sizes. More specifically, the list of community sizes is chosen to be: 5,10,15,20,25,30,35,40,45,50,50,55,60,65,70,75,80,85,90 and 95 nodes. In this scenario, there is no theoretical value of over which it is proven that recovery is impossible in the large N limit. Instead, we vary between 0 and 0.2 and show the recovery performance results with respect to n, d, p and γ in Fig. 2. Results are similar to the homogeneous case presented in Fig. 1(a-d