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ABSTRACT

This paper addresses the problem of on-the-fly term spotting

in continuous speech streams. We propose a 2-level archi-

tecture in which recall and accuracy are sequentially opti-

mized. The first level uses a cascade of phonetic filters to se-

lect the speech segments which probably contain the targeted

terms. The second level performs a request-driven decoding

of the selected speech segments. The results show good per-

formance of the proposed system on broadcast news data : the

best configuration reaches a F-Measure of about 94% while

respecting the on-the-fly processing constraint.

Index Terms— word spotting, spoken term detection,

speech recognition, speech retrieval

1. INTRODUCTION

Spoken term detection (STD) encountered recently a grow-

ing interest, due to a need of content-based retrieval in large

speech databases. A standard approach to STD is to extract

lattice of words or phonemes in a first stage, by using a large

vocabulary speech recognition (LVCSR) system. The search

of the requested terms operates on these previously produced

lattices [1].

Word-based methods have shown good performance ([2]);

nevertheless, this approach may fail when the request contains

out-of-vocabulary (OOV) words or when the word error rate

(WER) are relatively high ([3]). On the other side, phoneme-

based approaches present the interest of potentially good re-

call rates and allows to deal with OOV. In [4, 5, 6], the authors

demonstrated that the combination of sub-phonetic and word

index improves both recall and accuracy while allowing an

efficient handling of OOV words. Nevertheless, these STD

methods require a full storage of index or lattices which cor-

respond to a closed dictionary.

In this paper, we address the problem of on-the-fly spot-

ting, where the user would like to synchronously detect the ut-

terance of a spoken term, when it occurs in the speech stream,

without any global knowledge about contents.

This on-the-fly detection adds, to the classical difficulties

of term spotting, some specific constraints due to the short

delay required between the targeted event occurrence and the

system response. Moreover, since traditional STD systems

extract features from the whole speech database, the on-the-

fly detection must be performed by limiting the signal analy-

sis to a short temporal window.

We propose a request-driven strategy for on-the-fly term

spotting. This 2-level architecture combines phonetic filtering

and an automatic speech recognition (ASR) system. The first

level aims to remove speech segments in which the probabil-

ity of the target event is low. At contrary to the classical pho-

netic search , we propose to use a cascade of phonetic filters

that allow to detect, as soon as possible, the targeted terms in

the speech stream. The second level refines the detection by

using an ASR system based on request-driven decoding ([7]).

The next section presents the proposed architecture.

Acoustic filtering and request driven decoding are presented

respectively in the section 3 and 4. Results are reported and

commented in the section 5. Finally, we conclude and present

some perspectives in the section 6.

2. PRINCIPLE AND SYSTEM ARCHITECTURE

The architecture is split in two levels. The first one aims to

locates speech segments probably containing the request. It is

achieved by using an acoustic filter that encodes the user re-

quest. This acoustic filter is composed by a graph of phonetic

filters associated to HMM states. At this level, our objective

is to maximize the accuracy and computational efficiency

under the constraint of maximal recall rates. Considering

this defined objective and the intrinsic behavior of phonetic

matching, we can expect a relatively high false detection rate

at this point. The second level transcribes the speech seg-

ments which probably contain the request. We use a driven-

decoding algorithm (DDA) performing a soft-boosting of

term-sequence linguistic-probabilities. As opposed to clas-

sic Spoken Term Detection with a closed database, here the

search terms drive the phonetic filtering and the ASR system.

3. REQUEST ENCODING

First, the targeted term is transcribed into a phonetic represen-

tation in order to detect high matching areas. We propose to



transcript the request in a phoneme graph in which each path

corresponds to a variant of pronunciation. The transcription

is based on a phonetic lexicon including all the pronunciation

variants. OOV words are automatically transcribed by using

a rule-based phonetizer.

Each phonetic graph is then developed as a graph of states

according to the topology of the Markov models in the ASR

system. Usual approaches use such representation to spot

words by aligning the graph and the signal in a sliding win-

dow, the global path probability being used to take the final

decision of detection. This approach is sub-optimal in terms

of CPU/resource consuming : evaluation of the full path prob-

ability is generally useless as the intermediate scores could be

sufficient to cutoff the low-probability paths. We implement

such an as soon as possible (ASAP) cutoff by plugging an

phonetic filter (PF) to each graph node (and to the correspond-

ing state). PF are able to stop or continue the path evaluation

process. A graph of PF is an acoustic filter representing a

request.

Considering this strategy of ASAP cutoff, it is clear that

the most discriminative parts of the graph should be evaluated

first, with the purpose to reduce the evaluation cost while pre-

serving the spotting accuracy. Therefore, the graph may be

reduced according to both the complexity and the discrimina-

tive capacity of its subgraph. These points are described in

the next 2 sections.

3.1. Acoustic filters

Acoustic filters operate on phonetic and request levels. First,

a phonetic-filter (PF) is associated to each graph node (and

consequently to each state of the corresponding HMM). This

filter is able to stop the graph exploration when the observa-

tion is out of the model domain. This is achieved by searching

the lower limit ci of the frame likelihood given the state Si,

ll(Xt|Si) :

ll(Xt|Si) =
P (Xt|Si)

P (Xt|UBM)
(1)

where UBM is a phoneme-independent word model

and Xt a feature vector. We associated the random variable

Di(Xt) to each filter. Di is set to 1 when the inequality

ll(Xt|Si) > ci is true, otherwise to 0.

When the final node of the graph is reached (i.e. all pho-

netic filters were passed), a last selection rule is applied at the

segment level, in order to remove the paths of low probabili-

ties. This is achieved by thresholding the full path probabili-

ties :

P (X|S) > C

where X = {Xt} , S = {Si} and C the request-dependent

threshold.

The filter-dependent cutoff thresholds ci are estimated on

the training corpus, by estimating the upper bound of ci val-

ues respecting the constraint ll(Xt|Si) > ci, ∀Xt ∈ Ωi where

Ωi is the subset of the training corpus emitted by the state Si.

This rule allows to obtain a maximum recall on the training

corpus, without taking account of the filter accuracy. Never-

theless, we estimate values on the training corpus in order to

be able to build optimal filter-based requests. This point is

detailed in the next section. Segmental filtering relies on the

same thresholding strategy : C threshold is the lowest value

of the request probability in the train corpus.

3.2. Smart request

The basic idea of this mechanism is that some parts of the

phonetic request may have a discriminative capacity signifi-

cantly better than others due to 2 different reasons; first, the

less a phoneme-sequence is frequent, the more it is specific

to the targeted term. Second, according to the phonetic filter

performance, the use of partial requests may present a better

recall/accuracy trade off.

We instantiate this idea by searching, in the graph, the

best sub-graph in terms of both complexity and accuracy. For

simplicity, we first linearize the graph by merging concurrent

models into a common phonetic filter. The resulting filter f =
{fi}i=0,n is composed of the cascade of the n phonetic filters

fi. The relevance of f is estimated by a request-dependent

objective function Fob(f) which combines a computational

cost term (cpx(f)) and the accuracy acc(f).
The estimate of complexity relies on the estimate of the

number of frames which may be submitted to each phonetic

filter fk. This number depends from the probability of pass-

ing all the previous filters fk−i,k>i>=0 in the cascade of fil-

ters. So, the prior probability Pk of reaching the filter k can

computed from the prior probabilities of passing the previous

filters fi :

Pk =
k∏

i=0

P (Di = 1)

and the computational cost cpx(f) can be approximated by :

cpx(f) = g(1 +
n∑

k=0

k∏

i=0

P (Di = 1))

where g is the constant computational cost of phonetic-

filtering (set to 1 in our experiments).

The accuracy of the cascade filter f can be defined as the

probability that a spotted segment contains the targeted term.

It can be estimated according to the accuracy of each phonetic

filter fi and the global accuracy of the corresponding state

sequence ph = {Si} :

acc(f) = P (W |ph) ∗
n∏

i=0

P (Si|Di = 1)

where W is the searched word sequence. In this work, all

these probabilities are estimated directly on the training cor-

pus, by simple word counts for the linguistic terms P (W |ph),



and by evaluation of the phonetic-filter accuracy on the train-

ing corpus.

Finally, the objective function is defined as Fob(f) =
acc(f) − γcpx(f), where γ is a fudge factor empirically de-

termined.

4. REQUEST-DRIVEN DECODING

This step aims to refine the spotting achieved during the

first step by phonetic filtering. Speech segments which have

crossed the filters are submitted to the ASR system for a full

decoding pass. Spotting by using ASR systems is known to

be focused on accuracy, since the prior probability of having

the targeted terms in a transcription is low. On the other hand,

transcription errors may introduce mistakes and lead to misses

of correct utterances, especially on large requests: the longer

the searched term, the higher the probability of encounter-

ing an erroneous word. In order to limit this risk, the prior

probability of the request is slightly boosted by the driven

decoding algorithm ([7]). Driven decoding was designed to

correct imperfect transcripts. The principle is to compute,

at each point of the search graph, a transcript-to-hypothesis

matching score α, according to the number of shared words.

Then, α is used for trigram probabilities rescoring :

P̃ (wi|wi−1, wi−2) = P (wi|wi−1, wi−2)1−α

where P̃ (wi|wi−1, wi−2) is the updated trigram probabil-

ity of a the word wi knowing the history wi−1, wi−2, and

P (wi|wi−1, wi−2) is the initial probability of the trigram.

Here, we used it as a post-processor operating on the seg-

ment previously identified as a good candidate by the phonetic

filters. At this step, OOV words probabilities are interpolated

by backing-off to unknown word probabilities, with a con-

stant penalty factor.

5. EXPERIMENTS AND RESULTS

The evaluation of the proposed spotting term detection was

performed on French broadcast news from the Ester 2005

evaluation campaign. The spoken terms are searched in the

10-hour test corpus from the ESTER evaluation package. We

created 2 corpuses, the first corpus is composed of commonly

used words in 42 terms of various lengths (20 contain a single

word; others from 2 to 5 words), the other corpus is composed

of OOV (celebrity names, famous places, etc.) in 20 terms of

various lengths also.

The models used for building phonetic filters come from

the LIA BN system.

5.1. The LIA broadcast news system

Experiments are carried out by using the LIA broadcast news

(BN) system which was involved in the ESTER evaluation

campaign.This system relies on the HMM-based decoder

developed at the LIA and on the Alize ([8]). The search

engine is an asynchronous decoder operating on a phoneme

lattice; acoustic models are HMM-based, context-dependent

with cross-word triphones. These models are estimated on

the ESTER materials (about 80 hours of manually annotated

speech). Feature vectors are obtained by a 12 coefficient

PLP analysis plus energy, and their first and second order

derivatives. The language models are classical trigrams esti-

mated on about 200M words from the French newspaper Le
Monde and from the ESTER broadcast news corpus (about

1M words). Since the full BN system runs 3 passes including

speaker adaptation and 4-grams languages models, we run

only 1 pass in this work, with respect to the low computa-

tional cost constraint.

5.2. Acoustic filtering evaluation

The first test consists in evaluating a baseline phonetic-search

system where the full pronunciation-graph is used for request-

to-signal alignment. The performance of the acoustic filtering

method is evaluated next. The evaluation indicators are recall,

precision, real-time factor (RT Factor) and residue. The recall

is defined as the number of relevant documents retrieved by

a search and divided by the total number of existing relevant

documents. Precision is defined as the number of relevant

terms retrieved by a search divided by the total number of

documents retrieved by that search. The residue is the per-

centage of documents retrieved by the phonetic filters among

the total number of documents.

Table 1. Recall, Precision, real time ratio (RT factor),
and duration of the selected speech segments (Residual).
This test is performed on a set of 62 terms searched in 10

hours of French broadcast news. Results are reported per

phonetic-search system (Baseline), full cascade of phonetic-

filters (Phon. Filters), and smart requesting (Smart Requests)

.

Baseline Phon. Filters Smart Requests

Recall 0.99 0.97 0.97

Precision 0.013 0.022 0.021

RT Factor 0.1 0.05 0.03

Residue (%) 65 33 37

Results show that, as expected, the required high recall

rates lead to very low accuracy; nevertheless, the goal, at this

level, is to filter the speech signal without missing relevant

segments.

The phonetic filters and smart requests allow to extract

only 33% of the speech signal, with more than 97% of recall.

All methods differ mainly by their computational time con-

suming: the filtering technique runs significantly faster than

the usual phonetic search for similar performance in terms of

recall/accuracy. Smart requesting improves more this com-

 



putational efficiency (40% speed gain). These results match

expectation: both phonetic-filters and smart requests are not

supposed to impact significantly the recall and accuracy, since

they are designed to reduce the computational cost of spot-

ting. The next section results were obtained by adding, to

this first filtering pass, the post-processing based on the ASR

system.

5.3. Request-driven decoding

Here we evaluate the interest of this second step in terms of

detection performance. As a start we report baseline results

based on ASR systems alone in real-time and 16 real-time

configurations (respectively noted as ASR-1xRT and ASR-
16xRT). These results are compared to the ones obtained with

the two level architecture based on the classical decoding

algorithm (PF-ASR). Then we report the results obtained by

the request-driven algorithm (PF-DDA). These last 2 config-

urations use the 2xRT ASR system.

The table is split in two parts. The first part is the first

corpus (compose of commonly used word), the second part is

the second corpus (compose of OOV). The evaluation indica-

tors are recall, precision and FMeasure. FMeasure combines

recall and precision and is defined as F = 2∗Precision∗Recall
Precision+Recall

Table 2. Recall, Prec., real time ratio (RT ratio)

Recall Precision F-measure RT F.

G
en

er
al

ASR-1xRT 82.00 92.34 86.86 1.0

ASR-16xRT 90.02 96.56 93.18 16

DDA-1xRT 94.0 88.34 91.08 1.0

PF+ASR 80.8 92.66 86.32 1.0

PF+DDA 94.5 93.8 94.14 1.0

O
O

V DDA-1xRT 45.45 100 62.5 1.0

PF+DDA 81.81 100 90.0 1.0

The results show that driven decoding outperforms sig-

nificantly all 1xRT configurations. In comparison with the

standard PF+ASR configuration, we observe an absolute gain

of about 14% of recall without any negative impact on pre-

cision. Moreover, this optimal configuration is more efficient

than the 16xRT baseline : F-measure is close (+0.8%) but the

decoding time is divided by 16. Comparison with respect to

the realtime constraint is more significant : PF-DDA obtains

an absolute gain of about 7%, since the ASR-only based ap-

proach reaches 86.86% (ASR-1xRT).

6. CONCLUSIONS AND PERSPECTIVES

We presented a request-driven strategy for fast on-the-fly

term spotting. The proposed method consists in 2-level ar-

chitecture combining an automatic extraction of optimal sub-

request, a request encoding as cascade of phonetic-filters, and

a request-driven speech decoding.

Phonetic-filtering combined with smart requesting demon-

strated a strong improvement of the algorithm efficiency in

comparison with the classical phonetic search: by obtaining

a constant recall rate greater than 95%, this algorithm runs

40% faster than the phonetic search without any decrease of

accuracy. With the combination of phonetic-filtering and an

ASR engine, we obtain a F-measure of 86%. Request-driven

decoding outperforms significantly this rate while respecting

the real-time constraint (the F-measure is about 94%). This

experimental result confirms that driven decoding balances

the behavior of ASR-based STD systems to favor accuracy.

7. REFERENCES

[1] J. S. C. Chelba and A. Acero, “Soft indexing of speech

content for search in spoken documents,” Computer
Speech and Language, 2007.

[2] “The spoken term detection (std) 2006 evaluation

plan,” in http://www.nist.gov/speech/tests/std/docs/std06-
evalplan-v10.pdf, 2006.

[3] P. Yu, K. Chen, C. Ma, and F. Seide, “Vocabulary-

independent indexing of spontaneous speech,” IEEE
Transactions on Speech and Audio Processing, vol. 13,

2005.

[4] M. Saraclar and R. Sproat, “Lattice-based search for spo-

ken utterance retrieval,” in HLT-NAACL, Boston, MA,

USA, 2004.

[5] M. Akbacak, D. Vergyri, and A. Stolcke, “Open-

vocabulary spoken term detection using graphone-based

hybrid recognition systems,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
ICASSP, Las Vegas,USA, 2008.

[6] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabu-

lary independent spoken term detection,” in SIGIR ’07:
Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information
retrieval. New York, NY, USA: ACM, 2007.

[7] B. Lecouteux, G. Linarès, F. Beaugendre, and P. Nocera,

“Text island spotting in large speech databases,” in In-
ternational Conference on Speech Communication and
Technology, Interspeech, Antwerp, Belgium, 2007.

[8] G. Linarés, D. Massonié, P. Nocera, and C. Lévy, “The
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