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ABSTRACT

In this paper, we investigate the impact of segmentation al-
gorithms as a preprocessing step for classification of remote
sensing images in a deep learning framework. Especially, we
address the issue of segmenting the image into regions to be
classified using pre-trained deep neural networks as feature
extractors for an SVM-based classifier. An efficient segmen-
tation as a preprocessing step helps learning by adding a
spatially-coherent structure to the data. Therefore, we com-
pare algorithms producing superpixels with more traditional
remote sensing segmentation algorithms and measure the
variation in terms of classification accuracy. We establish
that superpixel algorithms allow for a better classification
accuracy as a homogenous and compact segmentation favors
better generalization of the training samples.

Index Terms— Remote sensing, Segmentation algo-
rithms, Image classification, Deep learning, Superpixels

1. INTRODUCTION

Last years have seen the rise of deep learning approaches
for computer vision and remote sensing is not an exception.
However, deep networks are not designed to directly process
high resolution images such as the ones used in remote sens-
ing. These models are therefore used by focusing on the local
appearance around a given location. For performance rea-
sons, a preprocessing step dividing the image into coherent
small regions is needed, and therefore arise the need for seg-
mentation. Two main approaches are used in the litterature :
sliding windows and image segmentation. Superpixel seg-
mentations gained lots of interest in the context of remote
sensing when it was used to establish state-of-the-art perfor-
mances (both in classification accuracy and processing time)
[1].

In this paper, we investigate what makes a good seg-
mentation algorithm for classification purposes. Two aspects
are evaluated: the pure segmentation quality (well-defined
boundaries, coherence of the pixels inside a region) and the
impact of the segmentation on classification through the size
and shape of the regions (i.e the classification samples).

2. CLASSIFICATION FRAMEWORK

Deep learning has been the state-of-the-art in computer vision
for a few years. Neural networks operate at the pixel level by
simultaneously learning which features to extract and how to
classify them. Convolutional neural networks are composed
of layers of neurons computing convolutions on the previous
layer outputs. These layers are stacked and combined with
max-pooling (i.e. sampling maximum activations) and ele-
mentwise non-linear transfer functions (e.g. tanh) to extract
high order features from the input. The network then pro-
duces a probability vector, on which a softmax is applied to
predict the output label. This has been proven to be an effec-
tive baseline for computer vision tasks in [2].

Our framework uses the well-known AlexNet [3] archi-
tecture as a feature extractor, as [4] showed that the deep fea-
tures extracted from AlexNet could be effectively transfered
for remote sensing tasks. Patches extracted from the image
are passed through the network and the last layer outputs be-
fore the softmax are used as feature vectors. More precisely,
our framework (Fig. 1) achieves semantic segmentation with
the following pipeline :

1. Divide the image into small regions using a segmenta-
tion algorithm.

2. For each region, extract 32×32, 64×64 and 128×128
patches centered on the region.

3. Resize all patches to 228 × 228 and process them
through AlexNet.

4. Concatenate the resulting vectors to produce one fea-
ture vector (sample).

At training time, we process the images of the training
set, for which we have the associated ground truth. We de-
fine the label of a region with a majority vote according to
the associated ground truth. We then use the training set of
newly acquired features to train a linear Support Vector Ma-
chine (SVM), whose parameters are optimized by stochastic
gradient descent. At testing time, we use the SVM to predict
the label of each region of the image to be classified, and then
associate to all pixels in this region the predicted output label.
In the end, we obtain a semantic map that we can compare to
the ground truth.



Fig. 1: Classification framework using deep multi-scale features

3. SEGMENTATION ALGORITHMS

To avoid discrepancies in the training samples, the segmented
regions should be similar in shape and size. This motivates the
use of superpixel algorithms rather than traditional segmenta-
tion ones. Indeed, the latter, both from the remote sensing
and computer vision communities, create very inhomogenous
regions in shape and size. This does not bode well with our
multiscale framework, that expects similarly shaped training
samples. Moreover, superpixel algorithms have been used
successfully in the remote sensing literature [5]. Therefore,
we choose to evaluate the following superpixel algorithms:
• SLIC (Simple Linear Iterative Clustering) [6]: starts

from a grid and creates a segmentation by iteratively
growing the regions by applying a k-means algorithm.

• LSC (Linear Spectral Clustering) [7]: embeds the im-
age in a 14-dimension space and increase each region
using weighted k-means starting from a grid.

• Quickshift [8]: clusters points belonging to the same
dominant mode in a non-Euclidean color-(x,y) space,
using the Lab color space.

We also test two popular segmentation algorithms from the
remote sensing community:
• MRS (Multiresolution Segmentation) [9]: imple-

mented in the eCognition software, MRS clusters
points using a well-defined homogeneity criterion
based on spatial and spectral information.

• HSEG (Hierarchical image Segmentation) [10]: based
on Hierarchical Step-Wise Optimization (HSWO) with
spectral clustering, HSEG builds a hierarchical seg-
mentation using a dissimilarity criterion. We extract
the most detailed segmentation using the RHSEG im-
plementation.

As a baseline, we compare these segmentations to a sliding
window (SW) approach. The window parameters are chosen
to obtain as many windows as there are regions using the pre-
viously described algorithms to achieve the same processing
time.

4. EXPERIMENTS

4.1. Experimental setup

The algorithms are tested on the ISPRS 2D Semantic Label-
ing Dataset [11]. We use part of the Vaihingen data, consist-
ing of 16 IR-R-G orthoimages with pixel-level ground truth.
We compare the segmented images to the ideal segmentation
represented by the ground truth.

Segmentation algorithms are evaluted by several standard
metrics proposed by [12]:
• The Undersegmentation Error (UE): defined as the ra-

tio of pixels belonging to a region overlapping other
regions. Formally, if respectively S, P and N denote
the regions in the ground truth, the segmented regions
and the number of pixels in the image:

UE =
1

N

∑
S∈GT

∑
P :P∩S 6=∅

min(|P ∩ S|, |P\P ∩ S|)

• The Boundary Recall (BR): the recall of boundary
pixels in the 3-pixel neighborhood of the ground truth
boundaries :

BR =
true pos.

true pos.+ false neg.

• The Average Purity (AP): average percentage of pixels
of a region belonging to the region dominant class. Let
avg and maj denote respectively the average function
and the majority class:

AP = avg
P∈seg

(
|P ∩maj(P )|

|P |
)

• The oracle: the pixel-wise classification accuracy that
would be achieved by a perfect classifier, assigning the
majority class label to each segment. This is the best
case scenario and therefore is the maximum accuracy
that can be achieved with this segmentation.



(a) MRS (b) HSEG (c) SLIC (d) Quickshift (e) LSC

Fig. 2: Regions segmented by the different segmentation algorithms (zoom on a specific location)

(a) Orthoimage (b) Ground truth (c) MRS (d) HSEG (e) SLIC (f) Quickshift (g) LSC

Fig. 3: Semantic maps after classification using different segmentation algorithms (zoom on a specific location)

We split this dataset as follow : tiles 1, 5, 7, 11, 17, 23,
26, 28, 34 and 37 form the training set, while tiles 13, 21
and 30 form the validation set and tiles 3, 15 and 32 form
the testing set. Note that the “clutter” class is not represented
in the testing set. This is justified by the fact that the ISPRS
evaluation procedure does not take this class into account.

In order to compare the classification results, we use the
following metrics:
• The overall pixel-wise accuracy on the testing set.
• The κ coefficient (inter-rater agreement).
• The F1 score for the “car” class, as an additionnal per-

formance indicator. This allows us to consider specifi-
cally the problem of object detection.

Note that the segmentation parameters for each algorithm
were chosen to achieve the best overall accuracy as we wish
to optimize the classification performance, using roughly the
same number of regions.

4.2. Results

The segmentation metrics of the evaluated algorithms are
presented in Tab. 1. Using only this information, MRS and
HSEG seem to be competitive with superpixel algorithms on
most metrics.

The classification results for each algorithm are presented
in Tab. 2. The superpixel algorithms obtain very similar re-
sults as the classification accuracy shows little variation w.r.t.
the segmentation. However, these results establish an advan-
tage of superpixels over traditional segmentations. Indeed,
MRS and HSEG are lagging behind the superpixel methods
on the classification accuracy and do not bring any additional
gain compared to the baseline sliding window approach. This
can be explained by the segmentation’s geometrical proper-
ties. Superpixels tend be strongly convex and compact, while

traditional segmentations usually produce very heteroge-
nous regions in shape and size. However, better learning is
achieved when the training samples are similar, as the classi-
fier does not need to infer which pixels are meaningful in the
example patch. The parameters achieving best classification
accuracy for MRS back this result. To reach the accuracy
presented in Tab. 2, the compacity parameter of MRS has
to be significantly increased and the resulting segmentation
is more homogenous and “superpixel-looking”. However,
MRS needs significantly more segments than the superpixel
algorithms (especially efficient ones such as SLIC) – which
comes at the cost of a higher processing time – while the
accuracy is still lower than with superpixel algorithms.

This is partially illustrated in Fig. 2 and Fig. 3. MRS and
HSEG are more erratic and the semantic maps suffer from
irregular shapes and borders. The interior of objects such
as cars and buildings is often attributed to the wrong class
since the inside pixels do not belong to the same regions as
the sucessfully classified ones. Superpixel algorithms tend to
preserve more truthfully the shape and convexity of objects.

Furthermore, there is no direct link between the theoret-
ical best-case (the oracle) and the actual accuracy. LSC has
a lower oracle than SLIC on the dataset, but beats it in the
at testing time. This means that the choice of the algorithm
not only impacts the segmentation but also the information
learned by the classifier. Indeed, the shape and size of the
superpixels directly alter the samples provided to the SVM.
This supports the idea that the homogeneity of the superpix-
els is crucial in this classification framework.

Finally, according to the resulting F1 scores on the “car”
pixels, object detection can greatly be improved by chosing
an appropriate segmentation algorithm. Best results on this
class are obtained with LSC, even if results are tight.



Algorithm Regions UE (%) BR (%) AP (%) Oracle (%)

SLIC 20 000 10.21 84.07 75.10 89.91
LSC 22 800 11.37 91.13 71.54 85.83

Quickshift 21 000 11.66 88.34 72.90 83.61

MRS 23 500 13.12 95.71 79.08 91.68
HSEG 21 000 11.39 94.83 78.66 85.25

Table 1: Segmentation metrics on the ISPRS dataset

Algorithm Regions Acc. (%) F1 car κ

SLIC 20 000 82.20 0.54 0.76
LSC 22 800 82.45 0.58 0.76

Quickshift 21 000 82.05 0.52 0.75

MRS 23 500 80.53 0.56 0.73
HSEG 21 000 79.56 0.54 0.72

SW 23 800 81.22 0.53 0.74

Table 2: Classification metrics on the ISPRS dataset

5. CONCLUSION

In this work, we have aimed to establish that superpixel al-
gorithms provide adequate segmentations for classification of
remote sensing images in a deep learning framework. There
is no clear universal advantage of using one particular super-
pixel segmentation method. This depends on the nature of the
data, notably if distinguishing objects significantly smaller
than others, such as cars compared to buildings, is needed.

This comparison brings new insights on how samples
should be extracted from remote sensing data in order to
achieve semantic segmentation, i.e segmentation and clas-
sification of the regions through a deep learning framework.
Superpixel algorithms provide the classifier with compact and
homogeneously segmented samples that favors generalization
of the learned content. This allows for a better accuracy with
fewer samples and a reduced processing time.

Finally, our work shows that there is no direct link be-
tween the quality of the segmentation according to the stan-
dard metrics (boundary adherence, etc.) and the pixel-wise
classification accuracy. Therefore, chosing a segmentation al-
gorithm should be based solely on the classification accuracy
achieved, as the impact of the shape, size and homogeneity of
the segments is preponderant for training a classifier.
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