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We validate the usage of augmented 2D shape-size pattern spectra, calculated on arbitrary connected regions. The evaluation is performed on MSER regions and competitive performance with SIFT descriptors achieved in a simple retrieval system, by combining the local pattern spectra with normalized central moments. An additional advantage of the proposed descriptors is their size: being half the size of SIFT, they can handle larger databases in a time-e cient manner. We focus in this paper on presenting the challenges faced when transitioning from global pattern spectra to the local ones. An exhaustive study on the parameters and the properties of the newly constructed descriptor is o ered, as well as performance results from preliminary experiments, validating the usage of the descriptor. We also consider possible improvements to the quality and computation e ciency of the proposed local descriptors.

Introduction

Pattern spectra are histogram-like structures originating from mathematical morphology, commonly used for image analysis and classi cation [START_REF] Maragos | Pattern spectrum and multiscale shape representation[END_REF], and contain the information on the distribution of sizes and shapes of image components. They can be e ciently computed using a technique known as granulometry [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF] on a max-tree and min-tree hierarchy [START_REF] Jones | Component trees for image ltering and segmentation[END_REF][START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF].

We study here the 2D pattern spectra, targeting applications in Content Based Image Retrieval (CBIR) in which the aim is to retrieve the database images describing the same object or scene as the query. Previous success in using the pattern spectra as image descriptors computed at the global [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] or pixel scale (known as DMP [START_REF] Benediktsson | Classi cation and Feature Extraction for Remote Sensing Images from Urban Areas based on Morphological Transformations[END_REF] or DAP [START_REF] Dalla Mura | Morphological Attribute Pro les for the Analysis of Very High Resolution Images[END_REF][START_REF] Ouzounis | Di erential Area Pro les: Decomposition Properties and E cient Computation[END_REF]) convinced us to investigate their behavior as local descriptors. Two versions of the descriptor are examined -a scale invariant version and a version that is only rotation invariant. This paper is an extended version of [START_REF] Bosilj | Local 2d pattern spectra as connected region descriptors[END_REF], where the primary focus was on the parameters of the method. Additional parameter examination is o ered, as well as a more comprehensive validation. The experiments presented in the companion paper [START_REF] Bosilj | Short local descriptors from 2D connected pattern spectra[END_REF] are added and extended to include both versions of the descriptor. Additionally, rst results regarding the descriptor performance under strong scale changes are also presented.

Standard CBIR systems based on local descriptors consist of region detection, calculation of descriptors and their storage in an index. Di erent indexing schemes are used to perform large scale database search [START_REF] Datar | Locality-sensitive Hashing Scheme Based on P-stable Distributions[END_REF][START_REF] Lejsek | NV-Tree: Nearest Neighbors at the Billion Scale[END_REF][START_REF] Sivic | Video Google: E cient visual search of videos[END_REF], but all need powerful local descriptors to achieve good performance [START_REF] Schmid | Object recognition using local characterization and semi-local constraints[END_REF]. To construct such a descriptor, we extend [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] and compute 2D size-shape pattern spectra locally while keeping the good characteristics of the global version (scale, translation and rotation invariance, and computation e ciency). However, to evaluate the quality and properties of our proposed local pattern spectra (LPS) descriptors, we need to reexamine the parameters used with global pattern spectra as well as evaluate the e ect of the new parameters introduced by the local descriptor scheme.

We evaluate our descriptors on the MSER regions [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] as they can also be computed on a max-tree [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF], using the well-established SIFT descriptors [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] to obtain a baseline CBIR performance. Future work will include comparisons with SIFT extensions which improve performance [START_REF] Arandjelović | Three things everyone should know to improve object retrieval[END_REF][START_REF] Bay | Speeded-up robust features (SURF)[END_REF][START_REF] Ke | PCA-SIFT: A more distinctive representation for local image descriptors[END_REF]. A competitive precision is achieved when combining the local pattern spectra with normalized central moments. An additional advantage of the descriptor is that it works directly with regions of arbitrary shapes and can thus include shape information, unavailable to e.g. SIFT descriptor. The produced descriptor is also calculated faster than SIFT for the MSER regions, and is only half the size of SIFT resulting in shorter training and retrieval times.

The goal of this paper is to give an overview of choices and challenges faced when reworking a global pattern spectrum into a local one, as well as present the performance of the proposed descriptor in an experimental setup used to obtain preliminary results and validate the usage of local 2D pattern spectra descriptors. The paper begins with presenting the background notions in Sec. 2, with the focus on how the max-tree is used throughout the CBIR system. The experimental framework used to tune and evaluate the descriptors is explained in Sec. 3. The rst contribution, examining the properties of the proposed LPS descriptor through the in uence of parameters used, can be found in Sec. 4. Section 5 presents the general descriptor performance as well as the performance on a database featuring strong scale changes. Remarks on possible improvements to the e ciency of LPS computation are given in Sec. 6. Finally, the conclusions are drawn and directions for future work o ered in Sec. 7.

Background . Max-tree

The concept of min and max-trees [START_REF] Jones | Component trees for image ltering and segmentation[END_REF][START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] is here central for keypoint detection as well as the calculation of feature descriptors. We recall their de nition using the upper and lower level sets of an image, e.g. sets of image pixels p with gray level values f (p) respectively higher and lower than a threshold k.

Given a level k of an image I, each level set is de ned as L k = {p ∈ I|f (p) ≥ k} for the max-tree, or L k = {p ∈ I|f (p) ≤ k} for the min-tree. The connected components (also called the peak components) L k,i (i from some index set) of upper level sets are nested and form a hierarchy called a max-tree (an example is shown in Fig. 1). The peak components of the lower level sets, L k,i , are also nested and form a hierarchy called a min-tree. However, the min-tree is usually built as a max-tree of the inverted image -I.

. MSER detection

Peak components of the upper and lower level sets {L k,i } and {L k,i } coincide with the maximal and minimal extremal regions in the context of Maximally Stable Extremal Regions (MSER) detector introduced by Matas et al. [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF]. The detected regions correspond to bright and dark "blobs" in the image and can be extracted while building the max-tree and the min-tree [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF].

Extraction of MSER relies on the stability function q(L k,i ), which measures the rate of growth of the region w.r.t. the change of the threshold level k. It is computed for all the elements of nested sequences, and the local minima of this function correspond to the maximally stable regions.

We use here a simpli cation commonly adopted by many computer vision libraries (e.g. VLFeat [START_REF] Vedaldi | VLFeat: An Open and Portable Library of Computer Vision Algorithms[END_REF]) :

q(L k,i ) = A(L k-∆,i \L k,i ) A(L k,i ) , (1) 
where the area is denoted by A(•) and ∆ is a parameter of the detector. Additional parameters control the allowed region size, limit the appearance of too similar regions and impose a lower limit on the stability score. The implementation parameters were set by comparing the performance to the MSER implementation provided for [START_REF] Mikolajczyk | A comparison of a ne region detectors[END_REF]. For setting these parameters, we used the viewpoint dataset and the same measures (repeatability and matching score) provided in [START_REF] Mikolajczyk | A comparison of a ne region detectors[END_REF]. 
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. Attributes and Filtering

Region characteristics can be captured by assigning them attributes measuring the interesting aspects of the regions. Increasing attributes K(•) give increasing values when calculated on a nested sequence of regions, otherwise they are nonincreasing. A value of an increasing attribute on a tree region, K(L k,i ), will be greater than the value of that attribute for any of the regions descendants.

Increasing attributes are usually a measure of the size of the region. We will simply use the area (in pixels) of the region, A(L k,i ), as the size attribute. Strict shape attributes are the nonincreasing attributes dependent only on the region shape, thus invariant to scaling, rotation and translation [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF]. To indicate the shape of a region, we use an elongation measure called corrected noncompactness:

NC(L k,i ) = π I(L k,i ) A(L k,i ) + A(L k,i ) . ( 2 
)
I(L k,i
) is here the moment of inertia of the region, and the term I(L k,i ) A(L k,i ) without the correction is equal to the rst moment invariant of Hu [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF] 

I = µ , + µ , .
The correction factor appears when transitioning from the original formula in the continuous space to the discrete image space [START_REF] Westenberg | Volumetric Attribute Filtering and Interactive Visualization using the Max-Tree Representation[END_REF].

We also directly use the normalized central moments n , , n , , n , , n , and n , of the considered regions. These, and more attributes (e.g. center of mass, covariances, skewness or kurtosis [START_REF] Wilkinson | Generalized pattern spectra sensitive to spatial information[END_REF]), can be derived from raw region moments.

When the tree is further processed by comparing the region attribute values to a threshold t (or using a more complex criterion), and making a decision to preserve or reject a region based on the attribute value, we are performing an attribute ltering. Filtering strategies can be divided into pruning and nonpruning. The pruning strategies will remove all the descendants of a node L k,i if the node L k,i is removed. The nonpruning strategies preserve the children of a removed node n k,i and make them the children of the parent of L k,i . Attribute lterings based on increasing and nonincreasing (and especially shape) attributes are extensively discussed by Breen and Jones [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF]. For more details on the ltering strategies, the reader is referred to [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF] where di erent ltering rules were rst introduced, and [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF][START_REF] Xu | Morphological ltering in shape spaces: Applications using tree-based image representations[END_REF] which propose and analyze further nonpruning rules.

. Granulometries and Global Pattern Spectra

Attribute opening is a speci c kind of attribute ltering, in which the attribute used is increasing and can always be realized by pruning the tree. Such a transformation is anti-extensive, increasing and idempotent. A size granulometry can be computed from a series of such openings, using increasing values for the threshold t. This series also satis es the absorption property, since applying an opening with t ′ < t will have no e ect on an image already ltered with an opening using the threshold t. In other words, a size granulometry can be seen as a set of sieves of increasing grades, each letting only details of certain sizes pass through [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF].

Instead of focusing on the details remaining, one can consider the amount of detail removed between consecutive openings. Such an analysis, introduced by Maragos [START_REF] Maragos | Pattern spectrum and multiscale shape representation[END_REF] under the name size pattern spectra, produces a 1D histogram containing, for each size class or ltering residue, its Lebesgue measure (i. e the number of pixels in the binary case or the sum of gray levels in the grayscale case). When constructing an attribute lter from nonincreasing shape attributes, we want to lter out all the components not satisfying the criteria while not removing any that do satisfy it. Because of this, a nonpruning strategy has to be used. These operators are anti-extensive and idempotent, making them attribute thinnings on the tree. When the subtractive [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] rule is used, preserving the gray level di erence between nodes and their parents, a set of such attribute thinnings with an increasing threshold t will also satisfy the absorption property, and form a shape granulometry [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF]. A shape pattern spectrum [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] can then be viewed as a 1D histogram of the distribution of image detail over a range of shape classes. Finally, shape and size pattern spectra can be combined to build shape-size pattern spectra [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF], 2D histograms where the amount of image detail for the di erent shape-size classes is stored in dedicated 2D bins.

Previous work [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] as well as our own experiments suggest that the lower attribute values carry more information. Thus, a logarithmic binning is used for both attributes, producing higher resolution bins for low attribute values. Let v be the attribute value for one of the attributes, N b the total desired number of bins and m the upper bound for that attribute (which can be the maximal attribute value in the hierarchy, or a smaller value if we decide to ignore attribute values above a certain threshold). If the minimal value for the attribute is (as with both area and the corrected noncompactness), the base for the logarithmic binning b, and the nal bin c, are determined as:

b = N b m, ( 3 
) c = log b v (4)
Enumerating the bins starting from , the i-th bin has the range

[b i-, b i ].
A connected pattern spectrum is e ciently calculated in a single pass over a max-tree [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF]. For every region, we calculate both the size attribute v = A(L k,i ) and shape attribute v = NC(L k,i ), and add the area of the region weighted by its contrast with the parent region δ h to the spectrum bin S(c , c ). Before using the spectrum as a descriptor, we equalize the sum across all the bins as S(c , c ) = S(c , c ). More information and discussion about the algorithm used to compute the descriptors is given in Sec. 6.

Database and Experimental Setup

To evaluate the retrieval performance of the descriptors without introducing noise in the results with approximate search approaches [START_REF] Lejsek | NV-Tree: Nearest Neighbors at the Billion Scale[END_REF][START_REF] Sivic | Video Google: E cient visual search of videos[END_REF], we chose a relatively small UCID database [START_REF] Schaefer | UCID: An Uncompressed Colour Image Database[END_REF], on which we can perform an exact search. The performance of our proposed descriptors is compared to SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

The whole UCID database contains images of size × pixels, divided into 262 unbalanced categories with one query image assigned to each category. After region detection and description, a single database entry for every category is constructed, comprising the descriptors from all the images of that category (the evaluation can thus be interpreted as a classi cation problem as well). Therefore, to equalize the database entry sizes as much as possible, di erent subsets of the UCID database were used in the experiments, where the number of examples per category is constant for each database subset (the required number of im- 

query DB # DB # DB # DB # DB # ucid r × × × × × . × . ucid q × × × × × × ucid q × × × × × × ucid q × . × × × × × ucid q × . × × × × ×
ages is taken from larger categories in order provided by the ground truth). Table 1 summarizes the subsets of the database used for experiments presented herein. As both the number of categories and the number of examples per category a ect the performance, to investigate the in uence of changing only the number of example images, further experiments were performed on the subsets of ucid5-ucid3 for a decreasing number of examples per category. Furthermore, in order to test the in uence of scale change on the performance we use the ucid5r database, obtained from ucid5 by upscaling of the database images, and downscaling another , while the query and one of the database images are left at the original scale. Additionally, to examine separately the in uence of rescaling by di erent amounts, ucid5q4-ucid5q025 databases are constructed, where only the query is rescaled. The precise scales for each of the rescaled databases is shown in Tab. 2.

A KD-Tree index [START_REF] Friedman | An algorithm for nding best matches in logarithmic expected time[END_REF] is built based on the category descriptors, and stored for querying using the FLANN library [START_REF] Muja | Fast Approximate Nearest Neighbors with Automatic Algorithm Con guration[END_REF]. We then perform a query with image for every database category. The index performs a kNN search (k = ) with each descriptor of a region detected on the query image. The nal category is given through a voting mechanism where each nearest neighbor d i of a query descriptor q j will cast a vote for the category cat(d i ) it belongs to:

vote(cat(d i )) = (L (d i , q j ) + . ) × |cat(d i )| wcat . ( 5 
)
L (d i , q j ) refers to the distance between these two descriptors and |cat(d i )| is the number of descriptors in the category of the i-th nearest neighbor. Finally, w cat is a parameter of the experimental setup. A k > is chosen to take into account several nearest neighbors if their distance is very similar. As the vote contribution decreases with the distance, very far neighbors will have a negligible contribution even if considered.

The measures we used are mean average precision (MAP) and precision at one (P@1). Performance for di erent values of w cat are shown in Fig. 3(d) and Figs. 4(a)-4(e), but for the summarized results, only the performance for the optimal w cat value for each experiment is shown. This choice is made in order to present a fair comparison, and since not all the descriptors reach their peak performance for the same value of w cat . This is additionally justi ed as this parameter is not present when using an approximate classi cation scheme. 

Local Pattern Spectra

Local pattern spectra (LPS) are calculated from the selected MSER regions. As the two trees contain di erent regions, the descriptor for a maximal MSER will only be based on the max-tree, and similarly for the minimal MSERs.

The LPS are calculated like the global ones, except the calculation is done on the corresponding subtree. When calculating the LPS for the MSER region L k,i in the tree, we only consider the attribute values of the descendants of the node. However, transitioning to the local version of the descriptor will introduce a new parameter in uencing the scale invariance property of the descriptors.

To achieve both the desired properties and competitive performance, the proposed descriptor is explained here through examining the experiments used to establish the best parameters. The summary of these parameters, explained individually henceforth, can be found in Tab. 3. Additionally, we consider combining the LPS with normalized central moments and enhancing the performance by adding the global pattern spectra. The choice of measurement region on which the descriptors are calculated in relation to the actual detected region is also discussed.

. Achieving Scale Invariance

When calculating a global pattern spectrum for an entire image, the whole image size is used to determine the base of the logarithmic binning (especially since the database images are usually of the same or similar size [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF]). If we choose to determine the binning base for each region separately in the local description scheme and base it directly on the area of that region, the resulting LPS descriptor is not scale invariant.

Let us consider two versions of the same region at di erent scales, with the area values belonging to the range [ , m ] and [ , m ] respectively. The scale invariance property requires that, for a value v ∈ [ , m ], the bin c determined in the original scale is the same as the bin c for the value v = v m m scaled to the range [ , m ]. However, this is not the case for m ≠ m , as:

c = log N b √ m v ≠ c = log N b √ m v . (6) 
Therefore, to ensure the scale invariance, the areas used to determine the binning and the logarithmic base have to be the same for all the regions. This area becomes a parameter of the size attribute in LPS, called the reference scale RS. Using a common scale RS can be seen as rescaling all the regions to the same reference scale, and has two consequences. First, for a region of size m > M, the minimal value v of this region that can contribute to the spectrum when using a common binning is such that v ′ = v M m = , and all the (sub)regions with the area smaller than m M will be ignored. However, some particular regions with a large enough area can still disappear when rescaling. This is the case for long thin objects with the width (along any dimension) small enough to downscale to under pixel. Such regions should be ignored in the pattern spectrum, even if their attribute values t with the binning. Because of this, we also determine the maximal possible value of the noncompactness attribute for all of the available area bins and use it as a criterion to discard regions.

Second, the minimal area value (1 pixel) of a region of size m < M will be rescaled to the value v ′ = M m > , and the lower area bins at the common scale will be empty. The rst area bin c min that will contain information is then:

= b c min -m M → c min = log b M m + . ( 7 
)
We compare versions of the descriptor: a) the scale variant version (SV-LPS), where the area of each region is used as the reference scale RS, and b) the scale invariant version (SI-LPS) where RS is the same for all regions. We test the performance of the SI-LPS for a range of reference scales between and . The results in terms of MAP, as well as their mean and standard deviation are shown in Fig. 2(a). The performance is fairly stable under varying reference scale, with the di erence between best and worst performance lower than % and a small standard deviation for the chosen range. Some signi cant local maxima and minima still exist, most likely due to quantisation e ects, and should be examined more closely. All further results on ucid1-ucid5 are obtained using the scale parameter RS = resulting in best performance on ucid5. The in uence of the reference scale when scale changes are introduced to the database is also analyzed, and shown in Fig. 2(b). This will be discussed together with other experimental results regarding scale invariance under strong scale changes in Sec. 5.2, but clearly demonstrates that the stability under reference scale is not negatively in uenced by scale changes in the database.

. Binning Parameters

With the area attribute, the upper bound used, m A , is simply the size of the region: we can plausibly expect regions of all sizes lower than the size of the region itself to be present in its decomposition.

Examining the values of the noncompactness attribute for several images, we determined that very few regions have high values of this attribute. As such, noncompactness values higher than a certain threshold can be safely ignored. Optimal values m NC for both SV-LPS and SI-LPS were determined by examining the performance of the values close to the ones used in [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF] For both descriptors, we chose N NC b = and N A b = . To choose between several values of m NC performing well on ucid5, we compare their performance on ucid4-ucid1 as well. This was done as the performance for di erent values of m NC is fairly stable (only about % di erence for values shown on Fig. 3(a)).

Surprisingly, we also found an alternative set of values for SV-LPS with the lower value of N A b = but a higher m NC = . The optimal values as well as the best alternative choices are shown in Tab. 3. As an alternate set of parameters was found producing shorter SV-LPS descriptors, the possibility of further shortening the SI-LPS without the loss in performance should also be investigated.

. Image Moments and Global Pattern Spectra

Five image moments, n , , n , , n , , n , and n , , were appended to a nal version of all LPS descriptors (all normalized central moments up to the order were considered). The weights resulting in the best performance (using the L distance) were determined by examining the combination of the LPS and each of the moments separately. This weight is for n , and for other moments used. Additionally, an indicator value is added to all the LPS descriptors originating from the max-tree, and for the min-tree, thus additionally increasing the L distance between any minimal and maximal MSERs.

Global pattern spectra on their own achieve MAP around % on the ucid5 dataset. They are added to the list of LPS for every image and treated equally to other local descriptors. Note that they are also calculated on a common RS when combined with the SI-LPS. The in uence of combining these values with SI-LPS and SV-LPS for the optimal parameter choice is shown in Fig. 3(d).

. Region Size Influence

Before calculating any descriptors in the evaluation framework of Mikolajczyk et al. [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF][START_REF] Mikolajczyk | A comparison of a ne region detectors[END_REF], the region is rst approximated by an ellipse with the same corresponding second moments, and then the region size is increased three times to construct a measurement region from the detected region, using a ne covariant construction. Only then is the SIFT descriptor calculated on the measurement region using the provided implementation [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF].

Since we want to be able to use the max-tree and the min-tree for the pattern spectra calculation, we chose to work with ancestor regions of the detected MSER such that the size of the ancestor is no larger than xA(n k,i ). We determined that, in order to get the same average area increase as in [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF][START_REF] Mikolajczyk | A comparison of a ne region detectors[END_REF], we should use the value x = . . The reason is that many regions have a much bigger parent region, which is then not considered, and the size increase is often smaller than x times. This means that the obtained LPS descriptors will also include the shape information (of either the detected region directly or an ancestral region) which gives it an additional advantage when used with detectors returning regions of arbitrary shapes (such as MSER).

Results

. Varying the Number of Categories and Examples

We compared the performance of SIFT with that of our LPS descriptors, and both descriptor versions perform closely to SIFT descriptors in the experiments on ucid1-ucid5 databases. These results, for a (reduced) range of weights w and the best MSER and LPS parameters (as shown in Tab. 3) are shown in Fig. 4, with a summary in Fig. 4(f).

The performance expectantly decreases with the increase of database size and the decrease of the number of examples per category. Further experiments aiming to separately examine the in uence of these two factors are shown in Fig. 5, where the experiments on ucid3-ucid5 were repeated while decreasing the category size. The rate of precision decline w. r. t. the number of examples per category is lower for the both versions of LPS descriptors (cf. Figs. 5(a) and 5(b) and compare to Fig. 5(c)).

When considering the results presented in Fig. 4 and Fig. 5, we can claim that our descriptors outperform the SIFT descriptor on the ucid4 and ucid5 databases. Their performance is comparable on the whole database subsets, but further reducing the number of examples clearly shows the advantage of using LPS descriptors on these databases. We can report comparable results with SIFT on the ucid3 and a slightly worse performance than SIFT on ucid2 dataset. On the ucid1 dataset, both our LPS descriptors are signi cantly outperformed by SIFT. However, it is known that minimal number of examples (growing when more categories are used) is required for classi cation. As the ucid1 dataset is the subset with the largest number of categories used, the classi cation results, using only the example images of this dataset as a model, might depend on chance and are not as reliable as the results on ucid2-ucid5.

Besides the performance, it is important to note here that the descriptor is also calculated faster than SIFT for the MSER regions, and that on the largest database subset used, the query speed for LPS is around × faster than that for SIFT (when the LPS descriptor of size is used). As a smaller version of SV-LPS was already found, it is likely possible to further shorten the SI-LPS as well and achieve even faster query speeds without a loss in performance.

. Scale Changes

As the UCID database is not very challenging in terms of scale change, further experiments were done after manually rescaling some of the images in the ucid5 database subset. In one set of experiments, only the query image was rescaled (downscaled or upscaled), corresponding to ucid5q025-ucid5q4 datasets. Additionally, SIFT MAP SIFT P@1 SV-LPS MAP SV-LPS P@1 SI-LPS MAP SI-LPS P@1 (f) Figure 4: The results for the nal version of the descriptors expressed in terms of mean average precision (MAP) and precision at (P@1) for ucid5-ucid1 dataset for varying category weights are shown in (a)-(e). The results for ucid5-ucid1 are summarized on (f) (performance shown for optimal weight w cat for every dataset). The complete results for the SV-LPS were previously presented in [START_REF] Bosilj | Short local descriptors from 2D connected pattern spectra[END_REF]. to examine the in uence of introducing di erent scale changes at once, all the example images were resized by di erent scale factors in ucid5r. All the database subsets with introduced scale changes are listed in Tab. 2. Before examining the performance on these datasets, we need to validate the choice of the reference scale parameter RS. This is shown for all the rescaled subsets in Fig. 2(b), where it can be seen that the performance on the (composite) ucid5r database is in fact more than a combination of the performance contributions when only one type of scale change is introduced. We can conclude, expectedly, that downscaling has a more severe e ect on the performance than upscaling as it always results in the loss of image detail. We can also see that a relative stability under the range of reference scales is preserved after introducing scale changes, however the optimal performance is achieved for a reference scale RS = . Still, the relative stability under the reference scale change can be seen in Fig. 2(b), and comparing with Fig. 2(a) con rms that using any of the two optima still gives good performance on either of the datasets.

Finally, the performance comparison of LPS and SIFT descriptors for a ucid5r database, comprising di erent scale changes, is shown in Fig. 6. The performance with the best choice of the w parameter of the SI-LPS descriptor comes close to the performance of SIFT in Fig. 6(a). It is also consistently higher than the performance of SV-LPS for all the values of w (and for all the values of RS). The decline in performance on the ucid5r database as compared to the database with no rescaling is shown for all descriptors on Fig. 6(b) (for SI-LPS,

Discussion and Conclusion

After successfully applying global pattern spectra in CBIR context [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF][START_REF] Urbach | Shape-only granulometries and grey-scale shape lters[END_REF], we now explore a local region descriptor based on the pattern spectra. On the chosen subsets of the UCID database [START_REF] Schaefer | UCID: An Uncompressed Colour Image Database[END_REF], the results obtained were better than when only using global pattern spectra (almost % in MAP on ucid5), and matched the performance of the SIFT descriptor. The constructed SI-LPS descriptors keep all the invariance properties of the global pattern spectra (translation, rotation and scale invariance).

The proposed descriptors have another advantage. In addition to the description calculation process being slightly faster for the pattern spectra than for the SIFT descriptors, our descriptors length is only half of the length of SIFT. This makes using these descriptors much faster -performing queries on an index of the size (ucid1 dataset) took times longer using SIFT descriptors. This suggests that (especially in large scale retrieval systems), we can use more example images in order to enhance the precision, while still performing faster than SIFT.

As the performance of the descriptors depends on a lot of parameters, we need to explore a way to determine the optimal parameters automatically. Also, while the LPS descriptors are rotation invariant, enforcing scale invariance introduces an additional parameter. In addition to examining this new parameter closer, both SI-LPS and SV-LPS were evaluated on a database focused on scale changes to determine the value of true scale invariance in such cases, which con rmed additional stability properties of SI-LPS.

It is probable that the results could be even further improved by combining the current LPS with pattern spectra based on other shape attributes, like in [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF]. Lastly, the L distance, designed to compare vectors of scalar values, is not the best choice for comparing histogram-like structures. Using di erent distances, or even divergences (e.g. [START_REF] Mwebaze | Divergence-based classi cation in learning vector quantization[END_REF]) which take into account the nature of the descriptor should also improve the performance.

Figure 1 :

 1 Figure 1: The max-tree for (a) is shown on (b). Nodes are labeled with upper level sets they correspond to, and the regions of the upper level sets are displayed besides the nodes.

Figure 2 :

 2 Figure 2: Performance of SI-LPS for a range of reference scales (mean and standard deviation displayed). The performance for the ucid5 database is shown in (a), while (b) summarizes the influence of this parameter for all the databases with scale changes (listed in Tab. 2).

  . Similar experiments were done to determine N NC b and N A b . The parameter tuning experiments for the ucid5 database are shown in Fig. 3.

Figure 3 :

 3 Figure 3: Parameter tuning on ucid5 database. The e ect of varying the upper bound for noncompactness is shown on (a), similar for the amount of noncompactness bins on (b), and the area bins on (c). The e ect of adding the moments and indicator value to the descriptor, with the best parameter settings is shown in (d). Note that the global descriptors for the SI-LPS are calculated with the scale value used for the other descriptors, and not using image size.

Figure 5 :

 5 Figure 5: Summarized experimental results on ucid5 (using -examples per category), ucid4 ( -examples) and ucid3 (examples). Only the highest precision per dataset is shown. The results are shown separately for the three descriptors, with SI-LPS shown in (a), the SV-LPS shown in (b) and SIFT shown in (c) ((b) and (c) results previously shown in [4]).

Table 1 :

 1 Subsets of the UCID database used in experiments.

		# categories /	categories
		examples	selected
	ucid	/	all UCID categories
			with ≥ examples
	ucid	/	all UCID categories ≥
	ucid	/	all UCID categories ≥
	ucid	/	all UCID categories ≥
	ucid	/	all UCID categories

Table 2 :

 2 Rescaling on di erent databases used.

Table 3 :

 3 Parameters and their optimal values for the LPS (best alternative parameter choices also given).

	symbol	signi cance	value SI-LPS	value SV-LPS
	m A	upper bound for area	region size
	m NC	upper bound for noncompactness	( , )	( )
	N A b	number of area bins		( )
	N NC b	number of noncompactness bins		
	RS	reference scale for the size attribute		region size
	w(n , ) w(n , ), w(n , ),	normalized moment weights		
	w(n , ), w(n , )			
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The performance of SI-LPS descriptors using the optimal value of RS = is compared to the performance for SIFT and SV-LPS descriptors on ucid5r dataset for a range of w values in (a). The decline in performance when as compared to the performance on the dataset before any rescaling (ucid5) for all three descriptors is shown in (b). For the SI-LPS, this di erence is shown for both the optimal RS value on ucid5r, as well as the optimal value for the ucid5 dataset, RS = .

for both the reference scale best performing on ucid5r and ucid5). In this gure it is clearly visible that the performance drop is much stronger for the SV-LPS, i.e. that the SI-LPS indeed have scale invariant properties.

Remarks on the Algorithm

The system was implemented in C++. The max-tree structure was used for both MSER detection and keypoint description. The non-recursive max-tree algorithm of [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF] was used. This allows concurrent computation of the MSER stability function (Eq. ( 1)), the area attribute and the moment of inertia, and the MSER. The method is as follows:

-Compute the max-tree and min-tree according to [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF].

-As the trees are built, compute:

-attribute values for the nodes of the trees (including region moments, area and shape attribute), -local minima of the stability function, forming the sets of MSER regions, -global pattern spectra [START_REF] Urbach | Connected shape-size pattern spectra for rotation and scaleinvariant classi cation of gray-scale images[END_REF].

-For each selected MSER region, repeat the computation of the pattern spectra locally in a sub-tree.

-Combine the region moment values, indicator value or and the pattern spectra to form a LPS descriptor for a MSER region. -Add both global pattern spectra [START_REF] Tushabe | Content-based image retrieval using combined 2D attribute pattern spectra[END_REF] corresponding to the whole image in the collection of descriptors for the image.

Unlike the calculation of global pattern spectra, the local pattern spectra use the constructed hierarchy but can not be computed concurrently because of di erent upper limits (for area) and binning scaling value.

However, adopting the scale invariant version to concurrent computation can be considered. While it would sacri ce true scale invariance, if the value RS is used as a reference scale, and we are calculating for a region of size m, we can set the largest bin to be [b log b m -, b log b m ], with the smallest bin having the upper bound b log b m -N b . While not all the values from the whole range of the largest bin will be possible for all the regions, the bin values of the children can be used directly by their parents. When the upper bound of the largest bin changes, the child values can still be used with discarding the values from the smallest bin: the scale of those details is too low to be considered.