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Morphological Path Filtering at the Region Scale for Efficient and Robust Road Network
Extraction from Satellite Imagery

Luc Courtrai, Sébastien Lefèvre∗∗

Univ. Bretagne-Sud, UMR 6074 IRISA, F-56000, Vannes, France

ABSTRACT

Roads are important elements in geographic information systems and remote sensing applications.
Their automatic extraction is challenging when only aerial or satellite images are used. Recently,
some promising attempts have been made with (incomplete) path opening/closing, morphological
filters able to deal with curvilinear structures. We propose here to apply morphological path filters
not on pixels directly but rather on regions representing road segments, in order to improve both
efficiency and robustness. The overall process is organized in two steps: first we map road segments by
rectangular areas made of similar content, before we connect such segments into paths of segments or
polylines using region-based path filtering. Robustness to occlusion is ensured through the adaptation
of the incomplete path filtering strategy to the region scale, while better discrimination between road
segments and other objects is achieved through an hit-or-miss transform that exploits background
knowledge. Experiments conducted on several satellite images illustrate the interest of the proposed
approach, and shows it outperforms pixelwise detection.

1. Introduction

Road networks are important elements for urban planning or
environmental monitoring. Despite being often modeled as ge-
ographic information systems (or GIS), their extraction from
remote sensing data eases GIS updating (on a regular basis or
after a disaster). It is even mandatory when no GIS is avail-
able. Manual extraction of the road network can be achieved
on small areas with photo interpretation, but it is not possible
anymore when satellite or aerial images of larger extent are con-
sidered. Automatic extraction of road networks from aerial or
satellite images has thus been addressed since 40 years (Bajcsy
and Tavakoli, 1976) and led to numerous works, see (Mena,
2003) for a review. Various frameworks have been used in this
intent, e.g., Markov random fields (Wegner et al., 2015; Bes-
bes and Benazza-Benyahia, 2014), neural networks (Mnih and
Hinton, 2010) and deep learning (Wang et al., 2015), mathemat-
ical morphology (Géraud and Mouret, 2004; Zhu et al., 2005;
Gaetano et al., 2011; Sujatha and Selvathi, 2015), graph mod-
elling (Unsalan and Sirmacek, 2012; Bae et al., 2015), spatially-
adaptive classification (Shi et al., 2014), multiscale analysis
(Ouled Sghaier and Lepage, 2015), etc.
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Among them, mathematical morphology has recently led to
promising results in providing fast but accurate solutions, with
the work from Valero et al. (2010) that was relying on path
opening and closing. These morphological filters aim to ex-
tract (or highlight) curvilinear structures (Talbot and Appleton,
2007). However, as most of the automatic techniques, such an
approach is relying on pixelwise analysis and filtering, thus pre-
senting two drawbacks. On the one side, the volume of infor-
mation to be processed (pixels) prevents from efficient (fast)
extraction and does not allow processing large remotely-sensed
images. On the other side, it is not adapted to images with a
very high (spatial) resolution where roads are described by a
large set of pixels (e.g., a road of 7m width is mapped by im-
age segments of 10 to 100 pixels wide for spatial resolutions
of 0.7m to 0.07m per pixel, corresponding respectively to VHR
satellite and aerial images).

Inspired from the promises of path filtering operators, we
propose here a novel morphological technique for road net-
work extraction from remote sensing. Conversely to Valero
et al. (2010), we consider the region level instead of the (stan-
dard) pixel one when applying morphological filters. We thus
propose a 2-step approach which first extracts rectangular re-
gions corresponding to possible road segments, before connect-
ing these regions through region-based morphological opera-
tors. Our contributions also consist in: adapting the (incom-
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plete) path opening paradigm from Talbot and Appleton (2007)
to a region-based representation; and taking into account back-
ground knowledge through an HMT (hit-or-miss transform)
procedure that has led to satisfying results in remote sensing
(Lefèvre et al., 2014). Experiments conducted on several satel-
lite images show our method outperforms the state-of-the-art.

This paper extends our previous work (Courtrai and Lefèvre,
2014) with several additional heuristics improving both robust-
ness and efficiency of the initial method. Furthermore, we pro-
vide an in-depth analysis of the method parameters, as well as
new results obtained on images acquired from various sensors,
including some from publicly available datasets. Ability to deal
with predefined road width ranges (both low and high bounds),
to extract more curvilinear features, at a lower computational
cost are the main advantages of our method w.r.t. the initial
work of Valero et al. (2010).

Our paper is organized as follows. Section 2 provides a com-
prehensive description of the method and its different steps,
namely preprocessing, extraction and connection of road seg-
ments, as well as some additional improvements that support
robustness or efficiency. Section 3 is devoted to experiments,
that are conducted on several images coming from different
satellite sensors. A quantitative comparison with representative
methods from the state-of-the-art is included, as well as an in-
depth analysis of the method parameters. Section 4 concludes
this paper and discusses future research directions.

2. Method

The proposed method is made of two main steps: extraction
and connection of road segments. Robustness to false positives
and negatives is ensured through two additional steps: filtering
with background knowledge and reconstruction of incomplete
segments, respectively. To address various kinds of input data
(i.e., grayscale, color or multispectral images), a preprocessing
step is also included. Figure 1 shows the overall flowchart.

For the sake of illustration, we provide in Fig. 2 two sam-
ple images, and for each of them the intermediate results (after
extraction and connection of road segments) as well as the re-
sulting road network map.

Input Image
(grayscale or multispectral)

Preprocessing

Map of road network

Extraction of
road segments

Connection of
road segments

Filtering with back-
ground knowledge

Reconstruction of
incomplete segments

Optional

Fig. 1. Flowchart of the proposed method.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Fig. 2. Illustration of the main steps of our road extraction method: (a)
input image extracted from a Quickbird image c©copyright Digitalglobe
2008 (top) and from a Pléiades image c©CNES 2012, Distribution Airbus
DS (bottom), (b) extraction (in dark) of road segments and (c) connection
through region-based path closing, and (d) final result after thresholding.

2.1. Preprocessing

The morphological operators involved in the overall process
are applied on grayscale images, assuming that the road net-
work is made of rather dark pixels in such images. This is usu-
ally the case with asphalt roads observed from panchromatic
images. But roads can be made of other material (e.g., con-
crete or lightly colored rocks), and can be extracted from more
informative data such as color or multispectral images.

Thus, the goal of the preprocessing step is to convert the in-
put data f : E → T , with E ⊂ Z2 the image grid and T ⊂ Rn

the initial n-d value space, into a grayscale image g : E → V
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(with V ⊂ R, e.g., V = [0, 255]) where road pixels are darker
than the background. If no additional information is avail-
able, the multiple input channels are merged to build a unique
grayscale image, leading to an appropriate representation for
asphalt roads. Otherwise, prior knowledge is used to derive a
more accurate grayscale image to be further processed.

If the colors or spectral values of some n road materials are
known (Herold and Roberts, 2005) and noted {c1, . . . , cn}, we
compute a distance map where each pixel p is assigned the dis-
tance from its spectral signature f (p) to the closest road color c
(e.g., asphalt and concrete colors), i.e., g(p) = mini d( f (p), ci),
with d a predefined distance metric. Pixels that are made of the
same material as roads are thus assigned very low values.

If training samples are available, we can also rely on a super-
vised classification procedure. We consider two classes (road c
and non-road c′) and compute membership probabilities m for
each pixel p, i.e., mc(p) and mc′ (p). Pixels that are most likely
to belong to roads (i.e., high mc) are assigned low values, e.g.,
with the measure g(p) = 1 − mc(p) = mc′ (p).

In case no prior knowledge of road materials is available but
multispectral images are given, vegetation can be discarded by
computing the NDVI feature (normalized difference vegetation
index, computed as (NIR − R)/(NIR + R) with NIR and R de-
noting respectively the near infrared and visible red bands) and
masking the high NDVI values indicating vegetation areas.

Let us note that other transformations might be involved in
case of specific visible content of road materials, e.g., tex-
tured rock roads would require to compute texture features from
which adequate gray values can be extracted. Such a strategy
would allow limiting the large standard deviation of pixel val-
ues that may occur.

All these various strategies aim to deliver a grayscale image
that will be the input for the next steps.

2.2. Extraction of road segments

As already recalled, existing methods for road extrac-
tion from remote sensing data usually operate at the pixel
scale. However, recent sensors providing very high (spa-
tial) resolution images (or VHR images) call for a higher
level of analysis, similarly to the object-based image analysis
paradigm (Blaschke, 2010). Indeed, the pixel scale both re-
quires a high volume of data to be processed (thus preventing
scalability) and is not well adapted to the very high spatial res-
olution for which road width varies from 10 to 100 pixels. We
address these two issues by introducing a segment extraction
step, the goal of which is to change the analysis scale from pix-
els to regions, or in other words from the image support E to
the set of segments S.. Conversely to existing approaches re-
lying on superpixels (Wegner et al., 2015) or regions produced
by a segmentation (Long and Zhao, 2005), here the regions are
identified within the image as possible road segments. We rely
here on the assumption that a road segment corresponds to a
rectangular area of relative homogeneous content.

The extraction of road segments is then achieved through a
probing step. It requires the definition of a rectangular template
of predefined size (height and width), that is a priori defined
based on the spatial resolution of the image to be processed

Fig. 3. Illustration of overlap among detected road segments (shown with
red borders) to be corrected with the maximal overlapping ratio threshold.

(and is thus directly related to the visual appearance of roads
in the image). The template is used as a sliding window when
scanning the image. For each pixel, the template leads to the
identification of its neighbors, all being compared with the pixel
under analysis. From this comparison is computed the ratio of
similar pixels within the template. If this ratio is higher than a
predefined threshold, we consider that a possible road segment
is present. Pixels are considered similar if their values are rel-
atively close, i.e., within a predefined range. More formally,
given a pixel location p, a new segment S will be extracted if{

card(p ∼ q)
card(q)

≥ Tsim

∣∣∣∣∣ q ∈ N(p)
}
,

with N(p) the neighborhood of p defined by the sliding win-
dow, T a given ratio threshold, and p ∼ q the similarity relation
between a pixel p and its neighbor q. The similarity relation
will be further discussed in Sec. 3.2. The grayscale value g(p)
is transferred to the segment S built from p through a new im-
age of segments defined as h : S → V : S 7→ h(S ).

Despite leading to efficient further processing of road seg-
ments (instead of individual pixels), this probing step also
comes with a significant computational cost. Indeed, it requires
to analyze the full neighborhood of each single pixel. Such a
neighborhood can be sampled, considering only a certain per-
centage of the pixels in the comparison process (thus using
N ′ ⊆ N . As it will be demonstrated in the experiments, this
allows greatly decreasing the computational cost without loss
in detection accuracy. Let us observe that such an optimiza-
tion would not have been possible if road segments were pro-
duced from superpixels or with a standard segmentation tech-
nique. Besides, geometrical properties of road segments are
taken into account directly within the extraction step, with no
need for post-processing beyond their connection.

While the proposed scheme allows for a great reduction in
the number of elements to be subsequently processed, some ad-
ditional heuristics can be involved to further increase the com-
pression rate. Indeed, the overall computation cost is directly
related to the number of road segments to be scanned by the
path filtering operator. We thus include a constraint on the max-
imal overlapping ratio between extracted segments. In other
words, a segment is kept as long as its overlapping surface with
existing segments is lower than a given ratio, or in other words
if it brings a given amount of new content in the detected im-
age. Let us note that such a strategy is sensitive to ordering is-
sues, first extracted segments being given a higher importance
in the selection process. A careful analysis of this parameter
will be given in Sec. 3. Figure 3 illustrates the possible over-



4

Fig. 4. Data structure used to store the set of segments.

lap between detected segments and the need for some overlap
checking procedure as the one proposed here.

Besides, the shape of road segments can be dynamically ad-
justed to fit as best as possible actual roads. To do so, we con-
sider variable widths for the roads segments. The neighborhood
analysis described above assumes a predefined road width. If,
for a given pixel, a segment is found, the neighborhood is it-
eratively extended (by step of 2 pixels) to consider larger road
segment width. This allows considering roads with changing
width (e.g., from 3 to 4 lanes and back).

2.3. Connection of road segments

Once road segments have been identified, they are used as
the elementary units of the image for further processing. While
the set of segments is formally defined as S and associated gray
values stored in the image h, in practice we store them in a ded-
icated grid structure, namely a matrix allowing to access both
starting and ending segments at a given image location. Each
cell contains two lists of segments, respectively starting and
ending at the coordinates indicated by the cell indices. Since
the number of segments is much smaller than the number of
image pixels, the matrix is indeed sparse. Figure 4 illustrate
the data proposed structure, showing that one segment ends in
(3, 2) while two segments start from this cell.

Inspired by the work from Valero et al. (2010), we consider
here path closing (Talbot and Appleton, 2007), a morphological
filter able to extract curvilinear structures. Indeed, it is possible
to distinguish between a road (i.e., a chain of segments with sig-
nificant length) and a building (an unordered set of segments)
while these objects can share the same spectral properties.

Original algorithms for path filtering from Talbot and Apple-
ton (2007) require some adaptation to process segments instead
of pixels. Paths were originally built by linking neighboring
pixels depending on their graylevel and following a given di-
rection. Based on our grid data structure, we define here the
neighborhoodN of a given segment S as the set of all segments
overlapping S and having a grayscale lower or equal to the one
of S , i.e. N(S ) = {S ′ ∈ S | S ∩ S ′ , ∅ and h(S ′) ≤ h(S )}. To
ensure robustness, we modify this definition by also consider-
ing segments relatively close to S (distance between segments
lower than a threshold), and with a similar orientation (orien-
tation difference lower than a threshold). Several strategies can
be used to connect these non-overlapping segments (see Fig. 5):
i) two segments are connected if the end of the first segment is
within the neighborhood of the beginning of the second seg-
ment (Fig. 5 left); ii) the connection can also rely on a more
advanced definition of the junction area, i.e., any predefined

r
1
                

    
    

    
r 2

r
1
                

    
    

    
r 2

Fig. 5. The two possible strategies to connect successive road segments:
using a disc of predefined radius (left) or any predefined shape (right). The
latter one allows for greater flexibility and avoids misconnections.

Fig. 6. Illustration of path length computation. For each segment, the
length of the longest path it belongs to is shown.

shape instead of a single disc of a given radius (Fig. 5 right).
The second strategy is more flexible and allows for a more pre-
cise definition of the connection process. To illustrate, the sec-
ond strategy is able to avoid misconnection of segments from
the configuration given in the left part of Fig. 5.

We consider here a morphological path closing φ, whose aim
is to identify long dark paths, while all other structures will be
brightened (the dual operator, path opening γ, should be used
if the road network is represented by bright pixels over a dark
background). The overall algorithm is applied iteratively on
graylevels, from the lowest (black) to the highest (white) lev-
els. For each graylevel or value v, paths are built from seg-
ments with graylevel lower or equal to v. Each segment S is set
to graylevel v if it belongs to a path whose length is higher than
a threshold. Thus, it will be kept unchanged if it is possible to
build a path of significant length from its graylevel. Otherwise,
it will necessarily belong to a path of higher graylevel, and thus
will have its graylevel set accordingly. The path closing opera-
tor adapted for segments is thus a transform φ : VS →VS that
operates on an image of segments (or mapping form the space
of segments S to the value spaceV):

φ(h(S )) = min(v)
∣∣∣∃P, length(P) ≥ Tpath, S ∈ P,

∀S ′ ∈ P, h(S ′) ≤ v.

Algorithm 1 provides a formal definition of the path closing op-
erator when applied on segments. Depending on the scanning
order (from image top to bottom (North to South), left to right
(West to East), or conversely), the northern/southern segments
are the segments with ending/starting coordinates in the neigh-
borhood of the considered segment. The list L is thus obtained
through the analysis of the grid data structure (Fig. 4). For the
sake of illustration, we provide in Fig. 6 the length of the paths
built from segments stored in the data structure shown in Fig. 4.

The road segments contained in the filtered image have their
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Algorithm 1: Path Closing on Segments.
// Parameters
lmin: minimal path length for roads
// Preprocessing and extraction of segments

L: list of segments sorted by row N/S and column W/E

// Fields of segment structure
seg.active : active flag used in the algorithm
seg.value : segment value (graylevel) after detection
seg.length : segment length (in pixels)
seg.fvalue : final value of the segment (after closing)
seg.lup : maximal length for North path
seg.ldown : maximal length for South path

// Initialization
seg.active=false
seg.fvalue=null
seg.lup=0
seg.ldown=0

// Processing
forall the values V from black to white do

// First Scan (list N/S and W/E, update lup)
activate segments from list L when seg.value = V
forall the all active segments S in list L do

forall the attached northern segments aSeg do
S.lup← max (S.lup, aSeg.lup + aSeg.length)

end
if S.lup is updated AND S.fvalue = null then

if S.lup + S.ldown + S.length ≥ lmin then
S.fvalue← V

end
end
if S.lup is updated OR S.value = V then

forall the southern rectangles aSeg do
if aSeg.value ≤ V then

aSeg.active← true
end

end
end
S.active← false

end
// Second Scan (with inverted list S/N and E/W)
// Third and Fourth Scans, updating seg.ldown and reactivating
northern segments instead of southern ones

end

graylevels brightened depending on the size of the longest path
they belong to. It is then straightforward to produce the final
road network map with a simple thresholding.

2.4. Filtering with background knowledge

Accuracy of the road network map directly relies on the
quality of road segments extracted in the first step. Among
these segments, a significant subset corresponds to large and
homogeneous areas (e.g., parking lots, courts, fields, etc.) and
leads to false positives. We propose to take into account back-
ground knowledge for a more accurate identification of road
segments. We thus follow the principle of the Hit-or-Miss
Transform (HMT) that led to the successful design of template
matching solutions for a wide range of problems, including in
remote sensing (Lefèvre et al., 2014). Assuming that roads can
be distinguished from other areas by their width, we modify
the first step to take into account both a foreground rectangu-
lar template and a composite background template. The latter

Fig. 7. HMT ability to deal with background knowledge and distinguish
between actual road segments (yellow) and outliers (red). Foreground and
background are respectively probed with the central and side rectangles.

is made of two parallel rectangular areas located on each side
of the foreground template. Distance between these templates
and the foreground one is set depending on the expected road
width and its possible variation (e.g., varying number of lanes).
The pixels not contained in the foreground nor the background
templates (i.e., in-between area) corresponds to an uncertainty
zone, and are not involved in the template matching process.
The probing now operates on two criteria: all pixels covered
by the foreground template shall have a similar value to the
central pixel, i.e., foreground color, while all pixels covered by
the background template shall have a different value to the cen-
tral pixel, i.e., background color. Let us remark that the ratios
of similar pixels for the foreground and background template
have to differ, since the uniformity imposed on road segments
is not valid anymore when dealing with background (that can
be made of any material). The proposed filtering with back-
ground knowledge step leads to the extraction of a segment S
from pixel location p if both following conditions hold:{

card(p ∼ q)
card(q)

≥ Tsim-fg

∣∣∣∣∣ q ∈ N f g(p),
}
,

{
card(p � q)

card(q)
≥ Tsim-bg

∣∣∣∣∣ q ∈ Nbg(p)
}
,

with N f g and Tsim-fg (resp. Nbg and Tsim-bg) the neighborhood
defined by foreground (resp. background) template and its re-
lated ratio threshold.

Figure 7 shows this step allows distinguishing between ac-
tual road segments and regions that compose large pieces of the
same material (e.g., asphalt, concrete) but are not roads.

2.5. Reconstruction of incomplete segments

While the previous step aims to remove false positives, it is
also necessary to remove false negatives. Indeed, some roads
might not be completely detected due to a partial occlusion
(e.g., by trees, shadow, cars, pedestrian crossing, etc.) of road
segments, leading to their heterogeneous content and a subse-
quent missed detection. This in turn results in roads of insuffi-
cient length, discarded by the path closing process.

Similarly to Talbot and Appleton (2007), we also rely on in-
complete path filtering to deal with missing elements. Let us
recall that here, elements are segments instead of pixels. A
scanning process is started for each road extremity. It tries to
fill with a small set of successive segments the possible gap
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Fig. 8. Illustration of path length computation (from top to bottom): a set
of segments with their path length, the candidate segments to complete
existing paths (only segments located at extremities of existing paths are
considered), and finally the selected segments (connecting two paths) with
path length recomputed.

Fig. 9. Illustration of the ability of incomplete path filtering to reconnect
disconnected road segments: initial segments are given in red, added seg-
ments are in blue, thus resulting in length updating in the path filtering
process that is finally able to return new segments (in green).

between the current road and another one. To ensure coher-
ence between the added segments and the original ones, and to
avoid the inclusion of outliers (e.g., a building located between
two roads), the connecting segments shall share some common
properties. Here we rely on the same criteria than in the path
closing step, but using some lowered constraints (thresholds).
This reconstruction process is included in the general path clos-
ing step, thus enabling to connect road segments even in pres-
ence of missing segments.

For the sake of illustration, we provide in Fig. 8 an exam-
ple of path completion, where the candidate segments located
at path extremities are used to connect two paths, leading to a
further path length updating step.

Figure 9 shows this step allows reconnecting segments that
were initially unconnected (in red), relying on both filling seg-
ments (in blue) and new segments (in green) extracted follow-
ing the update of the path length. While present in the set of
segments extracted after the first step of the method, such new
segments were initially discarded since they were not belong-
ing to a path of sufficient length. The proposed incomplete path
filtering procedure prevents discarding such segments.

3. Experiments

Our method has been assessed on various satellite images.
We provide here some comparative results with the state-of-
the-art, as well as some analysis and discussion of the different
parameters involved in the different steps of our method.

3.1. Datasets and evaluation measures
To assess our contribution, we have performed a series of ex-

periments on various satellite images. For the sake of compar-
ison, we will consider here Quickbird images and show results
obtained both on a grayscale image of 420× 300 pixels used by
Valero et al. (2010), and on a multispectral image of 2832×2772
pixels from Strasbourg, France. The latter has been converted
to grayscale and is associated with some validation data pro-
vided by French Geographic Institute IGN. We also assess our
method on some Ikonos images from an almost 10 years old
dataset (Mayer et al., 2006). As observed in results reported in
recent works (e.g., Shi et al. (2014)), this dataset can still be
considered as a reference, and the last years have not seen sig-
nificant advances of the state-of-the-art. Comparative results as
well as quantitative measurements will be provided in Sec. 3.3.

Evaluation is performed using standard measures. We con-
sider here the criteria proposed by Wiedemmann et al. (1998)
and still commonly adopted e.g., by Bae et al. (2015): com-
pleteness (or recall, sensitivity), correctness (or precision), as
well as a quality score inspired from the accuracy measure.
The latter is defined using T P, FP, FN (respectively denoting
true positives, false positives, and false negatives) by the ratio
T P/(T P + FP + FN). It is very similar to the standard accuracy
measure, the only difference being the lack of T N (true nega-
tives) in the denominator, in order to accommodate with the un-
balanced classes (roads vs. non-roads). As indicated by Mayer
et al. (2006), practical usefulness of road network extraction
methods requires completeness and correctness scores above
0.6 and 0.75, respectively. Let us recall that they are respec-
tively computed as ratios T P/(T P + FN) and T P/(T P + FP).
Furthermore, we also use the F1-score (harmonic mean of com-
pleteness and correctness, i.e., (2T P)/(2T P + FP + FN)) when
considering the IKONOS dataset, to ease fair comparison with
the state-of-the-art results achieved on this dataset.

3.2. Parameter settings
The method proposed in this paper relies on a number of

parameters that have been set empirically from image proper-
ties (e.g., spatial resolution, contrast). In the experiments that
will be reported in the comparative evaluation (Strasbourg im-
age), we have used the following settings. Road segments have
width of 5 pixels, and height of 45 pixels. Segments are de-
tected in all orientations with an angular step of 5◦. Maximal
orientation change and maximal distance between segments are
respectively set to 30◦and 5 pixels. Pixels are considered sim-
ilar if their graylevels are equal ±5%. The rate of similar pix-
els within a segment is set to 100% (all pixels shall be similar).
Background knowledge requires the definition of an uncertainty
zone in the HMT process. It has been set here equals to road
width (5 pixels). The ratio of similar pixels within the back-
ground template is set to 20 % since less assumptions can be



7

(a) (b) (c) (d)

Fig. 10. Road network extraction, easy dataset: original image from
(Valero et al., 2010) (a) and results from OTB (b), Valero et al. (c), and
our method (d).

Table 1. Comparison of road network extractors, easy dataset.
Method Completeness Correctness Quality
OTB 0.63 0.70 0.50
Valero et al. 0.95 0.78 0.76
Proposed 0.93 0.85 0.81

made on the uniformity of the background (i.e., non road) ar-
eas. Reconstruction fills gaps of length once or twice the length
of segments (i.e., 45 or 90 pixels). A path is considered as a
road if it contains at least 5 successive segments (ca. 250 pix-
els). Finally, pixels from the filtered image are kept in the road
network map if their graylevel is lower to 128. Since we con-
sider here asphalt roads, the final map contains the dark half
of the filtered image, while the other objects are made of pix-
els brightened by the region-based morphological filtering. But
as described in Sec. 2.1, the preprocessing allows dealing with
other contexts and images.

Since parameters have been set here empirically, we provided
in Sec. 3.5 some analysis of their impact on the end-results.
Their automatization is left for future work. Indeed, the pa-
rameters greatly depend on the image properties but also on the
kind of road network considered, since the latter may vary con-
siderably from one country to the other, and even within a given
country (urban versus rural areas).

3.3. Accuracy evaluation

We compare our method with two representative tech-
niques from the state-of-the-art: the road extraction algorithm
available in OTB (CNES ORFEO Tool Box, http://www.

orfeo-toolbox.org/otb) and the method from Valero et al.
(2010) that motivated our work. The latter has been here initial-
ized manually with the parameters leading to the best results.

We first consider the easiest dataset already suggested in
(Valero et al., 2010). We can observe in Fig. 10 that both our
method and Valero et al. (2010) provide similar results, bet-
ter than with OTB which does not rely on paths. A quantita-
tive analysis is provided in Tab. 1, confirming the conclusions
driven from visual analysis.

A second and more challenging experiment has been per-
formed with the Strasbourg image. We can see in Fig. 11 (a
subset of the original image for better visualization) that roads
have a very similar color to the background. While such a dif-
ficult scenario cannot be tackled by Valero et al. (2010) (nor by
the OTB method which is unable to analyze such a complex im-
age), our method (with all steps from Fig. 1) is able to extract

(a) (b) (c)

Fig. 11. Road network extraction, challenging dataset: RGB composition
(a) of the original image c©Digitalglobe 2008, and results from Valero et al.
(b) and our method (c).

Table 2. Comparison of road network extractors, challenging dataset.
Method Completeness Correctness Quality
Baseline 0.68 0.80 0.58

Baseline + Filtering 0.70 0.82 0.61
Reconstruction 0.69 0.81 0.60

Reconstruction + Filtering 0.71 0.83 0.62

the most important elements of the road network. We clearly
observe the relevance of mapping road segments by rectangular
areas, making possible to distinguish between road segments
and neighboring pixels of similar color or graylevel.

Once roads have been extracted, the availability of some ref-
erence data provided by IGN allows us performing a quantita-
tive evaluation. Only a part of the Strasbourg image is available
with some ground truth (Fig. 11(a), 1000 × 1000 pixels) and
leads to quantitative evaluation. Tab. 2 gives the results ob-
tained with our baseline method, as well as alternative steps to
improve robustness to false positives/negatives. We can quanti-
tatively assess the relevance of these options.

Finally, we also report accuracy evaluation on the IKONOS
dataset used in the comparative evaluation performed by Mayer
et al. (2006). Results obtained on the Ikonos1-Sub1 image are
given in Fig. 12, using the same color code as in the original
paper, and with different settings favoring completeness, cor-
rectness, or both. Indeed, parameter settings can be achieved to
increase completeness or correctness, as shown in Tab. 3, lead-
ing to similar overall accuracy scores (measured here with the
F1 Score). Finding a compromise between completeness and
correctness (thus trying to lower both false positives and false
negatives) allows reaching a higher level of overall quality, as
shown in Tab. 3. We can see on the last line of the table that
the proposed settings is not far to meet the requirements for
practical usefulness (completeness of 0.6, correctness of 0.75)
defined by Mayer et al. (2006) on this challenging dataset. Let
us recall that F1 scores reported in the initial study were vary-
ing between 0.37 and 0.57, and that even recent methods such
as (Shi et al., 2014) hardly tackle this dataset.

3.4. Performance evaluation

Beyond a major improvement in detection accuracy, the pro-
posed region-based morphological scheme also allows a sig-
nificant decrease of computation time. We compare here our
method with the initial work of Valero et al., for which we have
realized a Java-based implementation based on the C++ code
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Fig. 12. Illustration of road network extraction with correctness preferred (left), completeness preferred (right), or compromise between both objectives
(center). True positives, false negatives and false positives are respectively displayed in green, red, and blue.

Table 3. Quantitative evaluation on the IKONOS dataset, various settings
favoring completeness, correctness, or both.

Settings Completeness Correctness F1 Score
Low FN 0.71 0.42 0.53
Low FP 0.42 0.81 0.56
Low FN and FP 0.60 0.69 0.64
Shi et al. (2014) 0.34 0.63 0.44

provided by the authors (so ensuring a fair level of optimiza-
tion). As far as our method is concerned, it comes with a moder-
ate level of optimization (single-threaded, with all optimization
tricks described in the previous sections). Using a similar cod-
ing language and operating environment allows for more objec-
tive comparison. Furthermore, both methods are characterized
with a similar computational complexity, since both rely on the
principles of the path opening operator. There is however a ma-
jor difference, that lies in the kind of elements to be processed
(segments instead of pixels).

Measures obtained with the full Strasbourg image are re-
ported in Tab. 4 (using a standard workstation, with a i5 2.5
GHz CPU and 8 GB RAM). Let us observe that our method
requires 22 seconds to extract road segments, which lowers the
efficiency gain if no reconstruction is performed. However, pro-
cessing regions instead of pixels leads to a major improvement
in efficiency as soon as a reconstruction step is involved. More-
over, the complexity increases only slightly when considering
gaps of higher length (1 or 2 segments, i.e., ca. 50 or 100 pix-
els). Let us note that these results shall be considered carefully
since optimization was only moderate.

Most of the papers introducing new road detection methods
do not provide indications of computation time. Nevertheless,
our method seems very competitive w.r.t. the state-of-the-art,
e.g., more than one hour is required by Ouled Sghaier and Lep-
age (2015) to process a 2048 × 2048 image.

As far as the memory cost is concerned, we have measured
the memory footprint with a profiling tool (namely jVisualVM).
The Java user heap was 1.86 GB for Valero et al, while only
0.95 GB with our algorithm, for processing the Strasbourg im-
age (31 MB). Both methods were performing an incomplete
path opening. Let us recall that these values were obtained

Table 4. Comparison of processing times (in seconds).
Method Reconstruction CPU Time
Valero et al. no 98
Valero et al. 1 pixel 310
Valero et al. 2 pixels 720
Proposed no 84
Proposed 1 segment 117
Proposed 2 segments 119

without specific optimization, and the structure we are using
(a sparse matrix to store two lists of segment extremities) con-
tributes to a gain in CPU cost w.r.t. a linked list structure, but at
an additional memory cost. Nevertheless, we can observe a sig-
nificant gain in terms of memory cost, that is easily explained
by the change of representation: while the original work from
Valero et al. was operating on pixels, the proposed method is
processing road segments, i.e., objects that are far less numer-
ous than image pixels.

3.5. Discussion on heuristics and parameters

Several heuristics related to the extraction of segments were
introduced in Sec. 2.2. We report here some experimental re-
sults obtained when conducting further analysis to understand
how they behave in the overall process.

We first study how the overlapping ratio threshold influences
the number of extracted segments, and subsequently the overall
computation time as well as the accuracy of the end results. We
consider various ratios from 1 (no overlapping constraint, over-
lapping allowed until 100%) to 0 (strict overlapping constraint,
no overlapping allowed). The results are given in first line of
Fig. 13 and show the great effect of this constrained selection
procedure on the number of extracted segments that composed
the space on which the path filtering process operates. We can
observe that reducing the number of segments leads to a very
significant gain in performance, while keeping satisfying accu-
racy levels (e.g., keeping a segment only it it brings 75% of
new content, i.e., maximal overlapping ratio lower than 25%,
reduces by a factor of 35 the number of segments, by 5 the path
filtering time and by 2.5 the overall time, for a 20 points loss in
completeness and no loss in overall quality. Conversely, a slight
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gain in quality can be observed. It is probably due to the fact
that the unconstrained scenario extracts some erroneous rectan-
gles located on road borders (partly inside, partly outside the
actual road). Such a situation is alleviated with the overlapping
constraint that force extracted rectangles to be aligned (on the
road direction). But this gain is lowered when the overlapping
ratio becomes too low, since there is then not enough remain-
ing road segments for the filtering step. Considering a maximal
overlapping ratio of 50% allows reaching a quality level of 0.59
(i.e., gain of 4.5 points), for only an half of the initial CPU cost.

Another optimization consists in considering only a certain
percentage of the pixels in the neighborhood when checking if
a segment has to be selected or filtered out. Figs. 13(d) and
(e) show that this sampling procedure leads to a significant de-
crease in computation time for the detection step (d), with no
prohibitive loss in accuracy up to a certain sampling ratio (e).
Indeed, the method is able to provide results of similar quality
when considering only 50% of the pixels.

We have also studied how the dynamic width adjustment in-
fluences the quality of the end results. However, on the Stras-
bourg image considered so far, the observed differences in qual-
ity score were not considered as significant (lower than 1%).
Similarly, using an advanced neighborhood configuration to
connect successive segments has not led to major improvement,
since the gain in correctness has been counterbalanced by a
loss in completeness, resulting in an overall gain in quality of
ca. 1%. We are convinced that conducting additional experi-
ments on other datasets will be helpful in assessing the rele-
vance of these various heuristics.

The overall process relies both on extraction and connection
of road segments, whose parameters’ influence are studied in
the remaining plots of Fig. 13. The first step is parametrized
by the dimensions and heterogeneity of the road segments to be
extracted. Fig. 13(g) shows how dimensions influence the over-
all result. When dimensions are close to 1, the region-based
path filtering will act similarly as the standard one (i.e., pixel-
wise) and keep small areas located along the road. Conversely,
high values for segment length and width will prevent selecting
curved and narrowed roads, respectively. Appropriate dimen-
sions have to be set depending on the visual appearance of roads
in the processed image. We can observe that working with seg-
ments of elongation ratio around 1:10 (i.e., 50 × 5 for length
× width) as basic units for the morphological path filtering op-
erator used in the second stage leads to the best results. Road
segments are defined by their dimension but also by their con-
tent. More precisely, a road segment is extracted if it contains
a significant ratio of similar pixels in a rectangular neighbor-
hood (see Sec. 2.2). Thus, Figs. 13(h) and (i) show respectively
the effect of the ratio parameter and similarity constraint. We
can observe that accepting 1% of outliers leads to better results,
while higher values tend to lower the overall quality. Further-
more, a tolerance in terms of graylevels within the segment is
required to achieve satisfying results. Defining two pixels as
similar if the difference between their graylevels is not lower
than 5 or 6 % of the graylevel range provides the best results.
Let us note that a very low difference (e.g., 0, all pixels have to
be strictly equal; or 1, all pixels should share the value of the

centered pixel ±1%) prevent detecting any road segment.
The second step, namely connection of road segments, con-

sists in a morphological path filter. It relies on an additional
parameter defining the minimal path length or the number of
successive segments that a path should contain to remain af-
ter the filtering step (similarly to the path length used with the
standard path filtering operator). As shown on the Fig. 13(f),
this filtering is mandatory to eliminate false positives (resulting
in gain of 15 points in correctness), and best results where ob-
tained with a threshold value of 9. Let us note that a length of 9
segments is equal to 225 pixels (each segment being 25 pixels
long in the settings used for this figure), and the processed im-
age is here 1200 × 800 pixels. Higher threshold values result in
discarding small roads, leading to a loss in detection quality.

3.6. Requirements for better spatial resolution

Results provided so far were promising and show how our
method outperforms the state-of-the-art. Nevertheless, we have
also observed its limitations in some specific cases, e.g., when
road segments were very narrow (while our method is assum-
ing a minimal width). As illustrated in Fig. 14, some road seg-
ments are then not extracted if only graylevels are used. Indeed,
on the image given in the aforementioned figure, the method
achieved low recognition rates (0.34 for completeness, 0.44 for
correctness), below expected standards defined by Mayer et al.
(2006). This demonstrates the need for relying on additional or
updated data when detection is particularly challenging. Let us
note that detection is eased with new sensors such as Pléiades
that come with a higher spatial resolution (50cm/pixel for the
Pléiades color image vs 2.4m/pixel for the Quickbird multi-
spectral image). To illustrate, Fig. 2 (bottom) used in Sec. 2
shows how road segments are extracted from a grayscale image
of Strasbourg, and with the same setup as Fig. 14. Recognition
rates climb up to 0.79 for completeness, 0.69 for correctness,
leading to a global quality score of 0.58.

Experiments with Pléiades images have been conducted with
two other geographical areas of France, namely St-Jean-de-Luz
and Lorient, and results are given in Fig. 15. While in the first
case the road network is accurately extracted from residential
areas, the second one is much more challenging. Roads do not
have a constant spectral value especially due to shadows, and
can be sometimes barely visible. The proposed method is able
to extract only a (significant) part of the road network. It can
then be used as a very efficient deterministic initialization of
more complex probabilistic strategies.

4. Conclusion

Extraction of roads from aerial or satellite images allows
maintaining an up-to-date map of road networks. While ex-
plored for decades, automatic road extraction remains challeng-
ing. Very high spatial resolution sensors provide more details
that should ease recognition techniques, but also bring a higher
data volume and lead to visual appearance of roads made of
elongated structures with a width higher than a single pixel. In
this paper, we address these issues by introducing new region-
based morphological operators. We first map an input image
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Fig. 13. Influence of parameters settings: maximal overlapping ratio effect on the number of extracted segments (a), the overall complexity (b) and quality
of the full detection process (c); sampling ratio effect on the complexity of the detection step (d) and the quality of the full detection process (e); observed
quality measures for different values of the road segment connection parameter (f) and of the road segment extraction parameters: segment dimensions
(g), ratio of similar pixels (h), and graylevel difference to define similarity (i).

into a set of road segments which become the elementary im-
age units. Such elements are then processed with an (incom-
plete) path closing algorithm, the aim of which is to emphasize
segments belonging to the road network.

Experiments conducted on various satellite images demon-
strate how our method outperforms existing solution using path
closing at the pixel scale (Valero et al., 2010), both in terms
of accuracy and efficiency. Results obtained with very high
spatial resolution images (such as the ones provided by the
Pléiades sensor) show that our method achieves automatic road
extraction with a satisfying level of accuracy. Nevertheless, our
method is not yet able to address aerial datasets such as the one
provided by the ISPRS Test Project on Urban Classification and
3D Building Reconstruction (Rottensteiner et al., 2012). We
have indeed observed that shadows are playing a crucial role
in this dataset, and are making roads appearing as disconnected
paths (and thus are calling for a specific shadow processing to
address such artefacts).

Among future research directions, we believe the
color/spectral information could be addressed in a better
way, through color/multispectral morphological operators (Ap-

toula and Lefèvre, 2007) instead of the conversion to graylevels
used as preprocessing. Beyond color, texture information
can also be taken into account. Furthermore, the proposed
approach being only deterministic, it could be combined
with probabilistic modeling or refinement of road segments.
Finally, improved path filtering algorithms have been recently
proposed (Cokelaer et al., 2012; Morard et al., 2014) and could
also benefit to our method (if adapted to the region scale).
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Fig. 14. Road network extraction with a very challenging dataset with nar-
row road segments: (a) RGB composition of the original Quickbird image
– Strasbourg North area c©Digitalglobe 2008, outputs of the road segment
(b) detection and (c) connection steps, and (d) final map superimposed on
the panchromatic processed image.
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