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The measurement problem on classical diffusion process:
inverse method on stochastic processes

M. Bigerelle, A. Iost *
Equipe Surfaces and Interfaces, LMPGM UMR CNRS 8517, ENSAM Lille, 8 Boulevard Louis XIV, 59046 Lille Cedex, France 

Abstract

In a high number of diffusive systems, measures are processed to calculate material parameters such as diffusion

coefficients, or to verify the accuracy of mathematical models. However, the precision of the parameter determination

or of the model relevance depends on the location of the measure itself. The aim of this paper is first to analyse, for a

mono-dimensional system, the precision of the measure in relation with its location by an inverse problem algorithm

and secondly to examine the physical meaning of the results.

Statistical mechanic considerations show that, passing over a time–distance criterion, measurement becomes un-

certain whatever the initial conditions. The criterion proves that this chaotic mode is related to the production of anti-

entropy at a mesoscopique scale that is in violation to quantum theory about measurement.

� 2003 Elsevier Ltd. All rights reserved.
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1. Parabolic differential equations

The parabolic differential equations (PDEs) are ruled by the general following expression:
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u ¼ f ðx; tÞ ð1Þ

where ðx; tÞ 2 X � Rþ, X an open set of Rn.These equations characterise a high number of transport phenomena met in

materials science such as atom-vacancy transport, Ohm law. . . [1,2]. Diffusion processes can be derived from proba-

bilistic considerations meaning that diffusion laws are stochastic in nature. Asymptotic considerations will lead to the

suppression of this stochastic aspect in order to obtain deterministic equation (1). In other terms microscopic fluctu-

ations are ‘‘removed’’ (by averaging) to formulate the macroscopic system. However we might wonder what are the

mathematical properties of the solutions given by Eq. (1) when noisy measures of u are carried out on the system ðx; tÞ
to estimate the physical parameters ai;j. The second question is to know weather the stochastic aspects of the micro-

scopic system emerge.

2. Properties of the mono-dimensional diffusion equation

We shall limit this paper to the study of the simple mono-dimensional Fick equation that reduces Eq. (1) to
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where Cðx; tÞ is the concentration of the diffusion species, at depth x, after a diffusion time t and D is the diffusion

coefficient considered independent of composition. The application of the boundary conditions to Eq. (2):

Cð0; 0Þ ¼ C0d0 and X ¼� �1;þ1½, corresponding to a sandwich of particles that diffuse in an infinite media leads to

the well-known solution:

Cðx; t;C0;DÞ ¼
C0

2
ffiffiffiffiffiffiffiffi
pDt

p exp

�
� x2

4Dt

�
ð3Þ

This solution is a Gaussian probability density function (PDF), at a multiplying constant factor, with zero mean and

rðtÞ ¼
ffiffiffiffiffiffiffiffi
2Dt

p
standard deviation. According to the properties of the Gaussian PDF, 68% of the diffused mass belong to

the interval ½�rðtÞ; rðtÞ�, 95% in ½�2rðtÞ; 2rðtÞ� . . . This clearly means that the value WðPÞrðtÞ with
Z WðPÞ

�WðPÞ

1ffiffiffiffiffiffi
2p

p exp

�
� x2

2

�
dx ¼ P ð4Þ

can be seen as a mean diffusion front length and therefore LðP Þ ¼ WðP Þ
ffiffiffiffiffiffiffiffi
2Dt

p
is a characteristic length of the diffusion

process. The question that arises is how to choose LðP Þ, i.e. P to obtain the most relevant characteristic length?

3. Characterisation of the relevance of the measure by an inverse method

The main problem is to find the depth x (and �x since the concentration profile is symmetrical versus x ¼ 0) where

information on the diffusion process is the most relevant. The expression ‘‘x position is more relevant’’ is mathematically

formulated and studied by the inverse problem methodology. Concentration that theoretically obeys Eq. (2), measured

at the position x with an experimental noise that follows a Gaussian PDF Bðt; xÞ is given by

CM ðx; t;C0;DÞ ¼ Cðx; t;C0;DÞ þ Bðt; xÞ ð5Þ

We postulate that the best position x is the position that allows us to determine the diffusion coefficient D of Eq. (2) with

utmost precision. Given a measure at the position x noted CM ðx; t;C0;DÞ that follows Eq. (5), a L2 norm Nðx; T ;C0;DÞ is
defined as

Nðx; T ;C0;DÞ ¼
Z T

t¼0

ðCM ðx; t;C0;DÞ � Cðx; t;C0;DÞÞ2 dt ð6Þ

where T is the time scale at which the diffusion is observed.

Eq. (6) cannot be transformed into a linear equation and will only be computed via non-linear optimisation pro-

cedure. In this procedure, the regression coefficients are estimated by searching the values of D that minimises the

residual variance (sum of squared residuals) around the best fitting line. Any deviation of an observed score from a

predicted one signifies a lack of accuracy of our prediction, meaning that position x is not optimal. When this function

reaches its minimum, then an estimation of D noted DM ðx; T Þ is obtained, which corresponds to the measure at position

x for a final diffusion time T . Non-linear estimation is processed by a very efficient algorithm (quasi-Newton) that

approximates the second-order derivatives of the loss function to guide the search for the minimum.

The best position, xopt, is the one that minimises the variation of DM ðx; T Þ characterised by the standard deviation

rDðx; T Þ. To estimate this standard deviation, n measures are carried out, which allows us to calculate n values of

DM ðx; T Þ and then the estimation of rDðx; T Þ is noted rn
Dðx; T Þ:

xoptðT Þ ¼ minfrDðx; T Þ; x 2 Xg ð7Þ

where X is the length of observation of the diffusion process.

Let us now analyse more precisely the influence of the x position on the error made in the determination of the

DM ðx; T Þ values. At x ¼ 0, the concentration Cð0; t;C0;DÞ will always be maximal whatever the diffusion time t. The-
oretically, the diffusion problem given by Eq. (2) contains only one parameter and only one measure at position x is

required to determine DM ðx; T Þ. Then it becomes logical to think that information on the diffusion equation will be more

relevant at x ¼ 0. To verify the accuracy of Eq. (3) to represent the physical process, measurements at different x values
are needed. However, we might wonder about the influence of positions when x > 0 on the DM ðx; T Þ precision. Precision
depends on the final diffusion time T : the higher T , the better the precision on DM ðx; T Þ. Indeed, when increasing time,
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the diffusion process enlarges the Gaussian shape of the diffusion profile given by Eq. (3). As a consequence, Eq. (6) is

estimated on a wider range of data and the DM ðx; T Þ variance diminishes. However, for T we can admit that precision

will decrease with x as the concentration decreases. As the decrease rate is not known, simulations are required.

Theorem 1. Under the Gauss Markov hypothesis [3], DM ðx; tÞ follows a Gaussian law. As a consequence, the standard
deviation rDðx; tÞ becomes the best estimator of the dispersion of the DM ðx; tÞ values.

We shall illustrate this fact by a Monte Carlo simulation. We retain the following values D ¼ 1, T ¼ 1, Bðt; xÞ follows
a Gaussian law with zero mean and 0.0001 standard deviation (noted Bðt; xÞ ¼ 0:0001), C0 ¼ 100, x 2 X where

X ¼ f0; 0:5
ffiffiffiffiffiffiffiffiffi
2DT

p
; . . . ; 2

ffiffiffiffiffiffiffiffiffi
2DT

p
; 2:5

ffiffiffiffiffiffiffiffiffi
2DT

p
g ¼ f0; 0:5

ffiffiffi
2

p
; . . . ; 2

ffiffiffi
2

p
; 2:5

ffiffiffi
2

p
g and n ¼ 105

Fig. 1 represents the variation of the concentration with and without noise at time T ¼ 1, T ¼ 2 and T ¼ 4, and Fig. 2

the DMðx; T Þ histograms with different x values.

Three remarks have to be made:

ii(i) The analysis of variance is proceeded to test if Gaussian mean DM ðx; tÞ 8x 2 X , is equal to unity (the real value

is D ¼ 1. The Fischer test gives the critical value p ¼ 0:8 meaning that all mean values equal the real unknown

diffusion coefficient D ¼ 1 whatever the x position: no bias is introduced by our inverse method.
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Fig. 1. Concentration profile with (standard deviation of the noise: 1) and without noise (lines) for three different diffusion times (t ¼ 1,

2, 4).
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Fig. 2. Variation of the diffusion coefficient estimation for different sensor locations.
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i(ii) For all histograms Shapiro–Wilk tests show that DM ðx; T Þ Gaussian PDF are never rejected at the critical value

p ¼ 0:4 which illustrates Theorem 1.

(iii) As the Gaussian PDF is never rejected, standard deviation is the best estimator of the DM ðx; tÞ dispersion. Histo-

grams in Fig. 2 show that dispersion increases with depth x. Over the critical value x ¼
ffiffiffiffiffiffiffiffiffi
2DT

p
ðx ¼ 20:5;

T ¼ 1;D ¼ 1Þ dispersion seems to increase more rapidly with x.

We then analyse the influence of both the noise Bðt; xÞ and the depth x on the dispersion by plotting in Fig. 3

rn¼10000
D ðx; T Þ versus x for four noises Bðt; xÞ 2 f1:10�4; 2:10�4; 8:10�4; 1610�4g and four values of T , T 2 f1; 4; 8; 16g. The

following remarks can be made:

ii(i) Precision always decreases as x increases.

i(ii) All curves present an inflexion point noted x̂x.
(iii) Precision decreases with increasing noise, but the noise amplitude leaves the position of x̂x unchanged for a given

diffusion time.

(iv) The inflexion point, x̂x, increases with the diffusion time leaving rDðx̂x; T Þ unchanged for a given diffusion time T .

As the diffusion front follows the law WðP ÞrðtÞ (cf. Eq. (4)), the x depth may be normalised by ~xx ¼ x=
ffiffiffiffiffiffiffiffiffi
2DT

p
to obtain

a characteristic curve. In the same way, according to the usual laws of the regression statistics [3], we can admit that

rDðx; T Þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Bðt; xÞ�

p
, then standard deviations are normalised by ~rrDðx; T Þ ¼ rDðx; T Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Bðt; xÞ�

p
.

~rrn¼10000
D ðx̂x; T Þ is plotted in Fig. 4 versus ~xx: the reduced curves presented in Fig. 3 superpose very well, proving that our

normalisation is correct. As can be observed, there is an inflexion point x̂x where derivative is null: o2~rrDðx; T Þ=o~xx2 ¼ 0.

This point is characteristic: for lower values the precision will decrease lower and lower o2~rrDðx; T Þ=o~xx2 < 0Þ and for

x > x̂x the error will rise exponentially ðo2~rrDðx; T Þ=o~xx2 > 0Þ. This clearly means that x̂x is a pivot point after which the

information on D coefficient will decrease dramatically. The most surprising and interesting result is that this point is

independent of the noise amplitude. When small perturbations are introduced in the measure of the diffusion process, it

will grow with the same kinetic movement leading to a loss in information, i.e. the knowledge of the physical parameter.

In Chaos theory, this point is a bifurcation after which non-deterministic chaos emerges. To determine precisely the x̂x
co-ordinate, an iterative algorithm is implemented. As could be observed in Fig. 3, the finite number of simulations, n,
involves a noise on the rn

DðWðP Þ
ffiffiffiffiffiffiffiffi
2Dt

p
; T Þ determination which does not allow us to determine x̂x precisely. At first a

cubic weighted splines fitting curve is used to interpolate the data. Secondly, this fitting curve is differentiated giving a

confidence interval for x̂x. Thirdly, we double the n value and calculate r2n
D ðWðP Þ

ffiffiffiffiffiffiffiffi
2Dt

p
; T Þ until all simulated values are

statistically different (thanks to a Levene test). Then a new restricted interval X 1, x̂x 2 X 1 � X , is built and so on. This

techniques allows us to find the value:

x̂x ¼ 1:0001�0:0001

ffiffiffiffiffiffiffiffi
2Dt

p
ffi
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2Dt
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Fig. 3. Values of ~rrDðx; T Þ versus measured depth x for four Gaussian noises B and four values of diffusion time T .
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4. Physical interpretation of the threshold x̂x

We have proved that a complex macroscopic diffusive system (probability to find particles) can be partitioned into a

summation of elementary Gaussian distributions taken at the scale Dx [5].

To find a physical interpretation for the threshold x̂x, we suppose that all systems are governed by Eq. (2). This

equation could be seen as modelling the diffusion in all the media and therefore is an intrinsic physical property of the

system.

Let us now consider three adjacent cells x1, x2, x3 we call PDE cells, distant from
ffiffiffiffiffiffiffiffi
2Dt

p
¼ Dx. Fig. 5 represents the

Gaussian concentration when
ffiffiffiffiffiffiffiffi
2Dt

p
¼ Dx. Each elementary cell diffuses on the adjacent intervals (a probability calculus

shows that 24% of the mass is diffused on adjacent cells). If we consider particles from the cell x2, no particle of the

adjacent PDE cells x1 or x3 are present at t ¼ 0, and then the x2 particles will diffuse into the cells x1, x3 with respect to

time. Let us now formulate the configuration entropy of the particles on each PDE cell x1, x3. Entropy is null at the

onset (no particle) and increases thanks to diffusion. Let now introduce the mathematical formalism of entropy

evaluation. Based on the statistical thermodynamics [4], the cell PDE will be divided into k microsystems with dx length,
(Dx ¼ kdx; k � 1) called the sub-PDE cells. On each sub-PDE cell, we will calculate the probability for a particle of the

adjacent cell to be present. The time dependant probability of the presence of particles localised on an interval of length

dx, (dx � Dx) localised on x in the PDE cell (x 2 ½Dx=2; . . . ;Dx=2�) is given by

Pðx; t;Dx; dxÞ ¼ erf
Dx� xþ dxffiffiffiffiffiffiffiffi

4Dt
p

� �
� erf

Dx� xffiffiffiffiffiffiffiffi
4Dt

p
� �

ð8Þ
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of diffusion time T .
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Then the configuration entropy on each sub-PDE cell is given by

DSðx; t;Dx; dxÞ ¼ �RPðx; t;Dx; dxÞ log P ðx; t;Dx; dxÞ ð9Þ

where R is the gas constant.

Thanks to the entropy additivity, entropy in a PDE cell is

DSðt;Dx; kÞ ¼ �R
Xk=2

i¼�k=2þ1

erf
Dx 1� i�1

k

� �
ffiffiffiffiffiffiffiffi
4Dt

p
� �	�

� erf
Dx 1� i

k

� �
ffiffiffiffiffiffiffiffi
4Dt

p
� �


log erf
Dx 1� i�1

k

� �
ffiffiffiffiffiffiffiffi
4Dt

p
� �	

� erf
Dx 1� i

k

� �
ffiffiffiffiffiffiffiffi
4Dt

p
� �
�

ð10Þ

And finally, the cell entropy is obtained when dx ! 0 meaning that k ! 1: DSðt;DxÞ ¼ limk!1 DSðt;Dx; kÞ.

Theorem 2

oDSðt;DxÞ=ox < 0 if Dx >
ffiffiffiffiffiffiffiffi
2Dt

p
; t > 0 : Anti� entropyproduction ð11Þ

oDSðt;DxÞ=ox ¼ 0 if Dx ¼
ffiffiffiffiffiffiffiffi
2Dt

p
; t > 0 : Spatio� temporalequilibriumstate ð12Þ

oDSðt;DxÞ=ox > 0 if Dx <
ffiffiffiffiffiffiffiffi
2Dt

p
; t > 0 : Entropyproduction ð13Þ

We shall now estimate the entropy of the cell x2 shown in Fig. 5 by the numerical estimation of Eq. (10) for the configuration
k ¼ 30, D ¼ 1, Dx ¼ 1, T ¼ 10. Fig. 6 represents the entropy variation of cell x1 (or x3) versus the value of the measured
position. As can be observed, entropy increases up to the value of n ¼ 2Dt=ðDxÞ2 ¼ 1, while it decreases when n > 1.

Let us now interpret these results. We shall consider Dx the range of accessible measurements. We have shown that

the physical system can be measured with acceptable errors if Dx <
ffiffiffiffiffiffiffiffi
2Dt

p
¼ Dxc meaning from Eq. (13) that the entropy

of the system should increase. Suppose that the cell measurement Dx is set. To process a measure at position

x ¼ Dxþ dx, the observation scale must be increased by dx which will change the system’s entropy according to The-

orem 2. Physically speaking the variation of entropy can be interpreted as a disorder introduced by the operator while

measuring. Then from Eq. (13), a measurement increases entropy if Dx < Dxc (low measure uncertainty) and decreases

entropy if Dx > Dxc (high measure uncertainty). In the quantum measurement, Entropy (i.e. the Von Neumann en-

tropy) is defined by the number of wave functions compatible with the same macrostate [6]. According to Landau and

Lifshitz [7,8], the foundation of the second law lie in the process of quantum measurement [9] that was reformulated by

Srivastava et al. [10] by an increase of the Von Neumann entropy as a consequence of the Von Neumann projective

measurement. By means of measurement theory in the field of modern physics, Conrad [11] proved that a measure must

increase the entropy of the system due to a randomisation of the phase factor. This was confirmed by Kirby [12] using

the Conrad �theory who calculate the density matrix of a coupled biota–environment systems. As consequence, if

Dx > Dxc Entropy will diminish that is a violation of quantum theory about measurement. Considering the example of

the double slit diffraction, the measurement process (closure of one of the slits) diminishes the diffusion gradients

produced by the incident beam and increases the entropy of the entire system. Then the distribution of positions and

moment corresponds to a situation of higher entropy that is perfectly similar to our diffusion problems. However
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Conrad proves [13] that decorrelation is associated with increasing entropy, whereas recorrelation is associated with

decreasing entropy. The correlation–decorrelation process is associated with the observation scale. The smaller the scale

ðDx < DxcÞ, the more important the contribution to decorrelation. Besides the larger the scale (Dx > Dxc) the more

important the contribution to recorrelation, i.e. anti-entropy production [14]. More interestingly, the fact that Dxc does
not depend on the value of the noise added to the system is consistent with the theory of Conrad according to the anti-

entropy process does not depend on the atypical conditions. Penrose [15] described this correlation as a quantum

coherence and Kirby [12] by unifying the Conrad adaptability theory [16] with quantum entropies proves that the

measure destroy the quantum coherence and increases the entropy. When Dx > Dxc, the ground state of the universe is

inherently unstable if we are in the anti-entropy production. Conrad used the self-affine structure of the Cantorian

space-time proposed by El Naschie [17–19] to show that such a space provides an infinite source of information for the

recorrelation process that underlies anti-entropy production [11]. El Naschie proved that the exact spatial localisation

of a microspacial point is fundamentally undecidable due to the geometrical structure of such a space [20]. As a

consequence, in the anti-entropy production process, the localisation (Dx > Dxc) becomes undecidable and then all

measures will be intrinsically uncertain.

5. Conclusions

By means of an inverse procedure carried out on stochastic equation, we have shown that for sandwich problems,

the diffusion coefficient must be estimated by measuring the concentration for a depth x as near the source as possible. If
the sensor is located far from this source, the precision in the measurement depends on both the diffusion time t and on

depth x. If xP
ffiffiffiffiffiffiffiffi
2Dt

p
the error on the determination of the physical parameters will increase exponentially with depth x

and could be related to a decrease in entropy despite the second principle of thermodynamics. These results are

consistent with the theory of Conrad on anti-entropy production.
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