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Abstract.The increase of surface electromyography (sEMG) root-mean-square 

(RMS) is very frequently used to determine fatigue. However, as RMS is also 

influenced by muscle force,its effective usage as indicator of fatigue is mainly 

limited to isometric, constant force tasks.This research develops a simple me-

thodto preclude the effect of muscle force, hereby estimates the EMG amplitude 

response exclusively to fatigue with RMS. Experiment was carried out on the 

biceps brachiis of 15 subjects (7males, 8 females) during sustained static maxi-

mum voluntary contractions (sMVC).Result shows that the sEMG RMS re-

sponse to fatigue increasesto 21.27% while muscle force decreasing to 

50%MVC, which implies that more and more extra effort is needed as muscle 

fatigue intensifies. It would be promising to use the RMS response exclusively 

to fatigue as an indicator of muscle fatigue. 

Keywords: surface EMG· root-mean-square· muscle fatigue· sustained static max-

imum voluntary contraction 

1 Introduction 

Muscle fatigue is a complicate phenomenon believed to be closely related to muscu-

loskeletal disorder
[1]

. In ergonomics, fatigue is usually measured from three as-

pects:the reduction of force output capability, the self-rating discomfort, as well as the 

myoelectric activity change.The reduction of force output capabilityhas been well 

modeled
[2]

, and been used to describe fatigueand calculate fatigue resistance
[3,4]

; the 

self-rating discomfort was reported to be a valid estimator
[5]

, but its usage might be 

limited due to the subjectivity. The myoelectric activitymonitored by surface EMG 

(sEMG) shows the in situ and real-time changes of the muscles
[6]

. Therefore, ithas 

been frequently used to determine fatigue
[7]

. 

Overall, sEMG signal is the synthesis of myoelectric and anatomic properties: the 

shape of motor unit action potential (MUAP) waveform
[8]

, the firing rate of MUAP 

trains, the recruitment of new motor units
[9]

as well as thesubcutaneous tissues which 

act as a volume conductor and cause a spatial low-pass filtering effect when conduct-

ing myoelectric signals
[10]

.In the process of fatigue, metabolites such as lactic acid 

concentrate, for which the muscle fibre conduction velocity (CV) decreases. The de-

crease of CV directly changes the shape of the MUAP waveform and leads to the 
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compression of EMGspectrumtowards its lower part
[11]

. As a result, more energy 

passes through the tissues which act as a low pass filter, and is detected by the surface 

electrodes, leading to an increase of sEMG amplitude. 

The changes ofsEMG characteristic values,such as decrease of the median power 

frequency (MDF) and increase of the root-mean-square (RMS), are very often used to 

estimate fatigue
[12,13,14]

. But it should be noted that thesesEMGindicators are not al-

ways applicable. Firstly,sEMG spectral compressions are sometimes slight and insig-

nificant statistically, especially during low force level tasks
[5,15]

.As De Luca
[7]

 puts it, 

the usage of spectral variables should be limited toisometric, constant-load tasks 

greater than 30% of subjects’ maximal force. In addition, thesEMG amplitude is sig-

nificantly affected bymuscle force: greater force leads to larger amplitude
[16,17]

. It 

seemsthe RMS should only be used in constant-force fatigue process. 

However, the tasks that are cared most aredynamic, inconstant-force ones. These 

tasks are characterized by time-varying changes in forces exerted variations as well as 

in working postures
[12]

. Both of the two factors lead to EMG changes despite of fati-

gue. To indicate fatigue with sEMG in real operations, it is logistic to start from tasks 

with fixed posture and inconstant force, such as sustained static maximal exer-

tions.Voluntary sustained static maximal exertions, or sustained maximum voluntary 

contractions (sMVC), are characterized by rapid muscle fatigue and continuous force 

decline
[18]

. In this process, the impact of intensifying fatigue on sEMG amplitude is 

overwhelmed by the impact of decreasing muscle force. As a result, the RMS turns to 

decline along with fatiguing progress
[19]

. 

In this research, a simple methodto preclude the impact of muscle force on RMS is 

tested during sMVC and the sEMG RMS response exclusively to fatigue is identified. 

The possibility of using the identified value as an indicator of fatigue is discussed. 

2 Methods 

2.1 Subjects 

A number of 15 subjects (7 males, 8 females) took part in the experiment. They were 

healthy, aged between 20 and 35 and free from any upper limb pain during the pre-

vious 12 months. All of them are right-handed. Other criteria include moderate (non-

extreme) level of self-reported daily physical activity. After being fully informed of 

the nature of the experiment, they signed an informed consent. Anthropometry data 

were measured upon their arrival at the laboratory (see Table 1). 

Table 1.Subject physical characteristics. 

Characteristic Mean SD 

Age (year) 28.3 4.7 

Height (cm) 167.1 9.1 

Weight (kg) 67.1 14.0 

BMI 23.8 3.5 

Maximum Voluntary Contraction (N) 137.8 47.8 



 

 

2.2 Experiment setup 

The experiment platform consisted of a dynamometer (BET
®
Primus RS), a custo-

mized chair without armrest, an electromyography recorder (TeleMyo 2400T V2
®
) 

and an interactive monitor. The muscle force and the surface EMG were recorded by 

the dynamometer and EMG recorder at frequency of 20 Hz and 1500 Hz respectively. 

Real-time muscle force was recorded by and displayed on the monitor. 

In the experiment, each subject was told to be seated on the chair with torso and 

upper arms perpendicular to the ground. The elbow joint angle of the dominant arm 

was kept at 90 degree with forearm supine and horizontal. Subject's output strength 

was transduced to the dynamometer by a lever that is hold in hand (see Figure 1). 

Body movement was mechanically restrained by belts restraining legs, trunk and 

shoulder to the chair. During the whole experiment, subjects were closely monitored 

to maintain the posture as still as possible. In all the experiments, bar arms were used 

and the room temperature was maintained around 22°C by air-conditioning if neces-

sary. 

 

Fig. 1.Experiment posture. 

2.3 Experiment protocol 

Before experiment, subjects were trained to sustain submaximal muscle force without 

joint movements. 

The experiment includes three sessions. First there was the initial Maximum Volunta-

ry Contraction (iMVC) session. Subject's iMVC was obtained in the position de-

scribed above. At least three short-time MVC trials (each lasting for 3s) were per-

formed, with 10 min rest in between. The iMVC trials were continued until there were 

three measures whose Coefficient of Variation (CV) was less than 5%. The average 

value of the three measures was taken as iMVC.  

After a recovery break of 10 minutes, there came the simple contraction sessions, 

where subjects perform a series of five short-time submaximal exertions, from 50% 

MVC to 90%MVC, in steps of 10% MVC. The sequence of the five exertions was 

generated by computer randomly for every subject. Each exertion lasted for only 3s to 



 

 

avoid fatigue. After each exertion, at least 5 minutes rest was taken until a complete 

recovery was reported by the subject. In this session, the interactive monitor that dis-

played the real-time force was set in front of the subjects and the target force level 

was clearly labelled on the screen.  

Finally it was the sMVC fatigue session. After a total recovery of at least 15min, the 

subject was asked to exert his maximum strength to lift the transducing lever handle 

of the dynamometer and to sustain the maximum effort for 60 seconds. The force 

decline was recorded by the dynamometer automatically. Subjects received non-

threatening verbal encouragement throughout the procedure. 

2.4 Data collection 

Surface EMG data was collected from the biceps brachii muscles by a pair of dispos-

able Ag-AgCl electrodes. The electrodes were 1cm in diameter each, placed on the 

belly of the biceps brachii, with a 2.0 cm space in between. The skin was carefully 

shaved, cleared by alcohol and slightly abraded. Intra-electrodes resistance was kept 

below 10KΩ. A ground electrode was placed over the end of the humerusin the elbow 

flexor joint. 

EMG signals were recorded continuously throughout the three test sessions. Raw 

signals were sampled at 1500 Hz. RMS was calculated using MATLAB. 

2.5 Data analysis 

For each 3s exertion of the simple contraction session, the RMS was calculated from 

the 1s-long EMG signals fragment in the central of the 3s-long signals (from 1s to 2s), 

noted asRMSs. 

During the sMVC, the muscle force declines from almost 100% MVC all the way 

along. For each subject, the time points when the force reaches 90%MVC, 80% 

MVC, 70% MVC, 60% MVC and 50% MVC were determined and the nearby EMG 

signals (1s-long) corresponding to these time points were selected. RMSs were calcu-

lated from these EMG signals fragments, noted as RMSf.  

By comparing the RMSfwith RMSs, one may figure out the EMG amplitude changes 

caused by fatigue, precluding the effect of muscle force. For each subject, all RMS 

values were normalized by the RMS of EMG signals when he or she reached the peak 

force during the sMVC fatigue session.   

fe f sRMS RMS RMS                    (1) 

3 Results 

3.1 Simple contraction session 

Monotonous and significantly linear relationship (Pearson’s test:r = 0.74; p< 0.001) 

was found between muscle force and RMS values in the simple contraction session 



 

 

(shown in Figure 2). Larger muscle force corresponds stronger EMG signals. 

 
Fig. 2. Subjects’ normalized RMS values during simple contraction session. 

3.2 Fatigue sessions 

Under the influence of both muscle force declines and the fatigue increases, the am-

plitude of EMG decreases along the fatigue process. As shown in Figure 3, from 90% 

MVC to 50% MVC, the RMSfgoes from 95.4%to 70.2% (normalized by RMS corres-

ponding to maximal force). 

 
Fig. 3. Subjects’ normalized RMS values during sMVC fatigue session. 



 

 

 

Table 2.Normalized RMS values corresponding to five force levels during sMVC session 

 90% MVC 80% MVC 70% MVC 60% MVC 50% MVC 

RMSf *(%) 95.38(13.55) 96.37(19.58) 89.69(18.30) 80.06(14.37) 70.19(16.90)  

RMSfe *(%) 0.54(11.78)  2.24 (19.18)  14.70 (16.42)  14.67 (18.88)  21.27(18.66) 

* Normalized by the RMS values corresponding to maximal force. 

3.3 RMS response exclusively to fatigue 

After precluding the influence of muscle force by equation (1), sEMG RMS response exclu-

sively to fatigue was determined.Result shows thatit increaseswith fatigue strengthening: 

RMSfe goes from 0.54% up to 21.27%while muscle force reduces from 90% MVC to 50% 

MVC.Boxplotis shown in Figure 4. 

 
Fig. 4.Subjects’ RMS response to fatigue during sMVC. Impact of muscle forceis precluded. 

4 Discussion 

4.1 Force - RMS relationship in simple contraction 

In this experiment, linear relationship was found between muscle forces and RMS 

values during the simple contraction session. This clear relationship between mechan-

ical and the electrical responses of human muscle is well documented in previous 

researches
[20,21,22]

 under voluntary isometric contractions. 

As mentioned above, the RMS value of the sEMG signals is decided by: (1). the 

percentage of MUAP trains wave that filtered by the tissue and reach the electrodes, 

0



 

 

designated as p; (2). the average length of the MUAP trains, designated as l ;(3). the 

firing rate of the MUAP trains, designated as f; (4). the meanamplitude of filtered 

MUAP trains, designated as A . Then RMS could be indicated by equation (2) (    is 

the Constant coefficient). 

 
0RMS l p f A                           (2) 

During the simple contractions when the muscles are fresh, the shape of MUAP 

waveform and the filtering threshold of the tissue remain unchanged. Therefore p is 

constant. With the increase of muscle force, MUs with higher firing rate of their am-

plitude potential trains are recruited and the firing rates of initial MUAP trains in-

crease. These factors lead to the increases of and f, and furthermore an increase of 

total RMS. 

4.2 RMS during Fatigue Process 

During the sMVC fatigue progress, the RMS reduces toabout 70% when muscle force 

reaches 50% MVC. Similar results have been reported in previous researches, as 

listed in Table 3. Generally, EMG amplitude reduced by30% to 70% during a max-

imal voluntary contraction sustained for 60 s, depending on different muscles and 

protocols. 

Table 3.EMG amplitude changes during sustainedmaximal voluntary contraction. 

Authors Muscle Amplitude value Tendency Magnitude 

Stephens and Taylor[23] 
First dorsal 

interosseous 
srEMG* Decrease To 53% ± 7% 

Bigland-Ritchie, et al.[19] Adductor pollicis srEMG* Decrease By50% to 70% 

Kent-Braun[17] Ankle dorsiflexor iEMG** Decrease To 72.6% ± 9.1% 

Bigland-Ritchie[24] Adductor pollicis srEMG* Decrease About 50% 
*
srEMG - Smoothed rectified EMG; 

**
iEMG –Integreted EMG 

 

As mentioned above, theRMSof sEMG has been found to increase in the process of 

constant-force fatiguing tasks
[25,12,13]

. When the body tries to maintain the target forces, 

a progressive increase of MUAP trains firing rate take place and MUs with larger 

amplitude are recruited
[27]

, which increase the f and  in Eq.2. At the same time, the 

percentage of filtered MUAP trains pgrows due to fatigue. As a result, the total RMS 

increases. 

Whereas in the procedure of sustained maximal exertions, both acute muscle fati-

gue and rapid force decline are identified. The MUAP trains are pushed to change in 

two directions: on the one hand, in every moment of sMVC, the muscle is trying hard 

to maintain its original force, which leads to increases off and ; on the other hand, as 

the muscle fails to maintain its original force, muscle force continue to decline, which 

brings about the decreases of f and . As a consequence, the impact of force decline 

prevails over that of fatigue and decreases of f and  are observed
[27]

. Despite of the 

increase of the percentage of filtered MUAP trains p, the total RMS declines with 

time. 

A

A

A

A

A



 

 

4.3 EMG response exclusively to fatigue 

After precludingthe impact of muscle force changes,the sEMG RMS response to fati-

gue is found to increase from 0.54%to 21.27%, along with muscle force decreasing 

from 90%MVC to 50%MVC.The underlying implication is that in this process, al-

though the firing rate of and average amplitude of MUAP trains decline significantly, 

increasingly extra effort is made compared with that when the fresh muscle exerts 

same forces. The more severe the muscle fatigue is, the more extra effort it is needed. 

It is notable from Table 2 that no extra RMS increase is detected when force de-

clines from 70%MVC to 60%MVC. This should be explained by the different percen-

tage held by MU deactivation and firing rate slowing in force reduction at different 

force output level. As the muscle force increases, MUs are recruited in the order of 

their firing rate and twitch tension from low to high
[9,28]

along with the average firing 

rate speeding up
[29]

. The recruitment of new MU was reported to terminate by 

60%MVC
[30]

 or 75%MVC
[28]

 in biceps brachii. Conversely, during sMVC session, 

before the muscle force reaches about 70%MVC, the slowing of MU firing rate con-

tributes the largest partto force loss. From 70%MVC to 60%MVC, the deactivation of 

MU takes part in.MUs with the largest twitch tension are deactivate, which makes a 

great contribution to force loss. Hereby, the firing rate slowing and RMS changes are 

not significant. 

5 Conclusions 

In this research, a simple way to identify the sEMG RMS response to fatigue was 

tested on biceps brachii muscles during sMVC process. The impact of muscle force 

changes on RMS is precluded by simply subtracting the RMS of the fresh muscle 

when exerting corresponding force from the total RMS.Result shows that the sEMG 

RMS response to fatigue increasesalong with the fatigue process to as much as 20%, 

which implies that more and more extra effort is needed as muscle fatigueintensifies. 

It would be promising to use the RMS response exclusively to fatigue as an indicator 

of muscle fatigue. 
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